1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/xdr.c 4 * 5 * Generic XDR support. 6 * 7 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 8 */ 9 10 #include <linux/module.h> 11 #include <linux/slab.h> 12 #include <linux/types.h> 13 #include <linux/string.h> 14 #include <linux/kernel.h> 15 #include <linux/pagemap.h> 16 #include <linux/errno.h> 17 #include <linux/sunrpc/xdr.h> 18 #include <linux/sunrpc/msg_prot.h> 19 #include <linux/bvec.h> 20 #include <trace/events/sunrpc.h> 21 22 static void _copy_to_pages(struct page **, size_t, const char *, size_t); 23 24 25 /* 26 * XDR functions for basic NFS types 27 */ 28 __be32 * 29 xdr_encode_netobj(__be32 *p, const struct xdr_netobj *obj) 30 { 31 unsigned int quadlen = XDR_QUADLEN(obj->len); 32 33 p[quadlen] = 0; /* zero trailing bytes */ 34 *p++ = cpu_to_be32(obj->len); 35 memcpy(p, obj->data, obj->len); 36 return p + XDR_QUADLEN(obj->len); 37 } 38 EXPORT_SYMBOL_GPL(xdr_encode_netobj); 39 40 __be32 * 41 xdr_decode_netobj(__be32 *p, struct xdr_netobj *obj) 42 { 43 unsigned int len; 44 45 if ((len = be32_to_cpu(*p++)) > XDR_MAX_NETOBJ) 46 return NULL; 47 obj->len = len; 48 obj->data = (u8 *) p; 49 return p + XDR_QUADLEN(len); 50 } 51 EXPORT_SYMBOL_GPL(xdr_decode_netobj); 52 53 /** 54 * xdr_encode_opaque_fixed - Encode fixed length opaque data 55 * @p: pointer to current position in XDR buffer. 56 * @ptr: pointer to data to encode (or NULL) 57 * @nbytes: size of data. 58 * 59 * Copy the array of data of length nbytes at ptr to the XDR buffer 60 * at position p, then align to the next 32-bit boundary by padding 61 * with zero bytes (see RFC1832). 62 * Note: if ptr is NULL, only the padding is performed. 63 * 64 * Returns the updated current XDR buffer position 65 * 66 */ 67 __be32 *xdr_encode_opaque_fixed(__be32 *p, const void *ptr, unsigned int nbytes) 68 { 69 if (likely(nbytes != 0)) { 70 unsigned int quadlen = XDR_QUADLEN(nbytes); 71 unsigned int padding = (quadlen << 2) - nbytes; 72 73 if (ptr != NULL) 74 memcpy(p, ptr, nbytes); 75 if (padding != 0) 76 memset((char *)p + nbytes, 0, padding); 77 p += quadlen; 78 } 79 return p; 80 } 81 EXPORT_SYMBOL_GPL(xdr_encode_opaque_fixed); 82 83 /** 84 * xdr_encode_opaque - Encode variable length opaque data 85 * @p: pointer to current position in XDR buffer. 86 * @ptr: pointer to data to encode (or NULL) 87 * @nbytes: size of data. 88 * 89 * Returns the updated current XDR buffer position 90 */ 91 __be32 *xdr_encode_opaque(__be32 *p, const void *ptr, unsigned int nbytes) 92 { 93 *p++ = cpu_to_be32(nbytes); 94 return xdr_encode_opaque_fixed(p, ptr, nbytes); 95 } 96 EXPORT_SYMBOL_GPL(xdr_encode_opaque); 97 98 __be32 * 99 xdr_encode_string(__be32 *p, const char *string) 100 { 101 return xdr_encode_array(p, string, strlen(string)); 102 } 103 EXPORT_SYMBOL_GPL(xdr_encode_string); 104 105 __be32 * 106 xdr_decode_string_inplace(__be32 *p, char **sp, 107 unsigned int *lenp, unsigned int maxlen) 108 { 109 u32 len; 110 111 len = be32_to_cpu(*p++); 112 if (len > maxlen) 113 return NULL; 114 *lenp = len; 115 *sp = (char *) p; 116 return p + XDR_QUADLEN(len); 117 } 118 EXPORT_SYMBOL_GPL(xdr_decode_string_inplace); 119 120 /** 121 * xdr_terminate_string - '\0'-terminate a string residing in an xdr_buf 122 * @buf: XDR buffer where string resides 123 * @len: length of string, in bytes 124 * 125 */ 126 void xdr_terminate_string(const struct xdr_buf *buf, const u32 len) 127 { 128 char *kaddr; 129 130 kaddr = kmap_atomic(buf->pages[0]); 131 kaddr[buf->page_base + len] = '\0'; 132 kunmap_atomic(kaddr); 133 } 134 EXPORT_SYMBOL_GPL(xdr_terminate_string); 135 136 size_t xdr_buf_pagecount(const struct xdr_buf *buf) 137 { 138 if (!buf->page_len) 139 return 0; 140 return (buf->page_base + buf->page_len + PAGE_SIZE - 1) >> PAGE_SHIFT; 141 } 142 143 int 144 xdr_alloc_bvec(struct xdr_buf *buf, gfp_t gfp) 145 { 146 size_t i, n = xdr_buf_pagecount(buf); 147 148 if (n != 0 && buf->bvec == NULL) { 149 buf->bvec = kmalloc_array(n, sizeof(buf->bvec[0]), gfp); 150 if (!buf->bvec) 151 return -ENOMEM; 152 for (i = 0; i < n; i++) { 153 buf->bvec[i].bv_page = buf->pages[i]; 154 buf->bvec[i].bv_len = PAGE_SIZE; 155 buf->bvec[i].bv_offset = 0; 156 } 157 } 158 return 0; 159 } 160 161 void 162 xdr_free_bvec(struct xdr_buf *buf) 163 { 164 kfree(buf->bvec); 165 buf->bvec = NULL; 166 } 167 168 /** 169 * xdr_inline_pages - Prepare receive buffer for a large reply 170 * @xdr: xdr_buf into which reply will be placed 171 * @offset: expected offset where data payload will start, in bytes 172 * @pages: vector of struct page pointers 173 * @base: offset in first page where receive should start, in bytes 174 * @len: expected size of the upper layer data payload, in bytes 175 * 176 */ 177 void 178 xdr_inline_pages(struct xdr_buf *xdr, unsigned int offset, 179 struct page **pages, unsigned int base, unsigned int len) 180 { 181 struct kvec *head = xdr->head; 182 struct kvec *tail = xdr->tail; 183 char *buf = (char *)head->iov_base; 184 unsigned int buflen = head->iov_len; 185 186 head->iov_len = offset; 187 188 xdr->pages = pages; 189 xdr->page_base = base; 190 xdr->page_len = len; 191 192 tail->iov_base = buf + offset; 193 tail->iov_len = buflen - offset; 194 xdr->buflen += len; 195 } 196 EXPORT_SYMBOL_GPL(xdr_inline_pages); 197 198 /* 199 * Helper routines for doing 'memmove' like operations on a struct xdr_buf 200 */ 201 202 /** 203 * _shift_data_left_pages 204 * @pages: vector of pages containing both the source and dest memory area. 205 * @pgto_base: page vector address of destination 206 * @pgfrom_base: page vector address of source 207 * @len: number of bytes to copy 208 * 209 * Note: the addresses pgto_base and pgfrom_base are both calculated in 210 * the same way: 211 * if a memory area starts at byte 'base' in page 'pages[i]', 212 * then its address is given as (i << PAGE_CACHE_SHIFT) + base 213 * Alse note: pgto_base must be < pgfrom_base, but the memory areas 214 * they point to may overlap. 215 */ 216 static void 217 _shift_data_left_pages(struct page **pages, size_t pgto_base, 218 size_t pgfrom_base, size_t len) 219 { 220 struct page **pgfrom, **pgto; 221 char *vfrom, *vto; 222 size_t copy; 223 224 BUG_ON(pgfrom_base <= pgto_base); 225 226 if (!len) 227 return; 228 229 pgto = pages + (pgto_base >> PAGE_SHIFT); 230 pgfrom = pages + (pgfrom_base >> PAGE_SHIFT); 231 232 pgto_base &= ~PAGE_MASK; 233 pgfrom_base &= ~PAGE_MASK; 234 235 do { 236 if (pgto_base >= PAGE_SIZE) { 237 pgto_base = 0; 238 pgto++; 239 } 240 if (pgfrom_base >= PAGE_SIZE){ 241 pgfrom_base = 0; 242 pgfrom++; 243 } 244 245 copy = len; 246 if (copy > (PAGE_SIZE - pgto_base)) 247 copy = PAGE_SIZE - pgto_base; 248 if (copy > (PAGE_SIZE - pgfrom_base)) 249 copy = PAGE_SIZE - pgfrom_base; 250 251 vto = kmap_atomic(*pgto); 252 if (*pgto != *pgfrom) { 253 vfrom = kmap_atomic(*pgfrom); 254 memcpy(vto + pgto_base, vfrom + pgfrom_base, copy); 255 kunmap_atomic(vfrom); 256 } else 257 memmove(vto + pgto_base, vto + pgfrom_base, copy); 258 flush_dcache_page(*pgto); 259 kunmap_atomic(vto); 260 261 pgto_base += copy; 262 pgfrom_base += copy; 263 264 } while ((len -= copy) != 0); 265 } 266 267 /** 268 * _shift_data_right_pages 269 * @pages: vector of pages containing both the source and dest memory area. 270 * @pgto_base: page vector address of destination 271 * @pgfrom_base: page vector address of source 272 * @len: number of bytes to copy 273 * 274 * Note: the addresses pgto_base and pgfrom_base are both calculated in 275 * the same way: 276 * if a memory area starts at byte 'base' in page 'pages[i]', 277 * then its address is given as (i << PAGE_SHIFT) + base 278 * Also note: pgfrom_base must be < pgto_base, but the memory areas 279 * they point to may overlap. 280 */ 281 static void 282 _shift_data_right_pages(struct page **pages, size_t pgto_base, 283 size_t pgfrom_base, size_t len) 284 { 285 struct page **pgfrom, **pgto; 286 char *vfrom, *vto; 287 size_t copy; 288 289 BUG_ON(pgto_base <= pgfrom_base); 290 291 if (!len) 292 return; 293 294 pgto_base += len; 295 pgfrom_base += len; 296 297 pgto = pages + (pgto_base >> PAGE_SHIFT); 298 pgfrom = pages + (pgfrom_base >> PAGE_SHIFT); 299 300 pgto_base &= ~PAGE_MASK; 301 pgfrom_base &= ~PAGE_MASK; 302 303 do { 304 /* Are any pointers crossing a page boundary? */ 305 if (pgto_base == 0) { 306 pgto_base = PAGE_SIZE; 307 pgto--; 308 } 309 if (pgfrom_base == 0) { 310 pgfrom_base = PAGE_SIZE; 311 pgfrom--; 312 } 313 314 copy = len; 315 if (copy > pgto_base) 316 copy = pgto_base; 317 if (copy > pgfrom_base) 318 copy = pgfrom_base; 319 pgto_base -= copy; 320 pgfrom_base -= copy; 321 322 vto = kmap_atomic(*pgto); 323 if (*pgto != *pgfrom) { 324 vfrom = kmap_atomic(*pgfrom); 325 memcpy(vto + pgto_base, vfrom + pgfrom_base, copy); 326 kunmap_atomic(vfrom); 327 } else 328 memmove(vto + pgto_base, vto + pgfrom_base, copy); 329 flush_dcache_page(*pgto); 330 kunmap_atomic(vto); 331 332 } while ((len -= copy) != 0); 333 } 334 335 /** 336 * _copy_to_pages 337 * @pages: array of pages 338 * @pgbase: page vector address of destination 339 * @p: pointer to source data 340 * @len: length 341 * 342 * Copies data from an arbitrary memory location into an array of pages 343 * The copy is assumed to be non-overlapping. 344 */ 345 static void 346 _copy_to_pages(struct page **pages, size_t pgbase, const char *p, size_t len) 347 { 348 struct page **pgto; 349 char *vto; 350 size_t copy; 351 352 if (!len) 353 return; 354 355 pgto = pages + (pgbase >> PAGE_SHIFT); 356 pgbase &= ~PAGE_MASK; 357 358 for (;;) { 359 copy = PAGE_SIZE - pgbase; 360 if (copy > len) 361 copy = len; 362 363 vto = kmap_atomic(*pgto); 364 memcpy(vto + pgbase, p, copy); 365 kunmap_atomic(vto); 366 367 len -= copy; 368 if (len == 0) 369 break; 370 371 pgbase += copy; 372 if (pgbase == PAGE_SIZE) { 373 flush_dcache_page(*pgto); 374 pgbase = 0; 375 pgto++; 376 } 377 p += copy; 378 } 379 flush_dcache_page(*pgto); 380 } 381 382 /** 383 * _copy_from_pages 384 * @p: pointer to destination 385 * @pages: array of pages 386 * @pgbase: offset of source data 387 * @len: length 388 * 389 * Copies data into an arbitrary memory location from an array of pages 390 * The copy is assumed to be non-overlapping. 391 */ 392 void 393 _copy_from_pages(char *p, struct page **pages, size_t pgbase, size_t len) 394 { 395 struct page **pgfrom; 396 char *vfrom; 397 size_t copy; 398 399 if (!len) 400 return; 401 402 pgfrom = pages + (pgbase >> PAGE_SHIFT); 403 pgbase &= ~PAGE_MASK; 404 405 do { 406 copy = PAGE_SIZE - pgbase; 407 if (copy > len) 408 copy = len; 409 410 vfrom = kmap_atomic(*pgfrom); 411 memcpy(p, vfrom + pgbase, copy); 412 kunmap_atomic(vfrom); 413 414 pgbase += copy; 415 if (pgbase == PAGE_SIZE) { 416 pgbase = 0; 417 pgfrom++; 418 } 419 p += copy; 420 421 } while ((len -= copy) != 0); 422 } 423 EXPORT_SYMBOL_GPL(_copy_from_pages); 424 425 static void xdr_buf_iov_zero(const struct kvec *iov, unsigned int base, 426 unsigned int len) 427 { 428 if (base >= iov->iov_len) 429 return; 430 if (len > iov->iov_len - base) 431 len = iov->iov_len - base; 432 memset(iov->iov_base + base, 0, len); 433 } 434 435 /** 436 * xdr_buf_pages_zero 437 * @buf: xdr_buf 438 * @pgbase: beginning offset 439 * @len: length 440 */ 441 static void xdr_buf_pages_zero(const struct xdr_buf *buf, unsigned int pgbase, 442 unsigned int len) 443 { 444 struct page **pages = buf->pages; 445 struct page **page; 446 char *vpage; 447 unsigned int zero; 448 449 if (!len) 450 return; 451 if (pgbase >= buf->page_len) { 452 xdr_buf_iov_zero(buf->tail, pgbase - buf->page_len, len); 453 return; 454 } 455 if (pgbase + len > buf->page_len) { 456 xdr_buf_iov_zero(buf->tail, 0, pgbase + len - buf->page_len); 457 len = buf->page_len - pgbase; 458 } 459 460 pgbase += buf->page_base; 461 462 page = pages + (pgbase >> PAGE_SHIFT); 463 pgbase &= ~PAGE_MASK; 464 465 do { 466 zero = PAGE_SIZE - pgbase; 467 if (zero > len) 468 zero = len; 469 470 vpage = kmap_atomic(*page); 471 memset(vpage + pgbase, 0, zero); 472 kunmap_atomic(vpage); 473 474 flush_dcache_page(*page); 475 pgbase = 0; 476 page++; 477 478 } while ((len -= zero) != 0); 479 } 480 481 static unsigned int xdr_buf_pages_fill_sparse(const struct xdr_buf *buf, 482 unsigned int buflen, gfp_t gfp) 483 { 484 unsigned int i, npages, pagelen; 485 486 if (!(buf->flags & XDRBUF_SPARSE_PAGES)) 487 return buflen; 488 if (buflen <= buf->head->iov_len) 489 return buflen; 490 pagelen = buflen - buf->head->iov_len; 491 if (pagelen > buf->page_len) 492 pagelen = buf->page_len; 493 npages = (pagelen + buf->page_base + PAGE_SIZE - 1) >> PAGE_SHIFT; 494 for (i = 0; i < npages; i++) { 495 if (!buf->pages[i]) 496 continue; 497 buf->pages[i] = alloc_page(gfp); 498 if (likely(buf->pages[i])) 499 continue; 500 buflen -= pagelen; 501 pagelen = i << PAGE_SHIFT; 502 if (pagelen > buf->page_base) 503 buflen += pagelen - buf->page_base; 504 break; 505 } 506 return buflen; 507 } 508 509 static void xdr_buf_try_expand(struct xdr_buf *buf, unsigned int len) 510 { 511 struct kvec *head = buf->head; 512 struct kvec *tail = buf->tail; 513 unsigned int sum = head->iov_len + buf->page_len + tail->iov_len; 514 unsigned int free_space, newlen; 515 516 if (sum > buf->len) { 517 free_space = min_t(unsigned int, sum - buf->len, len); 518 newlen = xdr_buf_pages_fill_sparse(buf, buf->len + free_space, 519 GFP_KERNEL); 520 free_space = newlen - buf->len; 521 buf->len = newlen; 522 len -= free_space; 523 if (!len) 524 return; 525 } 526 527 if (buf->buflen > sum) { 528 /* Expand the tail buffer */ 529 free_space = min_t(unsigned int, buf->buflen - sum, len); 530 tail->iov_len += free_space; 531 buf->len += free_space; 532 } 533 } 534 535 static void xdr_buf_tail_copy_right(const struct xdr_buf *buf, 536 unsigned int base, unsigned int len, 537 unsigned int shift) 538 { 539 const struct kvec *tail = buf->tail; 540 unsigned int to = base + shift; 541 542 if (to >= tail->iov_len) 543 return; 544 if (len + to > tail->iov_len) 545 len = tail->iov_len - to; 546 memmove(tail->iov_base + to, tail->iov_base + base, len); 547 } 548 549 static void xdr_buf_pages_copy_right(const struct xdr_buf *buf, 550 unsigned int base, unsigned int len, 551 unsigned int shift) 552 { 553 const struct kvec *tail = buf->tail; 554 unsigned int to = base + shift; 555 unsigned int pglen = 0; 556 unsigned int talen = 0, tato = 0; 557 558 if (base >= buf->page_len) 559 return; 560 if (len > buf->page_len - base) 561 len = buf->page_len - base; 562 if (to >= buf->page_len) { 563 tato = to - buf->page_len; 564 if (tail->iov_len >= len + tato) 565 talen = len; 566 else if (tail->iov_len > tato) 567 talen = tail->iov_len - tato; 568 } else if (len + to >= buf->page_len) { 569 pglen = buf->page_len - to; 570 talen = len - pglen; 571 if (talen > tail->iov_len) 572 talen = tail->iov_len; 573 } else 574 pglen = len; 575 576 _copy_from_pages(tail->iov_base + tato, buf->pages, 577 buf->page_base + base + pglen, talen); 578 _shift_data_right_pages(buf->pages, buf->page_base + to, 579 buf->page_base + base, pglen); 580 } 581 582 static void xdr_buf_head_copy_right(const struct xdr_buf *buf, 583 unsigned int base, unsigned int len, 584 unsigned int shift) 585 { 586 const struct kvec *head = buf->head; 587 const struct kvec *tail = buf->tail; 588 unsigned int to = base + shift; 589 unsigned int pglen = 0, pgto = 0; 590 unsigned int talen = 0, tato = 0; 591 592 if (base >= head->iov_len) 593 return; 594 if (len > head->iov_len - base) 595 len = head->iov_len - base; 596 if (to >= buf->page_len + head->iov_len) { 597 tato = to - buf->page_len - head->iov_len; 598 talen = len; 599 } else if (to >= head->iov_len) { 600 pgto = to - head->iov_len; 601 pglen = len; 602 if (pgto + pglen > buf->page_len) { 603 talen = pgto + pglen - buf->page_len; 604 pglen -= talen; 605 } 606 } else { 607 pglen = len - to; 608 if (pglen > buf->page_len) { 609 talen = pglen - buf->page_len; 610 pglen = buf->page_len; 611 } 612 } 613 614 len -= talen; 615 base += len; 616 if (talen + tato > tail->iov_len) 617 talen = tail->iov_len > tato ? tail->iov_len - tato : 0; 618 memcpy(tail->iov_base + tato, head->iov_base + base, talen); 619 620 len -= pglen; 621 base -= pglen; 622 _copy_to_pages(buf->pages, buf->page_base + pgto, head->iov_base + base, 623 pglen); 624 625 base -= len; 626 memmove(head->iov_base + to, head->iov_base + base, len); 627 } 628 629 static void xdr_buf_tail_shift_right(const struct xdr_buf *buf, 630 unsigned int base, unsigned int len, 631 unsigned int shift) 632 { 633 const struct kvec *tail = buf->tail; 634 635 if (base >= tail->iov_len || !shift || !len) 636 return; 637 xdr_buf_tail_copy_right(buf, base, len, shift); 638 } 639 640 static void xdr_buf_pages_shift_right(const struct xdr_buf *buf, 641 unsigned int base, unsigned int len, 642 unsigned int shift) 643 { 644 if (!shift || !len) 645 return; 646 if (base >= buf->page_len) { 647 xdr_buf_tail_shift_right(buf, base - buf->page_len, len, shift); 648 return; 649 } 650 if (base + len > buf->page_len) 651 xdr_buf_tail_shift_right(buf, 0, base + len - buf->page_len, 652 shift); 653 xdr_buf_pages_copy_right(buf, base, len, shift); 654 } 655 656 static void xdr_buf_head_shift_right(const struct xdr_buf *buf, 657 unsigned int base, unsigned int len, 658 unsigned int shift) 659 { 660 const struct kvec *head = buf->head; 661 662 if (!shift) 663 return; 664 if (base >= head->iov_len) { 665 xdr_buf_pages_shift_right(buf, head->iov_len - base, len, 666 shift); 667 return; 668 } 669 if (base + len > head->iov_len) 670 xdr_buf_pages_shift_right(buf, 0, base + len - head->iov_len, 671 shift); 672 xdr_buf_head_copy_right(buf, base, len, shift); 673 } 674 675 static void xdr_buf_tail_copy_left(const struct xdr_buf *buf, unsigned int base, 676 unsigned int len, unsigned int shift) 677 { 678 const struct kvec *tail = buf->tail; 679 680 if (base >= tail->iov_len) 681 return; 682 if (len > tail->iov_len - base) 683 len = tail->iov_len - base; 684 /* Shift data into head */ 685 if (shift > buf->page_len + base) { 686 const struct kvec *head = buf->head; 687 unsigned int hdto = 688 head->iov_len + buf->page_len + base - shift; 689 unsigned int hdlen = len; 690 691 if (WARN_ONCE(shift > head->iov_len + buf->page_len + base, 692 "SUNRPC: Misaligned data.\n")) 693 return; 694 if (hdto + hdlen > head->iov_len) 695 hdlen = head->iov_len - hdto; 696 memcpy(head->iov_base + hdto, tail->iov_base + base, hdlen); 697 base += hdlen; 698 len -= hdlen; 699 if (!len) 700 return; 701 } 702 /* Shift data into pages */ 703 if (shift > base) { 704 unsigned int pgto = buf->page_len + base - shift; 705 unsigned int pglen = len; 706 707 if (pgto + pglen > buf->page_len) 708 pglen = buf->page_len - pgto; 709 _copy_to_pages(buf->pages, buf->page_base + pgto, 710 tail->iov_base + base, pglen); 711 base += pglen; 712 len -= pglen; 713 if (!len) 714 return; 715 } 716 memmove(tail->iov_base + base - shift, tail->iov_base + base, len); 717 } 718 719 static void xdr_buf_pages_copy_left(const struct xdr_buf *buf, 720 unsigned int base, unsigned int len, 721 unsigned int shift) 722 { 723 unsigned int pgto; 724 725 if (base >= buf->page_len) 726 return; 727 if (len > buf->page_len - base) 728 len = buf->page_len - base; 729 /* Shift data into head */ 730 if (shift > base) { 731 const struct kvec *head = buf->head; 732 unsigned int hdto = head->iov_len + base - shift; 733 unsigned int hdlen = len; 734 735 if (WARN_ONCE(shift > head->iov_len + base, 736 "SUNRPC: Misaligned data.\n")) 737 return; 738 if (hdto + hdlen > head->iov_len) 739 hdlen = head->iov_len - hdto; 740 _copy_from_pages(head->iov_base + hdto, buf->pages, 741 buf->page_base + base, hdlen); 742 base += hdlen; 743 len -= hdlen; 744 if (!len) 745 return; 746 } 747 pgto = base - shift; 748 _shift_data_left_pages(buf->pages, buf->page_base + pgto, 749 buf->page_base + base, len); 750 } 751 752 static void xdr_buf_tail_shift_left(const struct xdr_buf *buf, 753 unsigned int base, unsigned int len, 754 unsigned int shift) 755 { 756 if (!shift || !len) 757 return; 758 xdr_buf_tail_copy_left(buf, base, len, shift); 759 } 760 761 static void xdr_buf_pages_shift_left(const struct xdr_buf *buf, 762 unsigned int base, unsigned int len, 763 unsigned int shift) 764 { 765 if (!shift || !len) 766 return; 767 if (base >= buf->page_len) { 768 xdr_buf_tail_shift_left(buf, base - buf->page_len, len, shift); 769 return; 770 } 771 xdr_buf_pages_copy_left(buf, base, len, shift); 772 len += base; 773 if (len <= buf->page_len) 774 return; 775 xdr_buf_tail_copy_left(buf, 0, len - buf->page_len, shift); 776 } 777 778 static void xdr_buf_head_shift_left(const struct xdr_buf *buf, 779 unsigned int base, unsigned int len, 780 unsigned int shift) 781 { 782 const struct kvec *head = buf->head; 783 unsigned int bytes; 784 785 if (!shift || !len) 786 return; 787 788 if (shift > base) { 789 bytes = (shift - base); 790 if (bytes >= len) 791 return; 792 base += bytes; 793 len -= bytes; 794 } 795 796 if (base < head->iov_len) { 797 bytes = min_t(unsigned int, len, head->iov_len - base); 798 memmove(head->iov_base + (base - shift), 799 head->iov_base + base, bytes); 800 base += bytes; 801 len -= bytes; 802 } 803 xdr_buf_pages_shift_left(buf, base - head->iov_len, len, shift); 804 } 805 806 /** 807 * xdr_shrink_bufhead 808 * @buf: xdr_buf 809 * @len: new length of buf->head[0] 810 * 811 * Shrinks XDR buffer's header kvec buf->head[0], setting it to 812 * 'len' bytes. The extra data is not lost, but is instead 813 * moved into the inlined pages and/or the tail. 814 */ 815 static unsigned int xdr_shrink_bufhead(struct xdr_buf *buf, unsigned int len) 816 { 817 struct kvec *head = buf->head; 818 unsigned int shift, buflen = max(buf->len, len); 819 820 WARN_ON_ONCE(len > head->iov_len); 821 if (head->iov_len > buflen) { 822 buf->buflen -= head->iov_len - buflen; 823 head->iov_len = buflen; 824 } 825 if (len >= head->iov_len) 826 return 0; 827 shift = head->iov_len - len; 828 xdr_buf_try_expand(buf, shift); 829 xdr_buf_head_shift_right(buf, len, buflen - len, shift); 830 head->iov_len = len; 831 buf->buflen -= shift; 832 buf->len -= shift; 833 return shift; 834 } 835 836 /** 837 * xdr_shrink_pagelen - shrinks buf->pages to @len bytes 838 * @buf: xdr_buf 839 * @len: new page buffer length 840 * 841 * The extra data is not lost, but is instead moved into buf->tail. 842 * Returns the actual number of bytes moved. 843 */ 844 static unsigned int xdr_shrink_pagelen(struct xdr_buf *buf, unsigned int len) 845 { 846 unsigned int shift, buflen = buf->len - buf->head->iov_len; 847 848 WARN_ON_ONCE(len > buf->page_len); 849 if (buf->head->iov_len >= buf->len || len > buflen) 850 buflen = len; 851 if (buf->page_len > buflen) { 852 buf->buflen -= buf->page_len - buflen; 853 buf->page_len = buflen; 854 } 855 if (len >= buf->page_len) 856 return 0; 857 shift = buf->page_len - len; 858 xdr_buf_try_expand(buf, shift); 859 xdr_buf_pages_shift_right(buf, len, buflen - len, shift); 860 buf->page_len = len; 861 buf->len -= shift; 862 buf->buflen -= shift; 863 return shift; 864 } 865 866 void 867 xdr_shift_buf(struct xdr_buf *buf, size_t len) 868 { 869 xdr_shrink_bufhead(buf, buf->head->iov_len - len); 870 } 871 EXPORT_SYMBOL_GPL(xdr_shift_buf); 872 873 /** 874 * xdr_stream_pos - Return the current offset from the start of the xdr_stream 875 * @xdr: pointer to struct xdr_stream 876 */ 877 unsigned int xdr_stream_pos(const struct xdr_stream *xdr) 878 { 879 return (unsigned int)(XDR_QUADLEN(xdr->buf->len) - xdr->nwords) << 2; 880 } 881 EXPORT_SYMBOL_GPL(xdr_stream_pos); 882 883 static void xdr_stream_set_pos(struct xdr_stream *xdr, unsigned int pos) 884 { 885 unsigned int blen = xdr->buf->len; 886 887 xdr->nwords = blen > pos ? XDR_QUADLEN(blen) - XDR_QUADLEN(pos) : 0; 888 } 889 890 static void xdr_stream_page_set_pos(struct xdr_stream *xdr, unsigned int pos) 891 { 892 xdr_stream_set_pos(xdr, pos + xdr->buf->head[0].iov_len); 893 } 894 895 /** 896 * xdr_page_pos - Return the current offset from the start of the xdr pages 897 * @xdr: pointer to struct xdr_stream 898 */ 899 unsigned int xdr_page_pos(const struct xdr_stream *xdr) 900 { 901 unsigned int pos = xdr_stream_pos(xdr); 902 903 WARN_ON(pos < xdr->buf->head[0].iov_len); 904 return pos - xdr->buf->head[0].iov_len; 905 } 906 EXPORT_SYMBOL_GPL(xdr_page_pos); 907 908 /** 909 * xdr_init_encode - Initialize a struct xdr_stream for sending data. 910 * @xdr: pointer to xdr_stream struct 911 * @buf: pointer to XDR buffer in which to encode data 912 * @p: current pointer inside XDR buffer 913 * @rqst: pointer to controlling rpc_rqst, for debugging 914 * 915 * Note: at the moment the RPC client only passes the length of our 916 * scratch buffer in the xdr_buf's header kvec. Previously this 917 * meant we needed to call xdr_adjust_iovec() after encoding the 918 * data. With the new scheme, the xdr_stream manages the details 919 * of the buffer length, and takes care of adjusting the kvec 920 * length for us. 921 */ 922 void xdr_init_encode(struct xdr_stream *xdr, struct xdr_buf *buf, __be32 *p, 923 struct rpc_rqst *rqst) 924 { 925 struct kvec *iov = buf->head; 926 int scratch_len = buf->buflen - buf->page_len - buf->tail[0].iov_len; 927 928 xdr_reset_scratch_buffer(xdr); 929 BUG_ON(scratch_len < 0); 930 xdr->buf = buf; 931 xdr->iov = iov; 932 xdr->p = (__be32 *)((char *)iov->iov_base + iov->iov_len); 933 xdr->end = (__be32 *)((char *)iov->iov_base + scratch_len); 934 BUG_ON(iov->iov_len > scratch_len); 935 936 if (p != xdr->p && p != NULL) { 937 size_t len; 938 939 BUG_ON(p < xdr->p || p > xdr->end); 940 len = (char *)p - (char *)xdr->p; 941 xdr->p = p; 942 buf->len += len; 943 iov->iov_len += len; 944 } 945 xdr->rqst = rqst; 946 } 947 EXPORT_SYMBOL_GPL(xdr_init_encode); 948 949 /** 950 * xdr_init_encode_pages - Initialize an xdr_stream for encoding into pages 951 * @xdr: pointer to xdr_stream struct 952 * @buf: pointer to XDR buffer into which to encode data 953 * @pages: list of pages to decode into 954 * @rqst: pointer to controlling rpc_rqst, for debugging 955 * 956 */ 957 void xdr_init_encode_pages(struct xdr_stream *xdr, struct xdr_buf *buf, 958 struct page **pages, struct rpc_rqst *rqst) 959 { 960 xdr_reset_scratch_buffer(xdr); 961 962 xdr->buf = buf; 963 xdr->page_ptr = pages; 964 xdr->iov = NULL; 965 xdr->p = page_address(*pages); 966 xdr->end = (void *)xdr->p + min_t(u32, buf->buflen, PAGE_SIZE); 967 xdr->rqst = rqst; 968 } 969 EXPORT_SYMBOL_GPL(xdr_init_encode_pages); 970 971 /** 972 * __xdr_commit_encode - Ensure all data is written to buffer 973 * @xdr: pointer to xdr_stream 974 * 975 * We handle encoding across page boundaries by giving the caller a 976 * temporary location to write to, then later copying the data into 977 * place; xdr_commit_encode does that copying. 978 * 979 * Normally the caller doesn't need to call this directly, as the 980 * following xdr_reserve_space will do it. But an explicit call may be 981 * required at the end of encoding, or any other time when the xdr_buf 982 * data might be read. 983 */ 984 void __xdr_commit_encode(struct xdr_stream *xdr) 985 { 986 size_t shift = xdr->scratch.iov_len; 987 void *page; 988 989 page = page_address(*xdr->page_ptr); 990 memcpy(xdr->scratch.iov_base, page, shift); 991 memmove(page, page + shift, (void *)xdr->p - page); 992 xdr_reset_scratch_buffer(xdr); 993 } 994 EXPORT_SYMBOL_GPL(__xdr_commit_encode); 995 996 /* 997 * The buffer space to be reserved crosses the boundary between 998 * xdr->buf->head and xdr->buf->pages, or between two pages 999 * in xdr->buf->pages. 1000 */ 1001 static noinline __be32 *xdr_get_next_encode_buffer(struct xdr_stream *xdr, 1002 size_t nbytes) 1003 { 1004 int space_left; 1005 int frag1bytes, frag2bytes; 1006 void *p; 1007 1008 if (nbytes > PAGE_SIZE) 1009 goto out_overflow; /* Bigger buffers require special handling */ 1010 if (xdr->buf->len + nbytes > xdr->buf->buflen) 1011 goto out_overflow; /* Sorry, we're totally out of space */ 1012 frag1bytes = (xdr->end - xdr->p) << 2; 1013 frag2bytes = nbytes - frag1bytes; 1014 if (xdr->iov) 1015 xdr->iov->iov_len += frag1bytes; 1016 else 1017 xdr->buf->page_len += frag1bytes; 1018 xdr->page_ptr++; 1019 xdr->iov = NULL; 1020 1021 /* 1022 * If the last encode didn't end exactly on a page boundary, the 1023 * next one will straddle boundaries. Encode into the next 1024 * page, then copy it back later in xdr_commit_encode. We use 1025 * the "scratch" iov to track any temporarily unused fragment of 1026 * space at the end of the previous buffer: 1027 */ 1028 xdr_set_scratch_buffer(xdr, xdr->p, frag1bytes); 1029 1030 /* 1031 * xdr->p is where the next encode will start after 1032 * xdr_commit_encode() has shifted this one back: 1033 */ 1034 p = page_address(*xdr->page_ptr); 1035 xdr->p = p + frag2bytes; 1036 space_left = xdr->buf->buflen - xdr->buf->len; 1037 if (space_left - frag1bytes >= PAGE_SIZE) 1038 xdr->end = p + PAGE_SIZE; 1039 else 1040 xdr->end = p + space_left - frag1bytes; 1041 1042 xdr->buf->page_len += frag2bytes; 1043 xdr->buf->len += nbytes; 1044 return p; 1045 out_overflow: 1046 trace_rpc_xdr_overflow(xdr, nbytes); 1047 return NULL; 1048 } 1049 1050 /** 1051 * xdr_reserve_space - Reserve buffer space for sending 1052 * @xdr: pointer to xdr_stream 1053 * @nbytes: number of bytes to reserve 1054 * 1055 * Checks that we have enough buffer space to encode 'nbytes' more 1056 * bytes of data. If so, update the total xdr_buf length, and 1057 * adjust the length of the current kvec. 1058 */ 1059 __be32 * xdr_reserve_space(struct xdr_stream *xdr, size_t nbytes) 1060 { 1061 __be32 *p = xdr->p; 1062 __be32 *q; 1063 1064 xdr_commit_encode(xdr); 1065 /* align nbytes on the next 32-bit boundary */ 1066 nbytes += 3; 1067 nbytes &= ~3; 1068 q = p + (nbytes >> 2); 1069 if (unlikely(q > xdr->end || q < p)) 1070 return xdr_get_next_encode_buffer(xdr, nbytes); 1071 xdr->p = q; 1072 if (xdr->iov) 1073 xdr->iov->iov_len += nbytes; 1074 else 1075 xdr->buf->page_len += nbytes; 1076 xdr->buf->len += nbytes; 1077 return p; 1078 } 1079 EXPORT_SYMBOL_GPL(xdr_reserve_space); 1080 1081 1082 /** 1083 * xdr_reserve_space_vec - Reserves a large amount of buffer space for sending 1084 * @xdr: pointer to xdr_stream 1085 * @vec: pointer to a kvec array 1086 * @nbytes: number of bytes to reserve 1087 * 1088 * Reserves enough buffer space to encode 'nbytes' of data and stores the 1089 * pointers in 'vec'. The size argument passed to xdr_reserve_space() is 1090 * determined based on the number of bytes remaining in the current page to 1091 * avoid invalidating iov_base pointers when xdr_commit_encode() is called. 1092 */ 1093 int xdr_reserve_space_vec(struct xdr_stream *xdr, struct kvec *vec, size_t nbytes) 1094 { 1095 int thislen; 1096 int v = 0; 1097 __be32 *p; 1098 1099 /* 1100 * svcrdma requires every READ payload to start somewhere 1101 * in xdr->pages. 1102 */ 1103 if (xdr->iov == xdr->buf->head) { 1104 xdr->iov = NULL; 1105 xdr->end = xdr->p; 1106 } 1107 1108 while (nbytes) { 1109 thislen = xdr->buf->page_len % PAGE_SIZE; 1110 thislen = min_t(size_t, nbytes, PAGE_SIZE - thislen); 1111 1112 p = xdr_reserve_space(xdr, thislen); 1113 if (!p) 1114 return -EIO; 1115 1116 vec[v].iov_base = p; 1117 vec[v].iov_len = thislen; 1118 v++; 1119 nbytes -= thislen; 1120 } 1121 1122 return v; 1123 } 1124 EXPORT_SYMBOL_GPL(xdr_reserve_space_vec); 1125 1126 /** 1127 * xdr_truncate_encode - truncate an encode buffer 1128 * @xdr: pointer to xdr_stream 1129 * @len: new length of buffer 1130 * 1131 * Truncates the xdr stream, so that xdr->buf->len == len, 1132 * and xdr->p points at offset len from the start of the buffer, and 1133 * head, tail, and page lengths are adjusted to correspond. 1134 * 1135 * If this means moving xdr->p to a different buffer, we assume that 1136 * the end pointer should be set to the end of the current page, 1137 * except in the case of the head buffer when we assume the head 1138 * buffer's current length represents the end of the available buffer. 1139 * 1140 * This is *not* safe to use on a buffer that already has inlined page 1141 * cache pages (as in a zero-copy server read reply), except for the 1142 * simple case of truncating from one position in the tail to another. 1143 * 1144 */ 1145 void xdr_truncate_encode(struct xdr_stream *xdr, size_t len) 1146 { 1147 struct xdr_buf *buf = xdr->buf; 1148 struct kvec *head = buf->head; 1149 struct kvec *tail = buf->tail; 1150 int fraglen; 1151 int new; 1152 1153 if (len > buf->len) { 1154 WARN_ON_ONCE(1); 1155 return; 1156 } 1157 xdr_commit_encode(xdr); 1158 1159 fraglen = min_t(int, buf->len - len, tail->iov_len); 1160 tail->iov_len -= fraglen; 1161 buf->len -= fraglen; 1162 if (tail->iov_len) { 1163 xdr->p = tail->iov_base + tail->iov_len; 1164 WARN_ON_ONCE(!xdr->end); 1165 WARN_ON_ONCE(!xdr->iov); 1166 return; 1167 } 1168 WARN_ON_ONCE(fraglen); 1169 fraglen = min_t(int, buf->len - len, buf->page_len); 1170 buf->page_len -= fraglen; 1171 buf->len -= fraglen; 1172 1173 new = buf->page_base + buf->page_len; 1174 1175 xdr->page_ptr = buf->pages + (new >> PAGE_SHIFT); 1176 1177 if (buf->page_len) { 1178 xdr->p = page_address(*xdr->page_ptr); 1179 xdr->end = (void *)xdr->p + PAGE_SIZE; 1180 xdr->p = (void *)xdr->p + (new % PAGE_SIZE); 1181 WARN_ON_ONCE(xdr->iov); 1182 return; 1183 } 1184 if (fraglen) 1185 xdr->end = head->iov_base + head->iov_len; 1186 /* (otherwise assume xdr->end is already set) */ 1187 xdr->page_ptr--; 1188 head->iov_len = len; 1189 buf->len = len; 1190 xdr->p = head->iov_base + head->iov_len; 1191 xdr->iov = buf->head; 1192 } 1193 EXPORT_SYMBOL(xdr_truncate_encode); 1194 1195 /** 1196 * xdr_restrict_buflen - decrease available buffer space 1197 * @xdr: pointer to xdr_stream 1198 * @newbuflen: new maximum number of bytes available 1199 * 1200 * Adjust our idea of how much space is available in the buffer. 1201 * If we've already used too much space in the buffer, returns -1. 1202 * If the available space is already smaller than newbuflen, returns 0 1203 * and does nothing. Otherwise, adjusts xdr->buf->buflen to newbuflen 1204 * and ensures xdr->end is set at most offset newbuflen from the start 1205 * of the buffer. 1206 */ 1207 int xdr_restrict_buflen(struct xdr_stream *xdr, int newbuflen) 1208 { 1209 struct xdr_buf *buf = xdr->buf; 1210 int left_in_this_buf = (void *)xdr->end - (void *)xdr->p; 1211 int end_offset = buf->len + left_in_this_buf; 1212 1213 if (newbuflen < 0 || newbuflen < buf->len) 1214 return -1; 1215 if (newbuflen > buf->buflen) 1216 return 0; 1217 if (newbuflen < end_offset) 1218 xdr->end = (void *)xdr->end + newbuflen - end_offset; 1219 buf->buflen = newbuflen; 1220 return 0; 1221 } 1222 EXPORT_SYMBOL(xdr_restrict_buflen); 1223 1224 /** 1225 * xdr_write_pages - Insert a list of pages into an XDR buffer for sending 1226 * @xdr: pointer to xdr_stream 1227 * @pages: list of pages 1228 * @base: offset of first byte 1229 * @len: length of data in bytes 1230 * 1231 */ 1232 void xdr_write_pages(struct xdr_stream *xdr, struct page **pages, unsigned int base, 1233 unsigned int len) 1234 { 1235 struct xdr_buf *buf = xdr->buf; 1236 struct kvec *iov = buf->tail; 1237 buf->pages = pages; 1238 buf->page_base = base; 1239 buf->page_len = len; 1240 1241 iov->iov_base = (char *)xdr->p; 1242 iov->iov_len = 0; 1243 xdr->iov = iov; 1244 1245 if (len & 3) { 1246 unsigned int pad = 4 - (len & 3); 1247 1248 BUG_ON(xdr->p >= xdr->end); 1249 iov->iov_base = (char *)xdr->p + (len & 3); 1250 iov->iov_len += pad; 1251 len += pad; 1252 *xdr->p++ = 0; 1253 } 1254 buf->buflen += len; 1255 buf->len += len; 1256 } 1257 EXPORT_SYMBOL_GPL(xdr_write_pages); 1258 1259 static unsigned int xdr_set_iov(struct xdr_stream *xdr, struct kvec *iov, 1260 unsigned int base, unsigned int len) 1261 { 1262 if (len > iov->iov_len) 1263 len = iov->iov_len; 1264 if (unlikely(base > len)) 1265 base = len; 1266 xdr->p = (__be32*)(iov->iov_base + base); 1267 xdr->end = (__be32*)(iov->iov_base + len); 1268 xdr->iov = iov; 1269 xdr->page_ptr = NULL; 1270 return len - base; 1271 } 1272 1273 static unsigned int xdr_set_tail_base(struct xdr_stream *xdr, 1274 unsigned int base, unsigned int len) 1275 { 1276 struct xdr_buf *buf = xdr->buf; 1277 1278 xdr_stream_set_pos(xdr, base + buf->page_len + buf->head->iov_len); 1279 return xdr_set_iov(xdr, buf->tail, base, len); 1280 } 1281 1282 static unsigned int xdr_set_page_base(struct xdr_stream *xdr, 1283 unsigned int base, unsigned int len) 1284 { 1285 unsigned int pgnr; 1286 unsigned int maxlen; 1287 unsigned int pgoff; 1288 unsigned int pgend; 1289 void *kaddr; 1290 1291 maxlen = xdr->buf->page_len; 1292 if (base >= maxlen) 1293 return 0; 1294 else 1295 maxlen -= base; 1296 if (len > maxlen) 1297 len = maxlen; 1298 1299 xdr_stream_page_set_pos(xdr, base); 1300 base += xdr->buf->page_base; 1301 1302 pgnr = base >> PAGE_SHIFT; 1303 xdr->page_ptr = &xdr->buf->pages[pgnr]; 1304 kaddr = page_address(*xdr->page_ptr); 1305 1306 pgoff = base & ~PAGE_MASK; 1307 xdr->p = (__be32*)(kaddr + pgoff); 1308 1309 pgend = pgoff + len; 1310 if (pgend > PAGE_SIZE) 1311 pgend = PAGE_SIZE; 1312 xdr->end = (__be32*)(kaddr + pgend); 1313 xdr->iov = NULL; 1314 return len; 1315 } 1316 1317 static void xdr_set_page(struct xdr_stream *xdr, unsigned int base, 1318 unsigned int len) 1319 { 1320 if (xdr_set_page_base(xdr, base, len) == 0) { 1321 base -= xdr->buf->page_len; 1322 xdr_set_tail_base(xdr, base, len); 1323 } 1324 } 1325 1326 static void xdr_set_next_page(struct xdr_stream *xdr) 1327 { 1328 unsigned int newbase; 1329 1330 newbase = (1 + xdr->page_ptr - xdr->buf->pages) << PAGE_SHIFT; 1331 newbase -= xdr->buf->page_base; 1332 if (newbase < xdr->buf->page_len) 1333 xdr_set_page_base(xdr, newbase, xdr_stream_remaining(xdr)); 1334 else 1335 xdr_set_tail_base(xdr, 0, xdr_stream_remaining(xdr)); 1336 } 1337 1338 static bool xdr_set_next_buffer(struct xdr_stream *xdr) 1339 { 1340 if (xdr->page_ptr != NULL) 1341 xdr_set_next_page(xdr); 1342 else if (xdr->iov == xdr->buf->head) 1343 xdr_set_page(xdr, 0, xdr_stream_remaining(xdr)); 1344 return xdr->p != xdr->end; 1345 } 1346 1347 /** 1348 * xdr_init_decode - Initialize an xdr_stream for decoding data. 1349 * @xdr: pointer to xdr_stream struct 1350 * @buf: pointer to XDR buffer from which to decode data 1351 * @p: current pointer inside XDR buffer 1352 * @rqst: pointer to controlling rpc_rqst, for debugging 1353 */ 1354 void xdr_init_decode(struct xdr_stream *xdr, struct xdr_buf *buf, __be32 *p, 1355 struct rpc_rqst *rqst) 1356 { 1357 xdr->buf = buf; 1358 xdr_reset_scratch_buffer(xdr); 1359 xdr->nwords = XDR_QUADLEN(buf->len); 1360 if (xdr_set_iov(xdr, buf->head, 0, buf->len) == 0 && 1361 xdr_set_page_base(xdr, 0, buf->len) == 0) 1362 xdr_set_iov(xdr, buf->tail, 0, buf->len); 1363 if (p != NULL && p > xdr->p && xdr->end >= p) { 1364 xdr->nwords -= p - xdr->p; 1365 xdr->p = p; 1366 } 1367 xdr->rqst = rqst; 1368 } 1369 EXPORT_SYMBOL_GPL(xdr_init_decode); 1370 1371 /** 1372 * xdr_init_decode_pages - Initialize an xdr_stream for decoding into pages 1373 * @xdr: pointer to xdr_stream struct 1374 * @buf: pointer to XDR buffer from which to decode data 1375 * @pages: list of pages to decode into 1376 * @len: length in bytes of buffer in pages 1377 */ 1378 void xdr_init_decode_pages(struct xdr_stream *xdr, struct xdr_buf *buf, 1379 struct page **pages, unsigned int len) 1380 { 1381 memset(buf, 0, sizeof(*buf)); 1382 buf->pages = pages; 1383 buf->page_len = len; 1384 buf->buflen = len; 1385 buf->len = len; 1386 xdr_init_decode(xdr, buf, NULL, NULL); 1387 } 1388 EXPORT_SYMBOL_GPL(xdr_init_decode_pages); 1389 1390 static __be32 * __xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes) 1391 { 1392 unsigned int nwords = XDR_QUADLEN(nbytes); 1393 __be32 *p = xdr->p; 1394 __be32 *q = p + nwords; 1395 1396 if (unlikely(nwords > xdr->nwords || q > xdr->end || q < p)) 1397 return NULL; 1398 xdr->p = q; 1399 xdr->nwords -= nwords; 1400 return p; 1401 } 1402 1403 static __be32 *xdr_copy_to_scratch(struct xdr_stream *xdr, size_t nbytes) 1404 { 1405 __be32 *p; 1406 char *cpdest = xdr->scratch.iov_base; 1407 size_t cplen = (char *)xdr->end - (char *)xdr->p; 1408 1409 if (nbytes > xdr->scratch.iov_len) 1410 goto out_overflow; 1411 p = __xdr_inline_decode(xdr, cplen); 1412 if (p == NULL) 1413 return NULL; 1414 memcpy(cpdest, p, cplen); 1415 if (!xdr_set_next_buffer(xdr)) 1416 goto out_overflow; 1417 cpdest += cplen; 1418 nbytes -= cplen; 1419 p = __xdr_inline_decode(xdr, nbytes); 1420 if (p == NULL) 1421 return NULL; 1422 memcpy(cpdest, p, nbytes); 1423 return xdr->scratch.iov_base; 1424 out_overflow: 1425 trace_rpc_xdr_overflow(xdr, nbytes); 1426 return NULL; 1427 } 1428 1429 /** 1430 * xdr_inline_decode - Retrieve XDR data to decode 1431 * @xdr: pointer to xdr_stream struct 1432 * @nbytes: number of bytes of data to decode 1433 * 1434 * Check if the input buffer is long enough to enable us to decode 1435 * 'nbytes' more bytes of data starting at the current position. 1436 * If so return the current pointer, then update the current 1437 * pointer position. 1438 */ 1439 __be32 * xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes) 1440 { 1441 __be32 *p; 1442 1443 if (unlikely(nbytes == 0)) 1444 return xdr->p; 1445 if (xdr->p == xdr->end && !xdr_set_next_buffer(xdr)) 1446 goto out_overflow; 1447 p = __xdr_inline_decode(xdr, nbytes); 1448 if (p != NULL) 1449 return p; 1450 return xdr_copy_to_scratch(xdr, nbytes); 1451 out_overflow: 1452 trace_rpc_xdr_overflow(xdr, nbytes); 1453 return NULL; 1454 } 1455 EXPORT_SYMBOL_GPL(xdr_inline_decode); 1456 1457 static void xdr_realign_pages(struct xdr_stream *xdr) 1458 { 1459 struct xdr_buf *buf = xdr->buf; 1460 struct kvec *iov = buf->head; 1461 unsigned int cur = xdr_stream_pos(xdr); 1462 unsigned int copied; 1463 1464 /* Realign pages to current pointer position */ 1465 if (iov->iov_len > cur) { 1466 copied = xdr_shrink_bufhead(buf, cur); 1467 trace_rpc_xdr_alignment(xdr, cur, copied); 1468 xdr_set_page(xdr, 0, buf->page_len); 1469 } 1470 } 1471 1472 static unsigned int xdr_align_pages(struct xdr_stream *xdr, unsigned int len) 1473 { 1474 struct xdr_buf *buf = xdr->buf; 1475 unsigned int nwords = XDR_QUADLEN(len); 1476 unsigned int copied; 1477 1478 if (xdr->nwords == 0) 1479 return 0; 1480 1481 xdr_realign_pages(xdr); 1482 if (nwords > xdr->nwords) { 1483 nwords = xdr->nwords; 1484 len = nwords << 2; 1485 } 1486 if (buf->page_len <= len) 1487 len = buf->page_len; 1488 else if (nwords < xdr->nwords) { 1489 /* Truncate page data and move it into the tail */ 1490 copied = xdr_shrink_pagelen(buf, len); 1491 trace_rpc_xdr_alignment(xdr, len, copied); 1492 } 1493 return len; 1494 } 1495 1496 /** 1497 * xdr_read_pages - align page-based XDR data to current pointer position 1498 * @xdr: pointer to xdr_stream struct 1499 * @len: number of bytes of page data 1500 * 1501 * Moves data beyond the current pointer position from the XDR head[] buffer 1502 * into the page list. Any data that lies beyond current position + @len 1503 * bytes is moved into the XDR tail[]. The xdr_stream current position is 1504 * then advanced past that data to align to the next XDR object in the tail. 1505 * 1506 * Returns the number of XDR encoded bytes now contained in the pages 1507 */ 1508 unsigned int xdr_read_pages(struct xdr_stream *xdr, unsigned int len) 1509 { 1510 unsigned int nwords = XDR_QUADLEN(len); 1511 unsigned int base, end, pglen; 1512 1513 pglen = xdr_align_pages(xdr, nwords << 2); 1514 if (pglen == 0) 1515 return 0; 1516 1517 base = (nwords << 2) - pglen; 1518 end = xdr_stream_remaining(xdr) - pglen; 1519 1520 xdr_set_tail_base(xdr, base, end); 1521 return len <= pglen ? len : pglen; 1522 } 1523 EXPORT_SYMBOL_GPL(xdr_read_pages); 1524 1525 /** 1526 * xdr_set_pagelen - Sets the length of the XDR pages 1527 * @xdr: pointer to xdr_stream struct 1528 * @len: new length of the XDR page data 1529 * 1530 * Either grows or shrinks the length of the xdr pages by setting pagelen to 1531 * @len bytes. When shrinking, any extra data is moved into buf->tail, whereas 1532 * when growing any data beyond the current pointer is moved into the tail. 1533 * 1534 * Returns True if the operation was successful, and False otherwise. 1535 */ 1536 void xdr_set_pagelen(struct xdr_stream *xdr, unsigned int len) 1537 { 1538 struct xdr_buf *buf = xdr->buf; 1539 size_t remaining = xdr_stream_remaining(xdr); 1540 size_t base = 0; 1541 1542 if (len < buf->page_len) { 1543 base = buf->page_len - len; 1544 xdr_shrink_pagelen(buf, len); 1545 } else { 1546 xdr_buf_head_shift_right(buf, xdr_stream_pos(xdr), 1547 buf->page_len, remaining); 1548 if (len > buf->page_len) 1549 xdr_buf_try_expand(buf, len - buf->page_len); 1550 } 1551 xdr_set_tail_base(xdr, base, remaining); 1552 } 1553 EXPORT_SYMBOL_GPL(xdr_set_pagelen); 1554 1555 /** 1556 * xdr_enter_page - decode data from the XDR page 1557 * @xdr: pointer to xdr_stream struct 1558 * @len: number of bytes of page data 1559 * 1560 * Moves data beyond the current pointer position from the XDR head[] buffer 1561 * into the page list. Any data that lies beyond current position + "len" 1562 * bytes is moved into the XDR tail[]. The current pointer is then 1563 * repositioned at the beginning of the first XDR page. 1564 */ 1565 void xdr_enter_page(struct xdr_stream *xdr, unsigned int len) 1566 { 1567 len = xdr_align_pages(xdr, len); 1568 /* 1569 * Position current pointer at beginning of tail, and 1570 * set remaining message length. 1571 */ 1572 if (len != 0) 1573 xdr_set_page_base(xdr, 0, len); 1574 } 1575 EXPORT_SYMBOL_GPL(xdr_enter_page); 1576 1577 static const struct kvec empty_iov = {.iov_base = NULL, .iov_len = 0}; 1578 1579 void xdr_buf_from_iov(const struct kvec *iov, struct xdr_buf *buf) 1580 { 1581 buf->head[0] = *iov; 1582 buf->tail[0] = empty_iov; 1583 buf->page_len = 0; 1584 buf->buflen = buf->len = iov->iov_len; 1585 } 1586 EXPORT_SYMBOL_GPL(xdr_buf_from_iov); 1587 1588 /** 1589 * xdr_buf_subsegment - set subbuf to a portion of buf 1590 * @buf: an xdr buffer 1591 * @subbuf: the result buffer 1592 * @base: beginning of range in bytes 1593 * @len: length of range in bytes 1594 * 1595 * sets @subbuf to an xdr buffer representing the portion of @buf of 1596 * length @len starting at offset @base. 1597 * 1598 * @buf and @subbuf may be pointers to the same struct xdr_buf. 1599 * 1600 * Returns -1 if base or length are out of bounds. 1601 */ 1602 int xdr_buf_subsegment(const struct xdr_buf *buf, struct xdr_buf *subbuf, 1603 unsigned int base, unsigned int len) 1604 { 1605 subbuf->buflen = subbuf->len = len; 1606 if (base < buf->head[0].iov_len) { 1607 subbuf->head[0].iov_base = buf->head[0].iov_base + base; 1608 subbuf->head[0].iov_len = min_t(unsigned int, len, 1609 buf->head[0].iov_len - base); 1610 len -= subbuf->head[0].iov_len; 1611 base = 0; 1612 } else { 1613 base -= buf->head[0].iov_len; 1614 subbuf->head[0].iov_base = buf->head[0].iov_base; 1615 subbuf->head[0].iov_len = 0; 1616 } 1617 1618 if (base < buf->page_len) { 1619 subbuf->page_len = min(buf->page_len - base, len); 1620 base += buf->page_base; 1621 subbuf->page_base = base & ~PAGE_MASK; 1622 subbuf->pages = &buf->pages[base >> PAGE_SHIFT]; 1623 len -= subbuf->page_len; 1624 base = 0; 1625 } else { 1626 base -= buf->page_len; 1627 subbuf->pages = buf->pages; 1628 subbuf->page_base = 0; 1629 subbuf->page_len = 0; 1630 } 1631 1632 if (base < buf->tail[0].iov_len) { 1633 subbuf->tail[0].iov_base = buf->tail[0].iov_base + base; 1634 subbuf->tail[0].iov_len = min_t(unsigned int, len, 1635 buf->tail[0].iov_len - base); 1636 len -= subbuf->tail[0].iov_len; 1637 base = 0; 1638 } else { 1639 base -= buf->tail[0].iov_len; 1640 subbuf->tail[0].iov_base = buf->tail[0].iov_base; 1641 subbuf->tail[0].iov_len = 0; 1642 } 1643 1644 if (base || len) 1645 return -1; 1646 return 0; 1647 } 1648 EXPORT_SYMBOL_GPL(xdr_buf_subsegment); 1649 1650 /** 1651 * xdr_stream_subsegment - set @subbuf to a portion of @xdr 1652 * @xdr: an xdr_stream set up for decoding 1653 * @subbuf: the result buffer 1654 * @nbytes: length of @xdr to extract, in bytes 1655 * 1656 * Sets up @subbuf to represent a portion of @xdr. The portion 1657 * starts at the current offset in @xdr, and extends for a length 1658 * of @nbytes. If this is successful, @xdr is advanced to the next 1659 * XDR data item following that portion. 1660 * 1661 * Return values: 1662 * %true: @subbuf has been initialized, and @xdr has been advanced. 1663 * %false: a bounds error has occurred 1664 */ 1665 bool xdr_stream_subsegment(struct xdr_stream *xdr, struct xdr_buf *subbuf, 1666 unsigned int nbytes) 1667 { 1668 unsigned int start = xdr_stream_pos(xdr); 1669 unsigned int remaining, len; 1670 1671 /* Extract @subbuf and bounds-check the fn arguments */ 1672 if (xdr_buf_subsegment(xdr->buf, subbuf, start, nbytes)) 1673 return false; 1674 1675 /* Advance @xdr by @nbytes */ 1676 for (remaining = nbytes; remaining;) { 1677 if (xdr->p == xdr->end && !xdr_set_next_buffer(xdr)) 1678 return false; 1679 1680 len = (char *)xdr->end - (char *)xdr->p; 1681 if (remaining <= len) { 1682 xdr->p = (__be32 *)((char *)xdr->p + 1683 (remaining + xdr_pad_size(nbytes))); 1684 break; 1685 } 1686 1687 xdr->p = (__be32 *)((char *)xdr->p + len); 1688 xdr->end = xdr->p; 1689 remaining -= len; 1690 } 1691 1692 xdr_stream_set_pos(xdr, start + nbytes); 1693 return true; 1694 } 1695 EXPORT_SYMBOL_GPL(xdr_stream_subsegment); 1696 1697 /** 1698 * xdr_stream_move_subsegment - Move part of a stream to another position 1699 * @xdr: the source xdr_stream 1700 * @offset: the source offset of the segment 1701 * @target: the target offset of the segment 1702 * @length: the number of bytes to move 1703 * 1704 * Moves @length bytes from @offset to @target in the xdr_stream, overwriting 1705 * anything in its space. Returns the number of bytes in the segment. 1706 */ 1707 unsigned int xdr_stream_move_subsegment(struct xdr_stream *xdr, unsigned int offset, 1708 unsigned int target, unsigned int length) 1709 { 1710 struct xdr_buf buf; 1711 unsigned int shift; 1712 1713 if (offset < target) { 1714 shift = target - offset; 1715 if (xdr_buf_subsegment(xdr->buf, &buf, offset, shift + length) < 0) 1716 return 0; 1717 xdr_buf_head_shift_right(&buf, 0, length, shift); 1718 } else if (offset > target) { 1719 shift = offset - target; 1720 if (xdr_buf_subsegment(xdr->buf, &buf, target, shift + length) < 0) 1721 return 0; 1722 xdr_buf_head_shift_left(&buf, shift, length, shift); 1723 } 1724 return length; 1725 } 1726 EXPORT_SYMBOL_GPL(xdr_stream_move_subsegment); 1727 1728 /** 1729 * xdr_stream_zero - zero out a portion of an xdr_stream 1730 * @xdr: an xdr_stream to zero out 1731 * @offset: the starting point in the stream 1732 * @length: the number of bytes to zero 1733 */ 1734 unsigned int xdr_stream_zero(struct xdr_stream *xdr, unsigned int offset, 1735 unsigned int length) 1736 { 1737 struct xdr_buf buf; 1738 1739 if (xdr_buf_subsegment(xdr->buf, &buf, offset, length) < 0) 1740 return 0; 1741 if (buf.head[0].iov_len) 1742 xdr_buf_iov_zero(buf.head, 0, buf.head[0].iov_len); 1743 if (buf.page_len > 0) 1744 xdr_buf_pages_zero(&buf, 0, buf.page_len); 1745 if (buf.tail[0].iov_len) 1746 xdr_buf_iov_zero(buf.tail, 0, buf.tail[0].iov_len); 1747 return length; 1748 } 1749 EXPORT_SYMBOL_GPL(xdr_stream_zero); 1750 1751 /** 1752 * xdr_buf_trim - lop at most "len" bytes off the end of "buf" 1753 * @buf: buf to be trimmed 1754 * @len: number of bytes to reduce "buf" by 1755 * 1756 * Trim an xdr_buf by the given number of bytes by fixing up the lengths. Note 1757 * that it's possible that we'll trim less than that amount if the xdr_buf is 1758 * too small, or if (for instance) it's all in the head and the parser has 1759 * already read too far into it. 1760 */ 1761 void xdr_buf_trim(struct xdr_buf *buf, unsigned int len) 1762 { 1763 size_t cur; 1764 unsigned int trim = len; 1765 1766 if (buf->tail[0].iov_len) { 1767 cur = min_t(size_t, buf->tail[0].iov_len, trim); 1768 buf->tail[0].iov_len -= cur; 1769 trim -= cur; 1770 if (!trim) 1771 goto fix_len; 1772 } 1773 1774 if (buf->page_len) { 1775 cur = min_t(unsigned int, buf->page_len, trim); 1776 buf->page_len -= cur; 1777 trim -= cur; 1778 if (!trim) 1779 goto fix_len; 1780 } 1781 1782 if (buf->head[0].iov_len) { 1783 cur = min_t(size_t, buf->head[0].iov_len, trim); 1784 buf->head[0].iov_len -= cur; 1785 trim -= cur; 1786 } 1787 fix_len: 1788 buf->len -= (len - trim); 1789 } 1790 EXPORT_SYMBOL_GPL(xdr_buf_trim); 1791 1792 static void __read_bytes_from_xdr_buf(const struct xdr_buf *subbuf, 1793 void *obj, unsigned int len) 1794 { 1795 unsigned int this_len; 1796 1797 this_len = min_t(unsigned int, len, subbuf->head[0].iov_len); 1798 memcpy(obj, subbuf->head[0].iov_base, this_len); 1799 len -= this_len; 1800 obj += this_len; 1801 this_len = min_t(unsigned int, len, subbuf->page_len); 1802 _copy_from_pages(obj, subbuf->pages, subbuf->page_base, this_len); 1803 len -= this_len; 1804 obj += this_len; 1805 this_len = min_t(unsigned int, len, subbuf->tail[0].iov_len); 1806 memcpy(obj, subbuf->tail[0].iov_base, this_len); 1807 } 1808 1809 /* obj is assumed to point to allocated memory of size at least len: */ 1810 int read_bytes_from_xdr_buf(const struct xdr_buf *buf, unsigned int base, 1811 void *obj, unsigned int len) 1812 { 1813 struct xdr_buf subbuf; 1814 int status; 1815 1816 status = xdr_buf_subsegment(buf, &subbuf, base, len); 1817 if (status != 0) 1818 return status; 1819 __read_bytes_from_xdr_buf(&subbuf, obj, len); 1820 return 0; 1821 } 1822 EXPORT_SYMBOL_GPL(read_bytes_from_xdr_buf); 1823 1824 static void __write_bytes_to_xdr_buf(const struct xdr_buf *subbuf, 1825 void *obj, unsigned int len) 1826 { 1827 unsigned int this_len; 1828 1829 this_len = min_t(unsigned int, len, subbuf->head[0].iov_len); 1830 memcpy(subbuf->head[0].iov_base, obj, this_len); 1831 len -= this_len; 1832 obj += this_len; 1833 this_len = min_t(unsigned int, len, subbuf->page_len); 1834 _copy_to_pages(subbuf->pages, subbuf->page_base, obj, this_len); 1835 len -= this_len; 1836 obj += this_len; 1837 this_len = min_t(unsigned int, len, subbuf->tail[0].iov_len); 1838 memcpy(subbuf->tail[0].iov_base, obj, this_len); 1839 } 1840 1841 /* obj is assumed to point to allocated memory of size at least len: */ 1842 int write_bytes_to_xdr_buf(const struct xdr_buf *buf, unsigned int base, 1843 void *obj, unsigned int len) 1844 { 1845 struct xdr_buf subbuf; 1846 int status; 1847 1848 status = xdr_buf_subsegment(buf, &subbuf, base, len); 1849 if (status != 0) 1850 return status; 1851 __write_bytes_to_xdr_buf(&subbuf, obj, len); 1852 return 0; 1853 } 1854 EXPORT_SYMBOL_GPL(write_bytes_to_xdr_buf); 1855 1856 int xdr_decode_word(const struct xdr_buf *buf, unsigned int base, u32 *obj) 1857 { 1858 __be32 raw; 1859 int status; 1860 1861 status = read_bytes_from_xdr_buf(buf, base, &raw, sizeof(*obj)); 1862 if (status) 1863 return status; 1864 *obj = be32_to_cpu(raw); 1865 return 0; 1866 } 1867 EXPORT_SYMBOL_GPL(xdr_decode_word); 1868 1869 int xdr_encode_word(const struct xdr_buf *buf, unsigned int base, u32 obj) 1870 { 1871 __be32 raw = cpu_to_be32(obj); 1872 1873 return write_bytes_to_xdr_buf(buf, base, &raw, sizeof(obj)); 1874 } 1875 EXPORT_SYMBOL_GPL(xdr_encode_word); 1876 1877 /* Returns 0 on success, or else a negative error code. */ 1878 static int xdr_xcode_array2(const struct xdr_buf *buf, unsigned int base, 1879 struct xdr_array2_desc *desc, int encode) 1880 { 1881 char *elem = NULL, *c; 1882 unsigned int copied = 0, todo, avail_here; 1883 struct page **ppages = NULL; 1884 int err; 1885 1886 if (encode) { 1887 if (xdr_encode_word(buf, base, desc->array_len) != 0) 1888 return -EINVAL; 1889 } else { 1890 if (xdr_decode_word(buf, base, &desc->array_len) != 0 || 1891 desc->array_len > desc->array_maxlen || 1892 (unsigned long) base + 4 + desc->array_len * 1893 desc->elem_size > buf->len) 1894 return -EINVAL; 1895 } 1896 base += 4; 1897 1898 if (!desc->xcode) 1899 return 0; 1900 1901 todo = desc->array_len * desc->elem_size; 1902 1903 /* process head */ 1904 if (todo && base < buf->head->iov_len) { 1905 c = buf->head->iov_base + base; 1906 avail_here = min_t(unsigned int, todo, 1907 buf->head->iov_len - base); 1908 todo -= avail_here; 1909 1910 while (avail_here >= desc->elem_size) { 1911 err = desc->xcode(desc, c); 1912 if (err) 1913 goto out; 1914 c += desc->elem_size; 1915 avail_here -= desc->elem_size; 1916 } 1917 if (avail_here) { 1918 if (!elem) { 1919 elem = kmalloc(desc->elem_size, GFP_KERNEL); 1920 err = -ENOMEM; 1921 if (!elem) 1922 goto out; 1923 } 1924 if (encode) { 1925 err = desc->xcode(desc, elem); 1926 if (err) 1927 goto out; 1928 memcpy(c, elem, avail_here); 1929 } else 1930 memcpy(elem, c, avail_here); 1931 copied = avail_here; 1932 } 1933 base = buf->head->iov_len; /* align to start of pages */ 1934 } 1935 1936 /* process pages array */ 1937 base -= buf->head->iov_len; 1938 if (todo && base < buf->page_len) { 1939 unsigned int avail_page; 1940 1941 avail_here = min(todo, buf->page_len - base); 1942 todo -= avail_here; 1943 1944 base += buf->page_base; 1945 ppages = buf->pages + (base >> PAGE_SHIFT); 1946 base &= ~PAGE_MASK; 1947 avail_page = min_t(unsigned int, PAGE_SIZE - base, 1948 avail_here); 1949 c = kmap(*ppages) + base; 1950 1951 while (avail_here) { 1952 avail_here -= avail_page; 1953 if (copied || avail_page < desc->elem_size) { 1954 unsigned int l = min(avail_page, 1955 desc->elem_size - copied); 1956 if (!elem) { 1957 elem = kmalloc(desc->elem_size, 1958 GFP_KERNEL); 1959 err = -ENOMEM; 1960 if (!elem) 1961 goto out; 1962 } 1963 if (encode) { 1964 if (!copied) { 1965 err = desc->xcode(desc, elem); 1966 if (err) 1967 goto out; 1968 } 1969 memcpy(c, elem + copied, l); 1970 copied += l; 1971 if (copied == desc->elem_size) 1972 copied = 0; 1973 } else { 1974 memcpy(elem + copied, c, l); 1975 copied += l; 1976 if (copied == desc->elem_size) { 1977 err = desc->xcode(desc, elem); 1978 if (err) 1979 goto out; 1980 copied = 0; 1981 } 1982 } 1983 avail_page -= l; 1984 c += l; 1985 } 1986 while (avail_page >= desc->elem_size) { 1987 err = desc->xcode(desc, c); 1988 if (err) 1989 goto out; 1990 c += desc->elem_size; 1991 avail_page -= desc->elem_size; 1992 } 1993 if (avail_page) { 1994 unsigned int l = min(avail_page, 1995 desc->elem_size - copied); 1996 if (!elem) { 1997 elem = kmalloc(desc->elem_size, 1998 GFP_KERNEL); 1999 err = -ENOMEM; 2000 if (!elem) 2001 goto out; 2002 } 2003 if (encode) { 2004 if (!copied) { 2005 err = desc->xcode(desc, elem); 2006 if (err) 2007 goto out; 2008 } 2009 memcpy(c, elem + copied, l); 2010 copied += l; 2011 if (copied == desc->elem_size) 2012 copied = 0; 2013 } else { 2014 memcpy(elem + copied, c, l); 2015 copied += l; 2016 if (copied == desc->elem_size) { 2017 err = desc->xcode(desc, elem); 2018 if (err) 2019 goto out; 2020 copied = 0; 2021 } 2022 } 2023 } 2024 if (avail_here) { 2025 kunmap(*ppages); 2026 ppages++; 2027 c = kmap(*ppages); 2028 } 2029 2030 avail_page = min(avail_here, 2031 (unsigned int) PAGE_SIZE); 2032 } 2033 base = buf->page_len; /* align to start of tail */ 2034 } 2035 2036 /* process tail */ 2037 base -= buf->page_len; 2038 if (todo) { 2039 c = buf->tail->iov_base + base; 2040 if (copied) { 2041 unsigned int l = desc->elem_size - copied; 2042 2043 if (encode) 2044 memcpy(c, elem + copied, l); 2045 else { 2046 memcpy(elem + copied, c, l); 2047 err = desc->xcode(desc, elem); 2048 if (err) 2049 goto out; 2050 } 2051 todo -= l; 2052 c += l; 2053 } 2054 while (todo) { 2055 err = desc->xcode(desc, c); 2056 if (err) 2057 goto out; 2058 c += desc->elem_size; 2059 todo -= desc->elem_size; 2060 } 2061 } 2062 err = 0; 2063 2064 out: 2065 kfree(elem); 2066 if (ppages) 2067 kunmap(*ppages); 2068 return err; 2069 } 2070 2071 int xdr_decode_array2(const struct xdr_buf *buf, unsigned int base, 2072 struct xdr_array2_desc *desc) 2073 { 2074 if (base >= buf->len) 2075 return -EINVAL; 2076 2077 return xdr_xcode_array2(buf, base, desc, 0); 2078 } 2079 EXPORT_SYMBOL_GPL(xdr_decode_array2); 2080 2081 int xdr_encode_array2(const struct xdr_buf *buf, unsigned int base, 2082 struct xdr_array2_desc *desc) 2083 { 2084 if ((unsigned long) base + 4 + desc->array_len * desc->elem_size > 2085 buf->head->iov_len + buf->page_len + buf->tail->iov_len) 2086 return -EINVAL; 2087 2088 return xdr_xcode_array2(buf, base, desc, 1); 2089 } 2090 EXPORT_SYMBOL_GPL(xdr_encode_array2); 2091 2092 int xdr_process_buf(const struct xdr_buf *buf, unsigned int offset, 2093 unsigned int len, 2094 int (*actor)(struct scatterlist *, void *), void *data) 2095 { 2096 int i, ret = 0; 2097 unsigned int page_len, thislen, page_offset; 2098 struct scatterlist sg[1]; 2099 2100 sg_init_table(sg, 1); 2101 2102 if (offset >= buf->head[0].iov_len) { 2103 offset -= buf->head[0].iov_len; 2104 } else { 2105 thislen = buf->head[0].iov_len - offset; 2106 if (thislen > len) 2107 thislen = len; 2108 sg_set_buf(sg, buf->head[0].iov_base + offset, thislen); 2109 ret = actor(sg, data); 2110 if (ret) 2111 goto out; 2112 offset = 0; 2113 len -= thislen; 2114 } 2115 if (len == 0) 2116 goto out; 2117 2118 if (offset >= buf->page_len) { 2119 offset -= buf->page_len; 2120 } else { 2121 page_len = buf->page_len - offset; 2122 if (page_len > len) 2123 page_len = len; 2124 len -= page_len; 2125 page_offset = (offset + buf->page_base) & (PAGE_SIZE - 1); 2126 i = (offset + buf->page_base) >> PAGE_SHIFT; 2127 thislen = PAGE_SIZE - page_offset; 2128 do { 2129 if (thislen > page_len) 2130 thislen = page_len; 2131 sg_set_page(sg, buf->pages[i], thislen, page_offset); 2132 ret = actor(sg, data); 2133 if (ret) 2134 goto out; 2135 page_len -= thislen; 2136 i++; 2137 page_offset = 0; 2138 thislen = PAGE_SIZE; 2139 } while (page_len != 0); 2140 offset = 0; 2141 } 2142 if (len == 0) 2143 goto out; 2144 if (offset < buf->tail[0].iov_len) { 2145 thislen = buf->tail[0].iov_len - offset; 2146 if (thislen > len) 2147 thislen = len; 2148 sg_set_buf(sg, buf->tail[0].iov_base + offset, thislen); 2149 ret = actor(sg, data); 2150 len -= thislen; 2151 } 2152 if (len != 0) 2153 ret = -EINVAL; 2154 out: 2155 return ret; 2156 } 2157 EXPORT_SYMBOL_GPL(xdr_process_buf); 2158 2159 /** 2160 * xdr_stream_decode_opaque - Decode variable length opaque 2161 * @xdr: pointer to xdr_stream 2162 * @ptr: location to store opaque data 2163 * @size: size of storage buffer @ptr 2164 * 2165 * Return values: 2166 * On success, returns size of object stored in *@ptr 2167 * %-EBADMSG on XDR buffer overflow 2168 * %-EMSGSIZE on overflow of storage buffer @ptr 2169 */ 2170 ssize_t xdr_stream_decode_opaque(struct xdr_stream *xdr, void *ptr, size_t size) 2171 { 2172 ssize_t ret; 2173 void *p; 2174 2175 ret = xdr_stream_decode_opaque_inline(xdr, &p, size); 2176 if (ret <= 0) 2177 return ret; 2178 memcpy(ptr, p, ret); 2179 return ret; 2180 } 2181 EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque); 2182 2183 /** 2184 * xdr_stream_decode_opaque_dup - Decode and duplicate variable length opaque 2185 * @xdr: pointer to xdr_stream 2186 * @ptr: location to store pointer to opaque data 2187 * @maxlen: maximum acceptable object size 2188 * @gfp_flags: GFP mask to use 2189 * 2190 * Return values: 2191 * On success, returns size of object stored in *@ptr 2192 * %-EBADMSG on XDR buffer overflow 2193 * %-EMSGSIZE if the size of the object would exceed @maxlen 2194 * %-ENOMEM on memory allocation failure 2195 */ 2196 ssize_t xdr_stream_decode_opaque_dup(struct xdr_stream *xdr, void **ptr, 2197 size_t maxlen, gfp_t gfp_flags) 2198 { 2199 ssize_t ret; 2200 void *p; 2201 2202 ret = xdr_stream_decode_opaque_inline(xdr, &p, maxlen); 2203 if (ret > 0) { 2204 *ptr = kmemdup(p, ret, gfp_flags); 2205 if (*ptr != NULL) 2206 return ret; 2207 ret = -ENOMEM; 2208 } 2209 *ptr = NULL; 2210 return ret; 2211 } 2212 EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque_dup); 2213 2214 /** 2215 * xdr_stream_decode_string - Decode variable length string 2216 * @xdr: pointer to xdr_stream 2217 * @str: location to store string 2218 * @size: size of storage buffer @str 2219 * 2220 * Return values: 2221 * On success, returns length of NUL-terminated string stored in *@str 2222 * %-EBADMSG on XDR buffer overflow 2223 * %-EMSGSIZE on overflow of storage buffer @str 2224 */ 2225 ssize_t xdr_stream_decode_string(struct xdr_stream *xdr, char *str, size_t size) 2226 { 2227 ssize_t ret; 2228 void *p; 2229 2230 ret = xdr_stream_decode_opaque_inline(xdr, &p, size); 2231 if (ret > 0) { 2232 memcpy(str, p, ret); 2233 str[ret] = '\0'; 2234 return strlen(str); 2235 } 2236 *str = '\0'; 2237 return ret; 2238 } 2239 EXPORT_SYMBOL_GPL(xdr_stream_decode_string); 2240 2241 /** 2242 * xdr_stream_decode_string_dup - Decode and duplicate variable length string 2243 * @xdr: pointer to xdr_stream 2244 * @str: location to store pointer to string 2245 * @maxlen: maximum acceptable string length 2246 * @gfp_flags: GFP mask to use 2247 * 2248 * Return values: 2249 * On success, returns length of NUL-terminated string stored in *@ptr 2250 * %-EBADMSG on XDR buffer overflow 2251 * %-EMSGSIZE if the size of the string would exceed @maxlen 2252 * %-ENOMEM on memory allocation failure 2253 */ 2254 ssize_t xdr_stream_decode_string_dup(struct xdr_stream *xdr, char **str, 2255 size_t maxlen, gfp_t gfp_flags) 2256 { 2257 void *p; 2258 ssize_t ret; 2259 2260 ret = xdr_stream_decode_opaque_inline(xdr, &p, maxlen); 2261 if (ret > 0) { 2262 char *s = kmemdup_nul(p, ret, gfp_flags); 2263 if (s != NULL) { 2264 *str = s; 2265 return strlen(s); 2266 } 2267 ret = -ENOMEM; 2268 } 2269 *str = NULL; 2270 return ret; 2271 } 2272 EXPORT_SYMBOL_GPL(xdr_stream_decode_string_dup); 2273