xref: /linux/net/sunrpc/xdr.c (revision 4359a011e259a4608afc7fb3635370c9d4ba5943)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/xdr.c
4  *
5  * Generic XDR support.
6  *
7  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
8  */
9 
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/string.h>
14 #include <linux/kernel.h>
15 #include <linux/pagemap.h>
16 #include <linux/errno.h>
17 #include <linux/sunrpc/xdr.h>
18 #include <linux/sunrpc/msg_prot.h>
19 #include <linux/bvec.h>
20 #include <trace/events/sunrpc.h>
21 
22 static void _copy_to_pages(struct page **, size_t, const char *, size_t);
23 
24 
25 /*
26  * XDR functions for basic NFS types
27  */
28 __be32 *
29 xdr_encode_netobj(__be32 *p, const struct xdr_netobj *obj)
30 {
31 	unsigned int	quadlen = XDR_QUADLEN(obj->len);
32 
33 	p[quadlen] = 0;		/* zero trailing bytes */
34 	*p++ = cpu_to_be32(obj->len);
35 	memcpy(p, obj->data, obj->len);
36 	return p + XDR_QUADLEN(obj->len);
37 }
38 EXPORT_SYMBOL_GPL(xdr_encode_netobj);
39 
40 __be32 *
41 xdr_decode_netobj(__be32 *p, struct xdr_netobj *obj)
42 {
43 	unsigned int	len;
44 
45 	if ((len = be32_to_cpu(*p++)) > XDR_MAX_NETOBJ)
46 		return NULL;
47 	obj->len  = len;
48 	obj->data = (u8 *) p;
49 	return p + XDR_QUADLEN(len);
50 }
51 EXPORT_SYMBOL_GPL(xdr_decode_netobj);
52 
53 /**
54  * xdr_encode_opaque_fixed - Encode fixed length opaque data
55  * @p: pointer to current position in XDR buffer.
56  * @ptr: pointer to data to encode (or NULL)
57  * @nbytes: size of data.
58  *
59  * Copy the array of data of length nbytes at ptr to the XDR buffer
60  * at position p, then align to the next 32-bit boundary by padding
61  * with zero bytes (see RFC1832).
62  * Note: if ptr is NULL, only the padding is performed.
63  *
64  * Returns the updated current XDR buffer position
65  *
66  */
67 __be32 *xdr_encode_opaque_fixed(__be32 *p, const void *ptr, unsigned int nbytes)
68 {
69 	if (likely(nbytes != 0)) {
70 		unsigned int quadlen = XDR_QUADLEN(nbytes);
71 		unsigned int padding = (quadlen << 2) - nbytes;
72 
73 		if (ptr != NULL)
74 			memcpy(p, ptr, nbytes);
75 		if (padding != 0)
76 			memset((char *)p + nbytes, 0, padding);
77 		p += quadlen;
78 	}
79 	return p;
80 }
81 EXPORT_SYMBOL_GPL(xdr_encode_opaque_fixed);
82 
83 /**
84  * xdr_encode_opaque - Encode variable length opaque data
85  * @p: pointer to current position in XDR buffer.
86  * @ptr: pointer to data to encode (or NULL)
87  * @nbytes: size of data.
88  *
89  * Returns the updated current XDR buffer position
90  */
91 __be32 *xdr_encode_opaque(__be32 *p, const void *ptr, unsigned int nbytes)
92 {
93 	*p++ = cpu_to_be32(nbytes);
94 	return xdr_encode_opaque_fixed(p, ptr, nbytes);
95 }
96 EXPORT_SYMBOL_GPL(xdr_encode_opaque);
97 
98 __be32 *
99 xdr_encode_string(__be32 *p, const char *string)
100 {
101 	return xdr_encode_array(p, string, strlen(string));
102 }
103 EXPORT_SYMBOL_GPL(xdr_encode_string);
104 
105 __be32 *
106 xdr_decode_string_inplace(__be32 *p, char **sp,
107 			  unsigned int *lenp, unsigned int maxlen)
108 {
109 	u32 len;
110 
111 	len = be32_to_cpu(*p++);
112 	if (len > maxlen)
113 		return NULL;
114 	*lenp = len;
115 	*sp = (char *) p;
116 	return p + XDR_QUADLEN(len);
117 }
118 EXPORT_SYMBOL_GPL(xdr_decode_string_inplace);
119 
120 /**
121  * xdr_terminate_string - '\0'-terminate a string residing in an xdr_buf
122  * @buf: XDR buffer where string resides
123  * @len: length of string, in bytes
124  *
125  */
126 void xdr_terminate_string(const struct xdr_buf *buf, const u32 len)
127 {
128 	char *kaddr;
129 
130 	kaddr = kmap_atomic(buf->pages[0]);
131 	kaddr[buf->page_base + len] = '\0';
132 	kunmap_atomic(kaddr);
133 }
134 EXPORT_SYMBOL_GPL(xdr_terminate_string);
135 
136 size_t xdr_buf_pagecount(const struct xdr_buf *buf)
137 {
138 	if (!buf->page_len)
139 		return 0;
140 	return (buf->page_base + buf->page_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
141 }
142 
143 int
144 xdr_alloc_bvec(struct xdr_buf *buf, gfp_t gfp)
145 {
146 	size_t i, n = xdr_buf_pagecount(buf);
147 
148 	if (n != 0 && buf->bvec == NULL) {
149 		buf->bvec = kmalloc_array(n, sizeof(buf->bvec[0]), gfp);
150 		if (!buf->bvec)
151 			return -ENOMEM;
152 		for (i = 0; i < n; i++) {
153 			buf->bvec[i].bv_page = buf->pages[i];
154 			buf->bvec[i].bv_len = PAGE_SIZE;
155 			buf->bvec[i].bv_offset = 0;
156 		}
157 	}
158 	return 0;
159 }
160 
161 void
162 xdr_free_bvec(struct xdr_buf *buf)
163 {
164 	kfree(buf->bvec);
165 	buf->bvec = NULL;
166 }
167 
168 /**
169  * xdr_inline_pages - Prepare receive buffer for a large reply
170  * @xdr: xdr_buf into which reply will be placed
171  * @offset: expected offset where data payload will start, in bytes
172  * @pages: vector of struct page pointers
173  * @base: offset in first page where receive should start, in bytes
174  * @len: expected size of the upper layer data payload, in bytes
175  *
176  */
177 void
178 xdr_inline_pages(struct xdr_buf *xdr, unsigned int offset,
179 		 struct page **pages, unsigned int base, unsigned int len)
180 {
181 	struct kvec *head = xdr->head;
182 	struct kvec *tail = xdr->tail;
183 	char *buf = (char *)head->iov_base;
184 	unsigned int buflen = head->iov_len;
185 
186 	head->iov_len  = offset;
187 
188 	xdr->pages = pages;
189 	xdr->page_base = base;
190 	xdr->page_len = len;
191 
192 	tail->iov_base = buf + offset;
193 	tail->iov_len = buflen - offset;
194 	xdr->buflen += len;
195 }
196 EXPORT_SYMBOL_GPL(xdr_inline_pages);
197 
198 /*
199  * Helper routines for doing 'memmove' like operations on a struct xdr_buf
200  */
201 
202 /**
203  * _shift_data_left_pages
204  * @pages: vector of pages containing both the source and dest memory area.
205  * @pgto_base: page vector address of destination
206  * @pgfrom_base: page vector address of source
207  * @len: number of bytes to copy
208  *
209  * Note: the addresses pgto_base and pgfrom_base are both calculated in
210  *       the same way:
211  *            if a memory area starts at byte 'base' in page 'pages[i]',
212  *            then its address is given as (i << PAGE_CACHE_SHIFT) + base
213  * Alse note: pgto_base must be < pgfrom_base, but the memory areas
214  * 	they point to may overlap.
215  */
216 static void
217 _shift_data_left_pages(struct page **pages, size_t pgto_base,
218 			size_t pgfrom_base, size_t len)
219 {
220 	struct page **pgfrom, **pgto;
221 	char *vfrom, *vto;
222 	size_t copy;
223 
224 	BUG_ON(pgfrom_base <= pgto_base);
225 
226 	if (!len)
227 		return;
228 
229 	pgto = pages + (pgto_base >> PAGE_SHIFT);
230 	pgfrom = pages + (pgfrom_base >> PAGE_SHIFT);
231 
232 	pgto_base &= ~PAGE_MASK;
233 	pgfrom_base &= ~PAGE_MASK;
234 
235 	do {
236 		if (pgto_base >= PAGE_SIZE) {
237 			pgto_base = 0;
238 			pgto++;
239 		}
240 		if (pgfrom_base >= PAGE_SIZE){
241 			pgfrom_base = 0;
242 			pgfrom++;
243 		}
244 
245 		copy = len;
246 		if (copy > (PAGE_SIZE - pgto_base))
247 			copy = PAGE_SIZE - pgto_base;
248 		if (copy > (PAGE_SIZE - pgfrom_base))
249 			copy = PAGE_SIZE - pgfrom_base;
250 
251 		vto = kmap_atomic(*pgto);
252 		if (*pgto != *pgfrom) {
253 			vfrom = kmap_atomic(*pgfrom);
254 			memcpy(vto + pgto_base, vfrom + pgfrom_base, copy);
255 			kunmap_atomic(vfrom);
256 		} else
257 			memmove(vto + pgto_base, vto + pgfrom_base, copy);
258 		flush_dcache_page(*pgto);
259 		kunmap_atomic(vto);
260 
261 		pgto_base += copy;
262 		pgfrom_base += copy;
263 
264 	} while ((len -= copy) != 0);
265 }
266 
267 /**
268  * _shift_data_right_pages
269  * @pages: vector of pages containing both the source and dest memory area.
270  * @pgto_base: page vector address of destination
271  * @pgfrom_base: page vector address of source
272  * @len: number of bytes to copy
273  *
274  * Note: the addresses pgto_base and pgfrom_base are both calculated in
275  *       the same way:
276  *            if a memory area starts at byte 'base' in page 'pages[i]',
277  *            then its address is given as (i << PAGE_SHIFT) + base
278  * Also note: pgfrom_base must be < pgto_base, but the memory areas
279  * 	they point to may overlap.
280  */
281 static void
282 _shift_data_right_pages(struct page **pages, size_t pgto_base,
283 		size_t pgfrom_base, size_t len)
284 {
285 	struct page **pgfrom, **pgto;
286 	char *vfrom, *vto;
287 	size_t copy;
288 
289 	BUG_ON(pgto_base <= pgfrom_base);
290 
291 	if (!len)
292 		return;
293 
294 	pgto_base += len;
295 	pgfrom_base += len;
296 
297 	pgto = pages + (pgto_base >> PAGE_SHIFT);
298 	pgfrom = pages + (pgfrom_base >> PAGE_SHIFT);
299 
300 	pgto_base &= ~PAGE_MASK;
301 	pgfrom_base &= ~PAGE_MASK;
302 
303 	do {
304 		/* Are any pointers crossing a page boundary? */
305 		if (pgto_base == 0) {
306 			pgto_base = PAGE_SIZE;
307 			pgto--;
308 		}
309 		if (pgfrom_base == 0) {
310 			pgfrom_base = PAGE_SIZE;
311 			pgfrom--;
312 		}
313 
314 		copy = len;
315 		if (copy > pgto_base)
316 			copy = pgto_base;
317 		if (copy > pgfrom_base)
318 			copy = pgfrom_base;
319 		pgto_base -= copy;
320 		pgfrom_base -= copy;
321 
322 		vto = kmap_atomic(*pgto);
323 		if (*pgto != *pgfrom) {
324 			vfrom = kmap_atomic(*pgfrom);
325 			memcpy(vto + pgto_base, vfrom + pgfrom_base, copy);
326 			kunmap_atomic(vfrom);
327 		} else
328 			memmove(vto + pgto_base, vto + pgfrom_base, copy);
329 		flush_dcache_page(*pgto);
330 		kunmap_atomic(vto);
331 
332 	} while ((len -= copy) != 0);
333 }
334 
335 /**
336  * _copy_to_pages
337  * @pages: array of pages
338  * @pgbase: page vector address of destination
339  * @p: pointer to source data
340  * @len: length
341  *
342  * Copies data from an arbitrary memory location into an array of pages
343  * The copy is assumed to be non-overlapping.
344  */
345 static void
346 _copy_to_pages(struct page **pages, size_t pgbase, const char *p, size_t len)
347 {
348 	struct page **pgto;
349 	char *vto;
350 	size_t copy;
351 
352 	if (!len)
353 		return;
354 
355 	pgto = pages + (pgbase >> PAGE_SHIFT);
356 	pgbase &= ~PAGE_MASK;
357 
358 	for (;;) {
359 		copy = PAGE_SIZE - pgbase;
360 		if (copy > len)
361 			copy = len;
362 
363 		vto = kmap_atomic(*pgto);
364 		memcpy(vto + pgbase, p, copy);
365 		kunmap_atomic(vto);
366 
367 		len -= copy;
368 		if (len == 0)
369 			break;
370 
371 		pgbase += copy;
372 		if (pgbase == PAGE_SIZE) {
373 			flush_dcache_page(*pgto);
374 			pgbase = 0;
375 			pgto++;
376 		}
377 		p += copy;
378 	}
379 	flush_dcache_page(*pgto);
380 }
381 
382 /**
383  * _copy_from_pages
384  * @p: pointer to destination
385  * @pages: array of pages
386  * @pgbase: offset of source data
387  * @len: length
388  *
389  * Copies data into an arbitrary memory location from an array of pages
390  * The copy is assumed to be non-overlapping.
391  */
392 void
393 _copy_from_pages(char *p, struct page **pages, size_t pgbase, size_t len)
394 {
395 	struct page **pgfrom;
396 	char *vfrom;
397 	size_t copy;
398 
399 	if (!len)
400 		return;
401 
402 	pgfrom = pages + (pgbase >> PAGE_SHIFT);
403 	pgbase &= ~PAGE_MASK;
404 
405 	do {
406 		copy = PAGE_SIZE - pgbase;
407 		if (copy > len)
408 			copy = len;
409 
410 		vfrom = kmap_atomic(*pgfrom);
411 		memcpy(p, vfrom + pgbase, copy);
412 		kunmap_atomic(vfrom);
413 
414 		pgbase += copy;
415 		if (pgbase == PAGE_SIZE) {
416 			pgbase = 0;
417 			pgfrom++;
418 		}
419 		p += copy;
420 
421 	} while ((len -= copy) != 0);
422 }
423 EXPORT_SYMBOL_GPL(_copy_from_pages);
424 
425 static void xdr_buf_iov_zero(const struct kvec *iov, unsigned int base,
426 			     unsigned int len)
427 {
428 	if (base >= iov->iov_len)
429 		return;
430 	if (len > iov->iov_len - base)
431 		len = iov->iov_len - base;
432 	memset(iov->iov_base + base, 0, len);
433 }
434 
435 /**
436  * xdr_buf_pages_zero
437  * @buf: xdr_buf
438  * @pgbase: beginning offset
439  * @len: length
440  */
441 static void xdr_buf_pages_zero(const struct xdr_buf *buf, unsigned int pgbase,
442 			       unsigned int len)
443 {
444 	struct page **pages = buf->pages;
445 	struct page **page;
446 	char *vpage;
447 	unsigned int zero;
448 
449 	if (!len)
450 		return;
451 	if (pgbase >= buf->page_len) {
452 		xdr_buf_iov_zero(buf->tail, pgbase - buf->page_len, len);
453 		return;
454 	}
455 	if (pgbase + len > buf->page_len) {
456 		xdr_buf_iov_zero(buf->tail, 0, pgbase + len - buf->page_len);
457 		len = buf->page_len - pgbase;
458 	}
459 
460 	pgbase += buf->page_base;
461 
462 	page = pages + (pgbase >> PAGE_SHIFT);
463 	pgbase &= ~PAGE_MASK;
464 
465 	do {
466 		zero = PAGE_SIZE - pgbase;
467 		if (zero > len)
468 			zero = len;
469 
470 		vpage = kmap_atomic(*page);
471 		memset(vpage + pgbase, 0, zero);
472 		kunmap_atomic(vpage);
473 
474 		flush_dcache_page(*page);
475 		pgbase = 0;
476 		page++;
477 
478 	} while ((len -= zero) != 0);
479 }
480 
481 static unsigned int xdr_buf_pages_fill_sparse(const struct xdr_buf *buf,
482 					      unsigned int buflen, gfp_t gfp)
483 {
484 	unsigned int i, npages, pagelen;
485 
486 	if (!(buf->flags & XDRBUF_SPARSE_PAGES))
487 		return buflen;
488 	if (buflen <= buf->head->iov_len)
489 		return buflen;
490 	pagelen = buflen - buf->head->iov_len;
491 	if (pagelen > buf->page_len)
492 		pagelen = buf->page_len;
493 	npages = (pagelen + buf->page_base + PAGE_SIZE - 1) >> PAGE_SHIFT;
494 	for (i = 0; i < npages; i++) {
495 		if (!buf->pages[i])
496 			continue;
497 		buf->pages[i] = alloc_page(gfp);
498 		if (likely(buf->pages[i]))
499 			continue;
500 		buflen -= pagelen;
501 		pagelen = i << PAGE_SHIFT;
502 		if (pagelen > buf->page_base)
503 			buflen += pagelen - buf->page_base;
504 		break;
505 	}
506 	return buflen;
507 }
508 
509 static void xdr_buf_try_expand(struct xdr_buf *buf, unsigned int len)
510 {
511 	struct kvec *head = buf->head;
512 	struct kvec *tail = buf->tail;
513 	unsigned int sum = head->iov_len + buf->page_len + tail->iov_len;
514 	unsigned int free_space, newlen;
515 
516 	if (sum > buf->len) {
517 		free_space = min_t(unsigned int, sum - buf->len, len);
518 		newlen = xdr_buf_pages_fill_sparse(buf, buf->len + free_space,
519 						   GFP_KERNEL);
520 		free_space = newlen - buf->len;
521 		buf->len = newlen;
522 		len -= free_space;
523 		if (!len)
524 			return;
525 	}
526 
527 	if (buf->buflen > sum) {
528 		/* Expand the tail buffer */
529 		free_space = min_t(unsigned int, buf->buflen - sum, len);
530 		tail->iov_len += free_space;
531 		buf->len += free_space;
532 	}
533 }
534 
535 static void xdr_buf_tail_copy_right(const struct xdr_buf *buf,
536 				    unsigned int base, unsigned int len,
537 				    unsigned int shift)
538 {
539 	const struct kvec *tail = buf->tail;
540 	unsigned int to = base + shift;
541 
542 	if (to >= tail->iov_len)
543 		return;
544 	if (len + to > tail->iov_len)
545 		len = tail->iov_len - to;
546 	memmove(tail->iov_base + to, tail->iov_base + base, len);
547 }
548 
549 static void xdr_buf_pages_copy_right(const struct xdr_buf *buf,
550 				     unsigned int base, unsigned int len,
551 				     unsigned int shift)
552 {
553 	const struct kvec *tail = buf->tail;
554 	unsigned int to = base + shift;
555 	unsigned int pglen = 0;
556 	unsigned int talen = 0, tato = 0;
557 
558 	if (base >= buf->page_len)
559 		return;
560 	if (len > buf->page_len - base)
561 		len = buf->page_len - base;
562 	if (to >= buf->page_len) {
563 		tato = to - buf->page_len;
564 		if (tail->iov_len >= len + tato)
565 			talen = len;
566 		else if (tail->iov_len > tato)
567 			talen = tail->iov_len - tato;
568 	} else if (len + to >= buf->page_len) {
569 		pglen = buf->page_len - to;
570 		talen = len - pglen;
571 		if (talen > tail->iov_len)
572 			talen = tail->iov_len;
573 	} else
574 		pglen = len;
575 
576 	_copy_from_pages(tail->iov_base + tato, buf->pages,
577 			 buf->page_base + base + pglen, talen);
578 	_shift_data_right_pages(buf->pages, buf->page_base + to,
579 				buf->page_base + base, pglen);
580 }
581 
582 static void xdr_buf_head_copy_right(const struct xdr_buf *buf,
583 				    unsigned int base, unsigned int len,
584 				    unsigned int shift)
585 {
586 	const struct kvec *head = buf->head;
587 	const struct kvec *tail = buf->tail;
588 	unsigned int to = base + shift;
589 	unsigned int pglen = 0, pgto = 0;
590 	unsigned int talen = 0, tato = 0;
591 
592 	if (base >= head->iov_len)
593 		return;
594 	if (len > head->iov_len - base)
595 		len = head->iov_len - base;
596 	if (to >= buf->page_len + head->iov_len) {
597 		tato = to - buf->page_len - head->iov_len;
598 		talen = len;
599 	} else if (to >= head->iov_len) {
600 		pgto = to - head->iov_len;
601 		pglen = len;
602 		if (pgto + pglen > buf->page_len) {
603 			talen = pgto + pglen - buf->page_len;
604 			pglen -= talen;
605 		}
606 	} else {
607 		pglen = len - to;
608 		if (pglen > buf->page_len) {
609 			talen = pglen - buf->page_len;
610 			pglen = buf->page_len;
611 		}
612 	}
613 
614 	len -= talen;
615 	base += len;
616 	if (talen + tato > tail->iov_len)
617 		talen = tail->iov_len > tato ? tail->iov_len - tato : 0;
618 	memcpy(tail->iov_base + tato, head->iov_base + base, talen);
619 
620 	len -= pglen;
621 	base -= pglen;
622 	_copy_to_pages(buf->pages, buf->page_base + pgto, head->iov_base + base,
623 		       pglen);
624 
625 	base -= len;
626 	memmove(head->iov_base + to, head->iov_base + base, len);
627 }
628 
629 static void xdr_buf_tail_shift_right(const struct xdr_buf *buf,
630 				     unsigned int base, unsigned int len,
631 				     unsigned int shift)
632 {
633 	const struct kvec *tail = buf->tail;
634 
635 	if (base >= tail->iov_len || !shift || !len)
636 		return;
637 	xdr_buf_tail_copy_right(buf, base, len, shift);
638 }
639 
640 static void xdr_buf_pages_shift_right(const struct xdr_buf *buf,
641 				      unsigned int base, unsigned int len,
642 				      unsigned int shift)
643 {
644 	if (!shift || !len)
645 		return;
646 	if (base >= buf->page_len) {
647 		xdr_buf_tail_shift_right(buf, base - buf->page_len, len, shift);
648 		return;
649 	}
650 	if (base + len > buf->page_len)
651 		xdr_buf_tail_shift_right(buf, 0, base + len - buf->page_len,
652 					 shift);
653 	xdr_buf_pages_copy_right(buf, base, len, shift);
654 }
655 
656 static void xdr_buf_head_shift_right(const struct xdr_buf *buf,
657 				     unsigned int base, unsigned int len,
658 				     unsigned int shift)
659 {
660 	const struct kvec *head = buf->head;
661 
662 	if (!shift)
663 		return;
664 	if (base >= head->iov_len) {
665 		xdr_buf_pages_shift_right(buf, head->iov_len - base, len,
666 					  shift);
667 		return;
668 	}
669 	if (base + len > head->iov_len)
670 		xdr_buf_pages_shift_right(buf, 0, base + len - head->iov_len,
671 					  shift);
672 	xdr_buf_head_copy_right(buf, base, len, shift);
673 }
674 
675 static void xdr_buf_tail_copy_left(const struct xdr_buf *buf, unsigned int base,
676 				   unsigned int len, unsigned int shift)
677 {
678 	const struct kvec *tail = buf->tail;
679 
680 	if (base >= tail->iov_len)
681 		return;
682 	if (len > tail->iov_len - base)
683 		len = tail->iov_len - base;
684 	/* Shift data into head */
685 	if (shift > buf->page_len + base) {
686 		const struct kvec *head = buf->head;
687 		unsigned int hdto =
688 			head->iov_len + buf->page_len + base - shift;
689 		unsigned int hdlen = len;
690 
691 		if (WARN_ONCE(shift > head->iov_len + buf->page_len + base,
692 			      "SUNRPC: Misaligned data.\n"))
693 			return;
694 		if (hdto + hdlen > head->iov_len)
695 			hdlen = head->iov_len - hdto;
696 		memcpy(head->iov_base + hdto, tail->iov_base + base, hdlen);
697 		base += hdlen;
698 		len -= hdlen;
699 		if (!len)
700 			return;
701 	}
702 	/* Shift data into pages */
703 	if (shift > base) {
704 		unsigned int pgto = buf->page_len + base - shift;
705 		unsigned int pglen = len;
706 
707 		if (pgto + pglen > buf->page_len)
708 			pglen = buf->page_len - pgto;
709 		_copy_to_pages(buf->pages, buf->page_base + pgto,
710 			       tail->iov_base + base, pglen);
711 		base += pglen;
712 		len -= pglen;
713 		if (!len)
714 			return;
715 	}
716 	memmove(tail->iov_base + base - shift, tail->iov_base + base, len);
717 }
718 
719 static void xdr_buf_pages_copy_left(const struct xdr_buf *buf,
720 				    unsigned int base, unsigned int len,
721 				    unsigned int shift)
722 {
723 	unsigned int pgto;
724 
725 	if (base >= buf->page_len)
726 		return;
727 	if (len > buf->page_len - base)
728 		len = buf->page_len - base;
729 	/* Shift data into head */
730 	if (shift > base) {
731 		const struct kvec *head = buf->head;
732 		unsigned int hdto = head->iov_len + base - shift;
733 		unsigned int hdlen = len;
734 
735 		if (WARN_ONCE(shift > head->iov_len + base,
736 			      "SUNRPC: Misaligned data.\n"))
737 			return;
738 		if (hdto + hdlen > head->iov_len)
739 			hdlen = head->iov_len - hdto;
740 		_copy_from_pages(head->iov_base + hdto, buf->pages,
741 				 buf->page_base + base, hdlen);
742 		base += hdlen;
743 		len -= hdlen;
744 		if (!len)
745 			return;
746 	}
747 	pgto = base - shift;
748 	_shift_data_left_pages(buf->pages, buf->page_base + pgto,
749 			       buf->page_base + base, len);
750 }
751 
752 static void xdr_buf_tail_shift_left(const struct xdr_buf *buf,
753 				    unsigned int base, unsigned int len,
754 				    unsigned int shift)
755 {
756 	if (!shift || !len)
757 		return;
758 	xdr_buf_tail_copy_left(buf, base, len, shift);
759 }
760 
761 static void xdr_buf_pages_shift_left(const struct xdr_buf *buf,
762 				     unsigned int base, unsigned int len,
763 				     unsigned int shift)
764 {
765 	if (!shift || !len)
766 		return;
767 	if (base >= buf->page_len) {
768 		xdr_buf_tail_shift_left(buf, base - buf->page_len, len, shift);
769 		return;
770 	}
771 	xdr_buf_pages_copy_left(buf, base, len, shift);
772 	len += base;
773 	if (len <= buf->page_len)
774 		return;
775 	xdr_buf_tail_copy_left(buf, 0, len - buf->page_len, shift);
776 }
777 
778 static void xdr_buf_head_shift_left(const struct xdr_buf *buf,
779 				    unsigned int base, unsigned int len,
780 				    unsigned int shift)
781 {
782 	const struct kvec *head = buf->head;
783 	unsigned int bytes;
784 
785 	if (!shift || !len)
786 		return;
787 
788 	if (shift > base) {
789 		bytes = (shift - base);
790 		if (bytes >= len)
791 			return;
792 		base += bytes;
793 		len -= bytes;
794 	}
795 
796 	if (base < head->iov_len) {
797 		bytes = min_t(unsigned int, len, head->iov_len - base);
798 		memmove(head->iov_base + (base - shift),
799 			head->iov_base + base, bytes);
800 		base += bytes;
801 		len -= bytes;
802 	}
803 	xdr_buf_pages_shift_left(buf, base - head->iov_len, len, shift);
804 }
805 
806 /**
807  * xdr_shrink_bufhead
808  * @buf: xdr_buf
809  * @len: new length of buf->head[0]
810  *
811  * Shrinks XDR buffer's header kvec buf->head[0], setting it to
812  * 'len' bytes. The extra data is not lost, but is instead
813  * moved into the inlined pages and/or the tail.
814  */
815 static unsigned int xdr_shrink_bufhead(struct xdr_buf *buf, unsigned int len)
816 {
817 	struct kvec *head = buf->head;
818 	unsigned int shift, buflen = max(buf->len, len);
819 
820 	WARN_ON_ONCE(len > head->iov_len);
821 	if (head->iov_len > buflen) {
822 		buf->buflen -= head->iov_len - buflen;
823 		head->iov_len = buflen;
824 	}
825 	if (len >= head->iov_len)
826 		return 0;
827 	shift = head->iov_len - len;
828 	xdr_buf_try_expand(buf, shift);
829 	xdr_buf_head_shift_right(buf, len, buflen - len, shift);
830 	head->iov_len = len;
831 	buf->buflen -= shift;
832 	buf->len -= shift;
833 	return shift;
834 }
835 
836 /**
837  * xdr_shrink_pagelen - shrinks buf->pages to @len bytes
838  * @buf: xdr_buf
839  * @len: new page buffer length
840  *
841  * The extra data is not lost, but is instead moved into buf->tail.
842  * Returns the actual number of bytes moved.
843  */
844 static unsigned int xdr_shrink_pagelen(struct xdr_buf *buf, unsigned int len)
845 {
846 	unsigned int shift, buflen = buf->len - buf->head->iov_len;
847 
848 	WARN_ON_ONCE(len > buf->page_len);
849 	if (buf->head->iov_len >= buf->len || len > buflen)
850 		buflen = len;
851 	if (buf->page_len > buflen) {
852 		buf->buflen -= buf->page_len - buflen;
853 		buf->page_len = buflen;
854 	}
855 	if (len >= buf->page_len)
856 		return 0;
857 	shift = buf->page_len - len;
858 	xdr_buf_try_expand(buf, shift);
859 	xdr_buf_pages_shift_right(buf, len, buflen - len, shift);
860 	buf->page_len = len;
861 	buf->len -= shift;
862 	buf->buflen -= shift;
863 	return shift;
864 }
865 
866 void
867 xdr_shift_buf(struct xdr_buf *buf, size_t len)
868 {
869 	xdr_shrink_bufhead(buf, buf->head->iov_len - len);
870 }
871 EXPORT_SYMBOL_GPL(xdr_shift_buf);
872 
873 /**
874  * xdr_stream_pos - Return the current offset from the start of the xdr_stream
875  * @xdr: pointer to struct xdr_stream
876  */
877 unsigned int xdr_stream_pos(const struct xdr_stream *xdr)
878 {
879 	return (unsigned int)(XDR_QUADLEN(xdr->buf->len) - xdr->nwords) << 2;
880 }
881 EXPORT_SYMBOL_GPL(xdr_stream_pos);
882 
883 static void xdr_stream_set_pos(struct xdr_stream *xdr, unsigned int pos)
884 {
885 	unsigned int blen = xdr->buf->len;
886 
887 	xdr->nwords = blen > pos ? XDR_QUADLEN(blen) - XDR_QUADLEN(pos) : 0;
888 }
889 
890 static void xdr_stream_page_set_pos(struct xdr_stream *xdr, unsigned int pos)
891 {
892 	xdr_stream_set_pos(xdr, pos + xdr->buf->head[0].iov_len);
893 }
894 
895 /**
896  * xdr_page_pos - Return the current offset from the start of the xdr pages
897  * @xdr: pointer to struct xdr_stream
898  */
899 unsigned int xdr_page_pos(const struct xdr_stream *xdr)
900 {
901 	unsigned int pos = xdr_stream_pos(xdr);
902 
903 	WARN_ON(pos < xdr->buf->head[0].iov_len);
904 	return pos - xdr->buf->head[0].iov_len;
905 }
906 EXPORT_SYMBOL_GPL(xdr_page_pos);
907 
908 /**
909  * xdr_init_encode - Initialize a struct xdr_stream for sending data.
910  * @xdr: pointer to xdr_stream struct
911  * @buf: pointer to XDR buffer in which to encode data
912  * @p: current pointer inside XDR buffer
913  * @rqst: pointer to controlling rpc_rqst, for debugging
914  *
915  * Note: at the moment the RPC client only passes the length of our
916  *	 scratch buffer in the xdr_buf's header kvec. Previously this
917  *	 meant we needed to call xdr_adjust_iovec() after encoding the
918  *	 data. With the new scheme, the xdr_stream manages the details
919  *	 of the buffer length, and takes care of adjusting the kvec
920  *	 length for us.
921  */
922 void xdr_init_encode(struct xdr_stream *xdr, struct xdr_buf *buf, __be32 *p,
923 		     struct rpc_rqst *rqst)
924 {
925 	struct kvec *iov = buf->head;
926 	int scratch_len = buf->buflen - buf->page_len - buf->tail[0].iov_len;
927 
928 	xdr_reset_scratch_buffer(xdr);
929 	BUG_ON(scratch_len < 0);
930 	xdr->buf = buf;
931 	xdr->iov = iov;
932 	xdr->p = (__be32 *)((char *)iov->iov_base + iov->iov_len);
933 	xdr->end = (__be32 *)((char *)iov->iov_base + scratch_len);
934 	BUG_ON(iov->iov_len > scratch_len);
935 
936 	if (p != xdr->p && p != NULL) {
937 		size_t len;
938 
939 		BUG_ON(p < xdr->p || p > xdr->end);
940 		len = (char *)p - (char *)xdr->p;
941 		xdr->p = p;
942 		buf->len += len;
943 		iov->iov_len += len;
944 	}
945 	xdr->rqst = rqst;
946 }
947 EXPORT_SYMBOL_GPL(xdr_init_encode);
948 
949 /**
950  * __xdr_commit_encode - Ensure all data is written to buffer
951  * @xdr: pointer to xdr_stream
952  *
953  * We handle encoding across page boundaries by giving the caller a
954  * temporary location to write to, then later copying the data into
955  * place; xdr_commit_encode does that copying.
956  *
957  * Normally the caller doesn't need to call this directly, as the
958  * following xdr_reserve_space will do it.  But an explicit call may be
959  * required at the end of encoding, or any other time when the xdr_buf
960  * data might be read.
961  */
962 void __xdr_commit_encode(struct xdr_stream *xdr)
963 {
964 	size_t shift = xdr->scratch.iov_len;
965 	void *page;
966 
967 	page = page_address(*xdr->page_ptr);
968 	memcpy(xdr->scratch.iov_base, page, shift);
969 	memmove(page, page + shift, (void *)xdr->p - page);
970 	xdr_reset_scratch_buffer(xdr);
971 }
972 EXPORT_SYMBOL_GPL(__xdr_commit_encode);
973 
974 /*
975  * The buffer space to be reserved crosses the boundary between
976  * xdr->buf->head and xdr->buf->pages, or between two pages
977  * in xdr->buf->pages.
978  */
979 static noinline __be32 *xdr_get_next_encode_buffer(struct xdr_stream *xdr,
980 						   size_t nbytes)
981 {
982 	int space_left;
983 	int frag1bytes, frag2bytes;
984 	void *p;
985 
986 	if (nbytes > PAGE_SIZE)
987 		goto out_overflow; /* Bigger buffers require special handling */
988 	if (xdr->buf->len + nbytes > xdr->buf->buflen)
989 		goto out_overflow; /* Sorry, we're totally out of space */
990 	frag1bytes = (xdr->end - xdr->p) << 2;
991 	frag2bytes = nbytes - frag1bytes;
992 	if (xdr->iov)
993 		xdr->iov->iov_len += frag1bytes;
994 	else
995 		xdr->buf->page_len += frag1bytes;
996 	xdr->page_ptr++;
997 	xdr->iov = NULL;
998 
999 	/*
1000 	 * If the last encode didn't end exactly on a page boundary, the
1001 	 * next one will straddle boundaries.  Encode into the next
1002 	 * page, then copy it back later in xdr_commit_encode.  We use
1003 	 * the "scratch" iov to track any temporarily unused fragment of
1004 	 * space at the end of the previous buffer:
1005 	 */
1006 	xdr_set_scratch_buffer(xdr, xdr->p, frag1bytes);
1007 
1008 	/*
1009 	 * xdr->p is where the next encode will start after
1010 	 * xdr_commit_encode() has shifted this one back:
1011 	 */
1012 	p = page_address(*xdr->page_ptr);
1013 	xdr->p = p + frag2bytes;
1014 	space_left = xdr->buf->buflen - xdr->buf->len;
1015 	if (space_left - frag1bytes >= PAGE_SIZE)
1016 		xdr->end = p + PAGE_SIZE;
1017 	else
1018 		xdr->end = p + space_left - frag1bytes;
1019 
1020 	xdr->buf->page_len += frag2bytes;
1021 	xdr->buf->len += nbytes;
1022 	return p;
1023 out_overflow:
1024 	trace_rpc_xdr_overflow(xdr, nbytes);
1025 	return NULL;
1026 }
1027 
1028 /**
1029  * xdr_reserve_space - Reserve buffer space for sending
1030  * @xdr: pointer to xdr_stream
1031  * @nbytes: number of bytes to reserve
1032  *
1033  * Checks that we have enough buffer space to encode 'nbytes' more
1034  * bytes of data. If so, update the total xdr_buf length, and
1035  * adjust the length of the current kvec.
1036  */
1037 __be32 * xdr_reserve_space(struct xdr_stream *xdr, size_t nbytes)
1038 {
1039 	__be32 *p = xdr->p;
1040 	__be32 *q;
1041 
1042 	xdr_commit_encode(xdr);
1043 	/* align nbytes on the next 32-bit boundary */
1044 	nbytes += 3;
1045 	nbytes &= ~3;
1046 	q = p + (nbytes >> 2);
1047 	if (unlikely(q > xdr->end || q < p))
1048 		return xdr_get_next_encode_buffer(xdr, nbytes);
1049 	xdr->p = q;
1050 	if (xdr->iov)
1051 		xdr->iov->iov_len += nbytes;
1052 	else
1053 		xdr->buf->page_len += nbytes;
1054 	xdr->buf->len += nbytes;
1055 	return p;
1056 }
1057 EXPORT_SYMBOL_GPL(xdr_reserve_space);
1058 
1059 
1060 /**
1061  * xdr_reserve_space_vec - Reserves a large amount of buffer space for sending
1062  * @xdr: pointer to xdr_stream
1063  * @vec: pointer to a kvec array
1064  * @nbytes: number of bytes to reserve
1065  *
1066  * Reserves enough buffer space to encode 'nbytes' of data and stores the
1067  * pointers in 'vec'. The size argument passed to xdr_reserve_space() is
1068  * determined based on the number of bytes remaining in the current page to
1069  * avoid invalidating iov_base pointers when xdr_commit_encode() is called.
1070  */
1071 int xdr_reserve_space_vec(struct xdr_stream *xdr, struct kvec *vec, size_t nbytes)
1072 {
1073 	int thislen;
1074 	int v = 0;
1075 	__be32 *p;
1076 
1077 	/*
1078 	 * svcrdma requires every READ payload to start somewhere
1079 	 * in xdr->pages.
1080 	 */
1081 	if (xdr->iov == xdr->buf->head) {
1082 		xdr->iov = NULL;
1083 		xdr->end = xdr->p;
1084 	}
1085 
1086 	while (nbytes) {
1087 		thislen = xdr->buf->page_len % PAGE_SIZE;
1088 		thislen = min_t(size_t, nbytes, PAGE_SIZE - thislen);
1089 
1090 		p = xdr_reserve_space(xdr, thislen);
1091 		if (!p)
1092 			return -EIO;
1093 
1094 		vec[v].iov_base = p;
1095 		vec[v].iov_len = thislen;
1096 		v++;
1097 		nbytes -= thislen;
1098 	}
1099 
1100 	return v;
1101 }
1102 EXPORT_SYMBOL_GPL(xdr_reserve_space_vec);
1103 
1104 /**
1105  * xdr_truncate_encode - truncate an encode buffer
1106  * @xdr: pointer to xdr_stream
1107  * @len: new length of buffer
1108  *
1109  * Truncates the xdr stream, so that xdr->buf->len == len,
1110  * and xdr->p points at offset len from the start of the buffer, and
1111  * head, tail, and page lengths are adjusted to correspond.
1112  *
1113  * If this means moving xdr->p to a different buffer, we assume that
1114  * the end pointer should be set to the end of the current page,
1115  * except in the case of the head buffer when we assume the head
1116  * buffer's current length represents the end of the available buffer.
1117  *
1118  * This is *not* safe to use on a buffer that already has inlined page
1119  * cache pages (as in a zero-copy server read reply), except for the
1120  * simple case of truncating from one position in the tail to another.
1121  *
1122  */
1123 void xdr_truncate_encode(struct xdr_stream *xdr, size_t len)
1124 {
1125 	struct xdr_buf *buf = xdr->buf;
1126 	struct kvec *head = buf->head;
1127 	struct kvec *tail = buf->tail;
1128 	int fraglen;
1129 	int new;
1130 
1131 	if (len > buf->len) {
1132 		WARN_ON_ONCE(1);
1133 		return;
1134 	}
1135 	xdr_commit_encode(xdr);
1136 
1137 	fraglen = min_t(int, buf->len - len, tail->iov_len);
1138 	tail->iov_len -= fraglen;
1139 	buf->len -= fraglen;
1140 	if (tail->iov_len) {
1141 		xdr->p = tail->iov_base + tail->iov_len;
1142 		WARN_ON_ONCE(!xdr->end);
1143 		WARN_ON_ONCE(!xdr->iov);
1144 		return;
1145 	}
1146 	WARN_ON_ONCE(fraglen);
1147 	fraglen = min_t(int, buf->len - len, buf->page_len);
1148 	buf->page_len -= fraglen;
1149 	buf->len -= fraglen;
1150 
1151 	new = buf->page_base + buf->page_len;
1152 
1153 	xdr->page_ptr = buf->pages + (new >> PAGE_SHIFT);
1154 
1155 	if (buf->page_len) {
1156 		xdr->p = page_address(*xdr->page_ptr);
1157 		xdr->end = (void *)xdr->p + PAGE_SIZE;
1158 		xdr->p = (void *)xdr->p + (new % PAGE_SIZE);
1159 		WARN_ON_ONCE(xdr->iov);
1160 		return;
1161 	}
1162 	if (fraglen)
1163 		xdr->end = head->iov_base + head->iov_len;
1164 	/* (otherwise assume xdr->end is already set) */
1165 	xdr->page_ptr--;
1166 	head->iov_len = len;
1167 	buf->len = len;
1168 	xdr->p = head->iov_base + head->iov_len;
1169 	xdr->iov = buf->head;
1170 }
1171 EXPORT_SYMBOL(xdr_truncate_encode);
1172 
1173 /**
1174  * xdr_restrict_buflen - decrease available buffer space
1175  * @xdr: pointer to xdr_stream
1176  * @newbuflen: new maximum number of bytes available
1177  *
1178  * Adjust our idea of how much space is available in the buffer.
1179  * If we've already used too much space in the buffer, returns -1.
1180  * If the available space is already smaller than newbuflen, returns 0
1181  * and does nothing.  Otherwise, adjusts xdr->buf->buflen to newbuflen
1182  * and ensures xdr->end is set at most offset newbuflen from the start
1183  * of the buffer.
1184  */
1185 int xdr_restrict_buflen(struct xdr_stream *xdr, int newbuflen)
1186 {
1187 	struct xdr_buf *buf = xdr->buf;
1188 	int left_in_this_buf = (void *)xdr->end - (void *)xdr->p;
1189 	int end_offset = buf->len + left_in_this_buf;
1190 
1191 	if (newbuflen < 0 || newbuflen < buf->len)
1192 		return -1;
1193 	if (newbuflen > buf->buflen)
1194 		return 0;
1195 	if (newbuflen < end_offset)
1196 		xdr->end = (void *)xdr->end + newbuflen - end_offset;
1197 	buf->buflen = newbuflen;
1198 	return 0;
1199 }
1200 EXPORT_SYMBOL(xdr_restrict_buflen);
1201 
1202 /**
1203  * xdr_write_pages - Insert a list of pages into an XDR buffer for sending
1204  * @xdr: pointer to xdr_stream
1205  * @pages: list of pages
1206  * @base: offset of first byte
1207  * @len: length of data in bytes
1208  *
1209  */
1210 void xdr_write_pages(struct xdr_stream *xdr, struct page **pages, unsigned int base,
1211 		 unsigned int len)
1212 {
1213 	struct xdr_buf *buf = xdr->buf;
1214 	struct kvec *iov = buf->tail;
1215 	buf->pages = pages;
1216 	buf->page_base = base;
1217 	buf->page_len = len;
1218 
1219 	iov->iov_base = (char *)xdr->p;
1220 	iov->iov_len  = 0;
1221 	xdr->iov = iov;
1222 
1223 	if (len & 3) {
1224 		unsigned int pad = 4 - (len & 3);
1225 
1226 		BUG_ON(xdr->p >= xdr->end);
1227 		iov->iov_base = (char *)xdr->p + (len & 3);
1228 		iov->iov_len  += pad;
1229 		len += pad;
1230 		*xdr->p++ = 0;
1231 	}
1232 	buf->buflen += len;
1233 	buf->len += len;
1234 }
1235 EXPORT_SYMBOL_GPL(xdr_write_pages);
1236 
1237 static unsigned int xdr_set_iov(struct xdr_stream *xdr, struct kvec *iov,
1238 				unsigned int base, unsigned int len)
1239 {
1240 	if (len > iov->iov_len)
1241 		len = iov->iov_len;
1242 	if (unlikely(base > len))
1243 		base = len;
1244 	xdr->p = (__be32*)(iov->iov_base + base);
1245 	xdr->end = (__be32*)(iov->iov_base + len);
1246 	xdr->iov = iov;
1247 	xdr->page_ptr = NULL;
1248 	return len - base;
1249 }
1250 
1251 static unsigned int xdr_set_tail_base(struct xdr_stream *xdr,
1252 				      unsigned int base, unsigned int len)
1253 {
1254 	struct xdr_buf *buf = xdr->buf;
1255 
1256 	xdr_stream_set_pos(xdr, base + buf->page_len + buf->head->iov_len);
1257 	return xdr_set_iov(xdr, buf->tail, base, len);
1258 }
1259 
1260 static unsigned int xdr_set_page_base(struct xdr_stream *xdr,
1261 				      unsigned int base, unsigned int len)
1262 {
1263 	unsigned int pgnr;
1264 	unsigned int maxlen;
1265 	unsigned int pgoff;
1266 	unsigned int pgend;
1267 	void *kaddr;
1268 
1269 	maxlen = xdr->buf->page_len;
1270 	if (base >= maxlen)
1271 		return 0;
1272 	else
1273 		maxlen -= base;
1274 	if (len > maxlen)
1275 		len = maxlen;
1276 
1277 	xdr_stream_page_set_pos(xdr, base);
1278 	base += xdr->buf->page_base;
1279 
1280 	pgnr = base >> PAGE_SHIFT;
1281 	xdr->page_ptr = &xdr->buf->pages[pgnr];
1282 	kaddr = page_address(*xdr->page_ptr);
1283 
1284 	pgoff = base & ~PAGE_MASK;
1285 	xdr->p = (__be32*)(kaddr + pgoff);
1286 
1287 	pgend = pgoff + len;
1288 	if (pgend > PAGE_SIZE)
1289 		pgend = PAGE_SIZE;
1290 	xdr->end = (__be32*)(kaddr + pgend);
1291 	xdr->iov = NULL;
1292 	return len;
1293 }
1294 
1295 static void xdr_set_page(struct xdr_stream *xdr, unsigned int base,
1296 			 unsigned int len)
1297 {
1298 	if (xdr_set_page_base(xdr, base, len) == 0) {
1299 		base -= xdr->buf->page_len;
1300 		xdr_set_tail_base(xdr, base, len);
1301 	}
1302 }
1303 
1304 static void xdr_set_next_page(struct xdr_stream *xdr)
1305 {
1306 	unsigned int newbase;
1307 
1308 	newbase = (1 + xdr->page_ptr - xdr->buf->pages) << PAGE_SHIFT;
1309 	newbase -= xdr->buf->page_base;
1310 	if (newbase < xdr->buf->page_len)
1311 		xdr_set_page_base(xdr, newbase, xdr_stream_remaining(xdr));
1312 	else
1313 		xdr_set_tail_base(xdr, 0, xdr_stream_remaining(xdr));
1314 }
1315 
1316 static bool xdr_set_next_buffer(struct xdr_stream *xdr)
1317 {
1318 	if (xdr->page_ptr != NULL)
1319 		xdr_set_next_page(xdr);
1320 	else if (xdr->iov == xdr->buf->head)
1321 		xdr_set_page(xdr, 0, xdr_stream_remaining(xdr));
1322 	return xdr->p != xdr->end;
1323 }
1324 
1325 /**
1326  * xdr_init_decode - Initialize an xdr_stream for decoding data.
1327  * @xdr: pointer to xdr_stream struct
1328  * @buf: pointer to XDR buffer from which to decode data
1329  * @p: current pointer inside XDR buffer
1330  * @rqst: pointer to controlling rpc_rqst, for debugging
1331  */
1332 void xdr_init_decode(struct xdr_stream *xdr, struct xdr_buf *buf, __be32 *p,
1333 		     struct rpc_rqst *rqst)
1334 {
1335 	xdr->buf = buf;
1336 	xdr_reset_scratch_buffer(xdr);
1337 	xdr->nwords = XDR_QUADLEN(buf->len);
1338 	if (xdr_set_iov(xdr, buf->head, 0, buf->len) == 0 &&
1339 	    xdr_set_page_base(xdr, 0, buf->len) == 0)
1340 		xdr_set_iov(xdr, buf->tail, 0, buf->len);
1341 	if (p != NULL && p > xdr->p && xdr->end >= p) {
1342 		xdr->nwords -= p - xdr->p;
1343 		xdr->p = p;
1344 	}
1345 	xdr->rqst = rqst;
1346 }
1347 EXPORT_SYMBOL_GPL(xdr_init_decode);
1348 
1349 /**
1350  * xdr_init_decode_pages - Initialize an xdr_stream for decoding into pages
1351  * @xdr: pointer to xdr_stream struct
1352  * @buf: pointer to XDR buffer from which to decode data
1353  * @pages: list of pages to decode into
1354  * @len: length in bytes of buffer in pages
1355  */
1356 void xdr_init_decode_pages(struct xdr_stream *xdr, struct xdr_buf *buf,
1357 			   struct page **pages, unsigned int len)
1358 {
1359 	memset(buf, 0, sizeof(*buf));
1360 	buf->pages =  pages;
1361 	buf->page_len =  len;
1362 	buf->buflen =  len;
1363 	buf->len = len;
1364 	xdr_init_decode(xdr, buf, NULL, NULL);
1365 }
1366 EXPORT_SYMBOL_GPL(xdr_init_decode_pages);
1367 
1368 static __be32 * __xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes)
1369 {
1370 	unsigned int nwords = XDR_QUADLEN(nbytes);
1371 	__be32 *p = xdr->p;
1372 	__be32 *q = p + nwords;
1373 
1374 	if (unlikely(nwords > xdr->nwords || q > xdr->end || q < p))
1375 		return NULL;
1376 	xdr->p = q;
1377 	xdr->nwords -= nwords;
1378 	return p;
1379 }
1380 
1381 static __be32 *xdr_copy_to_scratch(struct xdr_stream *xdr, size_t nbytes)
1382 {
1383 	__be32 *p;
1384 	char *cpdest = xdr->scratch.iov_base;
1385 	size_t cplen = (char *)xdr->end - (char *)xdr->p;
1386 
1387 	if (nbytes > xdr->scratch.iov_len)
1388 		goto out_overflow;
1389 	p = __xdr_inline_decode(xdr, cplen);
1390 	if (p == NULL)
1391 		return NULL;
1392 	memcpy(cpdest, p, cplen);
1393 	if (!xdr_set_next_buffer(xdr))
1394 		goto out_overflow;
1395 	cpdest += cplen;
1396 	nbytes -= cplen;
1397 	p = __xdr_inline_decode(xdr, nbytes);
1398 	if (p == NULL)
1399 		return NULL;
1400 	memcpy(cpdest, p, nbytes);
1401 	return xdr->scratch.iov_base;
1402 out_overflow:
1403 	trace_rpc_xdr_overflow(xdr, nbytes);
1404 	return NULL;
1405 }
1406 
1407 /**
1408  * xdr_inline_decode - Retrieve XDR data to decode
1409  * @xdr: pointer to xdr_stream struct
1410  * @nbytes: number of bytes of data to decode
1411  *
1412  * Check if the input buffer is long enough to enable us to decode
1413  * 'nbytes' more bytes of data starting at the current position.
1414  * If so return the current pointer, then update the current
1415  * pointer position.
1416  */
1417 __be32 * xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes)
1418 {
1419 	__be32 *p;
1420 
1421 	if (unlikely(nbytes == 0))
1422 		return xdr->p;
1423 	if (xdr->p == xdr->end && !xdr_set_next_buffer(xdr))
1424 		goto out_overflow;
1425 	p = __xdr_inline_decode(xdr, nbytes);
1426 	if (p != NULL)
1427 		return p;
1428 	return xdr_copy_to_scratch(xdr, nbytes);
1429 out_overflow:
1430 	trace_rpc_xdr_overflow(xdr, nbytes);
1431 	return NULL;
1432 }
1433 EXPORT_SYMBOL_GPL(xdr_inline_decode);
1434 
1435 static void xdr_realign_pages(struct xdr_stream *xdr)
1436 {
1437 	struct xdr_buf *buf = xdr->buf;
1438 	struct kvec *iov = buf->head;
1439 	unsigned int cur = xdr_stream_pos(xdr);
1440 	unsigned int copied;
1441 
1442 	/* Realign pages to current pointer position */
1443 	if (iov->iov_len > cur) {
1444 		copied = xdr_shrink_bufhead(buf, cur);
1445 		trace_rpc_xdr_alignment(xdr, cur, copied);
1446 		xdr_set_page(xdr, 0, buf->page_len);
1447 	}
1448 }
1449 
1450 static unsigned int xdr_align_pages(struct xdr_stream *xdr, unsigned int len)
1451 {
1452 	struct xdr_buf *buf = xdr->buf;
1453 	unsigned int nwords = XDR_QUADLEN(len);
1454 	unsigned int copied;
1455 
1456 	if (xdr->nwords == 0)
1457 		return 0;
1458 
1459 	xdr_realign_pages(xdr);
1460 	if (nwords > xdr->nwords) {
1461 		nwords = xdr->nwords;
1462 		len = nwords << 2;
1463 	}
1464 	if (buf->page_len <= len)
1465 		len = buf->page_len;
1466 	else if (nwords < xdr->nwords) {
1467 		/* Truncate page data and move it into the tail */
1468 		copied = xdr_shrink_pagelen(buf, len);
1469 		trace_rpc_xdr_alignment(xdr, len, copied);
1470 	}
1471 	return len;
1472 }
1473 
1474 /**
1475  * xdr_read_pages - align page-based XDR data to current pointer position
1476  * @xdr: pointer to xdr_stream struct
1477  * @len: number of bytes of page data
1478  *
1479  * Moves data beyond the current pointer position from the XDR head[] buffer
1480  * into the page list. Any data that lies beyond current position + @len
1481  * bytes is moved into the XDR tail[]. The xdr_stream current position is
1482  * then advanced past that data to align to the next XDR object in the tail.
1483  *
1484  * Returns the number of XDR encoded bytes now contained in the pages
1485  */
1486 unsigned int xdr_read_pages(struct xdr_stream *xdr, unsigned int len)
1487 {
1488 	unsigned int nwords = XDR_QUADLEN(len);
1489 	unsigned int base, end, pglen;
1490 
1491 	pglen = xdr_align_pages(xdr, nwords << 2);
1492 	if (pglen == 0)
1493 		return 0;
1494 
1495 	base = (nwords << 2) - pglen;
1496 	end = xdr_stream_remaining(xdr) - pglen;
1497 
1498 	xdr_set_tail_base(xdr, base, end);
1499 	return len <= pglen ? len : pglen;
1500 }
1501 EXPORT_SYMBOL_GPL(xdr_read_pages);
1502 
1503 /**
1504  * xdr_set_pagelen - Sets the length of the XDR pages
1505  * @xdr: pointer to xdr_stream struct
1506  * @len: new length of the XDR page data
1507  *
1508  * Either grows or shrinks the length of the xdr pages by setting pagelen to
1509  * @len bytes. When shrinking, any extra data is moved into buf->tail, whereas
1510  * when growing any data beyond the current pointer is moved into the tail.
1511  *
1512  * Returns True if the operation was successful, and False otherwise.
1513  */
1514 void xdr_set_pagelen(struct xdr_stream *xdr, unsigned int len)
1515 {
1516 	struct xdr_buf *buf = xdr->buf;
1517 	size_t remaining = xdr_stream_remaining(xdr);
1518 	size_t base = 0;
1519 
1520 	if (len < buf->page_len) {
1521 		base = buf->page_len - len;
1522 		xdr_shrink_pagelen(buf, len);
1523 	} else {
1524 		xdr_buf_head_shift_right(buf, xdr_stream_pos(xdr),
1525 					 buf->page_len, remaining);
1526 		if (len > buf->page_len)
1527 			xdr_buf_try_expand(buf, len - buf->page_len);
1528 	}
1529 	xdr_set_tail_base(xdr, base, remaining);
1530 }
1531 EXPORT_SYMBOL_GPL(xdr_set_pagelen);
1532 
1533 /**
1534  * xdr_enter_page - decode data from the XDR page
1535  * @xdr: pointer to xdr_stream struct
1536  * @len: number of bytes of page data
1537  *
1538  * Moves data beyond the current pointer position from the XDR head[] buffer
1539  * into the page list. Any data that lies beyond current position + "len"
1540  * bytes is moved into the XDR tail[]. The current pointer is then
1541  * repositioned at the beginning of the first XDR page.
1542  */
1543 void xdr_enter_page(struct xdr_stream *xdr, unsigned int len)
1544 {
1545 	len = xdr_align_pages(xdr, len);
1546 	/*
1547 	 * Position current pointer at beginning of tail, and
1548 	 * set remaining message length.
1549 	 */
1550 	if (len != 0)
1551 		xdr_set_page_base(xdr, 0, len);
1552 }
1553 EXPORT_SYMBOL_GPL(xdr_enter_page);
1554 
1555 static const struct kvec empty_iov = {.iov_base = NULL, .iov_len = 0};
1556 
1557 void xdr_buf_from_iov(const struct kvec *iov, struct xdr_buf *buf)
1558 {
1559 	buf->head[0] = *iov;
1560 	buf->tail[0] = empty_iov;
1561 	buf->page_len = 0;
1562 	buf->buflen = buf->len = iov->iov_len;
1563 }
1564 EXPORT_SYMBOL_GPL(xdr_buf_from_iov);
1565 
1566 /**
1567  * xdr_buf_subsegment - set subbuf to a portion of buf
1568  * @buf: an xdr buffer
1569  * @subbuf: the result buffer
1570  * @base: beginning of range in bytes
1571  * @len: length of range in bytes
1572  *
1573  * sets @subbuf to an xdr buffer representing the portion of @buf of
1574  * length @len starting at offset @base.
1575  *
1576  * @buf and @subbuf may be pointers to the same struct xdr_buf.
1577  *
1578  * Returns -1 if base of length are out of bounds.
1579  */
1580 int xdr_buf_subsegment(const struct xdr_buf *buf, struct xdr_buf *subbuf,
1581 		       unsigned int base, unsigned int len)
1582 {
1583 	subbuf->buflen = subbuf->len = len;
1584 	if (base < buf->head[0].iov_len) {
1585 		subbuf->head[0].iov_base = buf->head[0].iov_base + base;
1586 		subbuf->head[0].iov_len = min_t(unsigned int, len,
1587 						buf->head[0].iov_len - base);
1588 		len -= subbuf->head[0].iov_len;
1589 		base = 0;
1590 	} else {
1591 		base -= buf->head[0].iov_len;
1592 		subbuf->head[0].iov_base = buf->head[0].iov_base;
1593 		subbuf->head[0].iov_len = 0;
1594 	}
1595 
1596 	if (base < buf->page_len) {
1597 		subbuf->page_len = min(buf->page_len - base, len);
1598 		base += buf->page_base;
1599 		subbuf->page_base = base & ~PAGE_MASK;
1600 		subbuf->pages = &buf->pages[base >> PAGE_SHIFT];
1601 		len -= subbuf->page_len;
1602 		base = 0;
1603 	} else {
1604 		base -= buf->page_len;
1605 		subbuf->pages = buf->pages;
1606 		subbuf->page_base = 0;
1607 		subbuf->page_len = 0;
1608 	}
1609 
1610 	if (base < buf->tail[0].iov_len) {
1611 		subbuf->tail[0].iov_base = buf->tail[0].iov_base + base;
1612 		subbuf->tail[0].iov_len = min_t(unsigned int, len,
1613 						buf->tail[0].iov_len - base);
1614 		len -= subbuf->tail[0].iov_len;
1615 		base = 0;
1616 	} else {
1617 		base -= buf->tail[0].iov_len;
1618 		subbuf->tail[0].iov_base = buf->tail[0].iov_base;
1619 		subbuf->tail[0].iov_len = 0;
1620 	}
1621 
1622 	if (base || len)
1623 		return -1;
1624 	return 0;
1625 }
1626 EXPORT_SYMBOL_GPL(xdr_buf_subsegment);
1627 
1628 /**
1629  * xdr_stream_subsegment - set @subbuf to a portion of @xdr
1630  * @xdr: an xdr_stream set up for decoding
1631  * @subbuf: the result buffer
1632  * @nbytes: length of @xdr to extract, in bytes
1633  *
1634  * Sets up @subbuf to represent a portion of @xdr. The portion
1635  * starts at the current offset in @xdr, and extends for a length
1636  * of @nbytes. If this is successful, @xdr is advanced to the next
1637  * XDR data item following that portion.
1638  *
1639  * Return values:
1640  *   %true: @subbuf has been initialized, and @xdr has been advanced.
1641  *   %false: a bounds error has occurred
1642  */
1643 bool xdr_stream_subsegment(struct xdr_stream *xdr, struct xdr_buf *subbuf,
1644 			   unsigned int nbytes)
1645 {
1646 	unsigned int start = xdr_stream_pos(xdr);
1647 	unsigned int remaining, len;
1648 
1649 	/* Extract @subbuf and bounds-check the fn arguments */
1650 	if (xdr_buf_subsegment(xdr->buf, subbuf, start, nbytes))
1651 		return false;
1652 
1653 	/* Advance @xdr by @nbytes */
1654 	for (remaining = nbytes; remaining;) {
1655 		if (xdr->p == xdr->end && !xdr_set_next_buffer(xdr))
1656 			return false;
1657 
1658 		len = (char *)xdr->end - (char *)xdr->p;
1659 		if (remaining <= len) {
1660 			xdr->p = (__be32 *)((char *)xdr->p +
1661 					(remaining + xdr_pad_size(nbytes)));
1662 			break;
1663 		}
1664 
1665 		xdr->p = (__be32 *)((char *)xdr->p + len);
1666 		xdr->end = xdr->p;
1667 		remaining -= len;
1668 	}
1669 
1670 	xdr_stream_set_pos(xdr, start + nbytes);
1671 	return true;
1672 }
1673 EXPORT_SYMBOL_GPL(xdr_stream_subsegment);
1674 
1675 /**
1676  * xdr_stream_move_subsegment - Move part of a stream to another position
1677  * @xdr: the source xdr_stream
1678  * @offset: the source offset of the segment
1679  * @target: the target offset of the segment
1680  * @length: the number of bytes to move
1681  *
1682  * Moves @length bytes from @offset to @target in the xdr_stream, overwriting
1683  * anything in its space. Returns the number of bytes in the segment.
1684  */
1685 unsigned int xdr_stream_move_subsegment(struct xdr_stream *xdr, unsigned int offset,
1686 					unsigned int target, unsigned int length)
1687 {
1688 	struct xdr_buf buf;
1689 	unsigned int shift;
1690 
1691 	if (offset < target) {
1692 		shift = target - offset;
1693 		if (xdr_buf_subsegment(xdr->buf, &buf, offset, shift + length) < 0)
1694 			return 0;
1695 		xdr_buf_head_shift_right(&buf, 0, length, shift);
1696 	} else if (offset > target) {
1697 		shift = offset - target;
1698 		if (xdr_buf_subsegment(xdr->buf, &buf, target, shift + length) < 0)
1699 			return 0;
1700 		xdr_buf_head_shift_left(&buf, shift, length, shift);
1701 	}
1702 	return length;
1703 }
1704 EXPORT_SYMBOL_GPL(xdr_stream_move_subsegment);
1705 
1706 /**
1707  * xdr_stream_zero - zero out a portion of an xdr_stream
1708  * @xdr: an xdr_stream to zero out
1709  * @offset: the starting point in the stream
1710  * @length: the number of bytes to zero
1711  */
1712 unsigned int xdr_stream_zero(struct xdr_stream *xdr, unsigned int offset,
1713 			     unsigned int length)
1714 {
1715 	struct xdr_buf buf;
1716 
1717 	if (xdr_buf_subsegment(xdr->buf, &buf, offset, length) < 0)
1718 		return 0;
1719 	if (buf.head[0].iov_len)
1720 		xdr_buf_iov_zero(buf.head, 0, buf.head[0].iov_len);
1721 	if (buf.page_len > 0)
1722 		xdr_buf_pages_zero(&buf, 0, buf.page_len);
1723 	if (buf.tail[0].iov_len)
1724 		xdr_buf_iov_zero(buf.tail, 0, buf.tail[0].iov_len);
1725 	return length;
1726 }
1727 EXPORT_SYMBOL_GPL(xdr_stream_zero);
1728 
1729 /**
1730  * xdr_buf_trim - lop at most "len" bytes off the end of "buf"
1731  * @buf: buf to be trimmed
1732  * @len: number of bytes to reduce "buf" by
1733  *
1734  * Trim an xdr_buf by the given number of bytes by fixing up the lengths. Note
1735  * that it's possible that we'll trim less than that amount if the xdr_buf is
1736  * too small, or if (for instance) it's all in the head and the parser has
1737  * already read too far into it.
1738  */
1739 void xdr_buf_trim(struct xdr_buf *buf, unsigned int len)
1740 {
1741 	size_t cur;
1742 	unsigned int trim = len;
1743 
1744 	if (buf->tail[0].iov_len) {
1745 		cur = min_t(size_t, buf->tail[0].iov_len, trim);
1746 		buf->tail[0].iov_len -= cur;
1747 		trim -= cur;
1748 		if (!trim)
1749 			goto fix_len;
1750 	}
1751 
1752 	if (buf->page_len) {
1753 		cur = min_t(unsigned int, buf->page_len, trim);
1754 		buf->page_len -= cur;
1755 		trim -= cur;
1756 		if (!trim)
1757 			goto fix_len;
1758 	}
1759 
1760 	if (buf->head[0].iov_len) {
1761 		cur = min_t(size_t, buf->head[0].iov_len, trim);
1762 		buf->head[0].iov_len -= cur;
1763 		trim -= cur;
1764 	}
1765 fix_len:
1766 	buf->len -= (len - trim);
1767 }
1768 EXPORT_SYMBOL_GPL(xdr_buf_trim);
1769 
1770 static void __read_bytes_from_xdr_buf(const struct xdr_buf *subbuf,
1771 				      void *obj, unsigned int len)
1772 {
1773 	unsigned int this_len;
1774 
1775 	this_len = min_t(unsigned int, len, subbuf->head[0].iov_len);
1776 	memcpy(obj, subbuf->head[0].iov_base, this_len);
1777 	len -= this_len;
1778 	obj += this_len;
1779 	this_len = min_t(unsigned int, len, subbuf->page_len);
1780 	_copy_from_pages(obj, subbuf->pages, subbuf->page_base, this_len);
1781 	len -= this_len;
1782 	obj += this_len;
1783 	this_len = min_t(unsigned int, len, subbuf->tail[0].iov_len);
1784 	memcpy(obj, subbuf->tail[0].iov_base, this_len);
1785 }
1786 
1787 /* obj is assumed to point to allocated memory of size at least len: */
1788 int read_bytes_from_xdr_buf(const struct xdr_buf *buf, unsigned int base,
1789 			    void *obj, unsigned int len)
1790 {
1791 	struct xdr_buf subbuf;
1792 	int status;
1793 
1794 	status = xdr_buf_subsegment(buf, &subbuf, base, len);
1795 	if (status != 0)
1796 		return status;
1797 	__read_bytes_from_xdr_buf(&subbuf, obj, len);
1798 	return 0;
1799 }
1800 EXPORT_SYMBOL_GPL(read_bytes_from_xdr_buf);
1801 
1802 static void __write_bytes_to_xdr_buf(const struct xdr_buf *subbuf,
1803 				     void *obj, unsigned int len)
1804 {
1805 	unsigned int this_len;
1806 
1807 	this_len = min_t(unsigned int, len, subbuf->head[0].iov_len);
1808 	memcpy(subbuf->head[0].iov_base, obj, this_len);
1809 	len -= this_len;
1810 	obj += this_len;
1811 	this_len = min_t(unsigned int, len, subbuf->page_len);
1812 	_copy_to_pages(subbuf->pages, subbuf->page_base, obj, this_len);
1813 	len -= this_len;
1814 	obj += this_len;
1815 	this_len = min_t(unsigned int, len, subbuf->tail[0].iov_len);
1816 	memcpy(subbuf->tail[0].iov_base, obj, this_len);
1817 }
1818 
1819 /* obj is assumed to point to allocated memory of size at least len: */
1820 int write_bytes_to_xdr_buf(const struct xdr_buf *buf, unsigned int base,
1821 			   void *obj, unsigned int len)
1822 {
1823 	struct xdr_buf subbuf;
1824 	int status;
1825 
1826 	status = xdr_buf_subsegment(buf, &subbuf, base, len);
1827 	if (status != 0)
1828 		return status;
1829 	__write_bytes_to_xdr_buf(&subbuf, obj, len);
1830 	return 0;
1831 }
1832 EXPORT_SYMBOL_GPL(write_bytes_to_xdr_buf);
1833 
1834 int xdr_decode_word(const struct xdr_buf *buf, unsigned int base, u32 *obj)
1835 {
1836 	__be32	raw;
1837 	int	status;
1838 
1839 	status = read_bytes_from_xdr_buf(buf, base, &raw, sizeof(*obj));
1840 	if (status)
1841 		return status;
1842 	*obj = be32_to_cpu(raw);
1843 	return 0;
1844 }
1845 EXPORT_SYMBOL_GPL(xdr_decode_word);
1846 
1847 int xdr_encode_word(const struct xdr_buf *buf, unsigned int base, u32 obj)
1848 {
1849 	__be32	raw = cpu_to_be32(obj);
1850 
1851 	return write_bytes_to_xdr_buf(buf, base, &raw, sizeof(obj));
1852 }
1853 EXPORT_SYMBOL_GPL(xdr_encode_word);
1854 
1855 /* Returns 0 on success, or else a negative error code. */
1856 static int xdr_xcode_array2(const struct xdr_buf *buf, unsigned int base,
1857 			    struct xdr_array2_desc *desc, int encode)
1858 {
1859 	char *elem = NULL, *c;
1860 	unsigned int copied = 0, todo, avail_here;
1861 	struct page **ppages = NULL;
1862 	int err;
1863 
1864 	if (encode) {
1865 		if (xdr_encode_word(buf, base, desc->array_len) != 0)
1866 			return -EINVAL;
1867 	} else {
1868 		if (xdr_decode_word(buf, base, &desc->array_len) != 0 ||
1869 		    desc->array_len > desc->array_maxlen ||
1870 		    (unsigned long) base + 4 + desc->array_len *
1871 				    desc->elem_size > buf->len)
1872 			return -EINVAL;
1873 	}
1874 	base += 4;
1875 
1876 	if (!desc->xcode)
1877 		return 0;
1878 
1879 	todo = desc->array_len * desc->elem_size;
1880 
1881 	/* process head */
1882 	if (todo && base < buf->head->iov_len) {
1883 		c = buf->head->iov_base + base;
1884 		avail_here = min_t(unsigned int, todo,
1885 				   buf->head->iov_len - base);
1886 		todo -= avail_here;
1887 
1888 		while (avail_here >= desc->elem_size) {
1889 			err = desc->xcode(desc, c);
1890 			if (err)
1891 				goto out;
1892 			c += desc->elem_size;
1893 			avail_here -= desc->elem_size;
1894 		}
1895 		if (avail_here) {
1896 			if (!elem) {
1897 				elem = kmalloc(desc->elem_size, GFP_KERNEL);
1898 				err = -ENOMEM;
1899 				if (!elem)
1900 					goto out;
1901 			}
1902 			if (encode) {
1903 				err = desc->xcode(desc, elem);
1904 				if (err)
1905 					goto out;
1906 				memcpy(c, elem, avail_here);
1907 			} else
1908 				memcpy(elem, c, avail_here);
1909 			copied = avail_here;
1910 		}
1911 		base = buf->head->iov_len;  /* align to start of pages */
1912 	}
1913 
1914 	/* process pages array */
1915 	base -= buf->head->iov_len;
1916 	if (todo && base < buf->page_len) {
1917 		unsigned int avail_page;
1918 
1919 		avail_here = min(todo, buf->page_len - base);
1920 		todo -= avail_here;
1921 
1922 		base += buf->page_base;
1923 		ppages = buf->pages + (base >> PAGE_SHIFT);
1924 		base &= ~PAGE_MASK;
1925 		avail_page = min_t(unsigned int, PAGE_SIZE - base,
1926 					avail_here);
1927 		c = kmap(*ppages) + base;
1928 
1929 		while (avail_here) {
1930 			avail_here -= avail_page;
1931 			if (copied || avail_page < desc->elem_size) {
1932 				unsigned int l = min(avail_page,
1933 					desc->elem_size - copied);
1934 				if (!elem) {
1935 					elem = kmalloc(desc->elem_size,
1936 						       GFP_KERNEL);
1937 					err = -ENOMEM;
1938 					if (!elem)
1939 						goto out;
1940 				}
1941 				if (encode) {
1942 					if (!copied) {
1943 						err = desc->xcode(desc, elem);
1944 						if (err)
1945 							goto out;
1946 					}
1947 					memcpy(c, elem + copied, l);
1948 					copied += l;
1949 					if (copied == desc->elem_size)
1950 						copied = 0;
1951 				} else {
1952 					memcpy(elem + copied, c, l);
1953 					copied += l;
1954 					if (copied == desc->elem_size) {
1955 						err = desc->xcode(desc, elem);
1956 						if (err)
1957 							goto out;
1958 						copied = 0;
1959 					}
1960 				}
1961 				avail_page -= l;
1962 				c += l;
1963 			}
1964 			while (avail_page >= desc->elem_size) {
1965 				err = desc->xcode(desc, c);
1966 				if (err)
1967 					goto out;
1968 				c += desc->elem_size;
1969 				avail_page -= desc->elem_size;
1970 			}
1971 			if (avail_page) {
1972 				unsigned int l = min(avail_page,
1973 					    desc->elem_size - copied);
1974 				if (!elem) {
1975 					elem = kmalloc(desc->elem_size,
1976 						       GFP_KERNEL);
1977 					err = -ENOMEM;
1978 					if (!elem)
1979 						goto out;
1980 				}
1981 				if (encode) {
1982 					if (!copied) {
1983 						err = desc->xcode(desc, elem);
1984 						if (err)
1985 							goto out;
1986 					}
1987 					memcpy(c, elem + copied, l);
1988 					copied += l;
1989 					if (copied == desc->elem_size)
1990 						copied = 0;
1991 				} else {
1992 					memcpy(elem + copied, c, l);
1993 					copied += l;
1994 					if (copied == desc->elem_size) {
1995 						err = desc->xcode(desc, elem);
1996 						if (err)
1997 							goto out;
1998 						copied = 0;
1999 					}
2000 				}
2001 			}
2002 			if (avail_here) {
2003 				kunmap(*ppages);
2004 				ppages++;
2005 				c = kmap(*ppages);
2006 			}
2007 
2008 			avail_page = min(avail_here,
2009 				 (unsigned int) PAGE_SIZE);
2010 		}
2011 		base = buf->page_len;  /* align to start of tail */
2012 	}
2013 
2014 	/* process tail */
2015 	base -= buf->page_len;
2016 	if (todo) {
2017 		c = buf->tail->iov_base + base;
2018 		if (copied) {
2019 			unsigned int l = desc->elem_size - copied;
2020 
2021 			if (encode)
2022 				memcpy(c, elem + copied, l);
2023 			else {
2024 				memcpy(elem + copied, c, l);
2025 				err = desc->xcode(desc, elem);
2026 				if (err)
2027 					goto out;
2028 			}
2029 			todo -= l;
2030 			c += l;
2031 		}
2032 		while (todo) {
2033 			err = desc->xcode(desc, c);
2034 			if (err)
2035 				goto out;
2036 			c += desc->elem_size;
2037 			todo -= desc->elem_size;
2038 		}
2039 	}
2040 	err = 0;
2041 
2042 out:
2043 	kfree(elem);
2044 	if (ppages)
2045 		kunmap(*ppages);
2046 	return err;
2047 }
2048 
2049 int xdr_decode_array2(const struct xdr_buf *buf, unsigned int base,
2050 		      struct xdr_array2_desc *desc)
2051 {
2052 	if (base >= buf->len)
2053 		return -EINVAL;
2054 
2055 	return xdr_xcode_array2(buf, base, desc, 0);
2056 }
2057 EXPORT_SYMBOL_GPL(xdr_decode_array2);
2058 
2059 int xdr_encode_array2(const struct xdr_buf *buf, unsigned int base,
2060 		      struct xdr_array2_desc *desc)
2061 {
2062 	if ((unsigned long) base + 4 + desc->array_len * desc->elem_size >
2063 	    buf->head->iov_len + buf->page_len + buf->tail->iov_len)
2064 		return -EINVAL;
2065 
2066 	return xdr_xcode_array2(buf, base, desc, 1);
2067 }
2068 EXPORT_SYMBOL_GPL(xdr_encode_array2);
2069 
2070 int xdr_process_buf(const struct xdr_buf *buf, unsigned int offset,
2071 		    unsigned int len,
2072 		    int (*actor)(struct scatterlist *, void *), void *data)
2073 {
2074 	int i, ret = 0;
2075 	unsigned int page_len, thislen, page_offset;
2076 	struct scatterlist      sg[1];
2077 
2078 	sg_init_table(sg, 1);
2079 
2080 	if (offset >= buf->head[0].iov_len) {
2081 		offset -= buf->head[0].iov_len;
2082 	} else {
2083 		thislen = buf->head[0].iov_len - offset;
2084 		if (thislen > len)
2085 			thislen = len;
2086 		sg_set_buf(sg, buf->head[0].iov_base + offset, thislen);
2087 		ret = actor(sg, data);
2088 		if (ret)
2089 			goto out;
2090 		offset = 0;
2091 		len -= thislen;
2092 	}
2093 	if (len == 0)
2094 		goto out;
2095 
2096 	if (offset >= buf->page_len) {
2097 		offset -= buf->page_len;
2098 	} else {
2099 		page_len = buf->page_len - offset;
2100 		if (page_len > len)
2101 			page_len = len;
2102 		len -= page_len;
2103 		page_offset = (offset + buf->page_base) & (PAGE_SIZE - 1);
2104 		i = (offset + buf->page_base) >> PAGE_SHIFT;
2105 		thislen = PAGE_SIZE - page_offset;
2106 		do {
2107 			if (thislen > page_len)
2108 				thislen = page_len;
2109 			sg_set_page(sg, buf->pages[i], thislen, page_offset);
2110 			ret = actor(sg, data);
2111 			if (ret)
2112 				goto out;
2113 			page_len -= thislen;
2114 			i++;
2115 			page_offset = 0;
2116 			thislen = PAGE_SIZE;
2117 		} while (page_len != 0);
2118 		offset = 0;
2119 	}
2120 	if (len == 0)
2121 		goto out;
2122 	if (offset < buf->tail[0].iov_len) {
2123 		thislen = buf->tail[0].iov_len - offset;
2124 		if (thislen > len)
2125 			thislen = len;
2126 		sg_set_buf(sg, buf->tail[0].iov_base + offset, thislen);
2127 		ret = actor(sg, data);
2128 		len -= thislen;
2129 	}
2130 	if (len != 0)
2131 		ret = -EINVAL;
2132 out:
2133 	return ret;
2134 }
2135 EXPORT_SYMBOL_GPL(xdr_process_buf);
2136 
2137 /**
2138  * xdr_stream_decode_opaque - Decode variable length opaque
2139  * @xdr: pointer to xdr_stream
2140  * @ptr: location to store opaque data
2141  * @size: size of storage buffer @ptr
2142  *
2143  * Return values:
2144  *   On success, returns size of object stored in *@ptr
2145  *   %-EBADMSG on XDR buffer overflow
2146  *   %-EMSGSIZE on overflow of storage buffer @ptr
2147  */
2148 ssize_t xdr_stream_decode_opaque(struct xdr_stream *xdr, void *ptr, size_t size)
2149 {
2150 	ssize_t ret;
2151 	void *p;
2152 
2153 	ret = xdr_stream_decode_opaque_inline(xdr, &p, size);
2154 	if (ret <= 0)
2155 		return ret;
2156 	memcpy(ptr, p, ret);
2157 	return ret;
2158 }
2159 EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque);
2160 
2161 /**
2162  * xdr_stream_decode_opaque_dup - Decode and duplicate variable length opaque
2163  * @xdr: pointer to xdr_stream
2164  * @ptr: location to store pointer to opaque data
2165  * @maxlen: maximum acceptable object size
2166  * @gfp_flags: GFP mask to use
2167  *
2168  * Return values:
2169  *   On success, returns size of object stored in *@ptr
2170  *   %-EBADMSG on XDR buffer overflow
2171  *   %-EMSGSIZE if the size of the object would exceed @maxlen
2172  *   %-ENOMEM on memory allocation failure
2173  */
2174 ssize_t xdr_stream_decode_opaque_dup(struct xdr_stream *xdr, void **ptr,
2175 		size_t maxlen, gfp_t gfp_flags)
2176 {
2177 	ssize_t ret;
2178 	void *p;
2179 
2180 	ret = xdr_stream_decode_opaque_inline(xdr, &p, maxlen);
2181 	if (ret > 0) {
2182 		*ptr = kmemdup(p, ret, gfp_flags);
2183 		if (*ptr != NULL)
2184 			return ret;
2185 		ret = -ENOMEM;
2186 	}
2187 	*ptr = NULL;
2188 	return ret;
2189 }
2190 EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque_dup);
2191 
2192 /**
2193  * xdr_stream_decode_string - Decode variable length string
2194  * @xdr: pointer to xdr_stream
2195  * @str: location to store string
2196  * @size: size of storage buffer @str
2197  *
2198  * Return values:
2199  *   On success, returns length of NUL-terminated string stored in *@str
2200  *   %-EBADMSG on XDR buffer overflow
2201  *   %-EMSGSIZE on overflow of storage buffer @str
2202  */
2203 ssize_t xdr_stream_decode_string(struct xdr_stream *xdr, char *str, size_t size)
2204 {
2205 	ssize_t ret;
2206 	void *p;
2207 
2208 	ret = xdr_stream_decode_opaque_inline(xdr, &p, size);
2209 	if (ret > 0) {
2210 		memcpy(str, p, ret);
2211 		str[ret] = '\0';
2212 		return strlen(str);
2213 	}
2214 	*str = '\0';
2215 	return ret;
2216 }
2217 EXPORT_SYMBOL_GPL(xdr_stream_decode_string);
2218 
2219 /**
2220  * xdr_stream_decode_string_dup - Decode and duplicate variable length string
2221  * @xdr: pointer to xdr_stream
2222  * @str: location to store pointer to string
2223  * @maxlen: maximum acceptable string length
2224  * @gfp_flags: GFP mask to use
2225  *
2226  * Return values:
2227  *   On success, returns length of NUL-terminated string stored in *@ptr
2228  *   %-EBADMSG on XDR buffer overflow
2229  *   %-EMSGSIZE if the size of the string would exceed @maxlen
2230  *   %-ENOMEM on memory allocation failure
2231  */
2232 ssize_t xdr_stream_decode_string_dup(struct xdr_stream *xdr, char **str,
2233 		size_t maxlen, gfp_t gfp_flags)
2234 {
2235 	void *p;
2236 	ssize_t ret;
2237 
2238 	ret = xdr_stream_decode_opaque_inline(xdr, &p, maxlen);
2239 	if (ret > 0) {
2240 		char *s = kmemdup_nul(p, ret, gfp_flags);
2241 		if (s != NULL) {
2242 			*str = s;
2243 			return strlen(s);
2244 		}
2245 		ret = -ENOMEM;
2246 	}
2247 	*str = NULL;
2248 	return ret;
2249 }
2250 EXPORT_SYMBOL_GPL(xdr_stream_decode_string_dup);
2251