1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/xdr.c 4 * 5 * Generic XDR support. 6 * 7 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 8 */ 9 10 #include <linux/module.h> 11 #include <linux/slab.h> 12 #include <linux/types.h> 13 #include <linux/string.h> 14 #include <linux/kernel.h> 15 #include <linux/pagemap.h> 16 #include <linux/errno.h> 17 #include <linux/sunrpc/xdr.h> 18 #include <linux/sunrpc/msg_prot.h> 19 #include <linux/bvec.h> 20 #include <trace/events/sunrpc.h> 21 22 static void _copy_to_pages(struct page **, size_t, const char *, size_t); 23 24 25 /* 26 * XDR functions for basic NFS types 27 */ 28 __be32 * 29 xdr_encode_netobj(__be32 *p, const struct xdr_netobj *obj) 30 { 31 unsigned int quadlen = XDR_QUADLEN(obj->len); 32 33 p[quadlen] = 0; /* zero trailing bytes */ 34 *p++ = cpu_to_be32(obj->len); 35 memcpy(p, obj->data, obj->len); 36 return p + XDR_QUADLEN(obj->len); 37 } 38 EXPORT_SYMBOL_GPL(xdr_encode_netobj); 39 40 __be32 * 41 xdr_decode_netobj(__be32 *p, struct xdr_netobj *obj) 42 { 43 unsigned int len; 44 45 if ((len = be32_to_cpu(*p++)) > XDR_MAX_NETOBJ) 46 return NULL; 47 obj->len = len; 48 obj->data = (u8 *) p; 49 return p + XDR_QUADLEN(len); 50 } 51 EXPORT_SYMBOL_GPL(xdr_decode_netobj); 52 53 /** 54 * xdr_encode_opaque_fixed - Encode fixed length opaque data 55 * @p: pointer to current position in XDR buffer. 56 * @ptr: pointer to data to encode (or NULL) 57 * @nbytes: size of data. 58 * 59 * Copy the array of data of length nbytes at ptr to the XDR buffer 60 * at position p, then align to the next 32-bit boundary by padding 61 * with zero bytes (see RFC1832). 62 * Note: if ptr is NULL, only the padding is performed. 63 * 64 * Returns the updated current XDR buffer position 65 * 66 */ 67 __be32 *xdr_encode_opaque_fixed(__be32 *p, const void *ptr, unsigned int nbytes) 68 { 69 if (likely(nbytes != 0)) { 70 unsigned int quadlen = XDR_QUADLEN(nbytes); 71 unsigned int padding = (quadlen << 2) - nbytes; 72 73 if (ptr != NULL) 74 memcpy(p, ptr, nbytes); 75 if (padding != 0) 76 memset((char *)p + nbytes, 0, padding); 77 p += quadlen; 78 } 79 return p; 80 } 81 EXPORT_SYMBOL_GPL(xdr_encode_opaque_fixed); 82 83 /** 84 * xdr_encode_opaque - Encode variable length opaque data 85 * @p: pointer to current position in XDR buffer. 86 * @ptr: pointer to data to encode (or NULL) 87 * @nbytes: size of data. 88 * 89 * Returns the updated current XDR buffer position 90 */ 91 __be32 *xdr_encode_opaque(__be32 *p, const void *ptr, unsigned int nbytes) 92 { 93 *p++ = cpu_to_be32(nbytes); 94 return xdr_encode_opaque_fixed(p, ptr, nbytes); 95 } 96 EXPORT_SYMBOL_GPL(xdr_encode_opaque); 97 98 __be32 * 99 xdr_encode_string(__be32 *p, const char *string) 100 { 101 return xdr_encode_array(p, string, strlen(string)); 102 } 103 EXPORT_SYMBOL_GPL(xdr_encode_string); 104 105 __be32 * 106 xdr_decode_string_inplace(__be32 *p, char **sp, 107 unsigned int *lenp, unsigned int maxlen) 108 { 109 u32 len; 110 111 len = be32_to_cpu(*p++); 112 if (len > maxlen) 113 return NULL; 114 *lenp = len; 115 *sp = (char *) p; 116 return p + XDR_QUADLEN(len); 117 } 118 EXPORT_SYMBOL_GPL(xdr_decode_string_inplace); 119 120 /** 121 * xdr_terminate_string - '\0'-terminate a string residing in an xdr_buf 122 * @buf: XDR buffer where string resides 123 * @len: length of string, in bytes 124 * 125 */ 126 void xdr_terminate_string(const struct xdr_buf *buf, const u32 len) 127 { 128 char *kaddr; 129 130 kaddr = kmap_atomic(buf->pages[0]); 131 kaddr[buf->page_base + len] = '\0'; 132 kunmap_atomic(kaddr); 133 } 134 EXPORT_SYMBOL_GPL(xdr_terminate_string); 135 136 size_t xdr_buf_pagecount(const struct xdr_buf *buf) 137 { 138 if (!buf->page_len) 139 return 0; 140 return (buf->page_base + buf->page_len + PAGE_SIZE - 1) >> PAGE_SHIFT; 141 } 142 143 int 144 xdr_alloc_bvec(struct xdr_buf *buf, gfp_t gfp) 145 { 146 size_t i, n = xdr_buf_pagecount(buf); 147 148 if (n != 0 && buf->bvec == NULL) { 149 buf->bvec = kmalloc_array(n, sizeof(buf->bvec[0]), gfp); 150 if (!buf->bvec) 151 return -ENOMEM; 152 for (i = 0; i < n; i++) { 153 buf->bvec[i].bv_page = buf->pages[i]; 154 buf->bvec[i].bv_len = PAGE_SIZE; 155 buf->bvec[i].bv_offset = 0; 156 } 157 } 158 return 0; 159 } 160 161 void 162 xdr_free_bvec(struct xdr_buf *buf) 163 { 164 kfree(buf->bvec); 165 buf->bvec = NULL; 166 } 167 168 /** 169 * xdr_inline_pages - Prepare receive buffer for a large reply 170 * @xdr: xdr_buf into which reply will be placed 171 * @offset: expected offset where data payload will start, in bytes 172 * @pages: vector of struct page pointers 173 * @base: offset in first page where receive should start, in bytes 174 * @len: expected size of the upper layer data payload, in bytes 175 * 176 */ 177 void 178 xdr_inline_pages(struct xdr_buf *xdr, unsigned int offset, 179 struct page **pages, unsigned int base, unsigned int len) 180 { 181 struct kvec *head = xdr->head; 182 struct kvec *tail = xdr->tail; 183 char *buf = (char *)head->iov_base; 184 unsigned int buflen = head->iov_len; 185 186 head->iov_len = offset; 187 188 xdr->pages = pages; 189 xdr->page_base = base; 190 xdr->page_len = len; 191 192 tail->iov_base = buf + offset; 193 tail->iov_len = buflen - offset; 194 xdr->buflen += len; 195 } 196 EXPORT_SYMBOL_GPL(xdr_inline_pages); 197 198 /* 199 * Helper routines for doing 'memmove' like operations on a struct xdr_buf 200 */ 201 202 /** 203 * _shift_data_left_pages 204 * @pages: vector of pages containing both the source and dest memory area. 205 * @pgto_base: page vector address of destination 206 * @pgfrom_base: page vector address of source 207 * @len: number of bytes to copy 208 * 209 * Note: the addresses pgto_base and pgfrom_base are both calculated in 210 * the same way: 211 * if a memory area starts at byte 'base' in page 'pages[i]', 212 * then its address is given as (i << PAGE_CACHE_SHIFT) + base 213 * Alse note: pgto_base must be < pgfrom_base, but the memory areas 214 * they point to may overlap. 215 */ 216 static void 217 _shift_data_left_pages(struct page **pages, size_t pgto_base, 218 size_t pgfrom_base, size_t len) 219 { 220 struct page **pgfrom, **pgto; 221 char *vfrom, *vto; 222 size_t copy; 223 224 BUG_ON(pgfrom_base <= pgto_base); 225 226 if (!len) 227 return; 228 229 pgto = pages + (pgto_base >> PAGE_SHIFT); 230 pgfrom = pages + (pgfrom_base >> PAGE_SHIFT); 231 232 pgto_base &= ~PAGE_MASK; 233 pgfrom_base &= ~PAGE_MASK; 234 235 do { 236 if (pgto_base >= PAGE_SIZE) { 237 pgto_base = 0; 238 pgto++; 239 } 240 if (pgfrom_base >= PAGE_SIZE){ 241 pgfrom_base = 0; 242 pgfrom++; 243 } 244 245 copy = len; 246 if (copy > (PAGE_SIZE - pgto_base)) 247 copy = PAGE_SIZE - pgto_base; 248 if (copy > (PAGE_SIZE - pgfrom_base)) 249 copy = PAGE_SIZE - pgfrom_base; 250 251 vto = kmap_atomic(*pgto); 252 if (*pgto != *pgfrom) { 253 vfrom = kmap_atomic(*pgfrom); 254 memcpy(vto + pgto_base, vfrom + pgfrom_base, copy); 255 kunmap_atomic(vfrom); 256 } else 257 memmove(vto + pgto_base, vto + pgfrom_base, copy); 258 flush_dcache_page(*pgto); 259 kunmap_atomic(vto); 260 261 pgto_base += copy; 262 pgfrom_base += copy; 263 264 } while ((len -= copy) != 0); 265 } 266 267 /** 268 * _shift_data_right_pages 269 * @pages: vector of pages containing both the source and dest memory area. 270 * @pgto_base: page vector address of destination 271 * @pgfrom_base: page vector address of source 272 * @len: number of bytes to copy 273 * 274 * Note: the addresses pgto_base and pgfrom_base are both calculated in 275 * the same way: 276 * if a memory area starts at byte 'base' in page 'pages[i]', 277 * then its address is given as (i << PAGE_SHIFT) + base 278 * Also note: pgfrom_base must be < pgto_base, but the memory areas 279 * they point to may overlap. 280 */ 281 static void 282 _shift_data_right_pages(struct page **pages, size_t pgto_base, 283 size_t pgfrom_base, size_t len) 284 { 285 struct page **pgfrom, **pgto; 286 char *vfrom, *vto; 287 size_t copy; 288 289 BUG_ON(pgto_base <= pgfrom_base); 290 291 if (!len) 292 return; 293 294 pgto_base += len; 295 pgfrom_base += len; 296 297 pgto = pages + (pgto_base >> PAGE_SHIFT); 298 pgfrom = pages + (pgfrom_base >> PAGE_SHIFT); 299 300 pgto_base &= ~PAGE_MASK; 301 pgfrom_base &= ~PAGE_MASK; 302 303 do { 304 /* Are any pointers crossing a page boundary? */ 305 if (pgto_base == 0) { 306 pgto_base = PAGE_SIZE; 307 pgto--; 308 } 309 if (pgfrom_base == 0) { 310 pgfrom_base = PAGE_SIZE; 311 pgfrom--; 312 } 313 314 copy = len; 315 if (copy > pgto_base) 316 copy = pgto_base; 317 if (copy > pgfrom_base) 318 copy = pgfrom_base; 319 pgto_base -= copy; 320 pgfrom_base -= copy; 321 322 vto = kmap_atomic(*pgto); 323 if (*pgto != *pgfrom) { 324 vfrom = kmap_atomic(*pgfrom); 325 memcpy(vto + pgto_base, vfrom + pgfrom_base, copy); 326 kunmap_atomic(vfrom); 327 } else 328 memmove(vto + pgto_base, vto + pgfrom_base, copy); 329 flush_dcache_page(*pgto); 330 kunmap_atomic(vto); 331 332 } while ((len -= copy) != 0); 333 } 334 335 /** 336 * _copy_to_pages 337 * @pages: array of pages 338 * @pgbase: page vector address of destination 339 * @p: pointer to source data 340 * @len: length 341 * 342 * Copies data from an arbitrary memory location into an array of pages 343 * The copy is assumed to be non-overlapping. 344 */ 345 static void 346 _copy_to_pages(struct page **pages, size_t pgbase, const char *p, size_t len) 347 { 348 struct page **pgto; 349 char *vto; 350 size_t copy; 351 352 if (!len) 353 return; 354 355 pgto = pages + (pgbase >> PAGE_SHIFT); 356 pgbase &= ~PAGE_MASK; 357 358 for (;;) { 359 copy = PAGE_SIZE - pgbase; 360 if (copy > len) 361 copy = len; 362 363 vto = kmap_atomic(*pgto); 364 memcpy(vto + pgbase, p, copy); 365 kunmap_atomic(vto); 366 367 len -= copy; 368 if (len == 0) 369 break; 370 371 pgbase += copy; 372 if (pgbase == PAGE_SIZE) { 373 flush_dcache_page(*pgto); 374 pgbase = 0; 375 pgto++; 376 } 377 p += copy; 378 } 379 flush_dcache_page(*pgto); 380 } 381 382 /** 383 * _copy_from_pages 384 * @p: pointer to destination 385 * @pages: array of pages 386 * @pgbase: offset of source data 387 * @len: length 388 * 389 * Copies data into an arbitrary memory location from an array of pages 390 * The copy is assumed to be non-overlapping. 391 */ 392 void 393 _copy_from_pages(char *p, struct page **pages, size_t pgbase, size_t len) 394 { 395 struct page **pgfrom; 396 char *vfrom; 397 size_t copy; 398 399 if (!len) 400 return; 401 402 pgfrom = pages + (pgbase >> PAGE_SHIFT); 403 pgbase &= ~PAGE_MASK; 404 405 do { 406 copy = PAGE_SIZE - pgbase; 407 if (copy > len) 408 copy = len; 409 410 vfrom = kmap_atomic(*pgfrom); 411 memcpy(p, vfrom + pgbase, copy); 412 kunmap_atomic(vfrom); 413 414 pgbase += copy; 415 if (pgbase == PAGE_SIZE) { 416 pgbase = 0; 417 pgfrom++; 418 } 419 p += copy; 420 421 } while ((len -= copy) != 0); 422 } 423 EXPORT_SYMBOL_GPL(_copy_from_pages); 424 425 static void xdr_buf_iov_zero(const struct kvec *iov, unsigned int base, 426 unsigned int len) 427 { 428 if (base >= iov->iov_len) 429 return; 430 if (len > iov->iov_len - base) 431 len = iov->iov_len - base; 432 memset(iov->iov_base + base, 0, len); 433 } 434 435 /** 436 * xdr_buf_pages_zero 437 * @buf: xdr_buf 438 * @pgbase: beginning offset 439 * @len: length 440 */ 441 static void xdr_buf_pages_zero(const struct xdr_buf *buf, unsigned int pgbase, 442 unsigned int len) 443 { 444 struct page **pages = buf->pages; 445 struct page **page; 446 char *vpage; 447 unsigned int zero; 448 449 if (!len) 450 return; 451 if (pgbase >= buf->page_len) { 452 xdr_buf_iov_zero(buf->tail, pgbase - buf->page_len, len); 453 return; 454 } 455 if (pgbase + len > buf->page_len) { 456 xdr_buf_iov_zero(buf->tail, 0, pgbase + len - buf->page_len); 457 len = buf->page_len - pgbase; 458 } 459 460 pgbase += buf->page_base; 461 462 page = pages + (pgbase >> PAGE_SHIFT); 463 pgbase &= ~PAGE_MASK; 464 465 do { 466 zero = PAGE_SIZE - pgbase; 467 if (zero > len) 468 zero = len; 469 470 vpage = kmap_atomic(*page); 471 memset(vpage + pgbase, 0, zero); 472 kunmap_atomic(vpage); 473 474 flush_dcache_page(*page); 475 pgbase = 0; 476 page++; 477 478 } while ((len -= zero) != 0); 479 } 480 481 static unsigned int xdr_buf_pages_fill_sparse(const struct xdr_buf *buf, 482 unsigned int buflen, gfp_t gfp) 483 { 484 unsigned int i, npages, pagelen; 485 486 if (!(buf->flags & XDRBUF_SPARSE_PAGES)) 487 return buflen; 488 if (buflen <= buf->head->iov_len) 489 return buflen; 490 pagelen = buflen - buf->head->iov_len; 491 if (pagelen > buf->page_len) 492 pagelen = buf->page_len; 493 npages = (pagelen + buf->page_base + PAGE_SIZE - 1) >> PAGE_SHIFT; 494 for (i = 0; i < npages; i++) { 495 if (!buf->pages[i]) 496 continue; 497 buf->pages[i] = alloc_page(gfp); 498 if (likely(buf->pages[i])) 499 continue; 500 buflen -= pagelen; 501 pagelen = i << PAGE_SHIFT; 502 if (pagelen > buf->page_base) 503 buflen += pagelen - buf->page_base; 504 break; 505 } 506 return buflen; 507 } 508 509 static void xdr_buf_try_expand(struct xdr_buf *buf, unsigned int len) 510 { 511 struct kvec *head = buf->head; 512 struct kvec *tail = buf->tail; 513 unsigned int sum = head->iov_len + buf->page_len + tail->iov_len; 514 unsigned int free_space, newlen; 515 516 if (sum > buf->len) { 517 free_space = min_t(unsigned int, sum - buf->len, len); 518 newlen = xdr_buf_pages_fill_sparse(buf, buf->len + free_space, 519 GFP_KERNEL); 520 free_space = newlen - buf->len; 521 buf->len = newlen; 522 len -= free_space; 523 if (!len) 524 return; 525 } 526 527 if (buf->buflen > sum) { 528 /* Expand the tail buffer */ 529 free_space = min_t(unsigned int, buf->buflen - sum, len); 530 tail->iov_len += free_space; 531 buf->len += free_space; 532 } 533 } 534 535 static void xdr_buf_tail_copy_right(const struct xdr_buf *buf, 536 unsigned int base, unsigned int len, 537 unsigned int shift) 538 { 539 const struct kvec *tail = buf->tail; 540 unsigned int to = base + shift; 541 542 if (to >= tail->iov_len) 543 return; 544 if (len + to > tail->iov_len) 545 len = tail->iov_len - to; 546 memmove(tail->iov_base + to, tail->iov_base + base, len); 547 } 548 549 static void xdr_buf_pages_copy_right(const struct xdr_buf *buf, 550 unsigned int base, unsigned int len, 551 unsigned int shift) 552 { 553 const struct kvec *tail = buf->tail; 554 unsigned int to = base + shift; 555 unsigned int pglen = 0; 556 unsigned int talen = 0, tato = 0; 557 558 if (base >= buf->page_len) 559 return; 560 if (len > buf->page_len - base) 561 len = buf->page_len - base; 562 if (to >= buf->page_len) { 563 tato = to - buf->page_len; 564 if (tail->iov_len >= len + tato) 565 talen = len; 566 else if (tail->iov_len > tato) 567 talen = tail->iov_len - tato; 568 } else if (len + to >= buf->page_len) { 569 pglen = buf->page_len - to; 570 talen = len - pglen; 571 if (talen > tail->iov_len) 572 talen = tail->iov_len; 573 } else 574 pglen = len; 575 576 _copy_from_pages(tail->iov_base + tato, buf->pages, 577 buf->page_base + base + pglen, talen); 578 _shift_data_right_pages(buf->pages, buf->page_base + to, 579 buf->page_base + base, pglen); 580 } 581 582 static void xdr_buf_head_copy_right(const struct xdr_buf *buf, 583 unsigned int base, unsigned int len, 584 unsigned int shift) 585 { 586 const struct kvec *head = buf->head; 587 const struct kvec *tail = buf->tail; 588 unsigned int to = base + shift; 589 unsigned int pglen = 0, pgto = 0; 590 unsigned int talen = 0, tato = 0; 591 592 if (base >= head->iov_len) 593 return; 594 if (len > head->iov_len - base) 595 len = head->iov_len - base; 596 if (to >= buf->page_len + head->iov_len) { 597 tato = to - buf->page_len - head->iov_len; 598 talen = len; 599 } else if (to >= head->iov_len) { 600 pgto = to - head->iov_len; 601 pglen = len; 602 if (pgto + pglen > buf->page_len) { 603 talen = pgto + pglen - buf->page_len; 604 pglen -= talen; 605 } 606 } else { 607 pglen = len - to; 608 if (pglen > buf->page_len) { 609 talen = pglen - buf->page_len; 610 pglen = buf->page_len; 611 } 612 } 613 614 len -= talen; 615 base += len; 616 if (talen + tato > tail->iov_len) 617 talen = tail->iov_len > tato ? tail->iov_len - tato : 0; 618 memcpy(tail->iov_base + tato, head->iov_base + base, talen); 619 620 len -= pglen; 621 base -= pglen; 622 _copy_to_pages(buf->pages, buf->page_base + pgto, head->iov_base + base, 623 pglen); 624 625 base -= len; 626 memmove(head->iov_base + to, head->iov_base + base, len); 627 } 628 629 static void xdr_buf_tail_shift_right(const struct xdr_buf *buf, 630 unsigned int base, unsigned int len, 631 unsigned int shift) 632 { 633 const struct kvec *tail = buf->tail; 634 635 if (base >= tail->iov_len || !shift || !len) 636 return; 637 xdr_buf_tail_copy_right(buf, base, len, shift); 638 } 639 640 static void xdr_buf_pages_shift_right(const struct xdr_buf *buf, 641 unsigned int base, unsigned int len, 642 unsigned int shift) 643 { 644 if (!shift || !len) 645 return; 646 if (base >= buf->page_len) { 647 xdr_buf_tail_shift_right(buf, base - buf->page_len, len, shift); 648 return; 649 } 650 if (base + len > buf->page_len) 651 xdr_buf_tail_shift_right(buf, 0, base + len - buf->page_len, 652 shift); 653 xdr_buf_pages_copy_right(buf, base, len, shift); 654 } 655 656 static void xdr_buf_head_shift_right(const struct xdr_buf *buf, 657 unsigned int base, unsigned int len, 658 unsigned int shift) 659 { 660 const struct kvec *head = buf->head; 661 662 if (!shift) 663 return; 664 if (base >= head->iov_len) { 665 xdr_buf_pages_shift_right(buf, head->iov_len - base, len, 666 shift); 667 return; 668 } 669 if (base + len > head->iov_len) 670 xdr_buf_pages_shift_right(buf, 0, base + len - head->iov_len, 671 shift); 672 xdr_buf_head_copy_right(buf, base, len, shift); 673 } 674 675 static void xdr_buf_tail_copy_left(const struct xdr_buf *buf, unsigned int base, 676 unsigned int len, unsigned int shift) 677 { 678 const struct kvec *tail = buf->tail; 679 680 if (base >= tail->iov_len) 681 return; 682 if (len > tail->iov_len - base) 683 len = tail->iov_len - base; 684 /* Shift data into head */ 685 if (shift > buf->page_len + base) { 686 const struct kvec *head = buf->head; 687 unsigned int hdto = 688 head->iov_len + buf->page_len + base - shift; 689 unsigned int hdlen = len; 690 691 if (WARN_ONCE(shift > head->iov_len + buf->page_len + base, 692 "SUNRPC: Misaligned data.\n")) 693 return; 694 if (hdto + hdlen > head->iov_len) 695 hdlen = head->iov_len - hdto; 696 memcpy(head->iov_base + hdto, tail->iov_base + base, hdlen); 697 base += hdlen; 698 len -= hdlen; 699 if (!len) 700 return; 701 } 702 /* Shift data into pages */ 703 if (shift > base) { 704 unsigned int pgto = buf->page_len + base - shift; 705 unsigned int pglen = len; 706 707 if (pgto + pglen > buf->page_len) 708 pglen = buf->page_len - pgto; 709 _copy_to_pages(buf->pages, buf->page_base + pgto, 710 tail->iov_base + base, pglen); 711 base += pglen; 712 len -= pglen; 713 if (!len) 714 return; 715 } 716 memmove(tail->iov_base + base - shift, tail->iov_base + base, len); 717 } 718 719 static void xdr_buf_pages_copy_left(const struct xdr_buf *buf, 720 unsigned int base, unsigned int len, 721 unsigned int shift) 722 { 723 unsigned int pgto; 724 725 if (base >= buf->page_len) 726 return; 727 if (len > buf->page_len - base) 728 len = buf->page_len - base; 729 /* Shift data into head */ 730 if (shift > base) { 731 const struct kvec *head = buf->head; 732 unsigned int hdto = head->iov_len + base - shift; 733 unsigned int hdlen = len; 734 735 if (WARN_ONCE(shift > head->iov_len + base, 736 "SUNRPC: Misaligned data.\n")) 737 return; 738 if (hdto + hdlen > head->iov_len) 739 hdlen = head->iov_len - hdto; 740 _copy_from_pages(head->iov_base + hdto, buf->pages, 741 buf->page_base + base, hdlen); 742 base += hdlen; 743 len -= hdlen; 744 if (!len) 745 return; 746 } 747 pgto = base - shift; 748 _shift_data_left_pages(buf->pages, buf->page_base + pgto, 749 buf->page_base + base, len); 750 } 751 752 static void xdr_buf_tail_shift_left(const struct xdr_buf *buf, 753 unsigned int base, unsigned int len, 754 unsigned int shift) 755 { 756 if (!shift || !len) 757 return; 758 xdr_buf_tail_copy_left(buf, base, len, shift); 759 } 760 761 static void xdr_buf_pages_shift_left(const struct xdr_buf *buf, 762 unsigned int base, unsigned int len, 763 unsigned int shift) 764 { 765 if (!shift || !len) 766 return; 767 if (base >= buf->page_len) { 768 xdr_buf_tail_shift_left(buf, base - buf->page_len, len, shift); 769 return; 770 } 771 xdr_buf_pages_copy_left(buf, base, len, shift); 772 len += base; 773 if (len <= buf->page_len) 774 return; 775 xdr_buf_tail_copy_left(buf, 0, len - buf->page_len, shift); 776 } 777 778 static void xdr_buf_head_shift_left(const struct xdr_buf *buf, 779 unsigned int base, unsigned int len, 780 unsigned int shift) 781 { 782 const struct kvec *head = buf->head; 783 unsigned int bytes; 784 785 if (!shift || !len) 786 return; 787 788 if (shift > base) { 789 bytes = (shift - base); 790 if (bytes >= len) 791 return; 792 base += bytes; 793 len -= bytes; 794 } 795 796 if (base < head->iov_len) { 797 bytes = min_t(unsigned int, len, head->iov_len - base); 798 memmove(head->iov_base + (base - shift), 799 head->iov_base + base, bytes); 800 base += bytes; 801 len -= bytes; 802 } 803 xdr_buf_pages_shift_left(buf, base - head->iov_len, len, shift); 804 } 805 806 /** 807 * xdr_shrink_bufhead 808 * @buf: xdr_buf 809 * @len: new length of buf->head[0] 810 * 811 * Shrinks XDR buffer's header kvec buf->head[0], setting it to 812 * 'len' bytes. The extra data is not lost, but is instead 813 * moved into the inlined pages and/or the tail. 814 */ 815 static unsigned int xdr_shrink_bufhead(struct xdr_buf *buf, unsigned int len) 816 { 817 struct kvec *head = buf->head; 818 unsigned int shift, buflen = max(buf->len, len); 819 820 WARN_ON_ONCE(len > head->iov_len); 821 if (head->iov_len > buflen) { 822 buf->buflen -= head->iov_len - buflen; 823 head->iov_len = buflen; 824 } 825 if (len >= head->iov_len) 826 return 0; 827 shift = head->iov_len - len; 828 xdr_buf_try_expand(buf, shift); 829 xdr_buf_head_shift_right(buf, len, buflen - len, shift); 830 head->iov_len = len; 831 buf->buflen -= shift; 832 buf->len -= shift; 833 return shift; 834 } 835 836 /** 837 * xdr_shrink_pagelen - shrinks buf->pages to @len bytes 838 * @buf: xdr_buf 839 * @len: new page buffer length 840 * 841 * The extra data is not lost, but is instead moved into buf->tail. 842 * Returns the actual number of bytes moved. 843 */ 844 static unsigned int xdr_shrink_pagelen(struct xdr_buf *buf, unsigned int len) 845 { 846 unsigned int shift, buflen = buf->len - buf->head->iov_len; 847 848 WARN_ON_ONCE(len > buf->page_len); 849 if (buf->head->iov_len >= buf->len || len > buflen) 850 buflen = len; 851 if (buf->page_len > buflen) { 852 buf->buflen -= buf->page_len - buflen; 853 buf->page_len = buflen; 854 } 855 if (len >= buf->page_len) 856 return 0; 857 shift = buf->page_len - len; 858 xdr_buf_try_expand(buf, shift); 859 xdr_buf_pages_shift_right(buf, len, buflen - len, shift); 860 buf->page_len = len; 861 buf->len -= shift; 862 buf->buflen -= shift; 863 return shift; 864 } 865 866 void 867 xdr_shift_buf(struct xdr_buf *buf, size_t len) 868 { 869 xdr_shrink_bufhead(buf, buf->head->iov_len - len); 870 } 871 EXPORT_SYMBOL_GPL(xdr_shift_buf); 872 873 /** 874 * xdr_stream_pos - Return the current offset from the start of the xdr_stream 875 * @xdr: pointer to struct xdr_stream 876 */ 877 unsigned int xdr_stream_pos(const struct xdr_stream *xdr) 878 { 879 return (unsigned int)(XDR_QUADLEN(xdr->buf->len) - xdr->nwords) << 2; 880 } 881 EXPORT_SYMBOL_GPL(xdr_stream_pos); 882 883 static void xdr_stream_set_pos(struct xdr_stream *xdr, unsigned int pos) 884 { 885 unsigned int blen = xdr->buf->len; 886 887 xdr->nwords = blen > pos ? XDR_QUADLEN(blen) - XDR_QUADLEN(pos) : 0; 888 } 889 890 static void xdr_stream_page_set_pos(struct xdr_stream *xdr, unsigned int pos) 891 { 892 xdr_stream_set_pos(xdr, pos + xdr->buf->head[0].iov_len); 893 } 894 895 /** 896 * xdr_page_pos - Return the current offset from the start of the xdr pages 897 * @xdr: pointer to struct xdr_stream 898 */ 899 unsigned int xdr_page_pos(const struct xdr_stream *xdr) 900 { 901 unsigned int pos = xdr_stream_pos(xdr); 902 903 WARN_ON(pos < xdr->buf->head[0].iov_len); 904 return pos - xdr->buf->head[0].iov_len; 905 } 906 EXPORT_SYMBOL_GPL(xdr_page_pos); 907 908 /** 909 * xdr_init_encode - Initialize a struct xdr_stream for sending data. 910 * @xdr: pointer to xdr_stream struct 911 * @buf: pointer to XDR buffer in which to encode data 912 * @p: current pointer inside XDR buffer 913 * @rqst: pointer to controlling rpc_rqst, for debugging 914 * 915 * Note: at the moment the RPC client only passes the length of our 916 * scratch buffer in the xdr_buf's header kvec. Previously this 917 * meant we needed to call xdr_adjust_iovec() after encoding the 918 * data. With the new scheme, the xdr_stream manages the details 919 * of the buffer length, and takes care of adjusting the kvec 920 * length for us. 921 */ 922 void xdr_init_encode(struct xdr_stream *xdr, struct xdr_buf *buf, __be32 *p, 923 struct rpc_rqst *rqst) 924 { 925 struct kvec *iov = buf->head; 926 int scratch_len = buf->buflen - buf->page_len - buf->tail[0].iov_len; 927 928 xdr_reset_scratch_buffer(xdr); 929 BUG_ON(scratch_len < 0); 930 xdr->buf = buf; 931 xdr->iov = iov; 932 xdr->p = (__be32 *)((char *)iov->iov_base + iov->iov_len); 933 xdr->end = (__be32 *)((char *)iov->iov_base + scratch_len); 934 BUG_ON(iov->iov_len > scratch_len); 935 936 if (p != xdr->p && p != NULL) { 937 size_t len; 938 939 BUG_ON(p < xdr->p || p > xdr->end); 940 len = (char *)p - (char *)xdr->p; 941 xdr->p = p; 942 buf->len += len; 943 iov->iov_len += len; 944 } 945 xdr->rqst = rqst; 946 } 947 EXPORT_SYMBOL_GPL(xdr_init_encode); 948 949 /** 950 * __xdr_commit_encode - Ensure all data is written to buffer 951 * @xdr: pointer to xdr_stream 952 * 953 * We handle encoding across page boundaries by giving the caller a 954 * temporary location to write to, then later copying the data into 955 * place; xdr_commit_encode does that copying. 956 * 957 * Normally the caller doesn't need to call this directly, as the 958 * following xdr_reserve_space will do it. But an explicit call may be 959 * required at the end of encoding, or any other time when the xdr_buf 960 * data might be read. 961 */ 962 void __xdr_commit_encode(struct xdr_stream *xdr) 963 { 964 size_t shift = xdr->scratch.iov_len; 965 void *page; 966 967 page = page_address(*xdr->page_ptr); 968 memcpy(xdr->scratch.iov_base, page, shift); 969 memmove(page, page + shift, (void *)xdr->p - page); 970 xdr_reset_scratch_buffer(xdr); 971 } 972 EXPORT_SYMBOL_GPL(__xdr_commit_encode); 973 974 /* 975 * The buffer space to be reserved crosses the boundary between 976 * xdr->buf->head and xdr->buf->pages, or between two pages 977 * in xdr->buf->pages. 978 */ 979 static noinline __be32 *xdr_get_next_encode_buffer(struct xdr_stream *xdr, 980 size_t nbytes) 981 { 982 int space_left; 983 int frag1bytes, frag2bytes; 984 void *p; 985 986 if (nbytes > PAGE_SIZE) 987 goto out_overflow; /* Bigger buffers require special handling */ 988 if (xdr->buf->len + nbytes > xdr->buf->buflen) 989 goto out_overflow; /* Sorry, we're totally out of space */ 990 frag1bytes = (xdr->end - xdr->p) << 2; 991 frag2bytes = nbytes - frag1bytes; 992 if (xdr->iov) 993 xdr->iov->iov_len += frag1bytes; 994 else 995 xdr->buf->page_len += frag1bytes; 996 xdr->page_ptr++; 997 xdr->iov = NULL; 998 999 /* 1000 * If the last encode didn't end exactly on a page boundary, the 1001 * next one will straddle boundaries. Encode into the next 1002 * page, then copy it back later in xdr_commit_encode. We use 1003 * the "scratch" iov to track any temporarily unused fragment of 1004 * space at the end of the previous buffer: 1005 */ 1006 xdr_set_scratch_buffer(xdr, xdr->p, frag1bytes); 1007 1008 /* 1009 * xdr->p is where the next encode will start after 1010 * xdr_commit_encode() has shifted this one back: 1011 */ 1012 p = page_address(*xdr->page_ptr); 1013 xdr->p = p + frag2bytes; 1014 space_left = xdr->buf->buflen - xdr->buf->len; 1015 if (space_left - frag1bytes >= PAGE_SIZE) 1016 xdr->end = p + PAGE_SIZE; 1017 else 1018 xdr->end = p + space_left - frag1bytes; 1019 1020 xdr->buf->page_len += frag2bytes; 1021 xdr->buf->len += nbytes; 1022 return p; 1023 out_overflow: 1024 trace_rpc_xdr_overflow(xdr, nbytes); 1025 return NULL; 1026 } 1027 1028 /** 1029 * xdr_reserve_space - Reserve buffer space for sending 1030 * @xdr: pointer to xdr_stream 1031 * @nbytes: number of bytes to reserve 1032 * 1033 * Checks that we have enough buffer space to encode 'nbytes' more 1034 * bytes of data. If so, update the total xdr_buf length, and 1035 * adjust the length of the current kvec. 1036 */ 1037 __be32 * xdr_reserve_space(struct xdr_stream *xdr, size_t nbytes) 1038 { 1039 __be32 *p = xdr->p; 1040 __be32 *q; 1041 1042 xdr_commit_encode(xdr); 1043 /* align nbytes on the next 32-bit boundary */ 1044 nbytes += 3; 1045 nbytes &= ~3; 1046 q = p + (nbytes >> 2); 1047 if (unlikely(q > xdr->end || q < p)) 1048 return xdr_get_next_encode_buffer(xdr, nbytes); 1049 xdr->p = q; 1050 if (xdr->iov) 1051 xdr->iov->iov_len += nbytes; 1052 else 1053 xdr->buf->page_len += nbytes; 1054 xdr->buf->len += nbytes; 1055 return p; 1056 } 1057 EXPORT_SYMBOL_GPL(xdr_reserve_space); 1058 1059 1060 /** 1061 * xdr_reserve_space_vec - Reserves a large amount of buffer space for sending 1062 * @xdr: pointer to xdr_stream 1063 * @vec: pointer to a kvec array 1064 * @nbytes: number of bytes to reserve 1065 * 1066 * Reserves enough buffer space to encode 'nbytes' of data and stores the 1067 * pointers in 'vec'. The size argument passed to xdr_reserve_space() is 1068 * determined based on the number of bytes remaining in the current page to 1069 * avoid invalidating iov_base pointers when xdr_commit_encode() is called. 1070 */ 1071 int xdr_reserve_space_vec(struct xdr_stream *xdr, struct kvec *vec, size_t nbytes) 1072 { 1073 int thislen; 1074 int v = 0; 1075 __be32 *p; 1076 1077 /* 1078 * svcrdma requires every READ payload to start somewhere 1079 * in xdr->pages. 1080 */ 1081 if (xdr->iov == xdr->buf->head) { 1082 xdr->iov = NULL; 1083 xdr->end = xdr->p; 1084 } 1085 1086 while (nbytes) { 1087 thislen = xdr->buf->page_len % PAGE_SIZE; 1088 thislen = min_t(size_t, nbytes, PAGE_SIZE - thislen); 1089 1090 p = xdr_reserve_space(xdr, thislen); 1091 if (!p) 1092 return -EIO; 1093 1094 vec[v].iov_base = p; 1095 vec[v].iov_len = thislen; 1096 v++; 1097 nbytes -= thislen; 1098 } 1099 1100 return v; 1101 } 1102 EXPORT_SYMBOL_GPL(xdr_reserve_space_vec); 1103 1104 /** 1105 * xdr_truncate_encode - truncate an encode buffer 1106 * @xdr: pointer to xdr_stream 1107 * @len: new length of buffer 1108 * 1109 * Truncates the xdr stream, so that xdr->buf->len == len, 1110 * and xdr->p points at offset len from the start of the buffer, and 1111 * head, tail, and page lengths are adjusted to correspond. 1112 * 1113 * If this means moving xdr->p to a different buffer, we assume that 1114 * the end pointer should be set to the end of the current page, 1115 * except in the case of the head buffer when we assume the head 1116 * buffer's current length represents the end of the available buffer. 1117 * 1118 * This is *not* safe to use on a buffer that already has inlined page 1119 * cache pages (as in a zero-copy server read reply), except for the 1120 * simple case of truncating from one position in the tail to another. 1121 * 1122 */ 1123 void xdr_truncate_encode(struct xdr_stream *xdr, size_t len) 1124 { 1125 struct xdr_buf *buf = xdr->buf; 1126 struct kvec *head = buf->head; 1127 struct kvec *tail = buf->tail; 1128 int fraglen; 1129 int new; 1130 1131 if (len > buf->len) { 1132 WARN_ON_ONCE(1); 1133 return; 1134 } 1135 xdr_commit_encode(xdr); 1136 1137 fraglen = min_t(int, buf->len - len, tail->iov_len); 1138 tail->iov_len -= fraglen; 1139 buf->len -= fraglen; 1140 if (tail->iov_len) { 1141 xdr->p = tail->iov_base + tail->iov_len; 1142 WARN_ON_ONCE(!xdr->end); 1143 WARN_ON_ONCE(!xdr->iov); 1144 return; 1145 } 1146 WARN_ON_ONCE(fraglen); 1147 fraglen = min_t(int, buf->len - len, buf->page_len); 1148 buf->page_len -= fraglen; 1149 buf->len -= fraglen; 1150 1151 new = buf->page_base + buf->page_len; 1152 1153 xdr->page_ptr = buf->pages + (new >> PAGE_SHIFT); 1154 1155 if (buf->page_len) { 1156 xdr->p = page_address(*xdr->page_ptr); 1157 xdr->end = (void *)xdr->p + PAGE_SIZE; 1158 xdr->p = (void *)xdr->p + (new % PAGE_SIZE); 1159 WARN_ON_ONCE(xdr->iov); 1160 return; 1161 } 1162 if (fraglen) 1163 xdr->end = head->iov_base + head->iov_len; 1164 /* (otherwise assume xdr->end is already set) */ 1165 xdr->page_ptr--; 1166 head->iov_len = len; 1167 buf->len = len; 1168 xdr->p = head->iov_base + head->iov_len; 1169 xdr->iov = buf->head; 1170 } 1171 EXPORT_SYMBOL(xdr_truncate_encode); 1172 1173 /** 1174 * xdr_restrict_buflen - decrease available buffer space 1175 * @xdr: pointer to xdr_stream 1176 * @newbuflen: new maximum number of bytes available 1177 * 1178 * Adjust our idea of how much space is available in the buffer. 1179 * If we've already used too much space in the buffer, returns -1. 1180 * If the available space is already smaller than newbuflen, returns 0 1181 * and does nothing. Otherwise, adjusts xdr->buf->buflen to newbuflen 1182 * and ensures xdr->end is set at most offset newbuflen from the start 1183 * of the buffer. 1184 */ 1185 int xdr_restrict_buflen(struct xdr_stream *xdr, int newbuflen) 1186 { 1187 struct xdr_buf *buf = xdr->buf; 1188 int left_in_this_buf = (void *)xdr->end - (void *)xdr->p; 1189 int end_offset = buf->len + left_in_this_buf; 1190 1191 if (newbuflen < 0 || newbuflen < buf->len) 1192 return -1; 1193 if (newbuflen > buf->buflen) 1194 return 0; 1195 if (newbuflen < end_offset) 1196 xdr->end = (void *)xdr->end + newbuflen - end_offset; 1197 buf->buflen = newbuflen; 1198 return 0; 1199 } 1200 EXPORT_SYMBOL(xdr_restrict_buflen); 1201 1202 /** 1203 * xdr_write_pages - Insert a list of pages into an XDR buffer for sending 1204 * @xdr: pointer to xdr_stream 1205 * @pages: list of pages 1206 * @base: offset of first byte 1207 * @len: length of data in bytes 1208 * 1209 */ 1210 void xdr_write_pages(struct xdr_stream *xdr, struct page **pages, unsigned int base, 1211 unsigned int len) 1212 { 1213 struct xdr_buf *buf = xdr->buf; 1214 struct kvec *iov = buf->tail; 1215 buf->pages = pages; 1216 buf->page_base = base; 1217 buf->page_len = len; 1218 1219 iov->iov_base = (char *)xdr->p; 1220 iov->iov_len = 0; 1221 xdr->iov = iov; 1222 1223 if (len & 3) { 1224 unsigned int pad = 4 - (len & 3); 1225 1226 BUG_ON(xdr->p >= xdr->end); 1227 iov->iov_base = (char *)xdr->p + (len & 3); 1228 iov->iov_len += pad; 1229 len += pad; 1230 *xdr->p++ = 0; 1231 } 1232 buf->buflen += len; 1233 buf->len += len; 1234 } 1235 EXPORT_SYMBOL_GPL(xdr_write_pages); 1236 1237 static unsigned int xdr_set_iov(struct xdr_stream *xdr, struct kvec *iov, 1238 unsigned int base, unsigned int len) 1239 { 1240 if (len > iov->iov_len) 1241 len = iov->iov_len; 1242 if (unlikely(base > len)) 1243 base = len; 1244 xdr->p = (__be32*)(iov->iov_base + base); 1245 xdr->end = (__be32*)(iov->iov_base + len); 1246 xdr->iov = iov; 1247 xdr->page_ptr = NULL; 1248 return len - base; 1249 } 1250 1251 static unsigned int xdr_set_tail_base(struct xdr_stream *xdr, 1252 unsigned int base, unsigned int len) 1253 { 1254 struct xdr_buf *buf = xdr->buf; 1255 1256 xdr_stream_set_pos(xdr, base + buf->page_len + buf->head->iov_len); 1257 return xdr_set_iov(xdr, buf->tail, base, len); 1258 } 1259 1260 static unsigned int xdr_set_page_base(struct xdr_stream *xdr, 1261 unsigned int base, unsigned int len) 1262 { 1263 unsigned int pgnr; 1264 unsigned int maxlen; 1265 unsigned int pgoff; 1266 unsigned int pgend; 1267 void *kaddr; 1268 1269 maxlen = xdr->buf->page_len; 1270 if (base >= maxlen) 1271 return 0; 1272 else 1273 maxlen -= base; 1274 if (len > maxlen) 1275 len = maxlen; 1276 1277 xdr_stream_page_set_pos(xdr, base); 1278 base += xdr->buf->page_base; 1279 1280 pgnr = base >> PAGE_SHIFT; 1281 xdr->page_ptr = &xdr->buf->pages[pgnr]; 1282 kaddr = page_address(*xdr->page_ptr); 1283 1284 pgoff = base & ~PAGE_MASK; 1285 xdr->p = (__be32*)(kaddr + pgoff); 1286 1287 pgend = pgoff + len; 1288 if (pgend > PAGE_SIZE) 1289 pgend = PAGE_SIZE; 1290 xdr->end = (__be32*)(kaddr + pgend); 1291 xdr->iov = NULL; 1292 return len; 1293 } 1294 1295 static void xdr_set_page(struct xdr_stream *xdr, unsigned int base, 1296 unsigned int len) 1297 { 1298 if (xdr_set_page_base(xdr, base, len) == 0) { 1299 base -= xdr->buf->page_len; 1300 xdr_set_tail_base(xdr, base, len); 1301 } 1302 } 1303 1304 static void xdr_set_next_page(struct xdr_stream *xdr) 1305 { 1306 unsigned int newbase; 1307 1308 newbase = (1 + xdr->page_ptr - xdr->buf->pages) << PAGE_SHIFT; 1309 newbase -= xdr->buf->page_base; 1310 if (newbase < xdr->buf->page_len) 1311 xdr_set_page_base(xdr, newbase, xdr_stream_remaining(xdr)); 1312 else 1313 xdr_set_tail_base(xdr, 0, xdr_stream_remaining(xdr)); 1314 } 1315 1316 static bool xdr_set_next_buffer(struct xdr_stream *xdr) 1317 { 1318 if (xdr->page_ptr != NULL) 1319 xdr_set_next_page(xdr); 1320 else if (xdr->iov == xdr->buf->head) 1321 xdr_set_page(xdr, 0, xdr_stream_remaining(xdr)); 1322 return xdr->p != xdr->end; 1323 } 1324 1325 /** 1326 * xdr_init_decode - Initialize an xdr_stream for decoding data. 1327 * @xdr: pointer to xdr_stream struct 1328 * @buf: pointer to XDR buffer from which to decode data 1329 * @p: current pointer inside XDR buffer 1330 * @rqst: pointer to controlling rpc_rqst, for debugging 1331 */ 1332 void xdr_init_decode(struct xdr_stream *xdr, struct xdr_buf *buf, __be32 *p, 1333 struct rpc_rqst *rqst) 1334 { 1335 xdr->buf = buf; 1336 xdr_reset_scratch_buffer(xdr); 1337 xdr->nwords = XDR_QUADLEN(buf->len); 1338 if (xdr_set_iov(xdr, buf->head, 0, buf->len) == 0 && 1339 xdr_set_page_base(xdr, 0, buf->len) == 0) 1340 xdr_set_iov(xdr, buf->tail, 0, buf->len); 1341 if (p != NULL && p > xdr->p && xdr->end >= p) { 1342 xdr->nwords -= p - xdr->p; 1343 xdr->p = p; 1344 } 1345 xdr->rqst = rqst; 1346 } 1347 EXPORT_SYMBOL_GPL(xdr_init_decode); 1348 1349 /** 1350 * xdr_init_decode_pages - Initialize an xdr_stream for decoding into pages 1351 * @xdr: pointer to xdr_stream struct 1352 * @buf: pointer to XDR buffer from which to decode data 1353 * @pages: list of pages to decode into 1354 * @len: length in bytes of buffer in pages 1355 */ 1356 void xdr_init_decode_pages(struct xdr_stream *xdr, struct xdr_buf *buf, 1357 struct page **pages, unsigned int len) 1358 { 1359 memset(buf, 0, sizeof(*buf)); 1360 buf->pages = pages; 1361 buf->page_len = len; 1362 buf->buflen = len; 1363 buf->len = len; 1364 xdr_init_decode(xdr, buf, NULL, NULL); 1365 } 1366 EXPORT_SYMBOL_GPL(xdr_init_decode_pages); 1367 1368 static __be32 * __xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes) 1369 { 1370 unsigned int nwords = XDR_QUADLEN(nbytes); 1371 __be32 *p = xdr->p; 1372 __be32 *q = p + nwords; 1373 1374 if (unlikely(nwords > xdr->nwords || q > xdr->end || q < p)) 1375 return NULL; 1376 xdr->p = q; 1377 xdr->nwords -= nwords; 1378 return p; 1379 } 1380 1381 static __be32 *xdr_copy_to_scratch(struct xdr_stream *xdr, size_t nbytes) 1382 { 1383 __be32 *p; 1384 char *cpdest = xdr->scratch.iov_base; 1385 size_t cplen = (char *)xdr->end - (char *)xdr->p; 1386 1387 if (nbytes > xdr->scratch.iov_len) 1388 goto out_overflow; 1389 p = __xdr_inline_decode(xdr, cplen); 1390 if (p == NULL) 1391 return NULL; 1392 memcpy(cpdest, p, cplen); 1393 if (!xdr_set_next_buffer(xdr)) 1394 goto out_overflow; 1395 cpdest += cplen; 1396 nbytes -= cplen; 1397 p = __xdr_inline_decode(xdr, nbytes); 1398 if (p == NULL) 1399 return NULL; 1400 memcpy(cpdest, p, nbytes); 1401 return xdr->scratch.iov_base; 1402 out_overflow: 1403 trace_rpc_xdr_overflow(xdr, nbytes); 1404 return NULL; 1405 } 1406 1407 /** 1408 * xdr_inline_decode - Retrieve XDR data to decode 1409 * @xdr: pointer to xdr_stream struct 1410 * @nbytes: number of bytes of data to decode 1411 * 1412 * Check if the input buffer is long enough to enable us to decode 1413 * 'nbytes' more bytes of data starting at the current position. 1414 * If so return the current pointer, then update the current 1415 * pointer position. 1416 */ 1417 __be32 * xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes) 1418 { 1419 __be32 *p; 1420 1421 if (unlikely(nbytes == 0)) 1422 return xdr->p; 1423 if (xdr->p == xdr->end && !xdr_set_next_buffer(xdr)) 1424 goto out_overflow; 1425 p = __xdr_inline_decode(xdr, nbytes); 1426 if (p != NULL) 1427 return p; 1428 return xdr_copy_to_scratch(xdr, nbytes); 1429 out_overflow: 1430 trace_rpc_xdr_overflow(xdr, nbytes); 1431 return NULL; 1432 } 1433 EXPORT_SYMBOL_GPL(xdr_inline_decode); 1434 1435 static void xdr_realign_pages(struct xdr_stream *xdr) 1436 { 1437 struct xdr_buf *buf = xdr->buf; 1438 struct kvec *iov = buf->head; 1439 unsigned int cur = xdr_stream_pos(xdr); 1440 unsigned int copied; 1441 1442 /* Realign pages to current pointer position */ 1443 if (iov->iov_len > cur) { 1444 copied = xdr_shrink_bufhead(buf, cur); 1445 trace_rpc_xdr_alignment(xdr, cur, copied); 1446 xdr_set_page(xdr, 0, buf->page_len); 1447 } 1448 } 1449 1450 static unsigned int xdr_align_pages(struct xdr_stream *xdr, unsigned int len) 1451 { 1452 struct xdr_buf *buf = xdr->buf; 1453 unsigned int nwords = XDR_QUADLEN(len); 1454 unsigned int copied; 1455 1456 if (xdr->nwords == 0) 1457 return 0; 1458 1459 xdr_realign_pages(xdr); 1460 if (nwords > xdr->nwords) { 1461 nwords = xdr->nwords; 1462 len = nwords << 2; 1463 } 1464 if (buf->page_len <= len) 1465 len = buf->page_len; 1466 else if (nwords < xdr->nwords) { 1467 /* Truncate page data and move it into the tail */ 1468 copied = xdr_shrink_pagelen(buf, len); 1469 trace_rpc_xdr_alignment(xdr, len, copied); 1470 } 1471 return len; 1472 } 1473 1474 /** 1475 * xdr_read_pages - align page-based XDR data to current pointer position 1476 * @xdr: pointer to xdr_stream struct 1477 * @len: number of bytes of page data 1478 * 1479 * Moves data beyond the current pointer position from the XDR head[] buffer 1480 * into the page list. Any data that lies beyond current position + @len 1481 * bytes is moved into the XDR tail[]. The xdr_stream current position is 1482 * then advanced past that data to align to the next XDR object in the tail. 1483 * 1484 * Returns the number of XDR encoded bytes now contained in the pages 1485 */ 1486 unsigned int xdr_read_pages(struct xdr_stream *xdr, unsigned int len) 1487 { 1488 unsigned int nwords = XDR_QUADLEN(len); 1489 unsigned int base, end, pglen; 1490 1491 pglen = xdr_align_pages(xdr, nwords << 2); 1492 if (pglen == 0) 1493 return 0; 1494 1495 base = (nwords << 2) - pglen; 1496 end = xdr_stream_remaining(xdr) - pglen; 1497 1498 xdr_set_tail_base(xdr, base, end); 1499 return len <= pglen ? len : pglen; 1500 } 1501 EXPORT_SYMBOL_GPL(xdr_read_pages); 1502 1503 /** 1504 * xdr_set_pagelen - Sets the length of the XDR pages 1505 * @xdr: pointer to xdr_stream struct 1506 * @len: new length of the XDR page data 1507 * 1508 * Either grows or shrinks the length of the xdr pages by setting pagelen to 1509 * @len bytes. When shrinking, any extra data is moved into buf->tail, whereas 1510 * when growing any data beyond the current pointer is moved into the tail. 1511 * 1512 * Returns True if the operation was successful, and False otherwise. 1513 */ 1514 void xdr_set_pagelen(struct xdr_stream *xdr, unsigned int len) 1515 { 1516 struct xdr_buf *buf = xdr->buf; 1517 size_t remaining = xdr_stream_remaining(xdr); 1518 size_t base = 0; 1519 1520 if (len < buf->page_len) { 1521 base = buf->page_len - len; 1522 xdr_shrink_pagelen(buf, len); 1523 } else { 1524 xdr_buf_head_shift_right(buf, xdr_stream_pos(xdr), 1525 buf->page_len, remaining); 1526 if (len > buf->page_len) 1527 xdr_buf_try_expand(buf, len - buf->page_len); 1528 } 1529 xdr_set_tail_base(xdr, base, remaining); 1530 } 1531 EXPORT_SYMBOL_GPL(xdr_set_pagelen); 1532 1533 /** 1534 * xdr_enter_page - decode data from the XDR page 1535 * @xdr: pointer to xdr_stream struct 1536 * @len: number of bytes of page data 1537 * 1538 * Moves data beyond the current pointer position from the XDR head[] buffer 1539 * into the page list. Any data that lies beyond current position + "len" 1540 * bytes is moved into the XDR tail[]. The current pointer is then 1541 * repositioned at the beginning of the first XDR page. 1542 */ 1543 void xdr_enter_page(struct xdr_stream *xdr, unsigned int len) 1544 { 1545 len = xdr_align_pages(xdr, len); 1546 /* 1547 * Position current pointer at beginning of tail, and 1548 * set remaining message length. 1549 */ 1550 if (len != 0) 1551 xdr_set_page_base(xdr, 0, len); 1552 } 1553 EXPORT_SYMBOL_GPL(xdr_enter_page); 1554 1555 static const struct kvec empty_iov = {.iov_base = NULL, .iov_len = 0}; 1556 1557 void xdr_buf_from_iov(const struct kvec *iov, struct xdr_buf *buf) 1558 { 1559 buf->head[0] = *iov; 1560 buf->tail[0] = empty_iov; 1561 buf->page_len = 0; 1562 buf->buflen = buf->len = iov->iov_len; 1563 } 1564 EXPORT_SYMBOL_GPL(xdr_buf_from_iov); 1565 1566 /** 1567 * xdr_buf_subsegment - set subbuf to a portion of buf 1568 * @buf: an xdr buffer 1569 * @subbuf: the result buffer 1570 * @base: beginning of range in bytes 1571 * @len: length of range in bytes 1572 * 1573 * sets @subbuf to an xdr buffer representing the portion of @buf of 1574 * length @len starting at offset @base. 1575 * 1576 * @buf and @subbuf may be pointers to the same struct xdr_buf. 1577 * 1578 * Returns -1 if base of length are out of bounds. 1579 */ 1580 int xdr_buf_subsegment(const struct xdr_buf *buf, struct xdr_buf *subbuf, 1581 unsigned int base, unsigned int len) 1582 { 1583 subbuf->buflen = subbuf->len = len; 1584 if (base < buf->head[0].iov_len) { 1585 subbuf->head[0].iov_base = buf->head[0].iov_base + base; 1586 subbuf->head[0].iov_len = min_t(unsigned int, len, 1587 buf->head[0].iov_len - base); 1588 len -= subbuf->head[0].iov_len; 1589 base = 0; 1590 } else { 1591 base -= buf->head[0].iov_len; 1592 subbuf->head[0].iov_base = buf->head[0].iov_base; 1593 subbuf->head[0].iov_len = 0; 1594 } 1595 1596 if (base < buf->page_len) { 1597 subbuf->page_len = min(buf->page_len - base, len); 1598 base += buf->page_base; 1599 subbuf->page_base = base & ~PAGE_MASK; 1600 subbuf->pages = &buf->pages[base >> PAGE_SHIFT]; 1601 len -= subbuf->page_len; 1602 base = 0; 1603 } else { 1604 base -= buf->page_len; 1605 subbuf->pages = buf->pages; 1606 subbuf->page_base = 0; 1607 subbuf->page_len = 0; 1608 } 1609 1610 if (base < buf->tail[0].iov_len) { 1611 subbuf->tail[0].iov_base = buf->tail[0].iov_base + base; 1612 subbuf->tail[0].iov_len = min_t(unsigned int, len, 1613 buf->tail[0].iov_len - base); 1614 len -= subbuf->tail[0].iov_len; 1615 base = 0; 1616 } else { 1617 base -= buf->tail[0].iov_len; 1618 subbuf->tail[0].iov_base = buf->tail[0].iov_base; 1619 subbuf->tail[0].iov_len = 0; 1620 } 1621 1622 if (base || len) 1623 return -1; 1624 return 0; 1625 } 1626 EXPORT_SYMBOL_GPL(xdr_buf_subsegment); 1627 1628 /** 1629 * xdr_stream_subsegment - set @subbuf to a portion of @xdr 1630 * @xdr: an xdr_stream set up for decoding 1631 * @subbuf: the result buffer 1632 * @nbytes: length of @xdr to extract, in bytes 1633 * 1634 * Sets up @subbuf to represent a portion of @xdr. The portion 1635 * starts at the current offset in @xdr, and extends for a length 1636 * of @nbytes. If this is successful, @xdr is advanced to the next 1637 * XDR data item following that portion. 1638 * 1639 * Return values: 1640 * %true: @subbuf has been initialized, and @xdr has been advanced. 1641 * %false: a bounds error has occurred 1642 */ 1643 bool xdr_stream_subsegment(struct xdr_stream *xdr, struct xdr_buf *subbuf, 1644 unsigned int nbytes) 1645 { 1646 unsigned int start = xdr_stream_pos(xdr); 1647 unsigned int remaining, len; 1648 1649 /* Extract @subbuf and bounds-check the fn arguments */ 1650 if (xdr_buf_subsegment(xdr->buf, subbuf, start, nbytes)) 1651 return false; 1652 1653 /* Advance @xdr by @nbytes */ 1654 for (remaining = nbytes; remaining;) { 1655 if (xdr->p == xdr->end && !xdr_set_next_buffer(xdr)) 1656 return false; 1657 1658 len = (char *)xdr->end - (char *)xdr->p; 1659 if (remaining <= len) { 1660 xdr->p = (__be32 *)((char *)xdr->p + 1661 (remaining + xdr_pad_size(nbytes))); 1662 break; 1663 } 1664 1665 xdr->p = (__be32 *)((char *)xdr->p + len); 1666 xdr->end = xdr->p; 1667 remaining -= len; 1668 } 1669 1670 xdr_stream_set_pos(xdr, start + nbytes); 1671 return true; 1672 } 1673 EXPORT_SYMBOL_GPL(xdr_stream_subsegment); 1674 1675 /** 1676 * xdr_stream_move_subsegment - Move part of a stream to another position 1677 * @xdr: the source xdr_stream 1678 * @offset: the source offset of the segment 1679 * @target: the target offset of the segment 1680 * @length: the number of bytes to move 1681 * 1682 * Moves @length bytes from @offset to @target in the xdr_stream, overwriting 1683 * anything in its space. Returns the number of bytes in the segment. 1684 */ 1685 unsigned int xdr_stream_move_subsegment(struct xdr_stream *xdr, unsigned int offset, 1686 unsigned int target, unsigned int length) 1687 { 1688 struct xdr_buf buf; 1689 unsigned int shift; 1690 1691 if (offset < target) { 1692 shift = target - offset; 1693 if (xdr_buf_subsegment(xdr->buf, &buf, offset, shift + length) < 0) 1694 return 0; 1695 xdr_buf_head_shift_right(&buf, 0, length, shift); 1696 } else if (offset > target) { 1697 shift = offset - target; 1698 if (xdr_buf_subsegment(xdr->buf, &buf, target, shift + length) < 0) 1699 return 0; 1700 xdr_buf_head_shift_left(&buf, shift, length, shift); 1701 } 1702 return length; 1703 } 1704 EXPORT_SYMBOL_GPL(xdr_stream_move_subsegment); 1705 1706 /** 1707 * xdr_stream_zero - zero out a portion of an xdr_stream 1708 * @xdr: an xdr_stream to zero out 1709 * @offset: the starting point in the stream 1710 * @length: the number of bytes to zero 1711 */ 1712 unsigned int xdr_stream_zero(struct xdr_stream *xdr, unsigned int offset, 1713 unsigned int length) 1714 { 1715 struct xdr_buf buf; 1716 1717 if (xdr_buf_subsegment(xdr->buf, &buf, offset, length) < 0) 1718 return 0; 1719 if (buf.head[0].iov_len) 1720 xdr_buf_iov_zero(buf.head, 0, buf.head[0].iov_len); 1721 if (buf.page_len > 0) 1722 xdr_buf_pages_zero(&buf, 0, buf.page_len); 1723 if (buf.tail[0].iov_len) 1724 xdr_buf_iov_zero(buf.tail, 0, buf.tail[0].iov_len); 1725 return length; 1726 } 1727 EXPORT_SYMBOL_GPL(xdr_stream_zero); 1728 1729 /** 1730 * xdr_buf_trim - lop at most "len" bytes off the end of "buf" 1731 * @buf: buf to be trimmed 1732 * @len: number of bytes to reduce "buf" by 1733 * 1734 * Trim an xdr_buf by the given number of bytes by fixing up the lengths. Note 1735 * that it's possible that we'll trim less than that amount if the xdr_buf is 1736 * too small, or if (for instance) it's all in the head and the parser has 1737 * already read too far into it. 1738 */ 1739 void xdr_buf_trim(struct xdr_buf *buf, unsigned int len) 1740 { 1741 size_t cur; 1742 unsigned int trim = len; 1743 1744 if (buf->tail[0].iov_len) { 1745 cur = min_t(size_t, buf->tail[0].iov_len, trim); 1746 buf->tail[0].iov_len -= cur; 1747 trim -= cur; 1748 if (!trim) 1749 goto fix_len; 1750 } 1751 1752 if (buf->page_len) { 1753 cur = min_t(unsigned int, buf->page_len, trim); 1754 buf->page_len -= cur; 1755 trim -= cur; 1756 if (!trim) 1757 goto fix_len; 1758 } 1759 1760 if (buf->head[0].iov_len) { 1761 cur = min_t(size_t, buf->head[0].iov_len, trim); 1762 buf->head[0].iov_len -= cur; 1763 trim -= cur; 1764 } 1765 fix_len: 1766 buf->len -= (len - trim); 1767 } 1768 EXPORT_SYMBOL_GPL(xdr_buf_trim); 1769 1770 static void __read_bytes_from_xdr_buf(const struct xdr_buf *subbuf, 1771 void *obj, unsigned int len) 1772 { 1773 unsigned int this_len; 1774 1775 this_len = min_t(unsigned int, len, subbuf->head[0].iov_len); 1776 memcpy(obj, subbuf->head[0].iov_base, this_len); 1777 len -= this_len; 1778 obj += this_len; 1779 this_len = min_t(unsigned int, len, subbuf->page_len); 1780 _copy_from_pages(obj, subbuf->pages, subbuf->page_base, this_len); 1781 len -= this_len; 1782 obj += this_len; 1783 this_len = min_t(unsigned int, len, subbuf->tail[0].iov_len); 1784 memcpy(obj, subbuf->tail[0].iov_base, this_len); 1785 } 1786 1787 /* obj is assumed to point to allocated memory of size at least len: */ 1788 int read_bytes_from_xdr_buf(const struct xdr_buf *buf, unsigned int base, 1789 void *obj, unsigned int len) 1790 { 1791 struct xdr_buf subbuf; 1792 int status; 1793 1794 status = xdr_buf_subsegment(buf, &subbuf, base, len); 1795 if (status != 0) 1796 return status; 1797 __read_bytes_from_xdr_buf(&subbuf, obj, len); 1798 return 0; 1799 } 1800 EXPORT_SYMBOL_GPL(read_bytes_from_xdr_buf); 1801 1802 static void __write_bytes_to_xdr_buf(const struct xdr_buf *subbuf, 1803 void *obj, unsigned int len) 1804 { 1805 unsigned int this_len; 1806 1807 this_len = min_t(unsigned int, len, subbuf->head[0].iov_len); 1808 memcpy(subbuf->head[0].iov_base, obj, this_len); 1809 len -= this_len; 1810 obj += this_len; 1811 this_len = min_t(unsigned int, len, subbuf->page_len); 1812 _copy_to_pages(subbuf->pages, subbuf->page_base, obj, this_len); 1813 len -= this_len; 1814 obj += this_len; 1815 this_len = min_t(unsigned int, len, subbuf->tail[0].iov_len); 1816 memcpy(subbuf->tail[0].iov_base, obj, this_len); 1817 } 1818 1819 /* obj is assumed to point to allocated memory of size at least len: */ 1820 int write_bytes_to_xdr_buf(const struct xdr_buf *buf, unsigned int base, 1821 void *obj, unsigned int len) 1822 { 1823 struct xdr_buf subbuf; 1824 int status; 1825 1826 status = xdr_buf_subsegment(buf, &subbuf, base, len); 1827 if (status != 0) 1828 return status; 1829 __write_bytes_to_xdr_buf(&subbuf, obj, len); 1830 return 0; 1831 } 1832 EXPORT_SYMBOL_GPL(write_bytes_to_xdr_buf); 1833 1834 int xdr_decode_word(const struct xdr_buf *buf, unsigned int base, u32 *obj) 1835 { 1836 __be32 raw; 1837 int status; 1838 1839 status = read_bytes_from_xdr_buf(buf, base, &raw, sizeof(*obj)); 1840 if (status) 1841 return status; 1842 *obj = be32_to_cpu(raw); 1843 return 0; 1844 } 1845 EXPORT_SYMBOL_GPL(xdr_decode_word); 1846 1847 int xdr_encode_word(const struct xdr_buf *buf, unsigned int base, u32 obj) 1848 { 1849 __be32 raw = cpu_to_be32(obj); 1850 1851 return write_bytes_to_xdr_buf(buf, base, &raw, sizeof(obj)); 1852 } 1853 EXPORT_SYMBOL_GPL(xdr_encode_word); 1854 1855 /* Returns 0 on success, or else a negative error code. */ 1856 static int xdr_xcode_array2(const struct xdr_buf *buf, unsigned int base, 1857 struct xdr_array2_desc *desc, int encode) 1858 { 1859 char *elem = NULL, *c; 1860 unsigned int copied = 0, todo, avail_here; 1861 struct page **ppages = NULL; 1862 int err; 1863 1864 if (encode) { 1865 if (xdr_encode_word(buf, base, desc->array_len) != 0) 1866 return -EINVAL; 1867 } else { 1868 if (xdr_decode_word(buf, base, &desc->array_len) != 0 || 1869 desc->array_len > desc->array_maxlen || 1870 (unsigned long) base + 4 + desc->array_len * 1871 desc->elem_size > buf->len) 1872 return -EINVAL; 1873 } 1874 base += 4; 1875 1876 if (!desc->xcode) 1877 return 0; 1878 1879 todo = desc->array_len * desc->elem_size; 1880 1881 /* process head */ 1882 if (todo && base < buf->head->iov_len) { 1883 c = buf->head->iov_base + base; 1884 avail_here = min_t(unsigned int, todo, 1885 buf->head->iov_len - base); 1886 todo -= avail_here; 1887 1888 while (avail_here >= desc->elem_size) { 1889 err = desc->xcode(desc, c); 1890 if (err) 1891 goto out; 1892 c += desc->elem_size; 1893 avail_here -= desc->elem_size; 1894 } 1895 if (avail_here) { 1896 if (!elem) { 1897 elem = kmalloc(desc->elem_size, GFP_KERNEL); 1898 err = -ENOMEM; 1899 if (!elem) 1900 goto out; 1901 } 1902 if (encode) { 1903 err = desc->xcode(desc, elem); 1904 if (err) 1905 goto out; 1906 memcpy(c, elem, avail_here); 1907 } else 1908 memcpy(elem, c, avail_here); 1909 copied = avail_here; 1910 } 1911 base = buf->head->iov_len; /* align to start of pages */ 1912 } 1913 1914 /* process pages array */ 1915 base -= buf->head->iov_len; 1916 if (todo && base < buf->page_len) { 1917 unsigned int avail_page; 1918 1919 avail_here = min(todo, buf->page_len - base); 1920 todo -= avail_here; 1921 1922 base += buf->page_base; 1923 ppages = buf->pages + (base >> PAGE_SHIFT); 1924 base &= ~PAGE_MASK; 1925 avail_page = min_t(unsigned int, PAGE_SIZE - base, 1926 avail_here); 1927 c = kmap(*ppages) + base; 1928 1929 while (avail_here) { 1930 avail_here -= avail_page; 1931 if (copied || avail_page < desc->elem_size) { 1932 unsigned int l = min(avail_page, 1933 desc->elem_size - copied); 1934 if (!elem) { 1935 elem = kmalloc(desc->elem_size, 1936 GFP_KERNEL); 1937 err = -ENOMEM; 1938 if (!elem) 1939 goto out; 1940 } 1941 if (encode) { 1942 if (!copied) { 1943 err = desc->xcode(desc, elem); 1944 if (err) 1945 goto out; 1946 } 1947 memcpy(c, elem + copied, l); 1948 copied += l; 1949 if (copied == desc->elem_size) 1950 copied = 0; 1951 } else { 1952 memcpy(elem + copied, c, l); 1953 copied += l; 1954 if (copied == desc->elem_size) { 1955 err = desc->xcode(desc, elem); 1956 if (err) 1957 goto out; 1958 copied = 0; 1959 } 1960 } 1961 avail_page -= l; 1962 c += l; 1963 } 1964 while (avail_page >= desc->elem_size) { 1965 err = desc->xcode(desc, c); 1966 if (err) 1967 goto out; 1968 c += desc->elem_size; 1969 avail_page -= desc->elem_size; 1970 } 1971 if (avail_page) { 1972 unsigned int l = min(avail_page, 1973 desc->elem_size - copied); 1974 if (!elem) { 1975 elem = kmalloc(desc->elem_size, 1976 GFP_KERNEL); 1977 err = -ENOMEM; 1978 if (!elem) 1979 goto out; 1980 } 1981 if (encode) { 1982 if (!copied) { 1983 err = desc->xcode(desc, elem); 1984 if (err) 1985 goto out; 1986 } 1987 memcpy(c, elem + copied, l); 1988 copied += l; 1989 if (copied == desc->elem_size) 1990 copied = 0; 1991 } else { 1992 memcpy(elem + copied, c, l); 1993 copied += l; 1994 if (copied == desc->elem_size) { 1995 err = desc->xcode(desc, elem); 1996 if (err) 1997 goto out; 1998 copied = 0; 1999 } 2000 } 2001 } 2002 if (avail_here) { 2003 kunmap(*ppages); 2004 ppages++; 2005 c = kmap(*ppages); 2006 } 2007 2008 avail_page = min(avail_here, 2009 (unsigned int) PAGE_SIZE); 2010 } 2011 base = buf->page_len; /* align to start of tail */ 2012 } 2013 2014 /* process tail */ 2015 base -= buf->page_len; 2016 if (todo) { 2017 c = buf->tail->iov_base + base; 2018 if (copied) { 2019 unsigned int l = desc->elem_size - copied; 2020 2021 if (encode) 2022 memcpy(c, elem + copied, l); 2023 else { 2024 memcpy(elem + copied, c, l); 2025 err = desc->xcode(desc, elem); 2026 if (err) 2027 goto out; 2028 } 2029 todo -= l; 2030 c += l; 2031 } 2032 while (todo) { 2033 err = desc->xcode(desc, c); 2034 if (err) 2035 goto out; 2036 c += desc->elem_size; 2037 todo -= desc->elem_size; 2038 } 2039 } 2040 err = 0; 2041 2042 out: 2043 kfree(elem); 2044 if (ppages) 2045 kunmap(*ppages); 2046 return err; 2047 } 2048 2049 int xdr_decode_array2(const struct xdr_buf *buf, unsigned int base, 2050 struct xdr_array2_desc *desc) 2051 { 2052 if (base >= buf->len) 2053 return -EINVAL; 2054 2055 return xdr_xcode_array2(buf, base, desc, 0); 2056 } 2057 EXPORT_SYMBOL_GPL(xdr_decode_array2); 2058 2059 int xdr_encode_array2(const struct xdr_buf *buf, unsigned int base, 2060 struct xdr_array2_desc *desc) 2061 { 2062 if ((unsigned long) base + 4 + desc->array_len * desc->elem_size > 2063 buf->head->iov_len + buf->page_len + buf->tail->iov_len) 2064 return -EINVAL; 2065 2066 return xdr_xcode_array2(buf, base, desc, 1); 2067 } 2068 EXPORT_SYMBOL_GPL(xdr_encode_array2); 2069 2070 int xdr_process_buf(const struct xdr_buf *buf, unsigned int offset, 2071 unsigned int len, 2072 int (*actor)(struct scatterlist *, void *), void *data) 2073 { 2074 int i, ret = 0; 2075 unsigned int page_len, thislen, page_offset; 2076 struct scatterlist sg[1]; 2077 2078 sg_init_table(sg, 1); 2079 2080 if (offset >= buf->head[0].iov_len) { 2081 offset -= buf->head[0].iov_len; 2082 } else { 2083 thislen = buf->head[0].iov_len - offset; 2084 if (thislen > len) 2085 thislen = len; 2086 sg_set_buf(sg, buf->head[0].iov_base + offset, thislen); 2087 ret = actor(sg, data); 2088 if (ret) 2089 goto out; 2090 offset = 0; 2091 len -= thislen; 2092 } 2093 if (len == 0) 2094 goto out; 2095 2096 if (offset >= buf->page_len) { 2097 offset -= buf->page_len; 2098 } else { 2099 page_len = buf->page_len - offset; 2100 if (page_len > len) 2101 page_len = len; 2102 len -= page_len; 2103 page_offset = (offset + buf->page_base) & (PAGE_SIZE - 1); 2104 i = (offset + buf->page_base) >> PAGE_SHIFT; 2105 thislen = PAGE_SIZE - page_offset; 2106 do { 2107 if (thislen > page_len) 2108 thislen = page_len; 2109 sg_set_page(sg, buf->pages[i], thislen, page_offset); 2110 ret = actor(sg, data); 2111 if (ret) 2112 goto out; 2113 page_len -= thislen; 2114 i++; 2115 page_offset = 0; 2116 thislen = PAGE_SIZE; 2117 } while (page_len != 0); 2118 offset = 0; 2119 } 2120 if (len == 0) 2121 goto out; 2122 if (offset < buf->tail[0].iov_len) { 2123 thislen = buf->tail[0].iov_len - offset; 2124 if (thislen > len) 2125 thislen = len; 2126 sg_set_buf(sg, buf->tail[0].iov_base + offset, thislen); 2127 ret = actor(sg, data); 2128 len -= thislen; 2129 } 2130 if (len != 0) 2131 ret = -EINVAL; 2132 out: 2133 return ret; 2134 } 2135 EXPORT_SYMBOL_GPL(xdr_process_buf); 2136 2137 /** 2138 * xdr_stream_decode_opaque - Decode variable length opaque 2139 * @xdr: pointer to xdr_stream 2140 * @ptr: location to store opaque data 2141 * @size: size of storage buffer @ptr 2142 * 2143 * Return values: 2144 * On success, returns size of object stored in *@ptr 2145 * %-EBADMSG on XDR buffer overflow 2146 * %-EMSGSIZE on overflow of storage buffer @ptr 2147 */ 2148 ssize_t xdr_stream_decode_opaque(struct xdr_stream *xdr, void *ptr, size_t size) 2149 { 2150 ssize_t ret; 2151 void *p; 2152 2153 ret = xdr_stream_decode_opaque_inline(xdr, &p, size); 2154 if (ret <= 0) 2155 return ret; 2156 memcpy(ptr, p, ret); 2157 return ret; 2158 } 2159 EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque); 2160 2161 /** 2162 * xdr_stream_decode_opaque_dup - Decode and duplicate variable length opaque 2163 * @xdr: pointer to xdr_stream 2164 * @ptr: location to store pointer to opaque data 2165 * @maxlen: maximum acceptable object size 2166 * @gfp_flags: GFP mask to use 2167 * 2168 * Return values: 2169 * On success, returns size of object stored in *@ptr 2170 * %-EBADMSG on XDR buffer overflow 2171 * %-EMSGSIZE if the size of the object would exceed @maxlen 2172 * %-ENOMEM on memory allocation failure 2173 */ 2174 ssize_t xdr_stream_decode_opaque_dup(struct xdr_stream *xdr, void **ptr, 2175 size_t maxlen, gfp_t gfp_flags) 2176 { 2177 ssize_t ret; 2178 void *p; 2179 2180 ret = xdr_stream_decode_opaque_inline(xdr, &p, maxlen); 2181 if (ret > 0) { 2182 *ptr = kmemdup(p, ret, gfp_flags); 2183 if (*ptr != NULL) 2184 return ret; 2185 ret = -ENOMEM; 2186 } 2187 *ptr = NULL; 2188 return ret; 2189 } 2190 EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque_dup); 2191 2192 /** 2193 * xdr_stream_decode_string - Decode variable length string 2194 * @xdr: pointer to xdr_stream 2195 * @str: location to store string 2196 * @size: size of storage buffer @str 2197 * 2198 * Return values: 2199 * On success, returns length of NUL-terminated string stored in *@str 2200 * %-EBADMSG on XDR buffer overflow 2201 * %-EMSGSIZE on overflow of storage buffer @str 2202 */ 2203 ssize_t xdr_stream_decode_string(struct xdr_stream *xdr, char *str, size_t size) 2204 { 2205 ssize_t ret; 2206 void *p; 2207 2208 ret = xdr_stream_decode_opaque_inline(xdr, &p, size); 2209 if (ret > 0) { 2210 memcpy(str, p, ret); 2211 str[ret] = '\0'; 2212 return strlen(str); 2213 } 2214 *str = '\0'; 2215 return ret; 2216 } 2217 EXPORT_SYMBOL_GPL(xdr_stream_decode_string); 2218 2219 /** 2220 * xdr_stream_decode_string_dup - Decode and duplicate variable length string 2221 * @xdr: pointer to xdr_stream 2222 * @str: location to store pointer to string 2223 * @maxlen: maximum acceptable string length 2224 * @gfp_flags: GFP mask to use 2225 * 2226 * Return values: 2227 * On success, returns length of NUL-terminated string stored in *@ptr 2228 * %-EBADMSG on XDR buffer overflow 2229 * %-EMSGSIZE if the size of the string would exceed @maxlen 2230 * %-ENOMEM on memory allocation failure 2231 */ 2232 ssize_t xdr_stream_decode_string_dup(struct xdr_stream *xdr, char **str, 2233 size_t maxlen, gfp_t gfp_flags) 2234 { 2235 void *p; 2236 ssize_t ret; 2237 2238 ret = xdr_stream_decode_opaque_inline(xdr, &p, maxlen); 2239 if (ret > 0) { 2240 char *s = kmemdup_nul(p, ret, gfp_flags); 2241 if (s != NULL) { 2242 *str = s; 2243 return strlen(s); 2244 } 2245 ret = -ENOMEM; 2246 } 2247 *str = NULL; 2248 return ret; 2249 } 2250 EXPORT_SYMBOL_GPL(xdr_stream_decode_string_dup); 2251