xref: /linux/net/sunrpc/svcsock.c (revision eb2bce7f5e7ac1ca6da434461217fadf3c688d2c)
1 /*
2  * linux/net/sunrpc/svcsock.c
3  *
4  * These are the RPC server socket internals.
5  *
6  * The server scheduling algorithm does not always distribute the load
7  * evenly when servicing a single client. May need to modify the
8  * svc_sock_enqueue procedure...
9  *
10  * TCP support is largely untested and may be a little slow. The problem
11  * is that we currently do two separate recvfrom's, one for the 4-byte
12  * record length, and the second for the actual record. This could possibly
13  * be improved by always reading a minimum size of around 100 bytes and
14  * tucking any superfluous bytes away in a temporary store. Still, that
15  * leaves write requests out in the rain. An alternative may be to peek at
16  * the first skb in the queue, and if it matches the next TCP sequence
17  * number, to extract the record marker. Yuck.
18  *
19  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
20  */
21 
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/fcntl.h>
25 #include <linux/net.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/udp.h>
29 #include <linux/tcp.h>
30 #include <linux/unistd.h>
31 #include <linux/slab.h>
32 #include <linux/netdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/file.h>
35 #include <linux/freezer.h>
36 #include <net/sock.h>
37 #include <net/checksum.h>
38 #include <net/ip.h>
39 #include <net/ipv6.h>
40 #include <net/tcp_states.h>
41 #include <asm/uaccess.h>
42 #include <asm/ioctls.h>
43 
44 #include <linux/sunrpc/types.h>
45 #include <linux/sunrpc/clnt.h>
46 #include <linux/sunrpc/xdr.h>
47 #include <linux/sunrpc/svcsock.h>
48 #include <linux/sunrpc/stats.h>
49 
50 /* SMP locking strategy:
51  *
52  *	svc_pool->sp_lock protects most of the fields of that pool.
53  * 	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
54  *	when both need to be taken (rare), svc_serv->sv_lock is first.
55  *	BKL protects svc_serv->sv_nrthread.
56  *	svc_sock->sk_defer_lock protects the svc_sock->sk_deferred list
57  *	svc_sock->sk_flags.SK_BUSY prevents a svc_sock being enqueued multiply.
58  *
59  *	Some flags can be set to certain values at any time
60  *	providing that certain rules are followed:
61  *
62  *	SK_CONN, SK_DATA, can be set or cleared at any time.
63  *		after a set, svc_sock_enqueue must be called.
64  *		after a clear, the socket must be read/accepted
65  *		 if this succeeds, it must be set again.
66  *	SK_CLOSE can set at any time. It is never cleared.
67  *      sk_inuse contains a bias of '1' until SK_DEAD is set.
68  *             so when sk_inuse hits zero, we know the socket is dead
69  *             and no-one is using it.
70  *      SK_DEAD can only be set while SK_BUSY is held which ensures
71  *             no other thread will be using the socket or will try to
72  *	       set SK_DEAD.
73  *
74  */
75 
76 #define RPCDBG_FACILITY	RPCDBG_SVCSOCK
77 
78 
79 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
80 					 int *errp, int flags);
81 static void		svc_delete_socket(struct svc_sock *svsk);
82 static void		svc_udp_data_ready(struct sock *, int);
83 static int		svc_udp_recvfrom(struct svc_rqst *);
84 static int		svc_udp_sendto(struct svc_rqst *);
85 static void		svc_close_socket(struct svc_sock *svsk);
86 
87 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk);
88 static int svc_deferred_recv(struct svc_rqst *rqstp);
89 static struct cache_deferred_req *svc_defer(struct cache_req *req);
90 
91 /* apparently the "standard" is that clients close
92  * idle connections after 5 minutes, servers after
93  * 6 minutes
94  *   http://www.connectathon.org/talks96/nfstcp.pdf
95  */
96 static int svc_conn_age_period = 6*60;
97 
98 #ifdef CONFIG_DEBUG_LOCK_ALLOC
99 static struct lock_class_key svc_key[2];
100 static struct lock_class_key svc_slock_key[2];
101 
102 static inline void svc_reclassify_socket(struct socket *sock)
103 {
104 	struct sock *sk = sock->sk;
105 	BUG_ON(sk->sk_lock.owner != NULL);
106 	switch (sk->sk_family) {
107 	case AF_INET:
108 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
109 		    &svc_slock_key[0], "sk_lock-AF_INET-NFSD", &svc_key[0]);
110 		break;
111 
112 	case AF_INET6:
113 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
114 		    &svc_slock_key[1], "sk_lock-AF_INET6-NFSD", &svc_key[1]);
115 		break;
116 
117 	default:
118 		BUG();
119 	}
120 }
121 #else
122 static inline void svc_reclassify_socket(struct socket *sock)
123 {
124 }
125 #endif
126 
127 static char *__svc_print_addr(struct sockaddr *addr, char *buf, size_t len)
128 {
129 	switch (addr->sa_family) {
130 	case AF_INET:
131 		snprintf(buf, len, "%u.%u.%u.%u, port=%u",
132 			NIPQUAD(((struct sockaddr_in *) addr)->sin_addr),
133 			htons(((struct sockaddr_in *) addr)->sin_port));
134 		break;
135 
136 	case AF_INET6:
137 		snprintf(buf, len, "%x:%x:%x:%x:%x:%x:%x:%x, port=%u",
138 			NIP6(((struct sockaddr_in6 *) addr)->sin6_addr),
139 			htons(((struct sockaddr_in6 *) addr)->sin6_port));
140 		break;
141 
142 	default:
143 		snprintf(buf, len, "unknown address type: %d", addr->sa_family);
144 		break;
145 	}
146 	return buf;
147 }
148 
149 /**
150  * svc_print_addr - Format rq_addr field for printing
151  * @rqstp: svc_rqst struct containing address to print
152  * @buf: target buffer for formatted address
153  * @len: length of target buffer
154  *
155  */
156 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
157 {
158 	return __svc_print_addr(svc_addr(rqstp), buf, len);
159 }
160 EXPORT_SYMBOL_GPL(svc_print_addr);
161 
162 /*
163  * Queue up an idle server thread.  Must have pool->sp_lock held.
164  * Note: this is really a stack rather than a queue, so that we only
165  * use as many different threads as we need, and the rest don't pollute
166  * the cache.
167  */
168 static inline void
169 svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
170 {
171 	list_add(&rqstp->rq_list, &pool->sp_threads);
172 }
173 
174 /*
175  * Dequeue an nfsd thread.  Must have pool->sp_lock held.
176  */
177 static inline void
178 svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
179 {
180 	list_del(&rqstp->rq_list);
181 }
182 
183 /*
184  * Release an skbuff after use
185  */
186 static inline void
187 svc_release_skb(struct svc_rqst *rqstp)
188 {
189 	struct sk_buff *skb = rqstp->rq_skbuff;
190 	struct svc_deferred_req *dr = rqstp->rq_deferred;
191 
192 	if (skb) {
193 		rqstp->rq_skbuff = NULL;
194 
195 		dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
196 		skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
197 	}
198 	if (dr) {
199 		rqstp->rq_deferred = NULL;
200 		kfree(dr);
201 	}
202 }
203 
204 /*
205  * Any space to write?
206  */
207 static inline unsigned long
208 svc_sock_wspace(struct svc_sock *svsk)
209 {
210 	int wspace;
211 
212 	if (svsk->sk_sock->type == SOCK_STREAM)
213 		wspace = sk_stream_wspace(svsk->sk_sk);
214 	else
215 		wspace = sock_wspace(svsk->sk_sk);
216 
217 	return wspace;
218 }
219 
220 /*
221  * Queue up a socket with data pending. If there are idle nfsd
222  * processes, wake 'em up.
223  *
224  */
225 static void
226 svc_sock_enqueue(struct svc_sock *svsk)
227 {
228 	struct svc_serv	*serv = svsk->sk_server;
229 	struct svc_pool *pool;
230 	struct svc_rqst	*rqstp;
231 	int cpu;
232 
233 	if (!(svsk->sk_flags &
234 	      ( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) ))
235 		return;
236 	if (test_bit(SK_DEAD, &svsk->sk_flags))
237 		return;
238 
239 	cpu = get_cpu();
240 	pool = svc_pool_for_cpu(svsk->sk_server, cpu);
241 	put_cpu();
242 
243 	spin_lock_bh(&pool->sp_lock);
244 
245 	if (!list_empty(&pool->sp_threads) &&
246 	    !list_empty(&pool->sp_sockets))
247 		printk(KERN_ERR
248 			"svc_sock_enqueue: threads and sockets both waiting??\n");
249 
250 	if (test_bit(SK_DEAD, &svsk->sk_flags)) {
251 		/* Don't enqueue dead sockets */
252 		dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk);
253 		goto out_unlock;
254 	}
255 
256 	/* Mark socket as busy. It will remain in this state until the
257 	 * server has processed all pending data and put the socket back
258 	 * on the idle list.  We update SK_BUSY atomically because
259 	 * it also guards against trying to enqueue the svc_sock twice.
260 	 */
261 	if (test_and_set_bit(SK_BUSY, &svsk->sk_flags)) {
262 		/* Don't enqueue socket while already enqueued */
263 		dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk);
264 		goto out_unlock;
265 	}
266 	BUG_ON(svsk->sk_pool != NULL);
267 	svsk->sk_pool = pool;
268 
269 	set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
270 	if (((atomic_read(&svsk->sk_reserved) + serv->sv_max_mesg)*2
271 	     > svc_sock_wspace(svsk))
272 	    && !test_bit(SK_CLOSE, &svsk->sk_flags)
273 	    && !test_bit(SK_CONN, &svsk->sk_flags)) {
274 		/* Don't enqueue while not enough space for reply */
275 		dprintk("svc: socket %p  no space, %d*2 > %ld, not enqueued\n",
276 			svsk->sk_sk, atomic_read(&svsk->sk_reserved)+serv->sv_max_mesg,
277 			svc_sock_wspace(svsk));
278 		svsk->sk_pool = NULL;
279 		clear_bit(SK_BUSY, &svsk->sk_flags);
280 		goto out_unlock;
281 	}
282 	clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
283 
284 
285 	if (!list_empty(&pool->sp_threads)) {
286 		rqstp = list_entry(pool->sp_threads.next,
287 				   struct svc_rqst,
288 				   rq_list);
289 		dprintk("svc: socket %p served by daemon %p\n",
290 			svsk->sk_sk, rqstp);
291 		svc_thread_dequeue(pool, rqstp);
292 		if (rqstp->rq_sock)
293 			printk(KERN_ERR
294 				"svc_sock_enqueue: server %p, rq_sock=%p!\n",
295 				rqstp, rqstp->rq_sock);
296 		rqstp->rq_sock = svsk;
297 		atomic_inc(&svsk->sk_inuse);
298 		rqstp->rq_reserved = serv->sv_max_mesg;
299 		atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
300 		BUG_ON(svsk->sk_pool != pool);
301 		wake_up(&rqstp->rq_wait);
302 	} else {
303 		dprintk("svc: socket %p put into queue\n", svsk->sk_sk);
304 		list_add_tail(&svsk->sk_ready, &pool->sp_sockets);
305 		BUG_ON(svsk->sk_pool != pool);
306 	}
307 
308 out_unlock:
309 	spin_unlock_bh(&pool->sp_lock);
310 }
311 
312 /*
313  * Dequeue the first socket.  Must be called with the pool->sp_lock held.
314  */
315 static inline struct svc_sock *
316 svc_sock_dequeue(struct svc_pool *pool)
317 {
318 	struct svc_sock	*svsk;
319 
320 	if (list_empty(&pool->sp_sockets))
321 		return NULL;
322 
323 	svsk = list_entry(pool->sp_sockets.next,
324 			  struct svc_sock, sk_ready);
325 	list_del_init(&svsk->sk_ready);
326 
327 	dprintk("svc: socket %p dequeued, inuse=%d\n",
328 		svsk->sk_sk, atomic_read(&svsk->sk_inuse));
329 
330 	return svsk;
331 }
332 
333 /*
334  * Having read something from a socket, check whether it
335  * needs to be re-enqueued.
336  * Note: SK_DATA only gets cleared when a read-attempt finds
337  * no (or insufficient) data.
338  */
339 static inline void
340 svc_sock_received(struct svc_sock *svsk)
341 {
342 	svsk->sk_pool = NULL;
343 	clear_bit(SK_BUSY, &svsk->sk_flags);
344 	svc_sock_enqueue(svsk);
345 }
346 
347 
348 /**
349  * svc_reserve - change the space reserved for the reply to a request.
350  * @rqstp:  The request in question
351  * @space: new max space to reserve
352  *
353  * Each request reserves some space on the output queue of the socket
354  * to make sure the reply fits.  This function reduces that reserved
355  * space to be the amount of space used already, plus @space.
356  *
357  */
358 void svc_reserve(struct svc_rqst *rqstp, int space)
359 {
360 	space += rqstp->rq_res.head[0].iov_len;
361 
362 	if (space < rqstp->rq_reserved) {
363 		struct svc_sock *svsk = rqstp->rq_sock;
364 		atomic_sub((rqstp->rq_reserved - space), &svsk->sk_reserved);
365 		rqstp->rq_reserved = space;
366 
367 		svc_sock_enqueue(svsk);
368 	}
369 }
370 
371 /*
372  * Release a socket after use.
373  */
374 static inline void
375 svc_sock_put(struct svc_sock *svsk)
376 {
377 	if (atomic_dec_and_test(&svsk->sk_inuse)) {
378 		BUG_ON(! test_bit(SK_DEAD, &svsk->sk_flags));
379 
380 		dprintk("svc: releasing dead socket\n");
381 		if (svsk->sk_sock->file)
382 			sockfd_put(svsk->sk_sock);
383 		else
384 			sock_release(svsk->sk_sock);
385 		if (svsk->sk_info_authunix != NULL)
386 			svcauth_unix_info_release(svsk->sk_info_authunix);
387 		kfree(svsk);
388 	}
389 }
390 
391 static void
392 svc_sock_release(struct svc_rqst *rqstp)
393 {
394 	struct svc_sock	*svsk = rqstp->rq_sock;
395 
396 	svc_release_skb(rqstp);
397 
398 	svc_free_res_pages(rqstp);
399 	rqstp->rq_res.page_len = 0;
400 	rqstp->rq_res.page_base = 0;
401 
402 
403 	/* Reset response buffer and release
404 	 * the reservation.
405 	 * But first, check that enough space was reserved
406 	 * for the reply, otherwise we have a bug!
407 	 */
408 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
409 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
410 		       rqstp->rq_reserved,
411 		       rqstp->rq_res.len);
412 
413 	rqstp->rq_res.head[0].iov_len = 0;
414 	svc_reserve(rqstp, 0);
415 	rqstp->rq_sock = NULL;
416 
417 	svc_sock_put(svsk);
418 }
419 
420 /*
421  * External function to wake up a server waiting for data
422  * This really only makes sense for services like lockd
423  * which have exactly one thread anyway.
424  */
425 void
426 svc_wake_up(struct svc_serv *serv)
427 {
428 	struct svc_rqst	*rqstp;
429 	unsigned int i;
430 	struct svc_pool *pool;
431 
432 	for (i = 0; i < serv->sv_nrpools; i++) {
433 		pool = &serv->sv_pools[i];
434 
435 		spin_lock_bh(&pool->sp_lock);
436 		if (!list_empty(&pool->sp_threads)) {
437 			rqstp = list_entry(pool->sp_threads.next,
438 					   struct svc_rqst,
439 					   rq_list);
440 			dprintk("svc: daemon %p woken up.\n", rqstp);
441 			/*
442 			svc_thread_dequeue(pool, rqstp);
443 			rqstp->rq_sock = NULL;
444 			 */
445 			wake_up(&rqstp->rq_wait);
446 		}
447 		spin_unlock_bh(&pool->sp_lock);
448 	}
449 }
450 
451 union svc_pktinfo_u {
452 	struct in_pktinfo pkti;
453 	struct in6_pktinfo pkti6;
454 };
455 #define SVC_PKTINFO_SPACE \
456 	CMSG_SPACE(sizeof(union svc_pktinfo_u))
457 
458 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
459 {
460 	switch (rqstp->rq_sock->sk_sk->sk_family) {
461 	case AF_INET: {
462 			struct in_pktinfo *pki = CMSG_DATA(cmh);
463 
464 			cmh->cmsg_level = SOL_IP;
465 			cmh->cmsg_type = IP_PKTINFO;
466 			pki->ipi_ifindex = 0;
467 			pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
468 			cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
469 		}
470 		break;
471 
472 	case AF_INET6: {
473 			struct in6_pktinfo *pki = CMSG_DATA(cmh);
474 
475 			cmh->cmsg_level = SOL_IPV6;
476 			cmh->cmsg_type = IPV6_PKTINFO;
477 			pki->ipi6_ifindex = 0;
478 			ipv6_addr_copy(&pki->ipi6_addr,
479 					&rqstp->rq_daddr.addr6);
480 			cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
481 		}
482 		break;
483 	}
484 	return;
485 }
486 
487 /*
488  * Generic sendto routine
489  */
490 static int
491 svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
492 {
493 	struct svc_sock	*svsk = rqstp->rq_sock;
494 	struct socket	*sock = svsk->sk_sock;
495 	int		slen;
496 	union {
497 		struct cmsghdr	hdr;
498 		long		all[SVC_PKTINFO_SPACE / sizeof(long)];
499 	} buffer;
500 	struct cmsghdr *cmh = &buffer.hdr;
501 	int		len = 0;
502 	int		result;
503 	int		size;
504 	struct page	**ppage = xdr->pages;
505 	size_t		base = xdr->page_base;
506 	unsigned int	pglen = xdr->page_len;
507 	unsigned int	flags = MSG_MORE;
508 	char		buf[RPC_MAX_ADDRBUFLEN];
509 
510 	slen = xdr->len;
511 
512 	if (rqstp->rq_prot == IPPROTO_UDP) {
513 		struct msghdr msg = {
514 			.msg_name	= &rqstp->rq_addr,
515 			.msg_namelen	= rqstp->rq_addrlen,
516 			.msg_control	= cmh,
517 			.msg_controllen	= sizeof(buffer),
518 			.msg_flags	= MSG_MORE,
519 		};
520 
521 		svc_set_cmsg_data(rqstp, cmh);
522 
523 		if (sock_sendmsg(sock, &msg, 0) < 0)
524 			goto out;
525 	}
526 
527 	/* send head */
528 	if (slen == xdr->head[0].iov_len)
529 		flags = 0;
530 	len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
531 				  xdr->head[0].iov_len, flags);
532 	if (len != xdr->head[0].iov_len)
533 		goto out;
534 	slen -= xdr->head[0].iov_len;
535 	if (slen == 0)
536 		goto out;
537 
538 	/* send page data */
539 	size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
540 	while (pglen > 0) {
541 		if (slen == size)
542 			flags = 0;
543 		result = kernel_sendpage(sock, *ppage, base, size, flags);
544 		if (result > 0)
545 			len += result;
546 		if (result != size)
547 			goto out;
548 		slen -= size;
549 		pglen -= size;
550 		size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
551 		base = 0;
552 		ppage++;
553 	}
554 	/* send tail */
555 	if (xdr->tail[0].iov_len) {
556 		result = kernel_sendpage(sock, rqstp->rq_respages[0],
557 					     ((unsigned long)xdr->tail[0].iov_base)
558 						& (PAGE_SIZE-1),
559 					     xdr->tail[0].iov_len, 0);
560 
561 		if (result > 0)
562 			len += result;
563 	}
564 out:
565 	dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
566 		rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len,
567 		xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
568 
569 	return len;
570 }
571 
572 /*
573  * Report socket names for nfsdfs
574  */
575 static int one_sock_name(char *buf, struct svc_sock *svsk)
576 {
577 	int len;
578 
579 	switch(svsk->sk_sk->sk_family) {
580 	case AF_INET:
581 		len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n",
582 			      svsk->sk_sk->sk_protocol==IPPROTO_UDP?
583 			      "udp" : "tcp",
584 			      NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr),
585 			      inet_sk(svsk->sk_sk)->num);
586 		break;
587 	default:
588 		len = sprintf(buf, "*unknown-%d*\n",
589 			       svsk->sk_sk->sk_family);
590 	}
591 	return len;
592 }
593 
594 int
595 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
596 {
597 	struct svc_sock *svsk, *closesk = NULL;
598 	int len = 0;
599 
600 	if (!serv)
601 		return 0;
602 	spin_lock_bh(&serv->sv_lock);
603 	list_for_each_entry(svsk, &serv->sv_permsocks, sk_list) {
604 		int onelen = one_sock_name(buf+len, svsk);
605 		if (toclose && strcmp(toclose, buf+len) == 0)
606 			closesk = svsk;
607 		else
608 			len += onelen;
609 	}
610 	spin_unlock_bh(&serv->sv_lock);
611 	if (closesk)
612 		/* Should unregister with portmap, but you cannot
613 		 * unregister just one protocol...
614 		 */
615 		svc_close_socket(closesk);
616 	else if (toclose)
617 		return -ENOENT;
618 	return len;
619 }
620 EXPORT_SYMBOL(svc_sock_names);
621 
622 /*
623  * Check input queue length
624  */
625 static int
626 svc_recv_available(struct svc_sock *svsk)
627 {
628 	struct socket	*sock = svsk->sk_sock;
629 	int		avail, err;
630 
631 	err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
632 
633 	return (err >= 0)? avail : err;
634 }
635 
636 /*
637  * Generic recvfrom routine.
638  */
639 static int
640 svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
641 {
642 	struct svc_sock *svsk = rqstp->rq_sock;
643 	struct msghdr msg = {
644 		.msg_flags	= MSG_DONTWAIT,
645 	};
646 	int len;
647 
648 	len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
649 				msg.msg_flags);
650 
651 	/* sock_recvmsg doesn't fill in the name/namelen, so we must..
652 	 */
653 	memcpy(&rqstp->rq_addr, &svsk->sk_remote, svsk->sk_remotelen);
654 	rqstp->rq_addrlen = svsk->sk_remotelen;
655 
656 	dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
657 		svsk, iov[0].iov_base, iov[0].iov_len, len);
658 
659 	return len;
660 }
661 
662 /*
663  * Set socket snd and rcv buffer lengths
664  */
665 static inline void
666 svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
667 {
668 #if 0
669 	mm_segment_t	oldfs;
670 	oldfs = get_fs(); set_fs(KERNEL_DS);
671 	sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
672 			(char*)&snd, sizeof(snd));
673 	sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
674 			(char*)&rcv, sizeof(rcv));
675 #else
676 	/* sock_setsockopt limits use to sysctl_?mem_max,
677 	 * which isn't acceptable.  Until that is made conditional
678 	 * on not having CAP_SYS_RESOURCE or similar, we go direct...
679 	 * DaveM said I could!
680 	 */
681 	lock_sock(sock->sk);
682 	sock->sk->sk_sndbuf = snd * 2;
683 	sock->sk->sk_rcvbuf = rcv * 2;
684 	sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
685 	release_sock(sock->sk);
686 #endif
687 }
688 /*
689  * INET callback when data has been received on the socket.
690  */
691 static void
692 svc_udp_data_ready(struct sock *sk, int count)
693 {
694 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
695 
696 	if (svsk) {
697 		dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
698 			svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags));
699 		set_bit(SK_DATA, &svsk->sk_flags);
700 		svc_sock_enqueue(svsk);
701 	}
702 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
703 		wake_up_interruptible(sk->sk_sleep);
704 }
705 
706 /*
707  * INET callback when space is newly available on the socket.
708  */
709 static void
710 svc_write_space(struct sock *sk)
711 {
712 	struct svc_sock	*svsk = (struct svc_sock *)(sk->sk_user_data);
713 
714 	if (svsk) {
715 		dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
716 			svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags));
717 		svc_sock_enqueue(svsk);
718 	}
719 
720 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
721 		dprintk("RPC svc_write_space: someone sleeping on %p\n",
722 		       svsk);
723 		wake_up_interruptible(sk->sk_sleep);
724 	}
725 }
726 
727 static inline void svc_udp_get_dest_address(struct svc_rqst *rqstp,
728 					    struct cmsghdr *cmh)
729 {
730 	switch (rqstp->rq_sock->sk_sk->sk_family) {
731 	case AF_INET: {
732 		struct in_pktinfo *pki = CMSG_DATA(cmh);
733 		rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
734 		break;
735 		}
736 	case AF_INET6: {
737 		struct in6_pktinfo *pki = CMSG_DATA(cmh);
738 		ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
739 		break;
740 		}
741 	}
742 }
743 
744 /*
745  * Receive a datagram from a UDP socket.
746  */
747 static int
748 svc_udp_recvfrom(struct svc_rqst *rqstp)
749 {
750 	struct svc_sock	*svsk = rqstp->rq_sock;
751 	struct svc_serv	*serv = svsk->sk_server;
752 	struct sk_buff	*skb;
753 	union {
754 		struct cmsghdr	hdr;
755 		long		all[SVC_PKTINFO_SPACE / sizeof(long)];
756 	} buffer;
757 	struct cmsghdr *cmh = &buffer.hdr;
758 	int		err, len;
759 	struct msghdr msg = {
760 		.msg_name = svc_addr(rqstp),
761 		.msg_control = cmh,
762 		.msg_controllen = sizeof(buffer),
763 		.msg_flags = MSG_DONTWAIT,
764 	};
765 
766 	if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
767 	    /* udp sockets need large rcvbuf as all pending
768 	     * requests are still in that buffer.  sndbuf must
769 	     * also be large enough that there is enough space
770 	     * for one reply per thread.  We count all threads
771 	     * rather than threads in a particular pool, which
772 	     * provides an upper bound on the number of threads
773 	     * which will access the socket.
774 	     */
775 	    svc_sock_setbufsize(svsk->sk_sock,
776 				(serv->sv_nrthreads+3) * serv->sv_max_mesg,
777 				(serv->sv_nrthreads+3) * serv->sv_max_mesg);
778 
779 	if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
780 		svc_sock_received(svsk);
781 		return svc_deferred_recv(rqstp);
782 	}
783 
784 	if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
785 		svc_delete_socket(svsk);
786 		return 0;
787 	}
788 
789 	clear_bit(SK_DATA, &svsk->sk_flags);
790 	while ((err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
791 				     0, 0, MSG_PEEK | MSG_DONTWAIT)) < 0 ||
792 	       (skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err)) == NULL) {
793 		if (err == -EAGAIN) {
794 			svc_sock_received(svsk);
795 			return err;
796 		}
797 		/* possibly an icmp error */
798 		dprintk("svc: recvfrom returned error %d\n", -err);
799 	}
800 	rqstp->rq_addrlen = sizeof(rqstp->rq_addr);
801 	if (skb->tstamp.tv64 == 0) {
802 		skb->tstamp = ktime_get_real();
803 		/* Don't enable netstamp, sunrpc doesn't
804 		   need that much accuracy */
805 	}
806 	svsk->sk_sk->sk_stamp = skb->tstamp;
807 	set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */
808 
809 	/*
810 	 * Maybe more packets - kick another thread ASAP.
811 	 */
812 	svc_sock_received(svsk);
813 
814 	len  = skb->len - sizeof(struct udphdr);
815 	rqstp->rq_arg.len = len;
816 
817 	rqstp->rq_prot = IPPROTO_UDP;
818 
819 	if (cmh->cmsg_level != IPPROTO_IP ||
820 	    cmh->cmsg_type != IP_PKTINFO) {
821 		if (net_ratelimit())
822 			printk("rpcsvc: received unknown control message:"
823 			       "%d/%d\n",
824 			       cmh->cmsg_level, cmh->cmsg_type);
825 		skb_free_datagram(svsk->sk_sk, skb);
826 		return 0;
827 	}
828 	svc_udp_get_dest_address(rqstp, cmh);
829 
830 	if (skb_is_nonlinear(skb)) {
831 		/* we have to copy */
832 		local_bh_disable();
833 		if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
834 			local_bh_enable();
835 			/* checksum error */
836 			skb_free_datagram(svsk->sk_sk, skb);
837 			return 0;
838 		}
839 		local_bh_enable();
840 		skb_free_datagram(svsk->sk_sk, skb);
841 	} else {
842 		/* we can use it in-place */
843 		rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
844 		rqstp->rq_arg.head[0].iov_len = len;
845 		if (skb_checksum_complete(skb)) {
846 			skb_free_datagram(svsk->sk_sk, skb);
847 			return 0;
848 		}
849 		rqstp->rq_skbuff = skb;
850 	}
851 
852 	rqstp->rq_arg.page_base = 0;
853 	if (len <= rqstp->rq_arg.head[0].iov_len) {
854 		rqstp->rq_arg.head[0].iov_len = len;
855 		rqstp->rq_arg.page_len = 0;
856 		rqstp->rq_respages = rqstp->rq_pages+1;
857 	} else {
858 		rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
859 		rqstp->rq_respages = rqstp->rq_pages + 1 +
860 			(rqstp->rq_arg.page_len + PAGE_SIZE - 1)/ PAGE_SIZE;
861 	}
862 
863 	if (serv->sv_stats)
864 		serv->sv_stats->netudpcnt++;
865 
866 	return len;
867 }
868 
869 static int
870 svc_udp_sendto(struct svc_rqst *rqstp)
871 {
872 	int		error;
873 
874 	error = svc_sendto(rqstp, &rqstp->rq_res);
875 	if (error == -ECONNREFUSED)
876 		/* ICMP error on earlier request. */
877 		error = svc_sendto(rqstp, &rqstp->rq_res);
878 
879 	return error;
880 }
881 
882 static void
883 svc_udp_init(struct svc_sock *svsk)
884 {
885 	int one = 1;
886 	mm_segment_t oldfs;
887 
888 	svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
889 	svsk->sk_sk->sk_write_space = svc_write_space;
890 	svsk->sk_recvfrom = svc_udp_recvfrom;
891 	svsk->sk_sendto = svc_udp_sendto;
892 
893 	/* initialise setting must have enough space to
894 	 * receive and respond to one request.
895 	 * svc_udp_recvfrom will re-adjust if necessary
896 	 */
897 	svc_sock_setbufsize(svsk->sk_sock,
898 			    3 * svsk->sk_server->sv_max_mesg,
899 			    3 * svsk->sk_server->sv_max_mesg);
900 
901 	set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */
902 	set_bit(SK_CHNGBUF, &svsk->sk_flags);
903 
904 	oldfs = get_fs();
905 	set_fs(KERNEL_DS);
906 	/* make sure we get destination address info */
907 	svsk->sk_sock->ops->setsockopt(svsk->sk_sock, IPPROTO_IP, IP_PKTINFO,
908 				       (char __user *)&one, sizeof(one));
909 	set_fs(oldfs);
910 }
911 
912 /*
913  * A data_ready event on a listening socket means there's a connection
914  * pending. Do not use state_change as a substitute for it.
915  */
916 static void
917 svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
918 {
919 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
920 
921 	dprintk("svc: socket %p TCP (listen) state change %d\n",
922 		sk, sk->sk_state);
923 
924 	/*
925 	 * This callback may called twice when a new connection
926 	 * is established as a child socket inherits everything
927 	 * from a parent LISTEN socket.
928 	 * 1) data_ready method of the parent socket will be called
929 	 *    when one of child sockets become ESTABLISHED.
930 	 * 2) data_ready method of the child socket may be called
931 	 *    when it receives data before the socket is accepted.
932 	 * In case of 2, we should ignore it silently.
933 	 */
934 	if (sk->sk_state == TCP_LISTEN) {
935 		if (svsk) {
936 			set_bit(SK_CONN, &svsk->sk_flags);
937 			svc_sock_enqueue(svsk);
938 		} else
939 			printk("svc: socket %p: no user data\n", sk);
940 	}
941 
942 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
943 		wake_up_interruptible_all(sk->sk_sleep);
944 }
945 
946 /*
947  * A state change on a connected socket means it's dying or dead.
948  */
949 static void
950 svc_tcp_state_change(struct sock *sk)
951 {
952 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
953 
954 	dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
955 		sk, sk->sk_state, sk->sk_user_data);
956 
957 	if (!svsk)
958 		printk("svc: socket %p: no user data\n", sk);
959 	else {
960 		set_bit(SK_CLOSE, &svsk->sk_flags);
961 		svc_sock_enqueue(svsk);
962 	}
963 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
964 		wake_up_interruptible_all(sk->sk_sleep);
965 }
966 
967 static void
968 svc_tcp_data_ready(struct sock *sk, int count)
969 {
970 	struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
971 
972 	dprintk("svc: socket %p TCP data ready (svsk %p)\n",
973 		sk, sk->sk_user_data);
974 	if (svsk) {
975 		set_bit(SK_DATA, &svsk->sk_flags);
976 		svc_sock_enqueue(svsk);
977 	}
978 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
979 		wake_up_interruptible(sk->sk_sleep);
980 }
981 
982 static inline int svc_port_is_privileged(struct sockaddr *sin)
983 {
984 	switch (sin->sa_family) {
985 	case AF_INET:
986 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
987 			< PROT_SOCK;
988 	case AF_INET6:
989 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
990 			< PROT_SOCK;
991 	default:
992 		return 0;
993 	}
994 }
995 
996 /*
997  * Accept a TCP connection
998  */
999 static void
1000 svc_tcp_accept(struct svc_sock *svsk)
1001 {
1002 	struct sockaddr_storage addr;
1003 	struct sockaddr	*sin = (struct sockaddr *) &addr;
1004 	struct svc_serv	*serv = svsk->sk_server;
1005 	struct socket	*sock = svsk->sk_sock;
1006 	struct socket	*newsock;
1007 	struct svc_sock	*newsvsk;
1008 	int		err, slen;
1009 	char		buf[RPC_MAX_ADDRBUFLEN];
1010 
1011 	dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
1012 	if (!sock)
1013 		return;
1014 
1015 	clear_bit(SK_CONN, &svsk->sk_flags);
1016 	err = kernel_accept(sock, &newsock, O_NONBLOCK);
1017 	if (err < 0) {
1018 		if (err == -ENOMEM)
1019 			printk(KERN_WARNING "%s: no more sockets!\n",
1020 			       serv->sv_name);
1021 		else if (err != -EAGAIN && net_ratelimit())
1022 			printk(KERN_WARNING "%s: accept failed (err %d)!\n",
1023 				   serv->sv_name, -err);
1024 		return;
1025 	}
1026 
1027 	set_bit(SK_CONN, &svsk->sk_flags);
1028 	svc_sock_enqueue(svsk);
1029 
1030 	err = kernel_getpeername(newsock, sin, &slen);
1031 	if (err < 0) {
1032 		if (net_ratelimit())
1033 			printk(KERN_WARNING "%s: peername failed (err %d)!\n",
1034 				   serv->sv_name, -err);
1035 		goto failed;		/* aborted connection or whatever */
1036 	}
1037 
1038 	/* Ideally, we would want to reject connections from unauthorized
1039 	 * hosts here, but when we get encryption, the IP of the host won't
1040 	 * tell us anything.  For now just warn about unpriv connections.
1041 	 */
1042 	if (!svc_port_is_privileged(sin)) {
1043 		dprintk(KERN_WARNING
1044 			"%s: connect from unprivileged port: %s\n",
1045 			serv->sv_name,
1046 			__svc_print_addr(sin, buf, sizeof(buf)));
1047 	}
1048 	dprintk("%s: connect from %s\n", serv->sv_name,
1049 		__svc_print_addr(sin, buf, sizeof(buf)));
1050 
1051 	/* make sure that a write doesn't block forever when
1052 	 * low on memory
1053 	 */
1054 	newsock->sk->sk_sndtimeo = HZ*30;
1055 
1056 	if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
1057 				 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
1058 		goto failed;
1059 	memcpy(&newsvsk->sk_remote, sin, slen);
1060 	newsvsk->sk_remotelen = slen;
1061 
1062 	svc_sock_received(newsvsk);
1063 
1064 	/* make sure that we don't have too many active connections.
1065 	 * If we have, something must be dropped.
1066 	 *
1067 	 * There's no point in trying to do random drop here for
1068 	 * DoS prevention. The NFS clients does 1 reconnect in 15
1069 	 * seconds. An attacker can easily beat that.
1070 	 *
1071 	 * The only somewhat efficient mechanism would be if drop
1072 	 * old connections from the same IP first. But right now
1073 	 * we don't even record the client IP in svc_sock.
1074 	 */
1075 	if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
1076 		struct svc_sock *svsk = NULL;
1077 		spin_lock_bh(&serv->sv_lock);
1078 		if (!list_empty(&serv->sv_tempsocks)) {
1079 			if (net_ratelimit()) {
1080 				/* Try to help the admin */
1081 				printk(KERN_NOTICE "%s: too many open TCP "
1082 					"sockets, consider increasing the "
1083 					"number of nfsd threads\n",
1084 						   serv->sv_name);
1085 				printk(KERN_NOTICE
1086 				       "%s: last TCP connect from %s\n",
1087 				       serv->sv_name, buf);
1088 			}
1089 			/*
1090 			 * Always select the oldest socket. It's not fair,
1091 			 * but so is life
1092 			 */
1093 			svsk = list_entry(serv->sv_tempsocks.prev,
1094 					  struct svc_sock,
1095 					  sk_list);
1096 			set_bit(SK_CLOSE, &svsk->sk_flags);
1097 			atomic_inc(&svsk->sk_inuse);
1098 		}
1099 		spin_unlock_bh(&serv->sv_lock);
1100 
1101 		if (svsk) {
1102 			svc_sock_enqueue(svsk);
1103 			svc_sock_put(svsk);
1104 		}
1105 
1106 	}
1107 
1108 	if (serv->sv_stats)
1109 		serv->sv_stats->nettcpconn++;
1110 
1111 	return;
1112 
1113 failed:
1114 	sock_release(newsock);
1115 	return;
1116 }
1117 
1118 /*
1119  * Receive data from a TCP socket.
1120  */
1121 static int
1122 svc_tcp_recvfrom(struct svc_rqst *rqstp)
1123 {
1124 	struct svc_sock	*svsk = rqstp->rq_sock;
1125 	struct svc_serv	*serv = svsk->sk_server;
1126 	int		len;
1127 	struct kvec *vec;
1128 	int pnum, vlen;
1129 
1130 	dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
1131 		svsk, test_bit(SK_DATA, &svsk->sk_flags),
1132 		test_bit(SK_CONN, &svsk->sk_flags),
1133 		test_bit(SK_CLOSE, &svsk->sk_flags));
1134 
1135 	if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
1136 		svc_sock_received(svsk);
1137 		return svc_deferred_recv(rqstp);
1138 	}
1139 
1140 	if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
1141 		svc_delete_socket(svsk);
1142 		return 0;
1143 	}
1144 
1145 	if (svsk->sk_sk->sk_state == TCP_LISTEN) {
1146 		svc_tcp_accept(svsk);
1147 		svc_sock_received(svsk);
1148 		return 0;
1149 	}
1150 
1151 	if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
1152 		/* sndbuf needs to have room for one request
1153 		 * per thread, otherwise we can stall even when the
1154 		 * network isn't a bottleneck.
1155 		 *
1156 		 * We count all threads rather than threads in a
1157 		 * particular pool, which provides an upper bound
1158 		 * on the number of threads which will access the socket.
1159 		 *
1160 		 * rcvbuf just needs to be able to hold a few requests.
1161 		 * Normally they will be removed from the queue
1162 		 * as soon a a complete request arrives.
1163 		 */
1164 		svc_sock_setbufsize(svsk->sk_sock,
1165 				    (serv->sv_nrthreads+3) * serv->sv_max_mesg,
1166 				    3 * serv->sv_max_mesg);
1167 
1168 	clear_bit(SK_DATA, &svsk->sk_flags);
1169 
1170 	/* Receive data. If we haven't got the record length yet, get
1171 	 * the next four bytes. Otherwise try to gobble up as much as
1172 	 * possible up to the complete record length.
1173 	 */
1174 	if (svsk->sk_tcplen < 4) {
1175 		unsigned long	want = 4 - svsk->sk_tcplen;
1176 		struct kvec	iov;
1177 
1178 		iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
1179 		iov.iov_len  = want;
1180 		if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
1181 			goto error;
1182 		svsk->sk_tcplen += len;
1183 
1184 		if (len < want) {
1185 			dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
1186 				len, want);
1187 			svc_sock_received(svsk);
1188 			return -EAGAIN; /* record header not complete */
1189 		}
1190 
1191 		svsk->sk_reclen = ntohl(svsk->sk_reclen);
1192 		if (!(svsk->sk_reclen & 0x80000000)) {
1193 			/* FIXME: technically, a record can be fragmented,
1194 			 *  and non-terminal fragments will not have the top
1195 			 *  bit set in the fragment length header.
1196 			 *  But apparently no known nfs clients send fragmented
1197 			 *  records. */
1198 			if (net_ratelimit())
1199 				printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1200 				       " (non-terminal)\n",
1201 				       (unsigned long) svsk->sk_reclen);
1202 			goto err_delete;
1203 		}
1204 		svsk->sk_reclen &= 0x7fffffff;
1205 		dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
1206 		if (svsk->sk_reclen > serv->sv_max_mesg) {
1207 			if (net_ratelimit())
1208 				printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1209 				       " (large)\n",
1210 				       (unsigned long) svsk->sk_reclen);
1211 			goto err_delete;
1212 		}
1213 	}
1214 
1215 	/* Check whether enough data is available */
1216 	len = svc_recv_available(svsk);
1217 	if (len < 0)
1218 		goto error;
1219 
1220 	if (len < svsk->sk_reclen) {
1221 		dprintk("svc: incomplete TCP record (%d of %d)\n",
1222 			len, svsk->sk_reclen);
1223 		svc_sock_received(svsk);
1224 		return -EAGAIN;	/* record not complete */
1225 	}
1226 	len = svsk->sk_reclen;
1227 	set_bit(SK_DATA, &svsk->sk_flags);
1228 
1229 	vec = rqstp->rq_vec;
1230 	vec[0] = rqstp->rq_arg.head[0];
1231 	vlen = PAGE_SIZE;
1232 	pnum = 1;
1233 	while (vlen < len) {
1234 		vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
1235 		vec[pnum].iov_len = PAGE_SIZE;
1236 		pnum++;
1237 		vlen += PAGE_SIZE;
1238 	}
1239 	rqstp->rq_respages = &rqstp->rq_pages[pnum];
1240 
1241 	/* Now receive data */
1242 	len = svc_recvfrom(rqstp, vec, pnum, len);
1243 	if (len < 0)
1244 		goto error;
1245 
1246 	dprintk("svc: TCP complete record (%d bytes)\n", len);
1247 	rqstp->rq_arg.len = len;
1248 	rqstp->rq_arg.page_base = 0;
1249 	if (len <= rqstp->rq_arg.head[0].iov_len) {
1250 		rqstp->rq_arg.head[0].iov_len = len;
1251 		rqstp->rq_arg.page_len = 0;
1252 	} else {
1253 		rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1254 	}
1255 
1256 	rqstp->rq_skbuff      = NULL;
1257 	rqstp->rq_prot	      = IPPROTO_TCP;
1258 
1259 	/* Reset TCP read info */
1260 	svsk->sk_reclen = 0;
1261 	svsk->sk_tcplen = 0;
1262 
1263 	svc_sock_received(svsk);
1264 	if (serv->sv_stats)
1265 		serv->sv_stats->nettcpcnt++;
1266 
1267 	return len;
1268 
1269  err_delete:
1270 	svc_delete_socket(svsk);
1271 	return -EAGAIN;
1272 
1273  error:
1274 	if (len == -EAGAIN) {
1275 		dprintk("RPC: TCP recvfrom got EAGAIN\n");
1276 		svc_sock_received(svsk);
1277 	} else {
1278 		printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1279 					svsk->sk_server->sv_name, -len);
1280 		goto err_delete;
1281 	}
1282 
1283 	return len;
1284 }
1285 
1286 /*
1287  * Send out data on TCP socket.
1288  */
1289 static int
1290 svc_tcp_sendto(struct svc_rqst *rqstp)
1291 {
1292 	struct xdr_buf	*xbufp = &rqstp->rq_res;
1293 	int sent;
1294 	__be32 reclen;
1295 
1296 	/* Set up the first element of the reply kvec.
1297 	 * Any other kvecs that may be in use have been taken
1298 	 * care of by the server implementation itself.
1299 	 */
1300 	reclen = htonl(0x80000000|((xbufp->len ) - 4));
1301 	memcpy(xbufp->head[0].iov_base, &reclen, 4);
1302 
1303 	if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags))
1304 		return -ENOTCONN;
1305 
1306 	sent = svc_sendto(rqstp, &rqstp->rq_res);
1307 	if (sent != xbufp->len) {
1308 		printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1309 		       rqstp->rq_sock->sk_server->sv_name,
1310 		       (sent<0)?"got error":"sent only",
1311 		       sent, xbufp->len);
1312 		set_bit(SK_CLOSE, &rqstp->rq_sock->sk_flags);
1313 		svc_sock_enqueue(rqstp->rq_sock);
1314 		sent = -EAGAIN;
1315 	}
1316 	return sent;
1317 }
1318 
1319 static void
1320 svc_tcp_init(struct svc_sock *svsk)
1321 {
1322 	struct sock	*sk = svsk->sk_sk;
1323 	struct tcp_sock *tp = tcp_sk(sk);
1324 
1325 	svsk->sk_recvfrom = svc_tcp_recvfrom;
1326 	svsk->sk_sendto = svc_tcp_sendto;
1327 
1328 	if (sk->sk_state == TCP_LISTEN) {
1329 		dprintk("setting up TCP socket for listening\n");
1330 		sk->sk_data_ready = svc_tcp_listen_data_ready;
1331 		set_bit(SK_CONN, &svsk->sk_flags);
1332 	} else {
1333 		dprintk("setting up TCP socket for reading\n");
1334 		sk->sk_state_change = svc_tcp_state_change;
1335 		sk->sk_data_ready = svc_tcp_data_ready;
1336 		sk->sk_write_space = svc_write_space;
1337 
1338 		svsk->sk_reclen = 0;
1339 		svsk->sk_tcplen = 0;
1340 
1341 		tp->nonagle = 1;        /* disable Nagle's algorithm */
1342 
1343 		/* initialise setting must have enough space to
1344 		 * receive and respond to one request.
1345 		 * svc_tcp_recvfrom will re-adjust if necessary
1346 		 */
1347 		svc_sock_setbufsize(svsk->sk_sock,
1348 				    3 * svsk->sk_server->sv_max_mesg,
1349 				    3 * svsk->sk_server->sv_max_mesg);
1350 
1351 		set_bit(SK_CHNGBUF, &svsk->sk_flags);
1352 		set_bit(SK_DATA, &svsk->sk_flags);
1353 		if (sk->sk_state != TCP_ESTABLISHED)
1354 			set_bit(SK_CLOSE, &svsk->sk_flags);
1355 	}
1356 }
1357 
1358 void
1359 svc_sock_update_bufs(struct svc_serv *serv)
1360 {
1361 	/*
1362 	 * The number of server threads has changed. Update
1363 	 * rcvbuf and sndbuf accordingly on all sockets
1364 	 */
1365 	struct list_head *le;
1366 
1367 	spin_lock_bh(&serv->sv_lock);
1368 	list_for_each(le, &serv->sv_permsocks) {
1369 		struct svc_sock *svsk =
1370 			list_entry(le, struct svc_sock, sk_list);
1371 		set_bit(SK_CHNGBUF, &svsk->sk_flags);
1372 	}
1373 	list_for_each(le, &serv->sv_tempsocks) {
1374 		struct svc_sock *svsk =
1375 			list_entry(le, struct svc_sock, sk_list);
1376 		set_bit(SK_CHNGBUF, &svsk->sk_flags);
1377 	}
1378 	spin_unlock_bh(&serv->sv_lock);
1379 }
1380 
1381 /*
1382  * Receive the next request on any socket.  This code is carefully
1383  * organised not to touch any cachelines in the shared svc_serv
1384  * structure, only cachelines in the local svc_pool.
1385  */
1386 int
1387 svc_recv(struct svc_rqst *rqstp, long timeout)
1388 {
1389 	struct svc_sock		*svsk = NULL;
1390 	struct svc_serv		*serv = rqstp->rq_server;
1391 	struct svc_pool		*pool = rqstp->rq_pool;
1392 	int			len, i;
1393 	int 			pages;
1394 	struct xdr_buf		*arg;
1395 	DECLARE_WAITQUEUE(wait, current);
1396 
1397 	dprintk("svc: server %p waiting for data (to = %ld)\n",
1398 		rqstp, timeout);
1399 
1400 	if (rqstp->rq_sock)
1401 		printk(KERN_ERR
1402 			"svc_recv: service %p, socket not NULL!\n",
1403 			 rqstp);
1404 	if (waitqueue_active(&rqstp->rq_wait))
1405 		printk(KERN_ERR
1406 			"svc_recv: service %p, wait queue active!\n",
1407 			 rqstp);
1408 
1409 
1410 	/* now allocate needed pages.  If we get a failure, sleep briefly */
1411 	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
1412 	for (i=0; i < pages ; i++)
1413 		while (rqstp->rq_pages[i] == NULL) {
1414 			struct page *p = alloc_page(GFP_KERNEL);
1415 			if (!p)
1416 				schedule_timeout_uninterruptible(msecs_to_jiffies(500));
1417 			rqstp->rq_pages[i] = p;
1418 		}
1419 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
1420 	BUG_ON(pages >= RPCSVC_MAXPAGES);
1421 
1422 	/* Make arg->head point to first page and arg->pages point to rest */
1423 	arg = &rqstp->rq_arg;
1424 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
1425 	arg->head[0].iov_len = PAGE_SIZE;
1426 	arg->pages = rqstp->rq_pages + 1;
1427 	arg->page_base = 0;
1428 	/* save at least one page for response */
1429 	arg->page_len = (pages-2)*PAGE_SIZE;
1430 	arg->len = (pages-1)*PAGE_SIZE;
1431 	arg->tail[0].iov_len = 0;
1432 
1433 	try_to_freeze();
1434 	cond_resched();
1435 	if (signalled())
1436 		return -EINTR;
1437 
1438 	spin_lock_bh(&pool->sp_lock);
1439 	if ((svsk = svc_sock_dequeue(pool)) != NULL) {
1440 		rqstp->rq_sock = svsk;
1441 		atomic_inc(&svsk->sk_inuse);
1442 		rqstp->rq_reserved = serv->sv_max_mesg;
1443 		atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
1444 	} else {
1445 		/* No data pending. Go to sleep */
1446 		svc_thread_enqueue(pool, rqstp);
1447 
1448 		/*
1449 		 * We have to be able to interrupt this wait
1450 		 * to bring down the daemons ...
1451 		 */
1452 		set_current_state(TASK_INTERRUPTIBLE);
1453 		add_wait_queue(&rqstp->rq_wait, &wait);
1454 		spin_unlock_bh(&pool->sp_lock);
1455 
1456 		schedule_timeout(timeout);
1457 
1458 		try_to_freeze();
1459 
1460 		spin_lock_bh(&pool->sp_lock);
1461 		remove_wait_queue(&rqstp->rq_wait, &wait);
1462 
1463 		if (!(svsk = rqstp->rq_sock)) {
1464 			svc_thread_dequeue(pool, rqstp);
1465 			spin_unlock_bh(&pool->sp_lock);
1466 			dprintk("svc: server %p, no data yet\n", rqstp);
1467 			return signalled()? -EINTR : -EAGAIN;
1468 		}
1469 	}
1470 	spin_unlock_bh(&pool->sp_lock);
1471 
1472 	dprintk("svc: server %p, pool %u, socket %p, inuse=%d\n",
1473 		 rqstp, pool->sp_id, svsk, atomic_read(&svsk->sk_inuse));
1474 	len = svsk->sk_recvfrom(rqstp);
1475 	dprintk("svc: got len=%d\n", len);
1476 
1477 	/* No data, incomplete (TCP) read, or accept() */
1478 	if (len == 0 || len == -EAGAIN) {
1479 		rqstp->rq_res.len = 0;
1480 		svc_sock_release(rqstp);
1481 		return -EAGAIN;
1482 	}
1483 	svsk->sk_lastrecv = get_seconds();
1484 	clear_bit(SK_OLD, &svsk->sk_flags);
1485 
1486 	rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
1487 	rqstp->rq_chandle.defer = svc_defer;
1488 
1489 	if (serv->sv_stats)
1490 		serv->sv_stats->netcnt++;
1491 	return len;
1492 }
1493 
1494 /*
1495  * Drop request
1496  */
1497 void
1498 svc_drop(struct svc_rqst *rqstp)
1499 {
1500 	dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
1501 	svc_sock_release(rqstp);
1502 }
1503 
1504 /*
1505  * Return reply to client.
1506  */
1507 int
1508 svc_send(struct svc_rqst *rqstp)
1509 {
1510 	struct svc_sock	*svsk;
1511 	int		len;
1512 	struct xdr_buf	*xb;
1513 
1514 	if ((svsk = rqstp->rq_sock) == NULL) {
1515 		printk(KERN_WARNING "NULL socket pointer in %s:%d\n",
1516 				__FILE__, __LINE__);
1517 		return -EFAULT;
1518 	}
1519 
1520 	/* release the receive skb before sending the reply */
1521 	svc_release_skb(rqstp);
1522 
1523 	/* calculate over-all length */
1524 	xb = & rqstp->rq_res;
1525 	xb->len = xb->head[0].iov_len +
1526 		xb->page_len +
1527 		xb->tail[0].iov_len;
1528 
1529 	/* Grab svsk->sk_mutex to serialize outgoing data. */
1530 	mutex_lock(&svsk->sk_mutex);
1531 	if (test_bit(SK_DEAD, &svsk->sk_flags))
1532 		len = -ENOTCONN;
1533 	else
1534 		len = svsk->sk_sendto(rqstp);
1535 	mutex_unlock(&svsk->sk_mutex);
1536 	svc_sock_release(rqstp);
1537 
1538 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
1539 		return 0;
1540 	return len;
1541 }
1542 
1543 /*
1544  * Timer function to close old temporary sockets, using
1545  * a mark-and-sweep algorithm.
1546  */
1547 static void
1548 svc_age_temp_sockets(unsigned long closure)
1549 {
1550 	struct svc_serv *serv = (struct svc_serv *)closure;
1551 	struct svc_sock *svsk;
1552 	struct list_head *le, *next;
1553 	LIST_HEAD(to_be_aged);
1554 
1555 	dprintk("svc_age_temp_sockets\n");
1556 
1557 	if (!spin_trylock_bh(&serv->sv_lock)) {
1558 		/* busy, try again 1 sec later */
1559 		dprintk("svc_age_temp_sockets: busy\n");
1560 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
1561 		return;
1562 	}
1563 
1564 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
1565 		svsk = list_entry(le, struct svc_sock, sk_list);
1566 
1567 		if (!test_and_set_bit(SK_OLD, &svsk->sk_flags))
1568 			continue;
1569 		if (atomic_read(&svsk->sk_inuse) || test_bit(SK_BUSY, &svsk->sk_flags))
1570 			continue;
1571 		atomic_inc(&svsk->sk_inuse);
1572 		list_move(le, &to_be_aged);
1573 		set_bit(SK_CLOSE, &svsk->sk_flags);
1574 		set_bit(SK_DETACHED, &svsk->sk_flags);
1575 	}
1576 	spin_unlock_bh(&serv->sv_lock);
1577 
1578 	while (!list_empty(&to_be_aged)) {
1579 		le = to_be_aged.next;
1580 		/* fiddling the sk_list node is safe 'cos we're SK_DETACHED */
1581 		list_del_init(le);
1582 		svsk = list_entry(le, struct svc_sock, sk_list);
1583 
1584 		dprintk("queuing svsk %p for closing, %lu seconds old\n",
1585 			svsk, get_seconds() - svsk->sk_lastrecv);
1586 
1587 		/* a thread will dequeue and close it soon */
1588 		svc_sock_enqueue(svsk);
1589 		svc_sock_put(svsk);
1590 	}
1591 
1592 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
1593 }
1594 
1595 /*
1596  * Initialize socket for RPC use and create svc_sock struct
1597  * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1598  */
1599 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1600 						struct socket *sock,
1601 						int *errp, int flags)
1602 {
1603 	struct svc_sock	*svsk;
1604 	struct sock	*inet;
1605 	int		pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1606 	int		is_temporary = flags & SVC_SOCK_TEMPORARY;
1607 
1608 	dprintk("svc: svc_setup_socket %p\n", sock);
1609 	if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1610 		*errp = -ENOMEM;
1611 		return NULL;
1612 	}
1613 
1614 	inet = sock->sk;
1615 
1616 	/* Register socket with portmapper */
1617 	if (*errp >= 0 && pmap_register)
1618 		*errp = svc_register(serv, inet->sk_protocol,
1619 				     ntohs(inet_sk(inet)->sport));
1620 
1621 	if (*errp < 0) {
1622 		kfree(svsk);
1623 		return NULL;
1624 	}
1625 
1626 	set_bit(SK_BUSY, &svsk->sk_flags);
1627 	inet->sk_user_data = svsk;
1628 	svsk->sk_sock = sock;
1629 	svsk->sk_sk = inet;
1630 	svsk->sk_ostate = inet->sk_state_change;
1631 	svsk->sk_odata = inet->sk_data_ready;
1632 	svsk->sk_owspace = inet->sk_write_space;
1633 	svsk->sk_server = serv;
1634 	atomic_set(&svsk->sk_inuse, 1);
1635 	svsk->sk_lastrecv = get_seconds();
1636 	spin_lock_init(&svsk->sk_defer_lock);
1637 	INIT_LIST_HEAD(&svsk->sk_deferred);
1638 	INIT_LIST_HEAD(&svsk->sk_ready);
1639 	mutex_init(&svsk->sk_mutex);
1640 
1641 	/* Initialize the socket */
1642 	if (sock->type == SOCK_DGRAM)
1643 		svc_udp_init(svsk);
1644 	else
1645 		svc_tcp_init(svsk);
1646 
1647 	spin_lock_bh(&serv->sv_lock);
1648 	if (is_temporary) {
1649 		set_bit(SK_TEMP, &svsk->sk_flags);
1650 		list_add(&svsk->sk_list, &serv->sv_tempsocks);
1651 		serv->sv_tmpcnt++;
1652 		if (serv->sv_temptimer.function == NULL) {
1653 			/* setup timer to age temp sockets */
1654 			setup_timer(&serv->sv_temptimer, svc_age_temp_sockets,
1655 					(unsigned long)serv);
1656 			mod_timer(&serv->sv_temptimer,
1657 					jiffies + svc_conn_age_period * HZ);
1658 		}
1659 	} else {
1660 		clear_bit(SK_TEMP, &svsk->sk_flags);
1661 		list_add(&svsk->sk_list, &serv->sv_permsocks);
1662 	}
1663 	spin_unlock_bh(&serv->sv_lock);
1664 
1665 	dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1666 				svsk, svsk->sk_sk);
1667 
1668 	return svsk;
1669 }
1670 
1671 int svc_addsock(struct svc_serv *serv,
1672 		int fd,
1673 		char *name_return,
1674 		int *proto)
1675 {
1676 	int err = 0;
1677 	struct socket *so = sockfd_lookup(fd, &err);
1678 	struct svc_sock *svsk = NULL;
1679 
1680 	if (!so)
1681 		return err;
1682 	if (so->sk->sk_family != AF_INET)
1683 		err =  -EAFNOSUPPORT;
1684 	else if (so->sk->sk_protocol != IPPROTO_TCP &&
1685 	    so->sk->sk_protocol != IPPROTO_UDP)
1686 		err =  -EPROTONOSUPPORT;
1687 	else if (so->state > SS_UNCONNECTED)
1688 		err = -EISCONN;
1689 	else {
1690 		svsk = svc_setup_socket(serv, so, &err, SVC_SOCK_DEFAULTS);
1691 		if (svsk) {
1692 			svc_sock_received(svsk);
1693 			err = 0;
1694 		}
1695 	}
1696 	if (err) {
1697 		sockfd_put(so);
1698 		return err;
1699 	}
1700 	if (proto) *proto = so->sk->sk_protocol;
1701 	return one_sock_name(name_return, svsk);
1702 }
1703 EXPORT_SYMBOL_GPL(svc_addsock);
1704 
1705 /*
1706  * Create socket for RPC service.
1707  */
1708 static int svc_create_socket(struct svc_serv *serv, int protocol,
1709 				struct sockaddr *sin, int len, int flags)
1710 {
1711 	struct svc_sock	*svsk;
1712 	struct socket	*sock;
1713 	int		error;
1714 	int		type;
1715 	char		buf[RPC_MAX_ADDRBUFLEN];
1716 
1717 	dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1718 			serv->sv_program->pg_name, protocol,
1719 			__svc_print_addr(sin, buf, sizeof(buf)));
1720 
1721 	if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1722 		printk(KERN_WARNING "svc: only UDP and TCP "
1723 				"sockets supported\n");
1724 		return -EINVAL;
1725 	}
1726 	type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1727 
1728 	error = sock_create_kern(sin->sa_family, type, protocol, &sock);
1729 	if (error < 0)
1730 		return error;
1731 
1732 	svc_reclassify_socket(sock);
1733 
1734 	if (type == SOCK_STREAM)
1735 		sock->sk->sk_reuse = 1;		/* allow address reuse */
1736 	error = kernel_bind(sock, sin, len);
1737 	if (error < 0)
1738 		goto bummer;
1739 
1740 	if (protocol == IPPROTO_TCP) {
1741 		if ((error = kernel_listen(sock, 64)) < 0)
1742 			goto bummer;
1743 	}
1744 
1745 	if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
1746 		svc_sock_received(svsk);
1747 		return ntohs(inet_sk(svsk->sk_sk)->sport);
1748 	}
1749 
1750 bummer:
1751 	dprintk("svc: svc_create_socket error = %d\n", -error);
1752 	sock_release(sock);
1753 	return error;
1754 }
1755 
1756 /*
1757  * Remove a dead socket
1758  */
1759 static void
1760 svc_delete_socket(struct svc_sock *svsk)
1761 {
1762 	struct svc_serv	*serv;
1763 	struct sock	*sk;
1764 
1765 	dprintk("svc: svc_delete_socket(%p)\n", svsk);
1766 
1767 	serv = svsk->sk_server;
1768 	sk = svsk->sk_sk;
1769 
1770 	sk->sk_state_change = svsk->sk_ostate;
1771 	sk->sk_data_ready = svsk->sk_odata;
1772 	sk->sk_write_space = svsk->sk_owspace;
1773 
1774 	spin_lock_bh(&serv->sv_lock);
1775 
1776 	if (!test_and_set_bit(SK_DETACHED, &svsk->sk_flags))
1777 		list_del_init(&svsk->sk_list);
1778 	/*
1779 	 * We used to delete the svc_sock from whichever list
1780 	 * it's sk_ready node was on, but we don't actually
1781 	 * need to.  This is because the only time we're called
1782 	 * while still attached to a queue, the queue itself
1783 	 * is about to be destroyed (in svc_destroy).
1784 	 */
1785 	if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags)) {
1786 		BUG_ON(atomic_read(&svsk->sk_inuse)<2);
1787 		atomic_dec(&svsk->sk_inuse);
1788 		if (test_bit(SK_TEMP, &svsk->sk_flags))
1789 			serv->sv_tmpcnt--;
1790 	}
1791 
1792 	spin_unlock_bh(&serv->sv_lock);
1793 }
1794 
1795 static void svc_close_socket(struct svc_sock *svsk)
1796 {
1797 	set_bit(SK_CLOSE, &svsk->sk_flags);
1798 	if (test_and_set_bit(SK_BUSY, &svsk->sk_flags))
1799 		/* someone else will have to effect the close */
1800 		return;
1801 
1802 	atomic_inc(&svsk->sk_inuse);
1803 	svc_delete_socket(svsk);
1804 	clear_bit(SK_BUSY, &svsk->sk_flags);
1805 	svc_sock_put(svsk);
1806 }
1807 
1808 void svc_force_close_socket(struct svc_sock *svsk)
1809 {
1810 	set_bit(SK_CLOSE, &svsk->sk_flags);
1811 	if (test_bit(SK_BUSY, &svsk->sk_flags)) {
1812 		/* Waiting to be processed, but no threads left,
1813 		 * So just remove it from the waiting list
1814 		 */
1815 		list_del_init(&svsk->sk_ready);
1816 		clear_bit(SK_BUSY, &svsk->sk_flags);
1817 	}
1818 	svc_close_socket(svsk);
1819 }
1820 
1821 /**
1822  * svc_makesock - Make a socket for nfsd and lockd
1823  * @serv: RPC server structure
1824  * @protocol: transport protocol to use
1825  * @port: port to use
1826  * @flags: requested socket characteristics
1827  *
1828  */
1829 int svc_makesock(struct svc_serv *serv, int protocol, unsigned short port,
1830 			int flags)
1831 {
1832 	struct sockaddr_in sin = {
1833 		.sin_family		= AF_INET,
1834 		.sin_addr.s_addr	= INADDR_ANY,
1835 		.sin_port		= htons(port),
1836 	};
1837 
1838 	dprintk("svc: creating socket proto = %d\n", protocol);
1839 	return svc_create_socket(serv, protocol, (struct sockaddr *) &sin,
1840 							sizeof(sin), flags);
1841 }
1842 
1843 /*
1844  * Handle defer and revisit of requests
1845  */
1846 
1847 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1848 {
1849 	struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
1850 	struct svc_sock *svsk;
1851 
1852 	if (too_many) {
1853 		svc_sock_put(dr->svsk);
1854 		kfree(dr);
1855 		return;
1856 	}
1857 	dprintk("revisit queued\n");
1858 	svsk = dr->svsk;
1859 	dr->svsk = NULL;
1860 	spin_lock_bh(&svsk->sk_defer_lock);
1861 	list_add(&dr->handle.recent, &svsk->sk_deferred);
1862 	spin_unlock_bh(&svsk->sk_defer_lock);
1863 	set_bit(SK_DEFERRED, &svsk->sk_flags);
1864 	svc_sock_enqueue(svsk);
1865 	svc_sock_put(svsk);
1866 }
1867 
1868 static struct cache_deferred_req *
1869 svc_defer(struct cache_req *req)
1870 {
1871 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1872 	int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
1873 	struct svc_deferred_req *dr;
1874 
1875 	if (rqstp->rq_arg.page_len)
1876 		return NULL; /* if more than a page, give up FIXME */
1877 	if (rqstp->rq_deferred) {
1878 		dr = rqstp->rq_deferred;
1879 		rqstp->rq_deferred = NULL;
1880 	} else {
1881 		int skip  = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1882 		/* FIXME maybe discard if size too large */
1883 		dr = kmalloc(size, GFP_KERNEL);
1884 		if (dr == NULL)
1885 			return NULL;
1886 
1887 		dr->handle.owner = rqstp->rq_server;
1888 		dr->prot = rqstp->rq_prot;
1889 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1890 		dr->addrlen = rqstp->rq_addrlen;
1891 		dr->daddr = rqstp->rq_daddr;
1892 		dr->argslen = rqstp->rq_arg.len >> 2;
1893 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
1894 	}
1895 	atomic_inc(&rqstp->rq_sock->sk_inuse);
1896 	dr->svsk = rqstp->rq_sock;
1897 
1898 	dr->handle.revisit = svc_revisit;
1899 	return &dr->handle;
1900 }
1901 
1902 /*
1903  * recv data from a deferred request into an active one
1904  */
1905 static int svc_deferred_recv(struct svc_rqst *rqstp)
1906 {
1907 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1908 
1909 	rqstp->rq_arg.head[0].iov_base = dr->args;
1910 	rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
1911 	rqstp->rq_arg.page_len = 0;
1912 	rqstp->rq_arg.len = dr->argslen<<2;
1913 	rqstp->rq_prot        = dr->prot;
1914 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1915 	rqstp->rq_addrlen     = dr->addrlen;
1916 	rqstp->rq_daddr       = dr->daddr;
1917 	rqstp->rq_respages    = rqstp->rq_pages;
1918 	return dr->argslen<<2;
1919 }
1920 
1921 
1922 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk)
1923 {
1924 	struct svc_deferred_req *dr = NULL;
1925 
1926 	if (!test_bit(SK_DEFERRED, &svsk->sk_flags))
1927 		return NULL;
1928 	spin_lock_bh(&svsk->sk_defer_lock);
1929 	clear_bit(SK_DEFERRED, &svsk->sk_flags);
1930 	if (!list_empty(&svsk->sk_deferred)) {
1931 		dr = list_entry(svsk->sk_deferred.next,
1932 				struct svc_deferred_req,
1933 				handle.recent);
1934 		list_del_init(&dr->handle.recent);
1935 		set_bit(SK_DEFERRED, &svsk->sk_flags);
1936 	}
1937 	spin_unlock_bh(&svsk->sk_defer_lock);
1938 	return dr;
1939 }
1940