1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/xprt.c 4 * 5 * This is a generic RPC call interface supporting congestion avoidance, 6 * and asynchronous calls. 7 * 8 * The interface works like this: 9 * 10 * - When a process places a call, it allocates a request slot if 11 * one is available. Otherwise, it sleeps on the backlog queue 12 * (xprt_reserve). 13 * - Next, the caller puts together the RPC message, stuffs it into 14 * the request struct, and calls xprt_transmit(). 15 * - xprt_transmit sends the message and installs the caller on the 16 * transport's wait list. At the same time, if a reply is expected, 17 * it installs a timer that is run after the packet's timeout has 18 * expired. 19 * - When a packet arrives, the data_ready handler walks the list of 20 * pending requests for that transport. If a matching XID is found, the 21 * caller is woken up, and the timer removed. 22 * - When no reply arrives within the timeout interval, the timer is 23 * fired by the kernel and runs xprt_timer(). It either adjusts the 24 * timeout values (minor timeout) or wakes up the caller with a status 25 * of -ETIMEDOUT. 26 * - When the caller receives a notification from RPC that a reply arrived, 27 * it should release the RPC slot, and process the reply. 28 * If the call timed out, it may choose to retry the operation by 29 * adjusting the initial timeout value, and simply calling rpc_call 30 * again. 31 * 32 * Support for async RPC is done through a set of RPC-specific scheduling 33 * primitives that `transparently' work for processes as well as async 34 * tasks that rely on callbacks. 35 * 36 * Copyright (C) 1995-1997, Olaf Kirch <okir@monad.swb.de> 37 * 38 * Transport switch API copyright (C) 2005, Chuck Lever <cel@netapp.com> 39 */ 40 41 #include <linux/module.h> 42 43 #include <linux/types.h> 44 #include <linux/interrupt.h> 45 #include <linux/workqueue.h> 46 #include <linux/net.h> 47 #include <linux/ktime.h> 48 49 #include <linux/sunrpc/clnt.h> 50 #include <linux/sunrpc/metrics.h> 51 #include <linux/sunrpc/bc_xprt.h> 52 #include <linux/rcupdate.h> 53 #include <linux/sched/mm.h> 54 55 #include <trace/events/sunrpc.h> 56 57 #include "sunrpc.h" 58 59 /* 60 * Local variables 61 */ 62 63 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 64 # define RPCDBG_FACILITY RPCDBG_XPRT 65 #endif 66 67 /* 68 * Local functions 69 */ 70 static void xprt_init(struct rpc_xprt *xprt, struct net *net); 71 static __be32 xprt_alloc_xid(struct rpc_xprt *xprt); 72 static void xprt_destroy(struct rpc_xprt *xprt); 73 74 static DEFINE_SPINLOCK(xprt_list_lock); 75 static LIST_HEAD(xprt_list); 76 77 static unsigned long xprt_request_timeout(const struct rpc_rqst *req) 78 { 79 unsigned long timeout = jiffies + req->rq_timeout; 80 81 if (time_before(timeout, req->rq_majortimeo)) 82 return timeout; 83 return req->rq_majortimeo; 84 } 85 86 /** 87 * xprt_register_transport - register a transport implementation 88 * @transport: transport to register 89 * 90 * If a transport implementation is loaded as a kernel module, it can 91 * call this interface to make itself known to the RPC client. 92 * 93 * Returns: 94 * 0: transport successfully registered 95 * -EEXIST: transport already registered 96 * -EINVAL: transport module being unloaded 97 */ 98 int xprt_register_transport(struct xprt_class *transport) 99 { 100 struct xprt_class *t; 101 int result; 102 103 result = -EEXIST; 104 spin_lock(&xprt_list_lock); 105 list_for_each_entry(t, &xprt_list, list) { 106 /* don't register the same transport class twice */ 107 if (t->ident == transport->ident) 108 goto out; 109 } 110 111 list_add_tail(&transport->list, &xprt_list); 112 printk(KERN_INFO "RPC: Registered %s transport module.\n", 113 transport->name); 114 result = 0; 115 116 out: 117 spin_unlock(&xprt_list_lock); 118 return result; 119 } 120 EXPORT_SYMBOL_GPL(xprt_register_transport); 121 122 /** 123 * xprt_unregister_transport - unregister a transport implementation 124 * @transport: transport to unregister 125 * 126 * Returns: 127 * 0: transport successfully unregistered 128 * -ENOENT: transport never registered 129 */ 130 int xprt_unregister_transport(struct xprt_class *transport) 131 { 132 struct xprt_class *t; 133 int result; 134 135 result = 0; 136 spin_lock(&xprt_list_lock); 137 list_for_each_entry(t, &xprt_list, list) { 138 if (t == transport) { 139 printk(KERN_INFO 140 "RPC: Unregistered %s transport module.\n", 141 transport->name); 142 list_del_init(&transport->list); 143 goto out; 144 } 145 } 146 result = -ENOENT; 147 148 out: 149 spin_unlock(&xprt_list_lock); 150 return result; 151 } 152 EXPORT_SYMBOL_GPL(xprt_unregister_transport); 153 154 static void 155 xprt_class_release(const struct xprt_class *t) 156 { 157 module_put(t->owner); 158 } 159 160 static const struct xprt_class * 161 xprt_class_find_by_ident_locked(int ident) 162 { 163 const struct xprt_class *t; 164 165 list_for_each_entry(t, &xprt_list, list) { 166 if (t->ident != ident) 167 continue; 168 if (!try_module_get(t->owner)) 169 continue; 170 return t; 171 } 172 return NULL; 173 } 174 175 static const struct xprt_class * 176 xprt_class_find_by_ident(int ident) 177 { 178 const struct xprt_class *t; 179 180 spin_lock(&xprt_list_lock); 181 t = xprt_class_find_by_ident_locked(ident); 182 spin_unlock(&xprt_list_lock); 183 return t; 184 } 185 186 static const struct xprt_class * 187 xprt_class_find_by_netid_locked(const char *netid) 188 { 189 const struct xprt_class *t; 190 unsigned int i; 191 192 list_for_each_entry(t, &xprt_list, list) { 193 for (i = 0; t->netid[i][0] != '\0'; i++) { 194 if (strcmp(t->netid[i], netid) != 0) 195 continue; 196 if (!try_module_get(t->owner)) 197 continue; 198 return t; 199 } 200 } 201 return NULL; 202 } 203 204 static const struct xprt_class * 205 xprt_class_find_by_netid(const char *netid) 206 { 207 const struct xprt_class *t; 208 209 spin_lock(&xprt_list_lock); 210 t = xprt_class_find_by_netid_locked(netid); 211 if (!t) { 212 spin_unlock(&xprt_list_lock); 213 request_module("rpc%s", netid); 214 spin_lock(&xprt_list_lock); 215 t = xprt_class_find_by_netid_locked(netid); 216 } 217 spin_unlock(&xprt_list_lock); 218 return t; 219 } 220 221 /** 222 * xprt_find_transport_ident - convert a netid into a transport identifier 223 * @netid: transport to load 224 * 225 * Returns: 226 * > 0: transport identifier 227 * -ENOENT: transport module not available 228 */ 229 int xprt_find_transport_ident(const char *netid) 230 { 231 const struct xprt_class *t; 232 int ret; 233 234 t = xprt_class_find_by_netid(netid); 235 if (!t) 236 return -ENOENT; 237 ret = t->ident; 238 xprt_class_release(t); 239 return ret; 240 } 241 EXPORT_SYMBOL_GPL(xprt_find_transport_ident); 242 243 static void xprt_clear_locked(struct rpc_xprt *xprt) 244 { 245 xprt->snd_task = NULL; 246 if (!test_bit(XPRT_CLOSE_WAIT, &xprt->state)) { 247 smp_mb__before_atomic(); 248 clear_bit(XPRT_LOCKED, &xprt->state); 249 smp_mb__after_atomic(); 250 } else 251 queue_work(xprtiod_workqueue, &xprt->task_cleanup); 252 } 253 254 /** 255 * xprt_reserve_xprt - serialize write access to transports 256 * @task: task that is requesting access to the transport 257 * @xprt: pointer to the target transport 258 * 259 * This prevents mixing the payload of separate requests, and prevents 260 * transport connects from colliding with writes. No congestion control 261 * is provided. 262 */ 263 int xprt_reserve_xprt(struct rpc_xprt *xprt, struct rpc_task *task) 264 { 265 struct rpc_rqst *req = task->tk_rqstp; 266 267 if (test_and_set_bit(XPRT_LOCKED, &xprt->state)) { 268 if (task == xprt->snd_task) 269 goto out_locked; 270 goto out_sleep; 271 } 272 if (test_bit(XPRT_WRITE_SPACE, &xprt->state)) 273 goto out_unlock; 274 xprt->snd_task = task; 275 276 out_locked: 277 trace_xprt_reserve_xprt(xprt, task); 278 return 1; 279 280 out_unlock: 281 xprt_clear_locked(xprt); 282 out_sleep: 283 task->tk_status = -EAGAIN; 284 if (RPC_IS_SOFT(task)) 285 rpc_sleep_on_timeout(&xprt->sending, task, NULL, 286 xprt_request_timeout(req)); 287 else 288 rpc_sleep_on(&xprt->sending, task, NULL); 289 return 0; 290 } 291 EXPORT_SYMBOL_GPL(xprt_reserve_xprt); 292 293 static bool 294 xprt_need_congestion_window_wait(struct rpc_xprt *xprt) 295 { 296 return test_bit(XPRT_CWND_WAIT, &xprt->state); 297 } 298 299 static void 300 xprt_set_congestion_window_wait(struct rpc_xprt *xprt) 301 { 302 if (!list_empty(&xprt->xmit_queue)) { 303 /* Peek at head of queue to see if it can make progress */ 304 if (list_first_entry(&xprt->xmit_queue, struct rpc_rqst, 305 rq_xmit)->rq_cong) 306 return; 307 } 308 set_bit(XPRT_CWND_WAIT, &xprt->state); 309 } 310 311 static void 312 xprt_test_and_clear_congestion_window_wait(struct rpc_xprt *xprt) 313 { 314 if (!RPCXPRT_CONGESTED(xprt)) 315 clear_bit(XPRT_CWND_WAIT, &xprt->state); 316 } 317 318 /* 319 * xprt_reserve_xprt_cong - serialize write access to transports 320 * @task: task that is requesting access to the transport 321 * 322 * Same as xprt_reserve_xprt, but Van Jacobson congestion control is 323 * integrated into the decision of whether a request is allowed to be 324 * woken up and given access to the transport. 325 * Note that the lock is only granted if we know there are free slots. 326 */ 327 int xprt_reserve_xprt_cong(struct rpc_xprt *xprt, struct rpc_task *task) 328 { 329 struct rpc_rqst *req = task->tk_rqstp; 330 331 if (test_and_set_bit(XPRT_LOCKED, &xprt->state)) { 332 if (task == xprt->snd_task) 333 goto out_locked; 334 goto out_sleep; 335 } 336 if (req == NULL) { 337 xprt->snd_task = task; 338 goto out_locked; 339 } 340 if (test_bit(XPRT_WRITE_SPACE, &xprt->state)) 341 goto out_unlock; 342 if (!xprt_need_congestion_window_wait(xprt)) { 343 xprt->snd_task = task; 344 goto out_locked; 345 } 346 out_unlock: 347 xprt_clear_locked(xprt); 348 out_sleep: 349 task->tk_status = -EAGAIN; 350 if (RPC_IS_SOFT(task)) 351 rpc_sleep_on_timeout(&xprt->sending, task, NULL, 352 xprt_request_timeout(req)); 353 else 354 rpc_sleep_on(&xprt->sending, task, NULL); 355 return 0; 356 out_locked: 357 trace_xprt_reserve_cong(xprt, task); 358 return 1; 359 } 360 EXPORT_SYMBOL_GPL(xprt_reserve_xprt_cong); 361 362 static inline int xprt_lock_write(struct rpc_xprt *xprt, struct rpc_task *task) 363 { 364 int retval; 365 366 if (test_bit(XPRT_LOCKED, &xprt->state) && xprt->snd_task == task) 367 return 1; 368 spin_lock(&xprt->transport_lock); 369 retval = xprt->ops->reserve_xprt(xprt, task); 370 spin_unlock(&xprt->transport_lock); 371 return retval; 372 } 373 374 static bool __xprt_lock_write_func(struct rpc_task *task, void *data) 375 { 376 struct rpc_xprt *xprt = data; 377 378 xprt->snd_task = task; 379 return true; 380 } 381 382 static void __xprt_lock_write_next(struct rpc_xprt *xprt) 383 { 384 if (test_and_set_bit(XPRT_LOCKED, &xprt->state)) 385 return; 386 if (test_bit(XPRT_WRITE_SPACE, &xprt->state)) 387 goto out_unlock; 388 if (rpc_wake_up_first_on_wq(xprtiod_workqueue, &xprt->sending, 389 __xprt_lock_write_func, xprt)) 390 return; 391 out_unlock: 392 xprt_clear_locked(xprt); 393 } 394 395 static void __xprt_lock_write_next_cong(struct rpc_xprt *xprt) 396 { 397 if (test_and_set_bit(XPRT_LOCKED, &xprt->state)) 398 return; 399 if (test_bit(XPRT_WRITE_SPACE, &xprt->state)) 400 goto out_unlock; 401 if (xprt_need_congestion_window_wait(xprt)) 402 goto out_unlock; 403 if (rpc_wake_up_first_on_wq(xprtiod_workqueue, &xprt->sending, 404 __xprt_lock_write_func, xprt)) 405 return; 406 out_unlock: 407 xprt_clear_locked(xprt); 408 } 409 410 /** 411 * xprt_release_xprt - allow other requests to use a transport 412 * @xprt: transport with other tasks potentially waiting 413 * @task: task that is releasing access to the transport 414 * 415 * Note that "task" can be NULL. No congestion control is provided. 416 */ 417 void xprt_release_xprt(struct rpc_xprt *xprt, struct rpc_task *task) 418 { 419 if (xprt->snd_task == task) { 420 xprt_clear_locked(xprt); 421 __xprt_lock_write_next(xprt); 422 } 423 trace_xprt_release_xprt(xprt, task); 424 } 425 EXPORT_SYMBOL_GPL(xprt_release_xprt); 426 427 /** 428 * xprt_release_xprt_cong - allow other requests to use a transport 429 * @xprt: transport with other tasks potentially waiting 430 * @task: task that is releasing access to the transport 431 * 432 * Note that "task" can be NULL. Another task is awoken to use the 433 * transport if the transport's congestion window allows it. 434 */ 435 void xprt_release_xprt_cong(struct rpc_xprt *xprt, struct rpc_task *task) 436 { 437 if (xprt->snd_task == task) { 438 xprt_clear_locked(xprt); 439 __xprt_lock_write_next_cong(xprt); 440 } 441 trace_xprt_release_cong(xprt, task); 442 } 443 EXPORT_SYMBOL_GPL(xprt_release_xprt_cong); 444 445 static inline void xprt_release_write(struct rpc_xprt *xprt, struct rpc_task *task) 446 { 447 if (xprt->snd_task != task) 448 return; 449 spin_lock(&xprt->transport_lock); 450 xprt->ops->release_xprt(xprt, task); 451 spin_unlock(&xprt->transport_lock); 452 } 453 454 /* 455 * Van Jacobson congestion avoidance. Check if the congestion window 456 * overflowed. Put the task to sleep if this is the case. 457 */ 458 static int 459 __xprt_get_cong(struct rpc_xprt *xprt, struct rpc_rqst *req) 460 { 461 if (req->rq_cong) 462 return 1; 463 trace_xprt_get_cong(xprt, req->rq_task); 464 if (RPCXPRT_CONGESTED(xprt)) { 465 xprt_set_congestion_window_wait(xprt); 466 return 0; 467 } 468 req->rq_cong = 1; 469 xprt->cong += RPC_CWNDSCALE; 470 return 1; 471 } 472 473 /* 474 * Adjust the congestion window, and wake up the next task 475 * that has been sleeping due to congestion 476 */ 477 static void 478 __xprt_put_cong(struct rpc_xprt *xprt, struct rpc_rqst *req) 479 { 480 if (!req->rq_cong) 481 return; 482 req->rq_cong = 0; 483 xprt->cong -= RPC_CWNDSCALE; 484 xprt_test_and_clear_congestion_window_wait(xprt); 485 trace_xprt_put_cong(xprt, req->rq_task); 486 __xprt_lock_write_next_cong(xprt); 487 } 488 489 /** 490 * xprt_request_get_cong - Request congestion control credits 491 * @xprt: pointer to transport 492 * @req: pointer to RPC request 493 * 494 * Useful for transports that require congestion control. 495 */ 496 bool 497 xprt_request_get_cong(struct rpc_xprt *xprt, struct rpc_rqst *req) 498 { 499 bool ret = false; 500 501 if (req->rq_cong) 502 return true; 503 spin_lock(&xprt->transport_lock); 504 ret = __xprt_get_cong(xprt, req) != 0; 505 spin_unlock(&xprt->transport_lock); 506 return ret; 507 } 508 EXPORT_SYMBOL_GPL(xprt_request_get_cong); 509 510 /** 511 * xprt_release_rqst_cong - housekeeping when request is complete 512 * @task: RPC request that recently completed 513 * 514 * Useful for transports that require congestion control. 515 */ 516 void xprt_release_rqst_cong(struct rpc_task *task) 517 { 518 struct rpc_rqst *req = task->tk_rqstp; 519 520 __xprt_put_cong(req->rq_xprt, req); 521 } 522 EXPORT_SYMBOL_GPL(xprt_release_rqst_cong); 523 524 static void xprt_clear_congestion_window_wait_locked(struct rpc_xprt *xprt) 525 { 526 if (test_and_clear_bit(XPRT_CWND_WAIT, &xprt->state)) 527 __xprt_lock_write_next_cong(xprt); 528 } 529 530 /* 531 * Clear the congestion window wait flag and wake up the next 532 * entry on xprt->sending 533 */ 534 static void 535 xprt_clear_congestion_window_wait(struct rpc_xprt *xprt) 536 { 537 if (test_and_clear_bit(XPRT_CWND_WAIT, &xprt->state)) { 538 spin_lock(&xprt->transport_lock); 539 __xprt_lock_write_next_cong(xprt); 540 spin_unlock(&xprt->transport_lock); 541 } 542 } 543 544 /** 545 * xprt_adjust_cwnd - adjust transport congestion window 546 * @xprt: pointer to xprt 547 * @task: recently completed RPC request used to adjust window 548 * @result: result code of completed RPC request 549 * 550 * The transport code maintains an estimate on the maximum number of out- 551 * standing RPC requests, using a smoothed version of the congestion 552 * avoidance implemented in 44BSD. This is basically the Van Jacobson 553 * congestion algorithm: If a retransmit occurs, the congestion window is 554 * halved; otherwise, it is incremented by 1/cwnd when 555 * 556 * - a reply is received and 557 * - a full number of requests are outstanding and 558 * - the congestion window hasn't been updated recently. 559 */ 560 void xprt_adjust_cwnd(struct rpc_xprt *xprt, struct rpc_task *task, int result) 561 { 562 struct rpc_rqst *req = task->tk_rqstp; 563 unsigned long cwnd = xprt->cwnd; 564 565 if (result >= 0 && cwnd <= xprt->cong) { 566 /* The (cwnd >> 1) term makes sure 567 * the result gets rounded properly. */ 568 cwnd += (RPC_CWNDSCALE * RPC_CWNDSCALE + (cwnd >> 1)) / cwnd; 569 if (cwnd > RPC_MAXCWND(xprt)) 570 cwnd = RPC_MAXCWND(xprt); 571 __xprt_lock_write_next_cong(xprt); 572 } else if (result == -ETIMEDOUT) { 573 cwnd >>= 1; 574 if (cwnd < RPC_CWNDSCALE) 575 cwnd = RPC_CWNDSCALE; 576 } 577 dprintk("RPC: cong %ld, cwnd was %ld, now %ld\n", 578 xprt->cong, xprt->cwnd, cwnd); 579 xprt->cwnd = cwnd; 580 __xprt_put_cong(xprt, req); 581 } 582 EXPORT_SYMBOL_GPL(xprt_adjust_cwnd); 583 584 /** 585 * xprt_wake_pending_tasks - wake all tasks on a transport's pending queue 586 * @xprt: transport with waiting tasks 587 * @status: result code to plant in each task before waking it 588 * 589 */ 590 void xprt_wake_pending_tasks(struct rpc_xprt *xprt, int status) 591 { 592 if (status < 0) 593 rpc_wake_up_status(&xprt->pending, status); 594 else 595 rpc_wake_up(&xprt->pending); 596 } 597 EXPORT_SYMBOL_GPL(xprt_wake_pending_tasks); 598 599 /** 600 * xprt_wait_for_buffer_space - wait for transport output buffer to clear 601 * @xprt: transport 602 * 603 * Note that we only set the timer for the case of RPC_IS_SOFT(), since 604 * we don't in general want to force a socket disconnection due to 605 * an incomplete RPC call transmission. 606 */ 607 void xprt_wait_for_buffer_space(struct rpc_xprt *xprt) 608 { 609 set_bit(XPRT_WRITE_SPACE, &xprt->state); 610 } 611 EXPORT_SYMBOL_GPL(xprt_wait_for_buffer_space); 612 613 static bool 614 xprt_clear_write_space_locked(struct rpc_xprt *xprt) 615 { 616 if (test_and_clear_bit(XPRT_WRITE_SPACE, &xprt->state)) { 617 __xprt_lock_write_next(xprt); 618 dprintk("RPC: write space: waking waiting task on " 619 "xprt %p\n", xprt); 620 return true; 621 } 622 return false; 623 } 624 625 /** 626 * xprt_write_space - wake the task waiting for transport output buffer space 627 * @xprt: transport with waiting tasks 628 * 629 * Can be called in a soft IRQ context, so xprt_write_space never sleeps. 630 */ 631 bool xprt_write_space(struct rpc_xprt *xprt) 632 { 633 bool ret; 634 635 if (!test_bit(XPRT_WRITE_SPACE, &xprt->state)) 636 return false; 637 spin_lock(&xprt->transport_lock); 638 ret = xprt_clear_write_space_locked(xprt); 639 spin_unlock(&xprt->transport_lock); 640 return ret; 641 } 642 EXPORT_SYMBOL_GPL(xprt_write_space); 643 644 static unsigned long xprt_abs_ktime_to_jiffies(ktime_t abstime) 645 { 646 s64 delta = ktime_to_ns(ktime_get() - abstime); 647 return likely(delta >= 0) ? 648 jiffies - nsecs_to_jiffies(delta) : 649 jiffies + nsecs_to_jiffies(-delta); 650 } 651 652 static unsigned long xprt_calc_majortimeo(struct rpc_rqst *req) 653 { 654 const struct rpc_timeout *to = req->rq_task->tk_client->cl_timeout; 655 unsigned long majortimeo = req->rq_timeout; 656 657 if (to->to_exponential) 658 majortimeo <<= to->to_retries; 659 else 660 majortimeo += to->to_increment * to->to_retries; 661 if (majortimeo > to->to_maxval || majortimeo == 0) 662 majortimeo = to->to_maxval; 663 return majortimeo; 664 } 665 666 static void xprt_reset_majortimeo(struct rpc_rqst *req) 667 { 668 req->rq_majortimeo += xprt_calc_majortimeo(req); 669 } 670 671 static void xprt_reset_minortimeo(struct rpc_rqst *req) 672 { 673 req->rq_minortimeo += req->rq_timeout; 674 } 675 676 static void xprt_init_majortimeo(struct rpc_task *task, struct rpc_rqst *req) 677 { 678 unsigned long time_init; 679 struct rpc_xprt *xprt = req->rq_xprt; 680 681 if (likely(xprt && xprt_connected(xprt))) 682 time_init = jiffies; 683 else 684 time_init = xprt_abs_ktime_to_jiffies(task->tk_start); 685 req->rq_timeout = task->tk_client->cl_timeout->to_initval; 686 req->rq_majortimeo = time_init + xprt_calc_majortimeo(req); 687 req->rq_minortimeo = time_init + req->rq_timeout; 688 } 689 690 /** 691 * xprt_adjust_timeout - adjust timeout values for next retransmit 692 * @req: RPC request containing parameters to use for the adjustment 693 * 694 */ 695 int xprt_adjust_timeout(struct rpc_rqst *req) 696 { 697 struct rpc_xprt *xprt = req->rq_xprt; 698 const struct rpc_timeout *to = req->rq_task->tk_client->cl_timeout; 699 int status = 0; 700 701 if (time_before(jiffies, req->rq_majortimeo)) { 702 if (time_before(jiffies, req->rq_minortimeo)) 703 return status; 704 if (to->to_exponential) 705 req->rq_timeout <<= 1; 706 else 707 req->rq_timeout += to->to_increment; 708 if (to->to_maxval && req->rq_timeout >= to->to_maxval) 709 req->rq_timeout = to->to_maxval; 710 req->rq_retries++; 711 } else { 712 req->rq_timeout = to->to_initval; 713 req->rq_retries = 0; 714 xprt_reset_majortimeo(req); 715 /* Reset the RTT counters == "slow start" */ 716 spin_lock(&xprt->transport_lock); 717 rpc_init_rtt(req->rq_task->tk_client->cl_rtt, to->to_initval); 718 spin_unlock(&xprt->transport_lock); 719 status = -ETIMEDOUT; 720 } 721 xprt_reset_minortimeo(req); 722 723 if (req->rq_timeout == 0) { 724 printk(KERN_WARNING "xprt_adjust_timeout: rq_timeout = 0!\n"); 725 req->rq_timeout = 5 * HZ; 726 } 727 return status; 728 } 729 730 static void xprt_autoclose(struct work_struct *work) 731 { 732 struct rpc_xprt *xprt = 733 container_of(work, struct rpc_xprt, task_cleanup); 734 unsigned int pflags = memalloc_nofs_save(); 735 736 trace_xprt_disconnect_auto(xprt); 737 clear_bit(XPRT_CLOSE_WAIT, &xprt->state); 738 xprt->ops->close(xprt); 739 xprt_release_write(xprt, NULL); 740 wake_up_bit(&xprt->state, XPRT_LOCKED); 741 memalloc_nofs_restore(pflags); 742 } 743 744 /** 745 * xprt_disconnect_done - mark a transport as disconnected 746 * @xprt: transport to flag for disconnect 747 * 748 */ 749 void xprt_disconnect_done(struct rpc_xprt *xprt) 750 { 751 trace_xprt_disconnect_done(xprt); 752 spin_lock(&xprt->transport_lock); 753 xprt_clear_connected(xprt); 754 xprt_clear_write_space_locked(xprt); 755 xprt_clear_congestion_window_wait_locked(xprt); 756 xprt_wake_pending_tasks(xprt, -ENOTCONN); 757 spin_unlock(&xprt->transport_lock); 758 } 759 EXPORT_SYMBOL_GPL(xprt_disconnect_done); 760 761 /** 762 * xprt_force_disconnect - force a transport to disconnect 763 * @xprt: transport to disconnect 764 * 765 */ 766 void xprt_force_disconnect(struct rpc_xprt *xprt) 767 { 768 trace_xprt_disconnect_force(xprt); 769 770 /* Don't race with the test_bit() in xprt_clear_locked() */ 771 spin_lock(&xprt->transport_lock); 772 set_bit(XPRT_CLOSE_WAIT, &xprt->state); 773 /* Try to schedule an autoclose RPC call */ 774 if (test_and_set_bit(XPRT_LOCKED, &xprt->state) == 0) 775 queue_work(xprtiod_workqueue, &xprt->task_cleanup); 776 else if (xprt->snd_task) 777 rpc_wake_up_queued_task_set_status(&xprt->pending, 778 xprt->snd_task, -ENOTCONN); 779 spin_unlock(&xprt->transport_lock); 780 } 781 EXPORT_SYMBOL_GPL(xprt_force_disconnect); 782 783 static unsigned int 784 xprt_connect_cookie(struct rpc_xprt *xprt) 785 { 786 return READ_ONCE(xprt->connect_cookie); 787 } 788 789 static bool 790 xprt_request_retransmit_after_disconnect(struct rpc_task *task) 791 { 792 struct rpc_rqst *req = task->tk_rqstp; 793 struct rpc_xprt *xprt = req->rq_xprt; 794 795 return req->rq_connect_cookie != xprt_connect_cookie(xprt) || 796 !xprt_connected(xprt); 797 } 798 799 /** 800 * xprt_conditional_disconnect - force a transport to disconnect 801 * @xprt: transport to disconnect 802 * @cookie: 'connection cookie' 803 * 804 * This attempts to break the connection if and only if 'cookie' matches 805 * the current transport 'connection cookie'. It ensures that we don't 806 * try to break the connection more than once when we need to retransmit 807 * a batch of RPC requests. 808 * 809 */ 810 void xprt_conditional_disconnect(struct rpc_xprt *xprt, unsigned int cookie) 811 { 812 /* Don't race with the test_bit() in xprt_clear_locked() */ 813 spin_lock(&xprt->transport_lock); 814 if (cookie != xprt->connect_cookie) 815 goto out; 816 if (test_bit(XPRT_CLOSING, &xprt->state)) 817 goto out; 818 set_bit(XPRT_CLOSE_WAIT, &xprt->state); 819 /* Try to schedule an autoclose RPC call */ 820 if (test_and_set_bit(XPRT_LOCKED, &xprt->state) == 0) 821 queue_work(xprtiod_workqueue, &xprt->task_cleanup); 822 xprt_wake_pending_tasks(xprt, -EAGAIN); 823 out: 824 spin_unlock(&xprt->transport_lock); 825 } 826 827 static bool 828 xprt_has_timer(const struct rpc_xprt *xprt) 829 { 830 return xprt->idle_timeout != 0; 831 } 832 833 static void 834 xprt_schedule_autodisconnect(struct rpc_xprt *xprt) 835 __must_hold(&xprt->transport_lock) 836 { 837 xprt->last_used = jiffies; 838 if (RB_EMPTY_ROOT(&xprt->recv_queue) && xprt_has_timer(xprt)) 839 mod_timer(&xprt->timer, xprt->last_used + xprt->idle_timeout); 840 } 841 842 static void 843 xprt_init_autodisconnect(struct timer_list *t) 844 { 845 struct rpc_xprt *xprt = from_timer(xprt, t, timer); 846 847 if (!RB_EMPTY_ROOT(&xprt->recv_queue)) 848 return; 849 /* Reset xprt->last_used to avoid connect/autodisconnect cycling */ 850 xprt->last_used = jiffies; 851 if (test_and_set_bit(XPRT_LOCKED, &xprt->state)) 852 return; 853 queue_work(xprtiod_workqueue, &xprt->task_cleanup); 854 } 855 856 bool xprt_lock_connect(struct rpc_xprt *xprt, 857 struct rpc_task *task, 858 void *cookie) 859 { 860 bool ret = false; 861 862 spin_lock(&xprt->transport_lock); 863 if (!test_bit(XPRT_LOCKED, &xprt->state)) 864 goto out; 865 if (xprt->snd_task != task) 866 goto out; 867 xprt->snd_task = cookie; 868 ret = true; 869 out: 870 spin_unlock(&xprt->transport_lock); 871 return ret; 872 } 873 874 void xprt_unlock_connect(struct rpc_xprt *xprt, void *cookie) 875 { 876 spin_lock(&xprt->transport_lock); 877 if (xprt->snd_task != cookie) 878 goto out; 879 if (!test_bit(XPRT_LOCKED, &xprt->state)) 880 goto out; 881 xprt->snd_task =NULL; 882 xprt->ops->release_xprt(xprt, NULL); 883 xprt_schedule_autodisconnect(xprt); 884 out: 885 spin_unlock(&xprt->transport_lock); 886 wake_up_bit(&xprt->state, XPRT_LOCKED); 887 } 888 889 /** 890 * xprt_connect - schedule a transport connect operation 891 * @task: RPC task that is requesting the connect 892 * 893 */ 894 void xprt_connect(struct rpc_task *task) 895 { 896 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; 897 898 trace_xprt_connect(xprt); 899 900 if (!xprt_bound(xprt)) { 901 task->tk_status = -EAGAIN; 902 return; 903 } 904 if (!xprt_lock_write(xprt, task)) 905 return; 906 907 if (test_and_clear_bit(XPRT_CLOSE_WAIT, &xprt->state)) { 908 trace_xprt_disconnect_cleanup(xprt); 909 xprt->ops->close(xprt); 910 } 911 912 if (!xprt_connected(xprt)) { 913 task->tk_rqstp->rq_connect_cookie = xprt->connect_cookie; 914 rpc_sleep_on_timeout(&xprt->pending, task, NULL, 915 xprt_request_timeout(task->tk_rqstp)); 916 917 if (test_bit(XPRT_CLOSING, &xprt->state)) 918 return; 919 if (xprt_test_and_set_connecting(xprt)) 920 return; 921 /* Race breaker */ 922 if (!xprt_connected(xprt)) { 923 xprt->stat.connect_start = jiffies; 924 xprt->ops->connect(xprt, task); 925 } else { 926 xprt_clear_connecting(xprt); 927 task->tk_status = 0; 928 rpc_wake_up_queued_task(&xprt->pending, task); 929 } 930 } 931 xprt_release_write(xprt, task); 932 } 933 934 /** 935 * xprt_reconnect_delay - compute the wait before scheduling a connect 936 * @xprt: transport instance 937 * 938 */ 939 unsigned long xprt_reconnect_delay(const struct rpc_xprt *xprt) 940 { 941 unsigned long start, now = jiffies; 942 943 start = xprt->stat.connect_start + xprt->reestablish_timeout; 944 if (time_after(start, now)) 945 return start - now; 946 return 0; 947 } 948 EXPORT_SYMBOL_GPL(xprt_reconnect_delay); 949 950 /** 951 * xprt_reconnect_backoff - compute the new re-establish timeout 952 * @xprt: transport instance 953 * @init_to: initial reestablish timeout 954 * 955 */ 956 void xprt_reconnect_backoff(struct rpc_xprt *xprt, unsigned long init_to) 957 { 958 xprt->reestablish_timeout <<= 1; 959 if (xprt->reestablish_timeout > xprt->max_reconnect_timeout) 960 xprt->reestablish_timeout = xprt->max_reconnect_timeout; 961 if (xprt->reestablish_timeout < init_to) 962 xprt->reestablish_timeout = init_to; 963 } 964 EXPORT_SYMBOL_GPL(xprt_reconnect_backoff); 965 966 enum xprt_xid_rb_cmp { 967 XID_RB_EQUAL, 968 XID_RB_LEFT, 969 XID_RB_RIGHT, 970 }; 971 static enum xprt_xid_rb_cmp 972 xprt_xid_cmp(__be32 xid1, __be32 xid2) 973 { 974 if (xid1 == xid2) 975 return XID_RB_EQUAL; 976 if ((__force u32)xid1 < (__force u32)xid2) 977 return XID_RB_LEFT; 978 return XID_RB_RIGHT; 979 } 980 981 static struct rpc_rqst * 982 xprt_request_rb_find(struct rpc_xprt *xprt, __be32 xid) 983 { 984 struct rb_node *n = xprt->recv_queue.rb_node; 985 struct rpc_rqst *req; 986 987 while (n != NULL) { 988 req = rb_entry(n, struct rpc_rqst, rq_recv); 989 switch (xprt_xid_cmp(xid, req->rq_xid)) { 990 case XID_RB_LEFT: 991 n = n->rb_left; 992 break; 993 case XID_RB_RIGHT: 994 n = n->rb_right; 995 break; 996 case XID_RB_EQUAL: 997 return req; 998 } 999 } 1000 return NULL; 1001 } 1002 1003 static void 1004 xprt_request_rb_insert(struct rpc_xprt *xprt, struct rpc_rqst *new) 1005 { 1006 struct rb_node **p = &xprt->recv_queue.rb_node; 1007 struct rb_node *n = NULL; 1008 struct rpc_rqst *req; 1009 1010 while (*p != NULL) { 1011 n = *p; 1012 req = rb_entry(n, struct rpc_rqst, rq_recv); 1013 switch(xprt_xid_cmp(new->rq_xid, req->rq_xid)) { 1014 case XID_RB_LEFT: 1015 p = &n->rb_left; 1016 break; 1017 case XID_RB_RIGHT: 1018 p = &n->rb_right; 1019 break; 1020 case XID_RB_EQUAL: 1021 WARN_ON_ONCE(new != req); 1022 return; 1023 } 1024 } 1025 rb_link_node(&new->rq_recv, n, p); 1026 rb_insert_color(&new->rq_recv, &xprt->recv_queue); 1027 } 1028 1029 static void 1030 xprt_request_rb_remove(struct rpc_xprt *xprt, struct rpc_rqst *req) 1031 { 1032 rb_erase(&req->rq_recv, &xprt->recv_queue); 1033 } 1034 1035 /** 1036 * xprt_lookup_rqst - find an RPC request corresponding to an XID 1037 * @xprt: transport on which the original request was transmitted 1038 * @xid: RPC XID of incoming reply 1039 * 1040 * Caller holds xprt->queue_lock. 1041 */ 1042 struct rpc_rqst *xprt_lookup_rqst(struct rpc_xprt *xprt, __be32 xid) 1043 { 1044 struct rpc_rqst *entry; 1045 1046 entry = xprt_request_rb_find(xprt, xid); 1047 if (entry != NULL) { 1048 trace_xprt_lookup_rqst(xprt, xid, 0); 1049 entry->rq_rtt = ktime_sub(ktime_get(), entry->rq_xtime); 1050 return entry; 1051 } 1052 1053 dprintk("RPC: xprt_lookup_rqst did not find xid %08x\n", 1054 ntohl(xid)); 1055 trace_xprt_lookup_rqst(xprt, xid, -ENOENT); 1056 xprt->stat.bad_xids++; 1057 return NULL; 1058 } 1059 EXPORT_SYMBOL_GPL(xprt_lookup_rqst); 1060 1061 static bool 1062 xprt_is_pinned_rqst(struct rpc_rqst *req) 1063 { 1064 return atomic_read(&req->rq_pin) != 0; 1065 } 1066 1067 /** 1068 * xprt_pin_rqst - Pin a request on the transport receive list 1069 * @req: Request to pin 1070 * 1071 * Caller must ensure this is atomic with the call to xprt_lookup_rqst() 1072 * so should be holding xprt->queue_lock. 1073 */ 1074 void xprt_pin_rqst(struct rpc_rqst *req) 1075 { 1076 atomic_inc(&req->rq_pin); 1077 } 1078 EXPORT_SYMBOL_GPL(xprt_pin_rqst); 1079 1080 /** 1081 * xprt_unpin_rqst - Unpin a request on the transport receive list 1082 * @req: Request to pin 1083 * 1084 * Caller should be holding xprt->queue_lock. 1085 */ 1086 void xprt_unpin_rqst(struct rpc_rqst *req) 1087 { 1088 if (!test_bit(RPC_TASK_MSG_PIN_WAIT, &req->rq_task->tk_runstate)) { 1089 atomic_dec(&req->rq_pin); 1090 return; 1091 } 1092 if (atomic_dec_and_test(&req->rq_pin)) 1093 wake_up_var(&req->rq_pin); 1094 } 1095 EXPORT_SYMBOL_GPL(xprt_unpin_rqst); 1096 1097 static void xprt_wait_on_pinned_rqst(struct rpc_rqst *req) 1098 { 1099 wait_var_event(&req->rq_pin, !xprt_is_pinned_rqst(req)); 1100 } 1101 1102 static bool 1103 xprt_request_data_received(struct rpc_task *task) 1104 { 1105 return !test_bit(RPC_TASK_NEED_RECV, &task->tk_runstate) && 1106 READ_ONCE(task->tk_rqstp->rq_reply_bytes_recvd) != 0; 1107 } 1108 1109 static bool 1110 xprt_request_need_enqueue_receive(struct rpc_task *task, struct rpc_rqst *req) 1111 { 1112 return !test_bit(RPC_TASK_NEED_RECV, &task->tk_runstate) && 1113 READ_ONCE(task->tk_rqstp->rq_reply_bytes_recvd) == 0; 1114 } 1115 1116 /** 1117 * xprt_request_enqueue_receive - Add an request to the receive queue 1118 * @task: RPC task 1119 * 1120 */ 1121 void 1122 xprt_request_enqueue_receive(struct rpc_task *task) 1123 { 1124 struct rpc_rqst *req = task->tk_rqstp; 1125 struct rpc_xprt *xprt = req->rq_xprt; 1126 1127 if (!xprt_request_need_enqueue_receive(task, req)) 1128 return; 1129 1130 xprt_request_prepare(task->tk_rqstp); 1131 spin_lock(&xprt->queue_lock); 1132 1133 /* Update the softirq receive buffer */ 1134 memcpy(&req->rq_private_buf, &req->rq_rcv_buf, 1135 sizeof(req->rq_private_buf)); 1136 1137 /* Add request to the receive list */ 1138 xprt_request_rb_insert(xprt, req); 1139 set_bit(RPC_TASK_NEED_RECV, &task->tk_runstate); 1140 spin_unlock(&xprt->queue_lock); 1141 1142 /* Turn off autodisconnect */ 1143 del_singleshot_timer_sync(&xprt->timer); 1144 } 1145 1146 /** 1147 * xprt_request_dequeue_receive_locked - Remove a request from the receive queue 1148 * @task: RPC task 1149 * 1150 * Caller must hold xprt->queue_lock. 1151 */ 1152 static void 1153 xprt_request_dequeue_receive_locked(struct rpc_task *task) 1154 { 1155 struct rpc_rqst *req = task->tk_rqstp; 1156 1157 if (test_and_clear_bit(RPC_TASK_NEED_RECV, &task->tk_runstate)) 1158 xprt_request_rb_remove(req->rq_xprt, req); 1159 } 1160 1161 /** 1162 * xprt_update_rtt - Update RPC RTT statistics 1163 * @task: RPC request that recently completed 1164 * 1165 * Caller holds xprt->queue_lock. 1166 */ 1167 void xprt_update_rtt(struct rpc_task *task) 1168 { 1169 struct rpc_rqst *req = task->tk_rqstp; 1170 struct rpc_rtt *rtt = task->tk_client->cl_rtt; 1171 unsigned int timer = task->tk_msg.rpc_proc->p_timer; 1172 long m = usecs_to_jiffies(ktime_to_us(req->rq_rtt)); 1173 1174 if (timer) { 1175 if (req->rq_ntrans == 1) 1176 rpc_update_rtt(rtt, timer, m); 1177 rpc_set_timeo(rtt, timer, req->rq_ntrans - 1); 1178 } 1179 } 1180 EXPORT_SYMBOL_GPL(xprt_update_rtt); 1181 1182 /** 1183 * xprt_complete_rqst - called when reply processing is complete 1184 * @task: RPC request that recently completed 1185 * @copied: actual number of bytes received from the transport 1186 * 1187 * Caller holds xprt->queue_lock. 1188 */ 1189 void xprt_complete_rqst(struct rpc_task *task, int copied) 1190 { 1191 struct rpc_rqst *req = task->tk_rqstp; 1192 struct rpc_xprt *xprt = req->rq_xprt; 1193 1194 xprt->stat.recvs++; 1195 1196 req->rq_private_buf.len = copied; 1197 /* Ensure all writes are done before we update */ 1198 /* req->rq_reply_bytes_recvd */ 1199 smp_wmb(); 1200 req->rq_reply_bytes_recvd = copied; 1201 xprt_request_dequeue_receive_locked(task); 1202 rpc_wake_up_queued_task(&xprt->pending, task); 1203 } 1204 EXPORT_SYMBOL_GPL(xprt_complete_rqst); 1205 1206 static void xprt_timer(struct rpc_task *task) 1207 { 1208 struct rpc_rqst *req = task->tk_rqstp; 1209 struct rpc_xprt *xprt = req->rq_xprt; 1210 1211 if (task->tk_status != -ETIMEDOUT) 1212 return; 1213 1214 trace_xprt_timer(xprt, req->rq_xid, task->tk_status); 1215 if (!req->rq_reply_bytes_recvd) { 1216 if (xprt->ops->timer) 1217 xprt->ops->timer(xprt, task); 1218 } else 1219 task->tk_status = 0; 1220 } 1221 1222 /** 1223 * xprt_wait_for_reply_request_def - wait for reply 1224 * @task: pointer to rpc_task 1225 * 1226 * Set a request's retransmit timeout based on the transport's 1227 * default timeout parameters. Used by transports that don't adjust 1228 * the retransmit timeout based on round-trip time estimation, 1229 * and put the task to sleep on the pending queue. 1230 */ 1231 void xprt_wait_for_reply_request_def(struct rpc_task *task) 1232 { 1233 struct rpc_rqst *req = task->tk_rqstp; 1234 1235 rpc_sleep_on_timeout(&req->rq_xprt->pending, task, xprt_timer, 1236 xprt_request_timeout(req)); 1237 } 1238 EXPORT_SYMBOL_GPL(xprt_wait_for_reply_request_def); 1239 1240 /** 1241 * xprt_wait_for_reply_request_rtt - wait for reply using RTT estimator 1242 * @task: pointer to rpc_task 1243 * 1244 * Set a request's retransmit timeout using the RTT estimator, 1245 * and put the task to sleep on the pending queue. 1246 */ 1247 void xprt_wait_for_reply_request_rtt(struct rpc_task *task) 1248 { 1249 int timer = task->tk_msg.rpc_proc->p_timer; 1250 struct rpc_clnt *clnt = task->tk_client; 1251 struct rpc_rtt *rtt = clnt->cl_rtt; 1252 struct rpc_rqst *req = task->tk_rqstp; 1253 unsigned long max_timeout = clnt->cl_timeout->to_maxval; 1254 unsigned long timeout; 1255 1256 timeout = rpc_calc_rto(rtt, timer); 1257 timeout <<= rpc_ntimeo(rtt, timer) + req->rq_retries; 1258 if (timeout > max_timeout || timeout == 0) 1259 timeout = max_timeout; 1260 rpc_sleep_on_timeout(&req->rq_xprt->pending, task, xprt_timer, 1261 jiffies + timeout); 1262 } 1263 EXPORT_SYMBOL_GPL(xprt_wait_for_reply_request_rtt); 1264 1265 /** 1266 * xprt_request_wait_receive - wait for the reply to an RPC request 1267 * @task: RPC task about to send a request 1268 * 1269 */ 1270 void xprt_request_wait_receive(struct rpc_task *task) 1271 { 1272 struct rpc_rqst *req = task->tk_rqstp; 1273 struct rpc_xprt *xprt = req->rq_xprt; 1274 1275 if (!test_bit(RPC_TASK_NEED_RECV, &task->tk_runstate)) 1276 return; 1277 /* 1278 * Sleep on the pending queue if we're expecting a reply. 1279 * The spinlock ensures atomicity between the test of 1280 * req->rq_reply_bytes_recvd, and the call to rpc_sleep_on(). 1281 */ 1282 spin_lock(&xprt->queue_lock); 1283 if (test_bit(RPC_TASK_NEED_RECV, &task->tk_runstate)) { 1284 xprt->ops->wait_for_reply_request(task); 1285 /* 1286 * Send an extra queue wakeup call if the 1287 * connection was dropped in case the call to 1288 * rpc_sleep_on() raced. 1289 */ 1290 if (xprt_request_retransmit_after_disconnect(task)) 1291 rpc_wake_up_queued_task_set_status(&xprt->pending, 1292 task, -ENOTCONN); 1293 } 1294 spin_unlock(&xprt->queue_lock); 1295 } 1296 1297 static bool 1298 xprt_request_need_enqueue_transmit(struct rpc_task *task, struct rpc_rqst *req) 1299 { 1300 return !test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate); 1301 } 1302 1303 /** 1304 * xprt_request_enqueue_transmit - queue a task for transmission 1305 * @task: pointer to rpc_task 1306 * 1307 * Add a task to the transmission queue. 1308 */ 1309 void 1310 xprt_request_enqueue_transmit(struct rpc_task *task) 1311 { 1312 struct rpc_rqst *pos, *req = task->tk_rqstp; 1313 struct rpc_xprt *xprt = req->rq_xprt; 1314 1315 if (xprt_request_need_enqueue_transmit(task, req)) { 1316 req->rq_bytes_sent = 0; 1317 spin_lock(&xprt->queue_lock); 1318 /* 1319 * Requests that carry congestion control credits are added 1320 * to the head of the list to avoid starvation issues. 1321 */ 1322 if (req->rq_cong) { 1323 xprt_clear_congestion_window_wait(xprt); 1324 list_for_each_entry(pos, &xprt->xmit_queue, rq_xmit) { 1325 if (pos->rq_cong) 1326 continue; 1327 /* Note: req is added _before_ pos */ 1328 list_add_tail(&req->rq_xmit, &pos->rq_xmit); 1329 INIT_LIST_HEAD(&req->rq_xmit2); 1330 goto out; 1331 } 1332 } else if (RPC_IS_SWAPPER(task)) { 1333 list_for_each_entry(pos, &xprt->xmit_queue, rq_xmit) { 1334 if (pos->rq_cong || pos->rq_bytes_sent) 1335 continue; 1336 if (RPC_IS_SWAPPER(pos->rq_task)) 1337 continue; 1338 /* Note: req is added _before_ pos */ 1339 list_add_tail(&req->rq_xmit, &pos->rq_xmit); 1340 INIT_LIST_HEAD(&req->rq_xmit2); 1341 goto out; 1342 } 1343 } else if (!req->rq_seqno) { 1344 list_for_each_entry(pos, &xprt->xmit_queue, rq_xmit) { 1345 if (pos->rq_task->tk_owner != task->tk_owner) 1346 continue; 1347 list_add_tail(&req->rq_xmit2, &pos->rq_xmit2); 1348 INIT_LIST_HEAD(&req->rq_xmit); 1349 goto out; 1350 } 1351 } 1352 list_add_tail(&req->rq_xmit, &xprt->xmit_queue); 1353 INIT_LIST_HEAD(&req->rq_xmit2); 1354 out: 1355 atomic_long_inc(&xprt->xmit_queuelen); 1356 set_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate); 1357 spin_unlock(&xprt->queue_lock); 1358 } 1359 } 1360 1361 /** 1362 * xprt_request_dequeue_transmit_locked - remove a task from the transmission queue 1363 * @task: pointer to rpc_task 1364 * 1365 * Remove a task from the transmission queue 1366 * Caller must hold xprt->queue_lock 1367 */ 1368 static void 1369 xprt_request_dequeue_transmit_locked(struct rpc_task *task) 1370 { 1371 struct rpc_rqst *req = task->tk_rqstp; 1372 1373 if (!test_and_clear_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate)) 1374 return; 1375 if (!list_empty(&req->rq_xmit)) { 1376 list_del(&req->rq_xmit); 1377 if (!list_empty(&req->rq_xmit2)) { 1378 struct rpc_rqst *next = list_first_entry(&req->rq_xmit2, 1379 struct rpc_rqst, rq_xmit2); 1380 list_del(&req->rq_xmit2); 1381 list_add_tail(&next->rq_xmit, &next->rq_xprt->xmit_queue); 1382 } 1383 } else 1384 list_del(&req->rq_xmit2); 1385 atomic_long_dec(&req->rq_xprt->xmit_queuelen); 1386 } 1387 1388 /** 1389 * xprt_request_dequeue_transmit - remove a task from the transmission queue 1390 * @task: pointer to rpc_task 1391 * 1392 * Remove a task from the transmission queue 1393 */ 1394 static void 1395 xprt_request_dequeue_transmit(struct rpc_task *task) 1396 { 1397 struct rpc_rqst *req = task->tk_rqstp; 1398 struct rpc_xprt *xprt = req->rq_xprt; 1399 1400 spin_lock(&xprt->queue_lock); 1401 xprt_request_dequeue_transmit_locked(task); 1402 spin_unlock(&xprt->queue_lock); 1403 } 1404 1405 /** 1406 * xprt_request_dequeue_xprt - remove a task from the transmit+receive queue 1407 * @task: pointer to rpc_task 1408 * 1409 * Remove a task from the transmit and receive queues, and ensure that 1410 * it is not pinned by the receive work item. 1411 */ 1412 void 1413 xprt_request_dequeue_xprt(struct rpc_task *task) 1414 { 1415 struct rpc_rqst *req = task->tk_rqstp; 1416 struct rpc_xprt *xprt = req->rq_xprt; 1417 1418 if (test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate) || 1419 test_bit(RPC_TASK_NEED_RECV, &task->tk_runstate) || 1420 xprt_is_pinned_rqst(req)) { 1421 spin_lock(&xprt->queue_lock); 1422 xprt_request_dequeue_transmit_locked(task); 1423 xprt_request_dequeue_receive_locked(task); 1424 while (xprt_is_pinned_rqst(req)) { 1425 set_bit(RPC_TASK_MSG_PIN_WAIT, &task->tk_runstate); 1426 spin_unlock(&xprt->queue_lock); 1427 xprt_wait_on_pinned_rqst(req); 1428 spin_lock(&xprt->queue_lock); 1429 clear_bit(RPC_TASK_MSG_PIN_WAIT, &task->tk_runstate); 1430 } 1431 spin_unlock(&xprt->queue_lock); 1432 } 1433 } 1434 1435 /** 1436 * xprt_request_prepare - prepare an encoded request for transport 1437 * @req: pointer to rpc_rqst 1438 * 1439 * Calls into the transport layer to do whatever is needed to prepare 1440 * the request for transmission or receive. 1441 */ 1442 void 1443 xprt_request_prepare(struct rpc_rqst *req) 1444 { 1445 struct rpc_xprt *xprt = req->rq_xprt; 1446 1447 if (xprt->ops->prepare_request) 1448 xprt->ops->prepare_request(req); 1449 } 1450 1451 /** 1452 * xprt_request_need_retransmit - Test if a task needs retransmission 1453 * @task: pointer to rpc_task 1454 * 1455 * Test for whether a connection breakage requires the task to retransmit 1456 */ 1457 bool 1458 xprt_request_need_retransmit(struct rpc_task *task) 1459 { 1460 return xprt_request_retransmit_after_disconnect(task); 1461 } 1462 1463 /** 1464 * xprt_prepare_transmit - reserve the transport before sending a request 1465 * @task: RPC task about to send a request 1466 * 1467 */ 1468 bool xprt_prepare_transmit(struct rpc_task *task) 1469 { 1470 struct rpc_rqst *req = task->tk_rqstp; 1471 struct rpc_xprt *xprt = req->rq_xprt; 1472 1473 if (!xprt_lock_write(xprt, task)) { 1474 /* Race breaker: someone may have transmitted us */ 1475 if (!test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate)) 1476 rpc_wake_up_queued_task_set_status(&xprt->sending, 1477 task, 0); 1478 return false; 1479 1480 } 1481 return true; 1482 } 1483 1484 void xprt_end_transmit(struct rpc_task *task) 1485 { 1486 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; 1487 1488 xprt_inject_disconnect(xprt); 1489 xprt_release_write(xprt, task); 1490 } 1491 1492 /** 1493 * xprt_request_transmit - send an RPC request on a transport 1494 * @req: pointer to request to transmit 1495 * @snd_task: RPC task that owns the transport lock 1496 * 1497 * This performs the transmission of a single request. 1498 * Note that if the request is not the same as snd_task, then it 1499 * does need to be pinned. 1500 * Returns '0' on success. 1501 */ 1502 static int 1503 xprt_request_transmit(struct rpc_rqst *req, struct rpc_task *snd_task) 1504 { 1505 struct rpc_xprt *xprt = req->rq_xprt; 1506 struct rpc_task *task = req->rq_task; 1507 unsigned int connect_cookie; 1508 int is_retrans = RPC_WAS_SENT(task); 1509 int status; 1510 1511 if (!req->rq_bytes_sent) { 1512 if (xprt_request_data_received(task)) { 1513 status = 0; 1514 goto out_dequeue; 1515 } 1516 /* Verify that our message lies in the RPCSEC_GSS window */ 1517 if (rpcauth_xmit_need_reencode(task)) { 1518 status = -EBADMSG; 1519 goto out_dequeue; 1520 } 1521 if (RPC_SIGNALLED(task)) { 1522 status = -ERESTARTSYS; 1523 goto out_dequeue; 1524 } 1525 } 1526 1527 /* 1528 * Update req->rq_ntrans before transmitting to avoid races with 1529 * xprt_update_rtt(), which needs to know that it is recording a 1530 * reply to the first transmission. 1531 */ 1532 req->rq_ntrans++; 1533 1534 trace_rpc_xdr_sendto(task, &req->rq_snd_buf); 1535 connect_cookie = xprt->connect_cookie; 1536 status = xprt->ops->send_request(req); 1537 if (status != 0) { 1538 req->rq_ntrans--; 1539 trace_xprt_transmit(req, status); 1540 return status; 1541 } 1542 1543 if (is_retrans) { 1544 task->tk_client->cl_stats->rpcretrans++; 1545 trace_xprt_retransmit(req); 1546 } 1547 1548 xprt_inject_disconnect(xprt); 1549 1550 task->tk_flags |= RPC_TASK_SENT; 1551 spin_lock(&xprt->transport_lock); 1552 1553 xprt->stat.sends++; 1554 xprt->stat.req_u += xprt->stat.sends - xprt->stat.recvs; 1555 xprt->stat.bklog_u += xprt->backlog.qlen; 1556 xprt->stat.sending_u += xprt->sending.qlen; 1557 xprt->stat.pending_u += xprt->pending.qlen; 1558 spin_unlock(&xprt->transport_lock); 1559 1560 req->rq_connect_cookie = connect_cookie; 1561 out_dequeue: 1562 trace_xprt_transmit(req, status); 1563 xprt_request_dequeue_transmit(task); 1564 rpc_wake_up_queued_task_set_status(&xprt->sending, task, status); 1565 return status; 1566 } 1567 1568 /** 1569 * xprt_transmit - send an RPC request on a transport 1570 * @task: controlling RPC task 1571 * 1572 * Attempts to drain the transmit queue. On exit, either the transport 1573 * signalled an error that needs to be handled before transmission can 1574 * resume, or @task finished transmitting, and detected that it already 1575 * received a reply. 1576 */ 1577 void 1578 xprt_transmit(struct rpc_task *task) 1579 { 1580 struct rpc_rqst *next, *req = task->tk_rqstp; 1581 struct rpc_xprt *xprt = req->rq_xprt; 1582 int counter, status; 1583 1584 spin_lock(&xprt->queue_lock); 1585 counter = 0; 1586 while (!list_empty(&xprt->xmit_queue)) { 1587 if (++counter == 20) 1588 break; 1589 next = list_first_entry(&xprt->xmit_queue, 1590 struct rpc_rqst, rq_xmit); 1591 xprt_pin_rqst(next); 1592 spin_unlock(&xprt->queue_lock); 1593 status = xprt_request_transmit(next, task); 1594 if (status == -EBADMSG && next != req) 1595 status = 0; 1596 spin_lock(&xprt->queue_lock); 1597 xprt_unpin_rqst(next); 1598 if (status == 0) { 1599 if (!xprt_request_data_received(task) || 1600 test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate)) 1601 continue; 1602 } else if (test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate)) 1603 task->tk_status = status; 1604 break; 1605 } 1606 spin_unlock(&xprt->queue_lock); 1607 } 1608 1609 static void xprt_add_backlog(struct rpc_xprt *xprt, struct rpc_task *task) 1610 { 1611 set_bit(XPRT_CONGESTED, &xprt->state); 1612 rpc_sleep_on(&xprt->backlog, task, NULL); 1613 } 1614 1615 static void xprt_wake_up_backlog(struct rpc_xprt *xprt) 1616 { 1617 if (rpc_wake_up_next(&xprt->backlog) == NULL) 1618 clear_bit(XPRT_CONGESTED, &xprt->state); 1619 } 1620 1621 static bool xprt_throttle_congested(struct rpc_xprt *xprt, struct rpc_task *task) 1622 { 1623 bool ret = false; 1624 1625 if (!test_bit(XPRT_CONGESTED, &xprt->state)) 1626 goto out; 1627 spin_lock(&xprt->reserve_lock); 1628 if (test_bit(XPRT_CONGESTED, &xprt->state)) { 1629 rpc_sleep_on(&xprt->backlog, task, NULL); 1630 ret = true; 1631 } 1632 spin_unlock(&xprt->reserve_lock); 1633 out: 1634 return ret; 1635 } 1636 1637 static struct rpc_rqst *xprt_dynamic_alloc_slot(struct rpc_xprt *xprt) 1638 { 1639 struct rpc_rqst *req = ERR_PTR(-EAGAIN); 1640 1641 if (xprt->num_reqs >= xprt->max_reqs) 1642 goto out; 1643 ++xprt->num_reqs; 1644 spin_unlock(&xprt->reserve_lock); 1645 req = kzalloc(sizeof(struct rpc_rqst), GFP_NOFS); 1646 spin_lock(&xprt->reserve_lock); 1647 if (req != NULL) 1648 goto out; 1649 --xprt->num_reqs; 1650 req = ERR_PTR(-ENOMEM); 1651 out: 1652 return req; 1653 } 1654 1655 static bool xprt_dynamic_free_slot(struct rpc_xprt *xprt, struct rpc_rqst *req) 1656 { 1657 if (xprt->num_reqs > xprt->min_reqs) { 1658 --xprt->num_reqs; 1659 kfree(req); 1660 return true; 1661 } 1662 return false; 1663 } 1664 1665 void xprt_alloc_slot(struct rpc_xprt *xprt, struct rpc_task *task) 1666 { 1667 struct rpc_rqst *req; 1668 1669 spin_lock(&xprt->reserve_lock); 1670 if (!list_empty(&xprt->free)) { 1671 req = list_entry(xprt->free.next, struct rpc_rqst, rq_list); 1672 list_del(&req->rq_list); 1673 goto out_init_req; 1674 } 1675 req = xprt_dynamic_alloc_slot(xprt); 1676 if (!IS_ERR(req)) 1677 goto out_init_req; 1678 switch (PTR_ERR(req)) { 1679 case -ENOMEM: 1680 dprintk("RPC: dynamic allocation of request slot " 1681 "failed! Retrying\n"); 1682 task->tk_status = -ENOMEM; 1683 break; 1684 case -EAGAIN: 1685 xprt_add_backlog(xprt, task); 1686 dprintk("RPC: waiting for request slot\n"); 1687 fallthrough; 1688 default: 1689 task->tk_status = -EAGAIN; 1690 } 1691 spin_unlock(&xprt->reserve_lock); 1692 return; 1693 out_init_req: 1694 xprt->stat.max_slots = max_t(unsigned int, xprt->stat.max_slots, 1695 xprt->num_reqs); 1696 spin_unlock(&xprt->reserve_lock); 1697 1698 task->tk_status = 0; 1699 task->tk_rqstp = req; 1700 } 1701 EXPORT_SYMBOL_GPL(xprt_alloc_slot); 1702 1703 void xprt_free_slot(struct rpc_xprt *xprt, struct rpc_rqst *req) 1704 { 1705 spin_lock(&xprt->reserve_lock); 1706 if (!xprt_dynamic_free_slot(xprt, req)) { 1707 memset(req, 0, sizeof(*req)); /* mark unused */ 1708 list_add(&req->rq_list, &xprt->free); 1709 } 1710 xprt_wake_up_backlog(xprt); 1711 spin_unlock(&xprt->reserve_lock); 1712 } 1713 EXPORT_SYMBOL_GPL(xprt_free_slot); 1714 1715 static void xprt_free_all_slots(struct rpc_xprt *xprt) 1716 { 1717 struct rpc_rqst *req; 1718 while (!list_empty(&xprt->free)) { 1719 req = list_first_entry(&xprt->free, struct rpc_rqst, rq_list); 1720 list_del(&req->rq_list); 1721 kfree(req); 1722 } 1723 } 1724 1725 struct rpc_xprt *xprt_alloc(struct net *net, size_t size, 1726 unsigned int num_prealloc, 1727 unsigned int max_alloc) 1728 { 1729 struct rpc_xprt *xprt; 1730 struct rpc_rqst *req; 1731 int i; 1732 1733 xprt = kzalloc(size, GFP_KERNEL); 1734 if (xprt == NULL) 1735 goto out; 1736 1737 xprt_init(xprt, net); 1738 1739 for (i = 0; i < num_prealloc; i++) { 1740 req = kzalloc(sizeof(struct rpc_rqst), GFP_KERNEL); 1741 if (!req) 1742 goto out_free; 1743 list_add(&req->rq_list, &xprt->free); 1744 } 1745 if (max_alloc > num_prealloc) 1746 xprt->max_reqs = max_alloc; 1747 else 1748 xprt->max_reqs = num_prealloc; 1749 xprt->min_reqs = num_prealloc; 1750 xprt->num_reqs = num_prealloc; 1751 1752 return xprt; 1753 1754 out_free: 1755 xprt_free(xprt); 1756 out: 1757 return NULL; 1758 } 1759 EXPORT_SYMBOL_GPL(xprt_alloc); 1760 1761 void xprt_free(struct rpc_xprt *xprt) 1762 { 1763 put_net(xprt->xprt_net); 1764 xprt_free_all_slots(xprt); 1765 kfree_rcu(xprt, rcu); 1766 } 1767 EXPORT_SYMBOL_GPL(xprt_free); 1768 1769 static void 1770 xprt_init_connect_cookie(struct rpc_rqst *req, struct rpc_xprt *xprt) 1771 { 1772 req->rq_connect_cookie = xprt_connect_cookie(xprt) - 1; 1773 } 1774 1775 static __be32 1776 xprt_alloc_xid(struct rpc_xprt *xprt) 1777 { 1778 __be32 xid; 1779 1780 spin_lock(&xprt->reserve_lock); 1781 xid = (__force __be32)xprt->xid++; 1782 spin_unlock(&xprt->reserve_lock); 1783 return xid; 1784 } 1785 1786 static void 1787 xprt_init_xid(struct rpc_xprt *xprt) 1788 { 1789 xprt->xid = prandom_u32(); 1790 } 1791 1792 static void 1793 xprt_request_init(struct rpc_task *task) 1794 { 1795 struct rpc_xprt *xprt = task->tk_xprt; 1796 struct rpc_rqst *req = task->tk_rqstp; 1797 1798 req->rq_task = task; 1799 req->rq_xprt = xprt; 1800 req->rq_buffer = NULL; 1801 req->rq_xid = xprt_alloc_xid(xprt); 1802 xprt_init_connect_cookie(req, xprt); 1803 req->rq_snd_buf.len = 0; 1804 req->rq_snd_buf.buflen = 0; 1805 req->rq_rcv_buf.len = 0; 1806 req->rq_rcv_buf.buflen = 0; 1807 req->rq_snd_buf.bvec = NULL; 1808 req->rq_rcv_buf.bvec = NULL; 1809 req->rq_release_snd_buf = NULL; 1810 xprt_init_majortimeo(task, req); 1811 1812 trace_xprt_reserve(req); 1813 } 1814 1815 static void 1816 xprt_do_reserve(struct rpc_xprt *xprt, struct rpc_task *task) 1817 { 1818 xprt->ops->alloc_slot(xprt, task); 1819 if (task->tk_rqstp != NULL) 1820 xprt_request_init(task); 1821 } 1822 1823 /** 1824 * xprt_reserve - allocate an RPC request slot 1825 * @task: RPC task requesting a slot allocation 1826 * 1827 * If the transport is marked as being congested, or if no more 1828 * slots are available, place the task on the transport's 1829 * backlog queue. 1830 */ 1831 void xprt_reserve(struct rpc_task *task) 1832 { 1833 struct rpc_xprt *xprt = task->tk_xprt; 1834 1835 task->tk_status = 0; 1836 if (task->tk_rqstp != NULL) 1837 return; 1838 1839 task->tk_status = -EAGAIN; 1840 if (!xprt_throttle_congested(xprt, task)) 1841 xprt_do_reserve(xprt, task); 1842 } 1843 1844 /** 1845 * xprt_retry_reserve - allocate an RPC request slot 1846 * @task: RPC task requesting a slot allocation 1847 * 1848 * If no more slots are available, place the task on the transport's 1849 * backlog queue. 1850 * Note that the only difference with xprt_reserve is that we now 1851 * ignore the value of the XPRT_CONGESTED flag. 1852 */ 1853 void xprt_retry_reserve(struct rpc_task *task) 1854 { 1855 struct rpc_xprt *xprt = task->tk_xprt; 1856 1857 task->tk_status = 0; 1858 if (task->tk_rqstp != NULL) 1859 return; 1860 1861 task->tk_status = -EAGAIN; 1862 xprt_do_reserve(xprt, task); 1863 } 1864 1865 /** 1866 * xprt_release - release an RPC request slot 1867 * @task: task which is finished with the slot 1868 * 1869 */ 1870 void xprt_release(struct rpc_task *task) 1871 { 1872 struct rpc_xprt *xprt; 1873 struct rpc_rqst *req = task->tk_rqstp; 1874 1875 if (req == NULL) { 1876 if (task->tk_client) { 1877 xprt = task->tk_xprt; 1878 xprt_release_write(xprt, task); 1879 } 1880 return; 1881 } 1882 1883 xprt = req->rq_xprt; 1884 xprt_request_dequeue_xprt(task); 1885 spin_lock(&xprt->transport_lock); 1886 xprt->ops->release_xprt(xprt, task); 1887 if (xprt->ops->release_request) 1888 xprt->ops->release_request(task); 1889 xprt_schedule_autodisconnect(xprt); 1890 spin_unlock(&xprt->transport_lock); 1891 if (req->rq_buffer) 1892 xprt->ops->buf_free(task); 1893 xdr_free_bvec(&req->rq_rcv_buf); 1894 xdr_free_bvec(&req->rq_snd_buf); 1895 if (req->rq_cred != NULL) 1896 put_rpccred(req->rq_cred); 1897 task->tk_rqstp = NULL; 1898 if (req->rq_release_snd_buf) 1899 req->rq_release_snd_buf(req); 1900 1901 if (likely(!bc_prealloc(req))) 1902 xprt->ops->free_slot(xprt, req); 1903 else 1904 xprt_free_bc_request(req); 1905 } 1906 1907 #ifdef CONFIG_SUNRPC_BACKCHANNEL 1908 void 1909 xprt_init_bc_request(struct rpc_rqst *req, struct rpc_task *task) 1910 { 1911 struct xdr_buf *xbufp = &req->rq_snd_buf; 1912 1913 task->tk_rqstp = req; 1914 req->rq_task = task; 1915 xprt_init_connect_cookie(req, req->rq_xprt); 1916 /* 1917 * Set up the xdr_buf length. 1918 * This also indicates that the buffer is XDR encoded already. 1919 */ 1920 xbufp->len = xbufp->head[0].iov_len + xbufp->page_len + 1921 xbufp->tail[0].iov_len; 1922 } 1923 #endif 1924 1925 static void xprt_init(struct rpc_xprt *xprt, struct net *net) 1926 { 1927 kref_init(&xprt->kref); 1928 1929 spin_lock_init(&xprt->transport_lock); 1930 spin_lock_init(&xprt->reserve_lock); 1931 spin_lock_init(&xprt->queue_lock); 1932 1933 INIT_LIST_HEAD(&xprt->free); 1934 xprt->recv_queue = RB_ROOT; 1935 INIT_LIST_HEAD(&xprt->xmit_queue); 1936 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1937 spin_lock_init(&xprt->bc_pa_lock); 1938 INIT_LIST_HEAD(&xprt->bc_pa_list); 1939 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1940 INIT_LIST_HEAD(&xprt->xprt_switch); 1941 1942 xprt->last_used = jiffies; 1943 xprt->cwnd = RPC_INITCWND; 1944 xprt->bind_index = 0; 1945 1946 rpc_init_wait_queue(&xprt->binding, "xprt_binding"); 1947 rpc_init_wait_queue(&xprt->pending, "xprt_pending"); 1948 rpc_init_wait_queue(&xprt->sending, "xprt_sending"); 1949 rpc_init_priority_wait_queue(&xprt->backlog, "xprt_backlog"); 1950 1951 xprt_init_xid(xprt); 1952 1953 xprt->xprt_net = get_net(net); 1954 } 1955 1956 /** 1957 * xprt_create_transport - create an RPC transport 1958 * @args: rpc transport creation arguments 1959 * 1960 */ 1961 struct rpc_xprt *xprt_create_transport(struct xprt_create *args) 1962 { 1963 struct rpc_xprt *xprt; 1964 const struct xprt_class *t; 1965 1966 t = xprt_class_find_by_ident(args->ident); 1967 if (!t) { 1968 dprintk("RPC: transport (%d) not supported\n", args->ident); 1969 return ERR_PTR(-EIO); 1970 } 1971 1972 xprt = t->setup(args); 1973 xprt_class_release(t); 1974 1975 if (IS_ERR(xprt)) 1976 goto out; 1977 if (args->flags & XPRT_CREATE_NO_IDLE_TIMEOUT) 1978 xprt->idle_timeout = 0; 1979 INIT_WORK(&xprt->task_cleanup, xprt_autoclose); 1980 if (xprt_has_timer(xprt)) 1981 timer_setup(&xprt->timer, xprt_init_autodisconnect, 0); 1982 else 1983 timer_setup(&xprt->timer, NULL, 0); 1984 1985 if (strlen(args->servername) > RPC_MAXNETNAMELEN) { 1986 xprt_destroy(xprt); 1987 return ERR_PTR(-EINVAL); 1988 } 1989 xprt->servername = kstrdup(args->servername, GFP_KERNEL); 1990 if (xprt->servername == NULL) { 1991 xprt_destroy(xprt); 1992 return ERR_PTR(-ENOMEM); 1993 } 1994 1995 rpc_xprt_debugfs_register(xprt); 1996 1997 trace_xprt_create(xprt); 1998 out: 1999 return xprt; 2000 } 2001 2002 static void xprt_destroy_cb(struct work_struct *work) 2003 { 2004 struct rpc_xprt *xprt = 2005 container_of(work, struct rpc_xprt, task_cleanup); 2006 2007 trace_xprt_destroy(xprt); 2008 2009 rpc_xprt_debugfs_unregister(xprt); 2010 rpc_destroy_wait_queue(&xprt->binding); 2011 rpc_destroy_wait_queue(&xprt->pending); 2012 rpc_destroy_wait_queue(&xprt->sending); 2013 rpc_destroy_wait_queue(&xprt->backlog); 2014 kfree(xprt->servername); 2015 /* 2016 * Destroy any existing back channel 2017 */ 2018 xprt_destroy_backchannel(xprt, UINT_MAX); 2019 2020 /* 2021 * Tear down transport state and free the rpc_xprt 2022 */ 2023 xprt->ops->destroy(xprt); 2024 } 2025 2026 /** 2027 * xprt_destroy - destroy an RPC transport, killing off all requests. 2028 * @xprt: transport to destroy 2029 * 2030 */ 2031 static void xprt_destroy(struct rpc_xprt *xprt) 2032 { 2033 /* 2034 * Exclude transport connect/disconnect handlers and autoclose 2035 */ 2036 wait_on_bit_lock(&xprt->state, XPRT_LOCKED, TASK_UNINTERRUPTIBLE); 2037 2038 del_timer_sync(&xprt->timer); 2039 2040 /* 2041 * Destroy sockets etc from the system workqueue so they can 2042 * safely flush receive work running on rpciod. 2043 */ 2044 INIT_WORK(&xprt->task_cleanup, xprt_destroy_cb); 2045 schedule_work(&xprt->task_cleanup); 2046 } 2047 2048 static void xprt_destroy_kref(struct kref *kref) 2049 { 2050 xprt_destroy(container_of(kref, struct rpc_xprt, kref)); 2051 } 2052 2053 /** 2054 * xprt_get - return a reference to an RPC transport. 2055 * @xprt: pointer to the transport 2056 * 2057 */ 2058 struct rpc_xprt *xprt_get(struct rpc_xprt *xprt) 2059 { 2060 if (xprt != NULL && kref_get_unless_zero(&xprt->kref)) 2061 return xprt; 2062 return NULL; 2063 } 2064 EXPORT_SYMBOL_GPL(xprt_get); 2065 2066 /** 2067 * xprt_put - release a reference to an RPC transport. 2068 * @xprt: pointer to the transport 2069 * 2070 */ 2071 void xprt_put(struct rpc_xprt *xprt) 2072 { 2073 if (xprt != NULL) 2074 kref_put(&xprt->kref, xprt_destroy_kref); 2075 } 2076 EXPORT_SYMBOL_GPL(xprt_put); 2077