1 /* 2 * linux/net/sunrpc/xprt.c 3 * 4 * This is a generic RPC call interface supporting congestion avoidance, 5 * and asynchronous calls. 6 * 7 * The interface works like this: 8 * 9 * - When a process places a call, it allocates a request slot if 10 * one is available. Otherwise, it sleeps on the backlog queue 11 * (xprt_reserve). 12 * - Next, the caller puts together the RPC message, stuffs it into 13 * the request struct, and calls xprt_transmit(). 14 * - xprt_transmit sends the message and installs the caller on the 15 * transport's wait list. At the same time, if a reply is expected, 16 * it installs a timer that is run after the packet's timeout has 17 * expired. 18 * - When a packet arrives, the data_ready handler walks the list of 19 * pending requests for that transport. If a matching XID is found, the 20 * caller is woken up, and the timer removed. 21 * - When no reply arrives within the timeout interval, the timer is 22 * fired by the kernel and runs xprt_timer(). It either adjusts the 23 * timeout values (minor timeout) or wakes up the caller with a status 24 * of -ETIMEDOUT. 25 * - When the caller receives a notification from RPC that a reply arrived, 26 * it should release the RPC slot, and process the reply. 27 * If the call timed out, it may choose to retry the operation by 28 * adjusting the initial timeout value, and simply calling rpc_call 29 * again. 30 * 31 * Support for async RPC is done through a set of RPC-specific scheduling 32 * primitives that `transparently' work for processes as well as async 33 * tasks that rely on callbacks. 34 * 35 * Copyright (C) 1995-1997, Olaf Kirch <okir@monad.swb.de> 36 * 37 * Transport switch API copyright (C) 2005, Chuck Lever <cel@netapp.com> 38 */ 39 40 #include <linux/module.h> 41 42 #include <linux/types.h> 43 #include <linux/interrupt.h> 44 #include <linux/workqueue.h> 45 #include <linux/net.h> 46 #include <linux/ktime.h> 47 48 #include <linux/sunrpc/clnt.h> 49 #include <linux/sunrpc/metrics.h> 50 #include <linux/sunrpc/bc_xprt.h> 51 #include <linux/rcupdate.h> 52 53 #include <trace/events/sunrpc.h> 54 55 #include "sunrpc.h" 56 57 /* 58 * Local variables 59 */ 60 61 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 62 # define RPCDBG_FACILITY RPCDBG_XPRT 63 #endif 64 65 /* 66 * Local functions 67 */ 68 static void xprt_init(struct rpc_xprt *xprt, struct net *net); 69 static void xprt_request_init(struct rpc_task *, struct rpc_xprt *); 70 static void xprt_connect_status(struct rpc_task *task); 71 static int __xprt_get_cong(struct rpc_xprt *, struct rpc_task *); 72 static void __xprt_put_cong(struct rpc_xprt *, struct rpc_rqst *); 73 static void xprt_destroy(struct rpc_xprt *xprt); 74 75 static DEFINE_SPINLOCK(xprt_list_lock); 76 static LIST_HEAD(xprt_list); 77 78 /** 79 * xprt_register_transport - register a transport implementation 80 * @transport: transport to register 81 * 82 * If a transport implementation is loaded as a kernel module, it can 83 * call this interface to make itself known to the RPC client. 84 * 85 * Returns: 86 * 0: transport successfully registered 87 * -EEXIST: transport already registered 88 * -EINVAL: transport module being unloaded 89 */ 90 int xprt_register_transport(struct xprt_class *transport) 91 { 92 struct xprt_class *t; 93 int result; 94 95 result = -EEXIST; 96 spin_lock(&xprt_list_lock); 97 list_for_each_entry(t, &xprt_list, list) { 98 /* don't register the same transport class twice */ 99 if (t->ident == transport->ident) 100 goto out; 101 } 102 103 list_add_tail(&transport->list, &xprt_list); 104 printk(KERN_INFO "RPC: Registered %s transport module.\n", 105 transport->name); 106 result = 0; 107 108 out: 109 spin_unlock(&xprt_list_lock); 110 return result; 111 } 112 EXPORT_SYMBOL_GPL(xprt_register_transport); 113 114 /** 115 * xprt_unregister_transport - unregister a transport implementation 116 * @transport: transport to unregister 117 * 118 * Returns: 119 * 0: transport successfully unregistered 120 * -ENOENT: transport never registered 121 */ 122 int xprt_unregister_transport(struct xprt_class *transport) 123 { 124 struct xprt_class *t; 125 int result; 126 127 result = 0; 128 spin_lock(&xprt_list_lock); 129 list_for_each_entry(t, &xprt_list, list) { 130 if (t == transport) { 131 printk(KERN_INFO 132 "RPC: Unregistered %s transport module.\n", 133 transport->name); 134 list_del_init(&transport->list); 135 goto out; 136 } 137 } 138 result = -ENOENT; 139 140 out: 141 spin_unlock(&xprt_list_lock); 142 return result; 143 } 144 EXPORT_SYMBOL_GPL(xprt_unregister_transport); 145 146 /** 147 * xprt_load_transport - load a transport implementation 148 * @transport_name: transport to load 149 * 150 * Returns: 151 * 0: transport successfully loaded 152 * -ENOENT: transport module not available 153 */ 154 int xprt_load_transport(const char *transport_name) 155 { 156 struct xprt_class *t; 157 int result; 158 159 result = 0; 160 spin_lock(&xprt_list_lock); 161 list_for_each_entry(t, &xprt_list, list) { 162 if (strcmp(t->name, transport_name) == 0) { 163 spin_unlock(&xprt_list_lock); 164 goto out; 165 } 166 } 167 spin_unlock(&xprt_list_lock); 168 result = request_module("xprt%s", transport_name); 169 out: 170 return result; 171 } 172 EXPORT_SYMBOL_GPL(xprt_load_transport); 173 174 /** 175 * xprt_reserve_xprt - serialize write access to transports 176 * @task: task that is requesting access to the transport 177 * @xprt: pointer to the target transport 178 * 179 * This prevents mixing the payload of separate requests, and prevents 180 * transport connects from colliding with writes. No congestion control 181 * is provided. 182 */ 183 int xprt_reserve_xprt(struct rpc_xprt *xprt, struct rpc_task *task) 184 { 185 struct rpc_rqst *req = task->tk_rqstp; 186 int priority; 187 188 if (test_and_set_bit(XPRT_LOCKED, &xprt->state)) { 189 if (task == xprt->snd_task) 190 return 1; 191 goto out_sleep; 192 } 193 xprt->snd_task = task; 194 if (req != NULL) 195 req->rq_ntrans++; 196 197 return 1; 198 199 out_sleep: 200 dprintk("RPC: %5u failed to lock transport %p\n", 201 task->tk_pid, xprt); 202 task->tk_timeout = 0; 203 task->tk_status = -EAGAIN; 204 if (req == NULL) 205 priority = RPC_PRIORITY_LOW; 206 else if (!req->rq_ntrans) 207 priority = RPC_PRIORITY_NORMAL; 208 else 209 priority = RPC_PRIORITY_HIGH; 210 rpc_sleep_on_priority(&xprt->sending, task, NULL, priority); 211 return 0; 212 } 213 EXPORT_SYMBOL_GPL(xprt_reserve_xprt); 214 215 static void xprt_clear_locked(struct rpc_xprt *xprt) 216 { 217 xprt->snd_task = NULL; 218 if (!test_bit(XPRT_CLOSE_WAIT, &xprt->state)) { 219 smp_mb__before_atomic(); 220 clear_bit(XPRT_LOCKED, &xprt->state); 221 smp_mb__after_atomic(); 222 } else 223 queue_work(rpciod_workqueue, &xprt->task_cleanup); 224 } 225 226 /* 227 * xprt_reserve_xprt_cong - serialize write access to transports 228 * @task: task that is requesting access to the transport 229 * 230 * Same as xprt_reserve_xprt, but Van Jacobson congestion control is 231 * integrated into the decision of whether a request is allowed to be 232 * woken up and given access to the transport. 233 */ 234 int xprt_reserve_xprt_cong(struct rpc_xprt *xprt, struct rpc_task *task) 235 { 236 struct rpc_rqst *req = task->tk_rqstp; 237 int priority; 238 239 if (test_and_set_bit(XPRT_LOCKED, &xprt->state)) { 240 if (task == xprt->snd_task) 241 return 1; 242 goto out_sleep; 243 } 244 if (req == NULL) { 245 xprt->snd_task = task; 246 return 1; 247 } 248 if (__xprt_get_cong(xprt, task)) { 249 xprt->snd_task = task; 250 req->rq_ntrans++; 251 return 1; 252 } 253 xprt_clear_locked(xprt); 254 out_sleep: 255 if (req) 256 __xprt_put_cong(xprt, req); 257 dprintk("RPC: %5u failed to lock transport %p\n", task->tk_pid, xprt); 258 task->tk_timeout = 0; 259 task->tk_status = -EAGAIN; 260 if (req == NULL) 261 priority = RPC_PRIORITY_LOW; 262 else if (!req->rq_ntrans) 263 priority = RPC_PRIORITY_NORMAL; 264 else 265 priority = RPC_PRIORITY_HIGH; 266 rpc_sleep_on_priority(&xprt->sending, task, NULL, priority); 267 return 0; 268 } 269 EXPORT_SYMBOL_GPL(xprt_reserve_xprt_cong); 270 271 static inline int xprt_lock_write(struct rpc_xprt *xprt, struct rpc_task *task) 272 { 273 int retval; 274 275 spin_lock_bh(&xprt->transport_lock); 276 retval = xprt->ops->reserve_xprt(xprt, task); 277 spin_unlock_bh(&xprt->transport_lock); 278 return retval; 279 } 280 281 static bool __xprt_lock_write_func(struct rpc_task *task, void *data) 282 { 283 struct rpc_xprt *xprt = data; 284 struct rpc_rqst *req; 285 286 req = task->tk_rqstp; 287 xprt->snd_task = task; 288 if (req) 289 req->rq_ntrans++; 290 return true; 291 } 292 293 static void __xprt_lock_write_next(struct rpc_xprt *xprt) 294 { 295 if (test_and_set_bit(XPRT_LOCKED, &xprt->state)) 296 return; 297 298 if (rpc_wake_up_first(&xprt->sending, __xprt_lock_write_func, xprt)) 299 return; 300 xprt_clear_locked(xprt); 301 } 302 303 static bool __xprt_lock_write_cong_func(struct rpc_task *task, void *data) 304 { 305 struct rpc_xprt *xprt = data; 306 struct rpc_rqst *req; 307 308 req = task->tk_rqstp; 309 if (req == NULL) { 310 xprt->snd_task = task; 311 return true; 312 } 313 if (__xprt_get_cong(xprt, task)) { 314 xprt->snd_task = task; 315 req->rq_ntrans++; 316 return true; 317 } 318 return false; 319 } 320 321 static void __xprt_lock_write_next_cong(struct rpc_xprt *xprt) 322 { 323 if (test_and_set_bit(XPRT_LOCKED, &xprt->state)) 324 return; 325 if (RPCXPRT_CONGESTED(xprt)) 326 goto out_unlock; 327 if (rpc_wake_up_first(&xprt->sending, __xprt_lock_write_cong_func, xprt)) 328 return; 329 out_unlock: 330 xprt_clear_locked(xprt); 331 } 332 333 static void xprt_task_clear_bytes_sent(struct rpc_task *task) 334 { 335 if (task != NULL) { 336 struct rpc_rqst *req = task->tk_rqstp; 337 if (req != NULL) 338 req->rq_bytes_sent = 0; 339 } 340 } 341 342 /** 343 * xprt_release_xprt - allow other requests to use a transport 344 * @xprt: transport with other tasks potentially waiting 345 * @task: task that is releasing access to the transport 346 * 347 * Note that "task" can be NULL. No congestion control is provided. 348 */ 349 void xprt_release_xprt(struct rpc_xprt *xprt, struct rpc_task *task) 350 { 351 if (xprt->snd_task == task) { 352 xprt_task_clear_bytes_sent(task); 353 xprt_clear_locked(xprt); 354 __xprt_lock_write_next(xprt); 355 } 356 } 357 EXPORT_SYMBOL_GPL(xprt_release_xprt); 358 359 /** 360 * xprt_release_xprt_cong - allow other requests to use a transport 361 * @xprt: transport with other tasks potentially waiting 362 * @task: task that is releasing access to the transport 363 * 364 * Note that "task" can be NULL. Another task is awoken to use the 365 * transport if the transport's congestion window allows it. 366 */ 367 void xprt_release_xprt_cong(struct rpc_xprt *xprt, struct rpc_task *task) 368 { 369 if (xprt->snd_task == task) { 370 xprt_task_clear_bytes_sent(task); 371 xprt_clear_locked(xprt); 372 __xprt_lock_write_next_cong(xprt); 373 } 374 } 375 EXPORT_SYMBOL_GPL(xprt_release_xprt_cong); 376 377 static inline void xprt_release_write(struct rpc_xprt *xprt, struct rpc_task *task) 378 { 379 spin_lock_bh(&xprt->transport_lock); 380 xprt->ops->release_xprt(xprt, task); 381 spin_unlock_bh(&xprt->transport_lock); 382 } 383 384 /* 385 * Van Jacobson congestion avoidance. Check if the congestion window 386 * overflowed. Put the task to sleep if this is the case. 387 */ 388 static int 389 __xprt_get_cong(struct rpc_xprt *xprt, struct rpc_task *task) 390 { 391 struct rpc_rqst *req = task->tk_rqstp; 392 393 if (req->rq_cong) 394 return 1; 395 dprintk("RPC: %5u xprt_cwnd_limited cong = %lu cwnd = %lu\n", 396 task->tk_pid, xprt->cong, xprt->cwnd); 397 if (RPCXPRT_CONGESTED(xprt)) 398 return 0; 399 req->rq_cong = 1; 400 xprt->cong += RPC_CWNDSCALE; 401 return 1; 402 } 403 404 /* 405 * Adjust the congestion window, and wake up the next task 406 * that has been sleeping due to congestion 407 */ 408 static void 409 __xprt_put_cong(struct rpc_xprt *xprt, struct rpc_rqst *req) 410 { 411 if (!req->rq_cong) 412 return; 413 req->rq_cong = 0; 414 xprt->cong -= RPC_CWNDSCALE; 415 __xprt_lock_write_next_cong(xprt); 416 } 417 418 /** 419 * xprt_release_rqst_cong - housekeeping when request is complete 420 * @task: RPC request that recently completed 421 * 422 * Useful for transports that require congestion control. 423 */ 424 void xprt_release_rqst_cong(struct rpc_task *task) 425 { 426 struct rpc_rqst *req = task->tk_rqstp; 427 428 __xprt_put_cong(req->rq_xprt, req); 429 } 430 EXPORT_SYMBOL_GPL(xprt_release_rqst_cong); 431 432 /** 433 * xprt_adjust_cwnd - adjust transport congestion window 434 * @xprt: pointer to xprt 435 * @task: recently completed RPC request used to adjust window 436 * @result: result code of completed RPC request 437 * 438 * The transport code maintains an estimate on the maximum number of out- 439 * standing RPC requests, using a smoothed version of the congestion 440 * avoidance implemented in 44BSD. This is basically the Van Jacobson 441 * congestion algorithm: If a retransmit occurs, the congestion window is 442 * halved; otherwise, it is incremented by 1/cwnd when 443 * 444 * - a reply is received and 445 * - a full number of requests are outstanding and 446 * - the congestion window hasn't been updated recently. 447 */ 448 void xprt_adjust_cwnd(struct rpc_xprt *xprt, struct rpc_task *task, int result) 449 { 450 struct rpc_rqst *req = task->tk_rqstp; 451 unsigned long cwnd = xprt->cwnd; 452 453 if (result >= 0 && cwnd <= xprt->cong) { 454 /* The (cwnd >> 1) term makes sure 455 * the result gets rounded properly. */ 456 cwnd += (RPC_CWNDSCALE * RPC_CWNDSCALE + (cwnd >> 1)) / cwnd; 457 if (cwnd > RPC_MAXCWND(xprt)) 458 cwnd = RPC_MAXCWND(xprt); 459 __xprt_lock_write_next_cong(xprt); 460 } else if (result == -ETIMEDOUT) { 461 cwnd >>= 1; 462 if (cwnd < RPC_CWNDSCALE) 463 cwnd = RPC_CWNDSCALE; 464 } 465 dprintk("RPC: cong %ld, cwnd was %ld, now %ld\n", 466 xprt->cong, xprt->cwnd, cwnd); 467 xprt->cwnd = cwnd; 468 __xprt_put_cong(xprt, req); 469 } 470 EXPORT_SYMBOL_GPL(xprt_adjust_cwnd); 471 472 /** 473 * xprt_wake_pending_tasks - wake all tasks on a transport's pending queue 474 * @xprt: transport with waiting tasks 475 * @status: result code to plant in each task before waking it 476 * 477 */ 478 void xprt_wake_pending_tasks(struct rpc_xprt *xprt, int status) 479 { 480 if (status < 0) 481 rpc_wake_up_status(&xprt->pending, status); 482 else 483 rpc_wake_up(&xprt->pending); 484 } 485 EXPORT_SYMBOL_GPL(xprt_wake_pending_tasks); 486 487 /** 488 * xprt_wait_for_buffer_space - wait for transport output buffer to clear 489 * @task: task to be put to sleep 490 * @action: function pointer to be executed after wait 491 * 492 * Note that we only set the timer for the case of RPC_IS_SOFT(), since 493 * we don't in general want to force a socket disconnection due to 494 * an incomplete RPC call transmission. 495 */ 496 void xprt_wait_for_buffer_space(struct rpc_task *task, rpc_action action) 497 { 498 struct rpc_rqst *req = task->tk_rqstp; 499 struct rpc_xprt *xprt = req->rq_xprt; 500 501 task->tk_timeout = RPC_IS_SOFT(task) ? req->rq_timeout : 0; 502 rpc_sleep_on(&xprt->pending, task, action); 503 } 504 EXPORT_SYMBOL_GPL(xprt_wait_for_buffer_space); 505 506 /** 507 * xprt_write_space - wake the task waiting for transport output buffer space 508 * @xprt: transport with waiting tasks 509 * 510 * Can be called in a soft IRQ context, so xprt_write_space never sleeps. 511 */ 512 void xprt_write_space(struct rpc_xprt *xprt) 513 { 514 spin_lock_bh(&xprt->transport_lock); 515 if (xprt->snd_task) { 516 dprintk("RPC: write space: waking waiting task on " 517 "xprt %p\n", xprt); 518 rpc_wake_up_queued_task(&xprt->pending, xprt->snd_task); 519 } 520 spin_unlock_bh(&xprt->transport_lock); 521 } 522 EXPORT_SYMBOL_GPL(xprt_write_space); 523 524 /** 525 * xprt_set_retrans_timeout_def - set a request's retransmit timeout 526 * @task: task whose timeout is to be set 527 * 528 * Set a request's retransmit timeout based on the transport's 529 * default timeout parameters. Used by transports that don't adjust 530 * the retransmit timeout based on round-trip time estimation. 531 */ 532 void xprt_set_retrans_timeout_def(struct rpc_task *task) 533 { 534 task->tk_timeout = task->tk_rqstp->rq_timeout; 535 } 536 EXPORT_SYMBOL_GPL(xprt_set_retrans_timeout_def); 537 538 /** 539 * xprt_set_retrans_timeout_rtt - set a request's retransmit timeout 540 * @task: task whose timeout is to be set 541 * 542 * Set a request's retransmit timeout using the RTT estimator. 543 */ 544 void xprt_set_retrans_timeout_rtt(struct rpc_task *task) 545 { 546 int timer = task->tk_msg.rpc_proc->p_timer; 547 struct rpc_clnt *clnt = task->tk_client; 548 struct rpc_rtt *rtt = clnt->cl_rtt; 549 struct rpc_rqst *req = task->tk_rqstp; 550 unsigned long max_timeout = clnt->cl_timeout->to_maxval; 551 552 task->tk_timeout = rpc_calc_rto(rtt, timer); 553 task->tk_timeout <<= rpc_ntimeo(rtt, timer) + req->rq_retries; 554 if (task->tk_timeout > max_timeout || task->tk_timeout == 0) 555 task->tk_timeout = max_timeout; 556 } 557 EXPORT_SYMBOL_GPL(xprt_set_retrans_timeout_rtt); 558 559 static void xprt_reset_majortimeo(struct rpc_rqst *req) 560 { 561 const struct rpc_timeout *to = req->rq_task->tk_client->cl_timeout; 562 563 req->rq_majortimeo = req->rq_timeout; 564 if (to->to_exponential) 565 req->rq_majortimeo <<= to->to_retries; 566 else 567 req->rq_majortimeo += to->to_increment * to->to_retries; 568 if (req->rq_majortimeo > to->to_maxval || req->rq_majortimeo == 0) 569 req->rq_majortimeo = to->to_maxval; 570 req->rq_majortimeo += jiffies; 571 } 572 573 /** 574 * xprt_adjust_timeout - adjust timeout values for next retransmit 575 * @req: RPC request containing parameters to use for the adjustment 576 * 577 */ 578 int xprt_adjust_timeout(struct rpc_rqst *req) 579 { 580 struct rpc_xprt *xprt = req->rq_xprt; 581 const struct rpc_timeout *to = req->rq_task->tk_client->cl_timeout; 582 int status = 0; 583 584 if (time_before(jiffies, req->rq_majortimeo)) { 585 if (to->to_exponential) 586 req->rq_timeout <<= 1; 587 else 588 req->rq_timeout += to->to_increment; 589 if (to->to_maxval && req->rq_timeout >= to->to_maxval) 590 req->rq_timeout = to->to_maxval; 591 req->rq_retries++; 592 } else { 593 req->rq_timeout = to->to_initval; 594 req->rq_retries = 0; 595 xprt_reset_majortimeo(req); 596 /* Reset the RTT counters == "slow start" */ 597 spin_lock_bh(&xprt->transport_lock); 598 rpc_init_rtt(req->rq_task->tk_client->cl_rtt, to->to_initval); 599 spin_unlock_bh(&xprt->transport_lock); 600 status = -ETIMEDOUT; 601 } 602 603 if (req->rq_timeout == 0) { 604 printk(KERN_WARNING "xprt_adjust_timeout: rq_timeout = 0!\n"); 605 req->rq_timeout = 5 * HZ; 606 } 607 return status; 608 } 609 610 static void xprt_autoclose(struct work_struct *work) 611 { 612 struct rpc_xprt *xprt = 613 container_of(work, struct rpc_xprt, task_cleanup); 614 615 clear_bit(XPRT_CLOSE_WAIT, &xprt->state); 616 xprt->ops->close(xprt); 617 xprt_release_write(xprt, NULL); 618 wake_up_bit(&xprt->state, XPRT_LOCKED); 619 } 620 621 /** 622 * xprt_disconnect_done - mark a transport as disconnected 623 * @xprt: transport to flag for disconnect 624 * 625 */ 626 void xprt_disconnect_done(struct rpc_xprt *xprt) 627 { 628 dprintk("RPC: disconnected transport %p\n", xprt); 629 spin_lock_bh(&xprt->transport_lock); 630 xprt_clear_connected(xprt); 631 xprt_wake_pending_tasks(xprt, -EAGAIN); 632 spin_unlock_bh(&xprt->transport_lock); 633 } 634 EXPORT_SYMBOL_GPL(xprt_disconnect_done); 635 636 /** 637 * xprt_force_disconnect - force a transport to disconnect 638 * @xprt: transport to disconnect 639 * 640 */ 641 void xprt_force_disconnect(struct rpc_xprt *xprt) 642 { 643 /* Don't race with the test_bit() in xprt_clear_locked() */ 644 spin_lock_bh(&xprt->transport_lock); 645 set_bit(XPRT_CLOSE_WAIT, &xprt->state); 646 /* Try to schedule an autoclose RPC call */ 647 if (test_and_set_bit(XPRT_LOCKED, &xprt->state) == 0) 648 queue_work(rpciod_workqueue, &xprt->task_cleanup); 649 xprt_wake_pending_tasks(xprt, -EAGAIN); 650 spin_unlock_bh(&xprt->transport_lock); 651 } 652 653 /** 654 * xprt_conditional_disconnect - force a transport to disconnect 655 * @xprt: transport to disconnect 656 * @cookie: 'connection cookie' 657 * 658 * This attempts to break the connection if and only if 'cookie' matches 659 * the current transport 'connection cookie'. It ensures that we don't 660 * try to break the connection more than once when we need to retransmit 661 * a batch of RPC requests. 662 * 663 */ 664 void xprt_conditional_disconnect(struct rpc_xprt *xprt, unsigned int cookie) 665 { 666 /* Don't race with the test_bit() in xprt_clear_locked() */ 667 spin_lock_bh(&xprt->transport_lock); 668 if (cookie != xprt->connect_cookie) 669 goto out; 670 if (test_bit(XPRT_CLOSING, &xprt->state) || !xprt_connected(xprt)) 671 goto out; 672 set_bit(XPRT_CLOSE_WAIT, &xprt->state); 673 /* Try to schedule an autoclose RPC call */ 674 if (test_and_set_bit(XPRT_LOCKED, &xprt->state) == 0) 675 queue_work(rpciod_workqueue, &xprt->task_cleanup); 676 xprt_wake_pending_tasks(xprt, -EAGAIN); 677 out: 678 spin_unlock_bh(&xprt->transport_lock); 679 } 680 681 static void 682 xprt_init_autodisconnect(unsigned long data) 683 { 684 struct rpc_xprt *xprt = (struct rpc_xprt *)data; 685 686 spin_lock(&xprt->transport_lock); 687 if (!list_empty(&xprt->recv)) 688 goto out_abort; 689 if (test_and_set_bit(XPRT_LOCKED, &xprt->state)) 690 goto out_abort; 691 spin_unlock(&xprt->transport_lock); 692 queue_work(rpciod_workqueue, &xprt->task_cleanup); 693 return; 694 out_abort: 695 spin_unlock(&xprt->transport_lock); 696 } 697 698 bool xprt_lock_connect(struct rpc_xprt *xprt, 699 struct rpc_task *task, 700 void *cookie) 701 { 702 bool ret = false; 703 704 spin_lock_bh(&xprt->transport_lock); 705 if (!test_bit(XPRT_LOCKED, &xprt->state)) 706 goto out; 707 if (xprt->snd_task != task) 708 goto out; 709 xprt_task_clear_bytes_sent(task); 710 xprt->snd_task = cookie; 711 ret = true; 712 out: 713 spin_unlock_bh(&xprt->transport_lock); 714 return ret; 715 } 716 717 void xprt_unlock_connect(struct rpc_xprt *xprt, void *cookie) 718 { 719 spin_lock_bh(&xprt->transport_lock); 720 if (xprt->snd_task != cookie) 721 goto out; 722 if (!test_bit(XPRT_LOCKED, &xprt->state)) 723 goto out; 724 xprt->snd_task =NULL; 725 xprt->ops->release_xprt(xprt, NULL); 726 out: 727 spin_unlock_bh(&xprt->transport_lock); 728 wake_up_bit(&xprt->state, XPRT_LOCKED); 729 } 730 731 /** 732 * xprt_connect - schedule a transport connect operation 733 * @task: RPC task that is requesting the connect 734 * 735 */ 736 void xprt_connect(struct rpc_task *task) 737 { 738 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; 739 740 dprintk("RPC: %5u xprt_connect xprt %p %s connected\n", task->tk_pid, 741 xprt, (xprt_connected(xprt) ? "is" : "is not")); 742 743 if (!xprt_bound(xprt)) { 744 task->tk_status = -EAGAIN; 745 return; 746 } 747 if (!xprt_lock_write(xprt, task)) 748 return; 749 750 if (test_and_clear_bit(XPRT_CLOSE_WAIT, &xprt->state)) 751 xprt->ops->close(xprt); 752 753 if (!xprt_connected(xprt)) { 754 task->tk_rqstp->rq_bytes_sent = 0; 755 task->tk_timeout = task->tk_rqstp->rq_timeout; 756 rpc_sleep_on(&xprt->pending, task, xprt_connect_status); 757 758 if (test_bit(XPRT_CLOSING, &xprt->state)) 759 return; 760 if (xprt_test_and_set_connecting(xprt)) 761 return; 762 xprt->stat.connect_start = jiffies; 763 xprt->ops->connect(xprt, task); 764 } 765 xprt_release_write(xprt, task); 766 } 767 768 static void xprt_connect_status(struct rpc_task *task) 769 { 770 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; 771 772 if (task->tk_status == 0) { 773 xprt->stat.connect_count++; 774 xprt->stat.connect_time += (long)jiffies - xprt->stat.connect_start; 775 dprintk("RPC: %5u xprt_connect_status: connection established\n", 776 task->tk_pid); 777 return; 778 } 779 780 switch (task->tk_status) { 781 case -ECONNREFUSED: 782 case -ECONNRESET: 783 case -ECONNABORTED: 784 case -ENETUNREACH: 785 case -EHOSTUNREACH: 786 case -EPIPE: 787 case -EAGAIN: 788 dprintk("RPC: %5u xprt_connect_status: retrying\n", task->tk_pid); 789 break; 790 case -ETIMEDOUT: 791 dprintk("RPC: %5u xprt_connect_status: connect attempt timed " 792 "out\n", task->tk_pid); 793 break; 794 default: 795 dprintk("RPC: %5u xprt_connect_status: error %d connecting to " 796 "server %s\n", task->tk_pid, -task->tk_status, 797 xprt->servername); 798 task->tk_status = -EIO; 799 } 800 } 801 802 /** 803 * xprt_lookup_rqst - find an RPC request corresponding to an XID 804 * @xprt: transport on which the original request was transmitted 805 * @xid: RPC XID of incoming reply 806 * 807 */ 808 struct rpc_rqst *xprt_lookup_rqst(struct rpc_xprt *xprt, __be32 xid) 809 { 810 struct rpc_rqst *entry; 811 812 list_for_each_entry(entry, &xprt->recv, rq_list) 813 if (entry->rq_xid == xid) { 814 trace_xprt_lookup_rqst(xprt, xid, 0); 815 return entry; 816 } 817 818 dprintk("RPC: xprt_lookup_rqst did not find xid %08x\n", 819 ntohl(xid)); 820 trace_xprt_lookup_rqst(xprt, xid, -ENOENT); 821 xprt->stat.bad_xids++; 822 return NULL; 823 } 824 EXPORT_SYMBOL_GPL(xprt_lookup_rqst); 825 826 static void xprt_update_rtt(struct rpc_task *task) 827 { 828 struct rpc_rqst *req = task->tk_rqstp; 829 struct rpc_rtt *rtt = task->tk_client->cl_rtt; 830 unsigned int timer = task->tk_msg.rpc_proc->p_timer; 831 long m = usecs_to_jiffies(ktime_to_us(req->rq_rtt)); 832 833 if (timer) { 834 if (req->rq_ntrans == 1) 835 rpc_update_rtt(rtt, timer, m); 836 rpc_set_timeo(rtt, timer, req->rq_ntrans - 1); 837 } 838 } 839 840 /** 841 * xprt_complete_rqst - called when reply processing is complete 842 * @task: RPC request that recently completed 843 * @copied: actual number of bytes received from the transport 844 * 845 * Caller holds transport lock. 846 */ 847 void xprt_complete_rqst(struct rpc_task *task, int copied) 848 { 849 struct rpc_rqst *req = task->tk_rqstp; 850 struct rpc_xprt *xprt = req->rq_xprt; 851 852 dprintk("RPC: %5u xid %08x complete (%d bytes received)\n", 853 task->tk_pid, ntohl(req->rq_xid), copied); 854 trace_xprt_complete_rqst(xprt, req->rq_xid, copied); 855 856 xprt->stat.recvs++; 857 req->rq_rtt = ktime_sub(ktime_get(), req->rq_xtime); 858 if (xprt->ops->timer != NULL) 859 xprt_update_rtt(task); 860 861 list_del_init(&req->rq_list); 862 req->rq_private_buf.len = copied; 863 /* Ensure all writes are done before we update */ 864 /* req->rq_reply_bytes_recvd */ 865 smp_wmb(); 866 req->rq_reply_bytes_recvd = copied; 867 rpc_wake_up_queued_task(&xprt->pending, task); 868 } 869 EXPORT_SYMBOL_GPL(xprt_complete_rqst); 870 871 static void xprt_timer(struct rpc_task *task) 872 { 873 struct rpc_rqst *req = task->tk_rqstp; 874 struct rpc_xprt *xprt = req->rq_xprt; 875 876 if (task->tk_status != -ETIMEDOUT) 877 return; 878 dprintk("RPC: %5u xprt_timer\n", task->tk_pid); 879 880 spin_lock_bh(&xprt->transport_lock); 881 if (!req->rq_reply_bytes_recvd) { 882 if (xprt->ops->timer) 883 xprt->ops->timer(xprt, task); 884 } else 885 task->tk_status = 0; 886 spin_unlock_bh(&xprt->transport_lock); 887 } 888 889 static inline int xprt_has_timer(struct rpc_xprt *xprt) 890 { 891 return xprt->idle_timeout != 0; 892 } 893 894 /** 895 * xprt_prepare_transmit - reserve the transport before sending a request 896 * @task: RPC task about to send a request 897 * 898 */ 899 bool xprt_prepare_transmit(struct rpc_task *task) 900 { 901 struct rpc_rqst *req = task->tk_rqstp; 902 struct rpc_xprt *xprt = req->rq_xprt; 903 bool ret = false; 904 905 dprintk("RPC: %5u xprt_prepare_transmit\n", task->tk_pid); 906 907 spin_lock_bh(&xprt->transport_lock); 908 if (!req->rq_bytes_sent) { 909 if (req->rq_reply_bytes_recvd) { 910 task->tk_status = req->rq_reply_bytes_recvd; 911 goto out_unlock; 912 } 913 if ((task->tk_flags & RPC_TASK_NO_RETRANS_TIMEOUT) 914 && xprt_connected(xprt) 915 && req->rq_connect_cookie == xprt->connect_cookie) { 916 xprt->ops->set_retrans_timeout(task); 917 rpc_sleep_on(&xprt->pending, task, xprt_timer); 918 goto out_unlock; 919 } 920 } 921 if (!xprt->ops->reserve_xprt(xprt, task)) { 922 task->tk_status = -EAGAIN; 923 goto out_unlock; 924 } 925 ret = true; 926 out_unlock: 927 spin_unlock_bh(&xprt->transport_lock); 928 return ret; 929 } 930 931 void xprt_end_transmit(struct rpc_task *task) 932 { 933 xprt_release_write(task->tk_rqstp->rq_xprt, task); 934 } 935 936 /** 937 * xprt_transmit - send an RPC request on a transport 938 * @task: controlling RPC task 939 * 940 * We have to copy the iovec because sendmsg fiddles with its contents. 941 */ 942 void xprt_transmit(struct rpc_task *task) 943 { 944 struct rpc_rqst *req = task->tk_rqstp; 945 struct rpc_xprt *xprt = req->rq_xprt; 946 int status, numreqs; 947 948 dprintk("RPC: %5u xprt_transmit(%u)\n", task->tk_pid, req->rq_slen); 949 950 if (!req->rq_reply_bytes_recvd) { 951 if (list_empty(&req->rq_list) && rpc_reply_expected(task)) { 952 /* 953 * Add to the list only if we're expecting a reply 954 */ 955 spin_lock_bh(&xprt->transport_lock); 956 /* Update the softirq receive buffer */ 957 memcpy(&req->rq_private_buf, &req->rq_rcv_buf, 958 sizeof(req->rq_private_buf)); 959 /* Add request to the receive list */ 960 list_add_tail(&req->rq_list, &xprt->recv); 961 spin_unlock_bh(&xprt->transport_lock); 962 xprt_reset_majortimeo(req); 963 /* Turn off autodisconnect */ 964 del_singleshot_timer_sync(&xprt->timer); 965 } 966 } else if (!req->rq_bytes_sent) 967 return; 968 969 req->rq_xtime = ktime_get(); 970 status = xprt->ops->send_request(task); 971 trace_xprt_transmit(xprt, req->rq_xid, status); 972 if (status != 0) { 973 task->tk_status = status; 974 return; 975 } 976 xprt_inject_disconnect(xprt); 977 978 dprintk("RPC: %5u xmit complete\n", task->tk_pid); 979 task->tk_flags |= RPC_TASK_SENT; 980 spin_lock_bh(&xprt->transport_lock); 981 982 xprt->ops->set_retrans_timeout(task); 983 984 numreqs = atomic_read(&xprt->num_reqs); 985 if (numreqs > xprt->stat.max_slots) 986 xprt->stat.max_slots = numreqs; 987 xprt->stat.sends++; 988 xprt->stat.req_u += xprt->stat.sends - xprt->stat.recvs; 989 xprt->stat.bklog_u += xprt->backlog.qlen; 990 xprt->stat.sending_u += xprt->sending.qlen; 991 xprt->stat.pending_u += xprt->pending.qlen; 992 993 /* Don't race with disconnect */ 994 if (!xprt_connected(xprt)) 995 task->tk_status = -ENOTCONN; 996 else { 997 /* 998 * Sleep on the pending queue since 999 * we're expecting a reply. 1000 */ 1001 if (!req->rq_reply_bytes_recvd && rpc_reply_expected(task)) 1002 rpc_sleep_on(&xprt->pending, task, xprt_timer); 1003 req->rq_connect_cookie = xprt->connect_cookie; 1004 } 1005 spin_unlock_bh(&xprt->transport_lock); 1006 } 1007 1008 static void xprt_add_backlog(struct rpc_xprt *xprt, struct rpc_task *task) 1009 { 1010 set_bit(XPRT_CONGESTED, &xprt->state); 1011 rpc_sleep_on(&xprt->backlog, task, NULL); 1012 } 1013 1014 static void xprt_wake_up_backlog(struct rpc_xprt *xprt) 1015 { 1016 if (rpc_wake_up_next(&xprt->backlog) == NULL) 1017 clear_bit(XPRT_CONGESTED, &xprt->state); 1018 } 1019 1020 static bool xprt_throttle_congested(struct rpc_xprt *xprt, struct rpc_task *task) 1021 { 1022 bool ret = false; 1023 1024 if (!test_bit(XPRT_CONGESTED, &xprt->state)) 1025 goto out; 1026 spin_lock(&xprt->reserve_lock); 1027 if (test_bit(XPRT_CONGESTED, &xprt->state)) { 1028 rpc_sleep_on(&xprt->backlog, task, NULL); 1029 ret = true; 1030 } 1031 spin_unlock(&xprt->reserve_lock); 1032 out: 1033 return ret; 1034 } 1035 1036 static struct rpc_rqst *xprt_dynamic_alloc_slot(struct rpc_xprt *xprt, gfp_t gfp_flags) 1037 { 1038 struct rpc_rqst *req = ERR_PTR(-EAGAIN); 1039 1040 if (!atomic_add_unless(&xprt->num_reqs, 1, xprt->max_reqs)) 1041 goto out; 1042 req = kzalloc(sizeof(struct rpc_rqst), gfp_flags); 1043 if (req != NULL) 1044 goto out; 1045 atomic_dec(&xprt->num_reqs); 1046 req = ERR_PTR(-ENOMEM); 1047 out: 1048 return req; 1049 } 1050 1051 static bool xprt_dynamic_free_slot(struct rpc_xprt *xprt, struct rpc_rqst *req) 1052 { 1053 if (atomic_add_unless(&xprt->num_reqs, -1, xprt->min_reqs)) { 1054 kfree(req); 1055 return true; 1056 } 1057 return false; 1058 } 1059 1060 void xprt_alloc_slot(struct rpc_xprt *xprt, struct rpc_task *task) 1061 { 1062 struct rpc_rqst *req; 1063 1064 spin_lock(&xprt->reserve_lock); 1065 if (!list_empty(&xprt->free)) { 1066 req = list_entry(xprt->free.next, struct rpc_rqst, rq_list); 1067 list_del(&req->rq_list); 1068 goto out_init_req; 1069 } 1070 req = xprt_dynamic_alloc_slot(xprt, GFP_NOWAIT|__GFP_NOWARN); 1071 if (!IS_ERR(req)) 1072 goto out_init_req; 1073 switch (PTR_ERR(req)) { 1074 case -ENOMEM: 1075 dprintk("RPC: dynamic allocation of request slot " 1076 "failed! Retrying\n"); 1077 task->tk_status = -ENOMEM; 1078 break; 1079 case -EAGAIN: 1080 xprt_add_backlog(xprt, task); 1081 dprintk("RPC: waiting for request slot\n"); 1082 default: 1083 task->tk_status = -EAGAIN; 1084 } 1085 spin_unlock(&xprt->reserve_lock); 1086 return; 1087 out_init_req: 1088 task->tk_status = 0; 1089 task->tk_rqstp = req; 1090 xprt_request_init(task, xprt); 1091 spin_unlock(&xprt->reserve_lock); 1092 } 1093 EXPORT_SYMBOL_GPL(xprt_alloc_slot); 1094 1095 void xprt_lock_and_alloc_slot(struct rpc_xprt *xprt, struct rpc_task *task) 1096 { 1097 /* Note: grabbing the xprt_lock_write() ensures that we throttle 1098 * new slot allocation if the transport is congested (i.e. when 1099 * reconnecting a stream transport or when out of socket write 1100 * buffer space). 1101 */ 1102 if (xprt_lock_write(xprt, task)) { 1103 xprt_alloc_slot(xprt, task); 1104 xprt_release_write(xprt, task); 1105 } 1106 } 1107 EXPORT_SYMBOL_GPL(xprt_lock_and_alloc_slot); 1108 1109 static void xprt_free_slot(struct rpc_xprt *xprt, struct rpc_rqst *req) 1110 { 1111 spin_lock(&xprt->reserve_lock); 1112 if (!xprt_dynamic_free_slot(xprt, req)) { 1113 memset(req, 0, sizeof(*req)); /* mark unused */ 1114 list_add(&req->rq_list, &xprt->free); 1115 } 1116 xprt_wake_up_backlog(xprt); 1117 spin_unlock(&xprt->reserve_lock); 1118 } 1119 1120 static void xprt_free_all_slots(struct rpc_xprt *xprt) 1121 { 1122 struct rpc_rqst *req; 1123 while (!list_empty(&xprt->free)) { 1124 req = list_first_entry(&xprt->free, struct rpc_rqst, rq_list); 1125 list_del(&req->rq_list); 1126 kfree(req); 1127 } 1128 } 1129 1130 struct rpc_xprt *xprt_alloc(struct net *net, size_t size, 1131 unsigned int num_prealloc, 1132 unsigned int max_alloc) 1133 { 1134 struct rpc_xprt *xprt; 1135 struct rpc_rqst *req; 1136 int i; 1137 1138 xprt = kzalloc(size, GFP_KERNEL); 1139 if (xprt == NULL) 1140 goto out; 1141 1142 xprt_init(xprt, net); 1143 1144 for (i = 0; i < num_prealloc; i++) { 1145 req = kzalloc(sizeof(struct rpc_rqst), GFP_KERNEL); 1146 if (!req) 1147 goto out_free; 1148 list_add(&req->rq_list, &xprt->free); 1149 } 1150 if (max_alloc > num_prealloc) 1151 xprt->max_reqs = max_alloc; 1152 else 1153 xprt->max_reqs = num_prealloc; 1154 xprt->min_reqs = num_prealloc; 1155 atomic_set(&xprt->num_reqs, num_prealloc); 1156 1157 return xprt; 1158 1159 out_free: 1160 xprt_free(xprt); 1161 out: 1162 return NULL; 1163 } 1164 EXPORT_SYMBOL_GPL(xprt_alloc); 1165 1166 void xprt_free(struct rpc_xprt *xprt) 1167 { 1168 put_net(xprt->xprt_net); 1169 xprt_free_all_slots(xprt); 1170 kfree_rcu(xprt, rcu); 1171 } 1172 EXPORT_SYMBOL_GPL(xprt_free); 1173 1174 /** 1175 * xprt_reserve - allocate an RPC request slot 1176 * @task: RPC task requesting a slot allocation 1177 * 1178 * If the transport is marked as being congested, or if no more 1179 * slots are available, place the task on the transport's 1180 * backlog queue. 1181 */ 1182 void xprt_reserve(struct rpc_task *task) 1183 { 1184 struct rpc_xprt *xprt = task->tk_xprt; 1185 1186 task->tk_status = 0; 1187 if (task->tk_rqstp != NULL) 1188 return; 1189 1190 task->tk_timeout = 0; 1191 task->tk_status = -EAGAIN; 1192 if (!xprt_throttle_congested(xprt, task)) 1193 xprt->ops->alloc_slot(xprt, task); 1194 } 1195 1196 /** 1197 * xprt_retry_reserve - allocate an RPC request slot 1198 * @task: RPC task requesting a slot allocation 1199 * 1200 * If no more slots are available, place the task on the transport's 1201 * backlog queue. 1202 * Note that the only difference with xprt_reserve is that we now 1203 * ignore the value of the XPRT_CONGESTED flag. 1204 */ 1205 void xprt_retry_reserve(struct rpc_task *task) 1206 { 1207 struct rpc_xprt *xprt = task->tk_xprt; 1208 1209 task->tk_status = 0; 1210 if (task->tk_rqstp != NULL) 1211 return; 1212 1213 task->tk_timeout = 0; 1214 task->tk_status = -EAGAIN; 1215 xprt->ops->alloc_slot(xprt, task); 1216 } 1217 1218 static inline __be32 xprt_alloc_xid(struct rpc_xprt *xprt) 1219 { 1220 return (__force __be32)xprt->xid++; 1221 } 1222 1223 static inline void xprt_init_xid(struct rpc_xprt *xprt) 1224 { 1225 xprt->xid = prandom_u32(); 1226 } 1227 1228 static void xprt_request_init(struct rpc_task *task, struct rpc_xprt *xprt) 1229 { 1230 struct rpc_rqst *req = task->tk_rqstp; 1231 1232 INIT_LIST_HEAD(&req->rq_list); 1233 req->rq_timeout = task->tk_client->cl_timeout->to_initval; 1234 req->rq_task = task; 1235 req->rq_xprt = xprt; 1236 req->rq_buffer = NULL; 1237 req->rq_xid = xprt_alloc_xid(xprt); 1238 req->rq_connect_cookie = xprt->connect_cookie - 1; 1239 req->rq_bytes_sent = 0; 1240 req->rq_snd_buf.len = 0; 1241 req->rq_snd_buf.buflen = 0; 1242 req->rq_rcv_buf.len = 0; 1243 req->rq_rcv_buf.buflen = 0; 1244 req->rq_release_snd_buf = NULL; 1245 xprt_reset_majortimeo(req); 1246 dprintk("RPC: %5u reserved req %p xid %08x\n", task->tk_pid, 1247 req, ntohl(req->rq_xid)); 1248 } 1249 1250 /** 1251 * xprt_release - release an RPC request slot 1252 * @task: task which is finished with the slot 1253 * 1254 */ 1255 void xprt_release(struct rpc_task *task) 1256 { 1257 struct rpc_xprt *xprt; 1258 struct rpc_rqst *req = task->tk_rqstp; 1259 1260 if (req == NULL) { 1261 if (task->tk_client) { 1262 xprt = task->tk_xprt; 1263 if (xprt->snd_task == task) 1264 xprt_release_write(xprt, task); 1265 } 1266 return; 1267 } 1268 1269 xprt = req->rq_xprt; 1270 if (task->tk_ops->rpc_count_stats != NULL) 1271 task->tk_ops->rpc_count_stats(task, task->tk_calldata); 1272 else if (task->tk_client) 1273 rpc_count_iostats(task, task->tk_client->cl_metrics); 1274 spin_lock_bh(&xprt->transport_lock); 1275 xprt->ops->release_xprt(xprt, task); 1276 if (xprt->ops->release_request) 1277 xprt->ops->release_request(task); 1278 if (!list_empty(&req->rq_list)) 1279 list_del(&req->rq_list); 1280 xprt->last_used = jiffies; 1281 if (list_empty(&xprt->recv) && xprt_has_timer(xprt)) 1282 mod_timer(&xprt->timer, 1283 xprt->last_used + xprt->idle_timeout); 1284 spin_unlock_bh(&xprt->transport_lock); 1285 if (req->rq_buffer) 1286 xprt->ops->buf_free(req->rq_buffer); 1287 xprt_inject_disconnect(xprt); 1288 if (req->rq_cred != NULL) 1289 put_rpccred(req->rq_cred); 1290 task->tk_rqstp = NULL; 1291 if (req->rq_release_snd_buf) 1292 req->rq_release_snd_buf(req); 1293 1294 dprintk("RPC: %5u release request %p\n", task->tk_pid, req); 1295 if (likely(!bc_prealloc(req))) 1296 xprt_free_slot(xprt, req); 1297 else 1298 xprt_free_bc_request(req); 1299 } 1300 1301 static void xprt_init(struct rpc_xprt *xprt, struct net *net) 1302 { 1303 kref_init(&xprt->kref); 1304 1305 spin_lock_init(&xprt->transport_lock); 1306 spin_lock_init(&xprt->reserve_lock); 1307 1308 INIT_LIST_HEAD(&xprt->free); 1309 INIT_LIST_HEAD(&xprt->recv); 1310 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1311 spin_lock_init(&xprt->bc_pa_lock); 1312 INIT_LIST_HEAD(&xprt->bc_pa_list); 1313 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1314 INIT_LIST_HEAD(&xprt->xprt_switch); 1315 1316 xprt->last_used = jiffies; 1317 xprt->cwnd = RPC_INITCWND; 1318 xprt->bind_index = 0; 1319 1320 rpc_init_wait_queue(&xprt->binding, "xprt_binding"); 1321 rpc_init_wait_queue(&xprt->pending, "xprt_pending"); 1322 rpc_init_priority_wait_queue(&xprt->sending, "xprt_sending"); 1323 rpc_init_priority_wait_queue(&xprt->backlog, "xprt_backlog"); 1324 1325 xprt_init_xid(xprt); 1326 1327 xprt->xprt_net = get_net(net); 1328 } 1329 1330 /** 1331 * xprt_create_transport - create an RPC transport 1332 * @args: rpc transport creation arguments 1333 * 1334 */ 1335 struct rpc_xprt *xprt_create_transport(struct xprt_create *args) 1336 { 1337 struct rpc_xprt *xprt; 1338 struct xprt_class *t; 1339 1340 spin_lock(&xprt_list_lock); 1341 list_for_each_entry(t, &xprt_list, list) { 1342 if (t->ident == args->ident) { 1343 spin_unlock(&xprt_list_lock); 1344 goto found; 1345 } 1346 } 1347 spin_unlock(&xprt_list_lock); 1348 dprintk("RPC: transport (%d) not supported\n", args->ident); 1349 return ERR_PTR(-EIO); 1350 1351 found: 1352 xprt = t->setup(args); 1353 if (IS_ERR(xprt)) { 1354 dprintk("RPC: xprt_create_transport: failed, %ld\n", 1355 -PTR_ERR(xprt)); 1356 goto out; 1357 } 1358 if (args->flags & XPRT_CREATE_NO_IDLE_TIMEOUT) 1359 xprt->idle_timeout = 0; 1360 INIT_WORK(&xprt->task_cleanup, xprt_autoclose); 1361 if (xprt_has_timer(xprt)) 1362 setup_timer(&xprt->timer, xprt_init_autodisconnect, 1363 (unsigned long)xprt); 1364 else 1365 init_timer(&xprt->timer); 1366 1367 if (strlen(args->servername) > RPC_MAXNETNAMELEN) { 1368 xprt_destroy(xprt); 1369 return ERR_PTR(-EINVAL); 1370 } 1371 xprt->servername = kstrdup(args->servername, GFP_KERNEL); 1372 if (xprt->servername == NULL) { 1373 xprt_destroy(xprt); 1374 return ERR_PTR(-ENOMEM); 1375 } 1376 1377 rpc_xprt_debugfs_register(xprt); 1378 1379 dprintk("RPC: created transport %p with %u slots\n", xprt, 1380 xprt->max_reqs); 1381 out: 1382 return xprt; 1383 } 1384 1385 /** 1386 * xprt_destroy - destroy an RPC transport, killing off all requests. 1387 * @xprt: transport to destroy 1388 * 1389 */ 1390 static void xprt_destroy(struct rpc_xprt *xprt) 1391 { 1392 dprintk("RPC: destroying transport %p\n", xprt); 1393 1394 /* Exclude transport connect/disconnect handlers */ 1395 wait_on_bit_lock(&xprt->state, XPRT_LOCKED, TASK_UNINTERRUPTIBLE); 1396 1397 del_timer_sync(&xprt->timer); 1398 1399 rpc_xprt_debugfs_unregister(xprt); 1400 rpc_destroy_wait_queue(&xprt->binding); 1401 rpc_destroy_wait_queue(&xprt->pending); 1402 rpc_destroy_wait_queue(&xprt->sending); 1403 rpc_destroy_wait_queue(&xprt->backlog); 1404 cancel_work_sync(&xprt->task_cleanup); 1405 kfree(xprt->servername); 1406 /* 1407 * Tear down transport state and free the rpc_xprt 1408 */ 1409 xprt->ops->destroy(xprt); 1410 } 1411 1412 static void xprt_destroy_kref(struct kref *kref) 1413 { 1414 xprt_destroy(container_of(kref, struct rpc_xprt, kref)); 1415 } 1416 1417 /** 1418 * xprt_get - return a reference to an RPC transport. 1419 * @xprt: pointer to the transport 1420 * 1421 */ 1422 struct rpc_xprt *xprt_get(struct rpc_xprt *xprt) 1423 { 1424 if (xprt != NULL && kref_get_unless_zero(&xprt->kref)) 1425 return xprt; 1426 return NULL; 1427 } 1428 EXPORT_SYMBOL_GPL(xprt_get); 1429 1430 /** 1431 * xprt_put - release a reference to an RPC transport. 1432 * @xprt: pointer to the transport 1433 * 1434 */ 1435 void xprt_put(struct rpc_xprt *xprt) 1436 { 1437 if (xprt != NULL) 1438 kref_put(&xprt->kref, xprt_destroy_kref); 1439 } 1440 EXPORT_SYMBOL_GPL(xprt_put); 1441