1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/svcsock.c 4 * 5 * These are the RPC server socket internals. 6 * 7 * The server scheduling algorithm does not always distribute the load 8 * evenly when servicing a single client. May need to modify the 9 * svc_xprt_enqueue procedure... 10 * 11 * TCP support is largely untested and may be a little slow. The problem 12 * is that we currently do two separate recvfrom's, one for the 4-byte 13 * record length, and the second for the actual record. This could possibly 14 * be improved by always reading a minimum size of around 100 bytes and 15 * tucking any superfluous bytes away in a temporary store. Still, that 16 * leaves write requests out in the rain. An alternative may be to peek at 17 * the first skb in the queue, and if it matches the next TCP sequence 18 * number, to extract the record marker. Yuck. 19 * 20 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 21 */ 22 23 #include <linux/kernel.h> 24 #include <linux/sched.h> 25 #include <linux/module.h> 26 #include <linux/errno.h> 27 #include <linux/fcntl.h> 28 #include <linux/net.h> 29 #include <linux/in.h> 30 #include <linux/inet.h> 31 #include <linux/udp.h> 32 #include <linux/tcp.h> 33 #include <linux/unistd.h> 34 #include <linux/slab.h> 35 #include <linux/netdevice.h> 36 #include <linux/skbuff.h> 37 #include <linux/file.h> 38 #include <linux/freezer.h> 39 #include <net/sock.h> 40 #include <net/checksum.h> 41 #include <net/ip.h> 42 #include <net/ipv6.h> 43 #include <net/udp.h> 44 #include <net/tcp.h> 45 #include <net/tcp_states.h> 46 #include <linux/uaccess.h> 47 #include <linux/highmem.h> 48 #include <asm/ioctls.h> 49 50 #include <linux/sunrpc/types.h> 51 #include <linux/sunrpc/clnt.h> 52 #include <linux/sunrpc/xdr.h> 53 #include <linux/sunrpc/msg_prot.h> 54 #include <linux/sunrpc/svcsock.h> 55 #include <linux/sunrpc/stats.h> 56 #include <linux/sunrpc/xprt.h> 57 58 #include <trace/events/sock.h> 59 #include <trace/events/sunrpc.h> 60 61 #include "socklib.h" 62 #include "sunrpc.h" 63 64 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 65 66 67 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *, 68 int flags); 69 static int svc_udp_recvfrom(struct svc_rqst *); 70 static int svc_udp_sendto(struct svc_rqst *); 71 static void svc_sock_detach(struct svc_xprt *); 72 static void svc_tcp_sock_detach(struct svc_xprt *); 73 static void svc_sock_free(struct svc_xprt *); 74 75 static struct svc_xprt *svc_create_socket(struct svc_serv *, int, 76 struct net *, struct sockaddr *, 77 int, int); 78 #ifdef CONFIG_DEBUG_LOCK_ALLOC 79 static struct lock_class_key svc_key[2]; 80 static struct lock_class_key svc_slock_key[2]; 81 82 static void svc_reclassify_socket(struct socket *sock) 83 { 84 struct sock *sk = sock->sk; 85 86 if (WARN_ON_ONCE(!sock_allow_reclassification(sk))) 87 return; 88 89 switch (sk->sk_family) { 90 case AF_INET: 91 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD", 92 &svc_slock_key[0], 93 "sk_xprt.xpt_lock-AF_INET-NFSD", 94 &svc_key[0]); 95 break; 96 97 case AF_INET6: 98 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD", 99 &svc_slock_key[1], 100 "sk_xprt.xpt_lock-AF_INET6-NFSD", 101 &svc_key[1]); 102 break; 103 104 default: 105 BUG(); 106 } 107 } 108 #else 109 static void svc_reclassify_socket(struct socket *sock) 110 { 111 } 112 #endif 113 114 /** 115 * svc_tcp_release_rqst - Release transport-related resources 116 * @rqstp: request structure with resources to be released 117 * 118 */ 119 static void svc_tcp_release_rqst(struct svc_rqst *rqstp) 120 { 121 } 122 123 /** 124 * svc_udp_release_rqst - Release transport-related resources 125 * @rqstp: request structure with resources to be released 126 * 127 */ 128 static void svc_udp_release_rqst(struct svc_rqst *rqstp) 129 { 130 struct sk_buff *skb = rqstp->rq_xprt_ctxt; 131 132 if (skb) { 133 rqstp->rq_xprt_ctxt = NULL; 134 consume_skb(skb); 135 } 136 } 137 138 union svc_pktinfo_u { 139 struct in_pktinfo pkti; 140 struct in6_pktinfo pkti6; 141 }; 142 #define SVC_PKTINFO_SPACE \ 143 CMSG_SPACE(sizeof(union svc_pktinfo_u)) 144 145 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh) 146 { 147 struct svc_sock *svsk = 148 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 149 switch (svsk->sk_sk->sk_family) { 150 case AF_INET: { 151 struct in_pktinfo *pki = CMSG_DATA(cmh); 152 153 cmh->cmsg_level = SOL_IP; 154 cmh->cmsg_type = IP_PKTINFO; 155 pki->ipi_ifindex = 0; 156 pki->ipi_spec_dst.s_addr = 157 svc_daddr_in(rqstp)->sin_addr.s_addr; 158 cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); 159 } 160 break; 161 162 case AF_INET6: { 163 struct in6_pktinfo *pki = CMSG_DATA(cmh); 164 struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp); 165 166 cmh->cmsg_level = SOL_IPV6; 167 cmh->cmsg_type = IPV6_PKTINFO; 168 pki->ipi6_ifindex = daddr->sin6_scope_id; 169 pki->ipi6_addr = daddr->sin6_addr; 170 cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); 171 } 172 break; 173 } 174 } 175 176 static int svc_sock_result_payload(struct svc_rqst *rqstp, unsigned int offset, 177 unsigned int length) 178 { 179 return 0; 180 } 181 182 /* 183 * Report socket names for nfsdfs 184 */ 185 static int svc_one_sock_name(struct svc_sock *svsk, char *buf, int remaining) 186 { 187 const struct sock *sk = svsk->sk_sk; 188 const char *proto_name = sk->sk_protocol == IPPROTO_UDP ? 189 "udp" : "tcp"; 190 int len; 191 192 switch (sk->sk_family) { 193 case PF_INET: 194 len = snprintf(buf, remaining, "ipv4 %s %pI4 %d\n", 195 proto_name, 196 &inet_sk(sk)->inet_rcv_saddr, 197 inet_sk(sk)->inet_num); 198 break; 199 #if IS_ENABLED(CONFIG_IPV6) 200 case PF_INET6: 201 len = snprintf(buf, remaining, "ipv6 %s %pI6 %d\n", 202 proto_name, 203 &sk->sk_v6_rcv_saddr, 204 inet_sk(sk)->inet_num); 205 break; 206 #endif 207 default: 208 len = snprintf(buf, remaining, "*unknown-%d*\n", 209 sk->sk_family); 210 } 211 212 if (len >= remaining) { 213 *buf = '\0'; 214 return -ENAMETOOLONG; 215 } 216 return len; 217 } 218 219 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 220 static void svc_flush_bvec(const struct bio_vec *bvec, size_t size, size_t seek) 221 { 222 struct bvec_iter bi = { 223 .bi_size = size + seek, 224 }; 225 struct bio_vec bv; 226 227 bvec_iter_advance(bvec, &bi, seek & PAGE_MASK); 228 for_each_bvec(bv, bvec, bi, bi) 229 flush_dcache_page(bv.bv_page); 230 } 231 #else 232 static inline void svc_flush_bvec(const struct bio_vec *bvec, size_t size, 233 size_t seek) 234 { 235 } 236 #endif 237 238 /* 239 * Read from @rqstp's transport socket. The incoming message fills whole 240 * pages in @rqstp's rq_pages array until the last page of the message 241 * has been received into a partial page. 242 */ 243 static ssize_t svc_tcp_read_msg(struct svc_rqst *rqstp, size_t buflen, 244 size_t seek) 245 { 246 struct svc_sock *svsk = 247 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 248 struct bio_vec *bvec = rqstp->rq_bvec; 249 struct msghdr msg = { NULL }; 250 unsigned int i; 251 ssize_t len; 252 size_t t; 253 254 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 255 256 for (i = 0, t = 0; t < buflen; i++, t += PAGE_SIZE) 257 bvec_set_page(&bvec[i], rqstp->rq_pages[i], PAGE_SIZE, 0); 258 rqstp->rq_respages = &rqstp->rq_pages[i]; 259 rqstp->rq_next_page = rqstp->rq_respages + 1; 260 261 iov_iter_bvec(&msg.msg_iter, ITER_DEST, bvec, i, buflen); 262 if (seek) { 263 iov_iter_advance(&msg.msg_iter, seek); 264 buflen -= seek; 265 } 266 len = sock_recvmsg(svsk->sk_sock, &msg, MSG_DONTWAIT); 267 if (len > 0) 268 svc_flush_bvec(bvec, len, seek); 269 270 /* If we read a full record, then assume there may be more 271 * data to read (stream based sockets only!) 272 */ 273 if (len == buflen) 274 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 275 276 return len; 277 } 278 279 /* 280 * Set socket snd and rcv buffer lengths 281 */ 282 static void svc_sock_setbufsize(struct svc_sock *svsk, unsigned int nreqs) 283 { 284 unsigned int max_mesg = svsk->sk_xprt.xpt_server->sv_max_mesg; 285 struct socket *sock = svsk->sk_sock; 286 287 nreqs = min(nreqs, INT_MAX / 2 / max_mesg); 288 289 lock_sock(sock->sk); 290 sock->sk->sk_sndbuf = nreqs * max_mesg * 2; 291 sock->sk->sk_rcvbuf = nreqs * max_mesg * 2; 292 sock->sk->sk_write_space(sock->sk); 293 release_sock(sock->sk); 294 } 295 296 static void svc_sock_secure_port(struct svc_rqst *rqstp) 297 { 298 if (svc_port_is_privileged(svc_addr(rqstp))) 299 set_bit(RQ_SECURE, &rqstp->rq_flags); 300 else 301 clear_bit(RQ_SECURE, &rqstp->rq_flags); 302 } 303 304 /* 305 * INET callback when data has been received on the socket. 306 */ 307 static void svc_data_ready(struct sock *sk) 308 { 309 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 310 311 trace_sk_data_ready(sk); 312 313 if (svsk) { 314 /* Refer to svc_setup_socket() for details. */ 315 rmb(); 316 svsk->sk_odata(sk); 317 trace_svcsock_data_ready(&svsk->sk_xprt, 0); 318 if (!test_and_set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags)) 319 svc_xprt_enqueue(&svsk->sk_xprt); 320 } 321 } 322 323 /* 324 * INET callback when space is newly available on the socket. 325 */ 326 static void svc_write_space(struct sock *sk) 327 { 328 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data); 329 330 if (svsk) { 331 /* Refer to svc_setup_socket() for details. */ 332 rmb(); 333 trace_svcsock_write_space(&svsk->sk_xprt, 0); 334 svsk->sk_owspace(sk); 335 svc_xprt_enqueue(&svsk->sk_xprt); 336 } 337 } 338 339 static int svc_tcp_has_wspace(struct svc_xprt *xprt) 340 { 341 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 342 343 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) 344 return 1; 345 return !test_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 346 } 347 348 static void svc_tcp_kill_temp_xprt(struct svc_xprt *xprt) 349 { 350 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 351 352 sock_no_linger(svsk->sk_sock->sk); 353 } 354 355 /* 356 * See net/ipv6/ip_sockglue.c : ip_cmsg_recv_pktinfo 357 */ 358 static int svc_udp_get_dest_address4(struct svc_rqst *rqstp, 359 struct cmsghdr *cmh) 360 { 361 struct in_pktinfo *pki = CMSG_DATA(cmh); 362 struct sockaddr_in *daddr = svc_daddr_in(rqstp); 363 364 if (cmh->cmsg_type != IP_PKTINFO) 365 return 0; 366 367 daddr->sin_family = AF_INET; 368 daddr->sin_addr.s_addr = pki->ipi_spec_dst.s_addr; 369 return 1; 370 } 371 372 /* 373 * See net/ipv6/datagram.c : ip6_datagram_recv_ctl 374 */ 375 static int svc_udp_get_dest_address6(struct svc_rqst *rqstp, 376 struct cmsghdr *cmh) 377 { 378 struct in6_pktinfo *pki = CMSG_DATA(cmh); 379 struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp); 380 381 if (cmh->cmsg_type != IPV6_PKTINFO) 382 return 0; 383 384 daddr->sin6_family = AF_INET6; 385 daddr->sin6_addr = pki->ipi6_addr; 386 daddr->sin6_scope_id = pki->ipi6_ifindex; 387 return 1; 388 } 389 390 /* 391 * Copy the UDP datagram's destination address to the rqstp structure. 392 * The 'destination' address in this case is the address to which the 393 * peer sent the datagram, i.e. our local address. For multihomed 394 * hosts, this can change from msg to msg. Note that only the IP 395 * address changes, the port number should remain the same. 396 */ 397 static int svc_udp_get_dest_address(struct svc_rqst *rqstp, 398 struct cmsghdr *cmh) 399 { 400 switch (cmh->cmsg_level) { 401 case SOL_IP: 402 return svc_udp_get_dest_address4(rqstp, cmh); 403 case SOL_IPV6: 404 return svc_udp_get_dest_address6(rqstp, cmh); 405 } 406 407 return 0; 408 } 409 410 /** 411 * svc_udp_recvfrom - Receive a datagram from a UDP socket. 412 * @rqstp: request structure into which to receive an RPC Call 413 * 414 * Called in a loop when XPT_DATA has been set. 415 * 416 * Returns: 417 * On success, the number of bytes in a received RPC Call, or 418 * %0 if a complete RPC Call message was not ready to return 419 */ 420 static int svc_udp_recvfrom(struct svc_rqst *rqstp) 421 { 422 struct svc_sock *svsk = 423 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 424 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 425 struct sk_buff *skb; 426 union { 427 struct cmsghdr hdr; 428 long all[SVC_PKTINFO_SPACE / sizeof(long)]; 429 } buffer; 430 struct cmsghdr *cmh = &buffer.hdr; 431 struct msghdr msg = { 432 .msg_name = svc_addr(rqstp), 433 .msg_control = cmh, 434 .msg_controllen = sizeof(buffer), 435 .msg_flags = MSG_DONTWAIT, 436 }; 437 size_t len; 438 int err; 439 440 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags)) 441 /* udp sockets need large rcvbuf as all pending 442 * requests are still in that buffer. sndbuf must 443 * also be large enough that there is enough space 444 * for one reply per thread. We count all threads 445 * rather than threads in a particular pool, which 446 * provides an upper bound on the number of threads 447 * which will access the socket. 448 */ 449 svc_sock_setbufsize(svsk, serv->sv_nrthreads + 3); 450 451 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 452 err = kernel_recvmsg(svsk->sk_sock, &msg, NULL, 453 0, 0, MSG_PEEK | MSG_DONTWAIT); 454 if (err < 0) 455 goto out_recv_err; 456 skb = skb_recv_udp(svsk->sk_sk, MSG_DONTWAIT, &err); 457 if (!skb) 458 goto out_recv_err; 459 460 len = svc_addr_len(svc_addr(rqstp)); 461 rqstp->rq_addrlen = len; 462 if (skb->tstamp == 0) { 463 skb->tstamp = ktime_get_real(); 464 /* Don't enable netstamp, sunrpc doesn't 465 need that much accuracy */ 466 } 467 sock_write_timestamp(svsk->sk_sk, skb->tstamp); 468 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */ 469 470 len = skb->len; 471 rqstp->rq_arg.len = len; 472 trace_svcsock_udp_recv(&svsk->sk_xprt, len); 473 474 rqstp->rq_prot = IPPROTO_UDP; 475 476 if (!svc_udp_get_dest_address(rqstp, cmh)) 477 goto out_cmsg_err; 478 rqstp->rq_daddrlen = svc_addr_len(svc_daddr(rqstp)); 479 480 if (skb_is_nonlinear(skb)) { 481 /* we have to copy */ 482 local_bh_disable(); 483 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) 484 goto out_bh_enable; 485 local_bh_enable(); 486 consume_skb(skb); 487 } else { 488 /* we can use it in-place */ 489 rqstp->rq_arg.head[0].iov_base = skb->data; 490 rqstp->rq_arg.head[0].iov_len = len; 491 if (skb_checksum_complete(skb)) 492 goto out_free; 493 rqstp->rq_xprt_ctxt = skb; 494 } 495 496 rqstp->rq_arg.page_base = 0; 497 if (len <= rqstp->rq_arg.head[0].iov_len) { 498 rqstp->rq_arg.head[0].iov_len = len; 499 rqstp->rq_arg.page_len = 0; 500 rqstp->rq_respages = rqstp->rq_pages+1; 501 } else { 502 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len; 503 rqstp->rq_respages = rqstp->rq_pages + 1 + 504 DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE); 505 } 506 rqstp->rq_next_page = rqstp->rq_respages+1; 507 508 if (serv->sv_stats) 509 serv->sv_stats->netudpcnt++; 510 511 svc_xprt_received(rqstp->rq_xprt); 512 return len; 513 514 out_recv_err: 515 if (err != -EAGAIN) { 516 /* possibly an icmp error */ 517 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 518 } 519 trace_svcsock_udp_recv_err(&svsk->sk_xprt, err); 520 goto out_clear_busy; 521 out_cmsg_err: 522 net_warn_ratelimited("svc: received unknown control message %d/%d; dropping RPC reply datagram\n", 523 cmh->cmsg_level, cmh->cmsg_type); 524 goto out_free; 525 out_bh_enable: 526 local_bh_enable(); 527 out_free: 528 kfree_skb(skb); 529 out_clear_busy: 530 svc_xprt_received(rqstp->rq_xprt); 531 return 0; 532 } 533 534 /** 535 * svc_udp_sendto - Send out a reply on a UDP socket 536 * @rqstp: completed svc_rqst 537 * 538 * xpt_mutex ensures @rqstp's whole message is written to the socket 539 * without interruption. 540 * 541 * Returns the number of bytes sent, or a negative errno. 542 */ 543 static int svc_udp_sendto(struct svc_rqst *rqstp) 544 { 545 struct svc_xprt *xprt = rqstp->rq_xprt; 546 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 547 struct xdr_buf *xdr = &rqstp->rq_res; 548 union { 549 struct cmsghdr hdr; 550 long all[SVC_PKTINFO_SPACE / sizeof(long)]; 551 } buffer; 552 struct cmsghdr *cmh = &buffer.hdr; 553 struct msghdr msg = { 554 .msg_name = &rqstp->rq_addr, 555 .msg_namelen = rqstp->rq_addrlen, 556 .msg_control = cmh, 557 .msg_controllen = sizeof(buffer), 558 }; 559 unsigned int sent; 560 int err; 561 562 svc_udp_release_rqst(rqstp); 563 564 svc_set_cmsg_data(rqstp, cmh); 565 566 mutex_lock(&xprt->xpt_mutex); 567 568 if (svc_xprt_is_dead(xprt)) 569 goto out_notconn; 570 571 err = xdr_alloc_bvec(xdr, GFP_KERNEL); 572 if (err < 0) 573 goto out_unlock; 574 575 err = xprt_sock_sendmsg(svsk->sk_sock, &msg, xdr, 0, 0, &sent); 576 if (err == -ECONNREFUSED) { 577 /* ICMP error on earlier request. */ 578 err = xprt_sock_sendmsg(svsk->sk_sock, &msg, xdr, 0, 0, &sent); 579 } 580 xdr_free_bvec(xdr); 581 trace_svcsock_udp_send(xprt, err); 582 out_unlock: 583 mutex_unlock(&xprt->xpt_mutex); 584 if (err < 0) 585 return err; 586 return sent; 587 588 out_notconn: 589 mutex_unlock(&xprt->xpt_mutex); 590 return -ENOTCONN; 591 } 592 593 static int svc_udp_has_wspace(struct svc_xprt *xprt) 594 { 595 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 596 struct svc_serv *serv = xprt->xpt_server; 597 unsigned long required; 598 599 /* 600 * Set the SOCK_NOSPACE flag before checking the available 601 * sock space. 602 */ 603 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 604 required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg; 605 if (required*2 > sock_wspace(svsk->sk_sk)) 606 return 0; 607 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 608 return 1; 609 } 610 611 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt) 612 { 613 BUG(); 614 return NULL; 615 } 616 617 static void svc_udp_kill_temp_xprt(struct svc_xprt *xprt) 618 { 619 } 620 621 static struct svc_xprt *svc_udp_create(struct svc_serv *serv, 622 struct net *net, 623 struct sockaddr *sa, int salen, 624 int flags) 625 { 626 return svc_create_socket(serv, IPPROTO_UDP, net, sa, salen, flags); 627 } 628 629 static const struct svc_xprt_ops svc_udp_ops = { 630 .xpo_create = svc_udp_create, 631 .xpo_recvfrom = svc_udp_recvfrom, 632 .xpo_sendto = svc_udp_sendto, 633 .xpo_result_payload = svc_sock_result_payload, 634 .xpo_release_rqst = svc_udp_release_rqst, 635 .xpo_detach = svc_sock_detach, 636 .xpo_free = svc_sock_free, 637 .xpo_has_wspace = svc_udp_has_wspace, 638 .xpo_accept = svc_udp_accept, 639 .xpo_secure_port = svc_sock_secure_port, 640 .xpo_kill_temp_xprt = svc_udp_kill_temp_xprt, 641 }; 642 643 static struct svc_xprt_class svc_udp_class = { 644 .xcl_name = "udp", 645 .xcl_owner = THIS_MODULE, 646 .xcl_ops = &svc_udp_ops, 647 .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP, 648 .xcl_ident = XPRT_TRANSPORT_UDP, 649 }; 650 651 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv) 652 { 653 svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_udp_class, 654 &svsk->sk_xprt, serv); 655 clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags); 656 svsk->sk_sk->sk_data_ready = svc_data_ready; 657 svsk->sk_sk->sk_write_space = svc_write_space; 658 659 /* initialise setting must have enough space to 660 * receive and respond to one request. 661 * svc_udp_recvfrom will re-adjust if necessary 662 */ 663 svc_sock_setbufsize(svsk, 3); 664 665 /* data might have come in before data_ready set up */ 666 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 667 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 668 669 /* make sure we get destination address info */ 670 switch (svsk->sk_sk->sk_family) { 671 case AF_INET: 672 ip_sock_set_pktinfo(svsk->sk_sock->sk); 673 break; 674 case AF_INET6: 675 ip6_sock_set_recvpktinfo(svsk->sk_sock->sk); 676 break; 677 default: 678 BUG(); 679 } 680 } 681 682 /* 683 * A data_ready event on a listening socket means there's a connection 684 * pending. Do not use state_change as a substitute for it. 685 */ 686 static void svc_tcp_listen_data_ready(struct sock *sk) 687 { 688 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 689 690 trace_sk_data_ready(sk); 691 692 if (svsk) { 693 /* Refer to svc_setup_socket() for details. */ 694 rmb(); 695 svsk->sk_odata(sk); 696 } 697 698 /* 699 * This callback may called twice when a new connection 700 * is established as a child socket inherits everything 701 * from a parent LISTEN socket. 702 * 1) data_ready method of the parent socket will be called 703 * when one of child sockets become ESTABLISHED. 704 * 2) data_ready method of the child socket may be called 705 * when it receives data before the socket is accepted. 706 * In case of 2, we should ignore it silently. 707 */ 708 if (sk->sk_state == TCP_LISTEN) { 709 if (svsk) { 710 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 711 svc_xprt_enqueue(&svsk->sk_xprt); 712 } 713 } 714 } 715 716 /* 717 * A state change on a connected socket means it's dying or dead. 718 */ 719 static void svc_tcp_state_change(struct sock *sk) 720 { 721 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 722 723 if (svsk) { 724 /* Refer to svc_setup_socket() for details. */ 725 rmb(); 726 svsk->sk_ostate(sk); 727 trace_svcsock_tcp_state(&svsk->sk_xprt, svsk->sk_sock); 728 if (sk->sk_state != TCP_ESTABLISHED) 729 svc_xprt_deferred_close(&svsk->sk_xprt); 730 } 731 } 732 733 /* 734 * Accept a TCP connection 735 */ 736 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt) 737 { 738 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 739 struct sockaddr_storage addr; 740 struct sockaddr *sin = (struct sockaddr *) &addr; 741 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 742 struct socket *sock = svsk->sk_sock; 743 struct socket *newsock; 744 struct svc_sock *newsvsk; 745 int err, slen; 746 747 if (!sock) 748 return NULL; 749 750 clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 751 err = kernel_accept(sock, &newsock, O_NONBLOCK); 752 if (err < 0) { 753 if (err == -ENOMEM) 754 printk(KERN_WARNING "%s: no more sockets!\n", 755 serv->sv_name); 756 else if (err != -EAGAIN) 757 net_warn_ratelimited("%s: accept failed (err %d)!\n", 758 serv->sv_name, -err); 759 trace_svcsock_accept_err(xprt, serv->sv_name, err); 760 return NULL; 761 } 762 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 763 764 err = kernel_getpeername(newsock, sin); 765 if (err < 0) { 766 trace_svcsock_getpeername_err(xprt, serv->sv_name, err); 767 goto failed; /* aborted connection or whatever */ 768 } 769 slen = err; 770 771 /* Reset the inherited callbacks before calling svc_setup_socket */ 772 newsock->sk->sk_state_change = svsk->sk_ostate; 773 newsock->sk->sk_data_ready = svsk->sk_odata; 774 newsock->sk->sk_write_space = svsk->sk_owspace; 775 776 /* make sure that a write doesn't block forever when 777 * low on memory 778 */ 779 newsock->sk->sk_sndtimeo = HZ*30; 780 781 newsvsk = svc_setup_socket(serv, newsock, 782 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY)); 783 if (IS_ERR(newsvsk)) 784 goto failed; 785 svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen); 786 err = kernel_getsockname(newsock, sin); 787 slen = err; 788 if (unlikely(err < 0)) 789 slen = offsetof(struct sockaddr, sa_data); 790 svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen); 791 792 if (sock_is_loopback(newsock->sk)) 793 set_bit(XPT_LOCAL, &newsvsk->sk_xprt.xpt_flags); 794 else 795 clear_bit(XPT_LOCAL, &newsvsk->sk_xprt.xpt_flags); 796 if (serv->sv_stats) 797 serv->sv_stats->nettcpconn++; 798 799 return &newsvsk->sk_xprt; 800 801 failed: 802 sock_release(newsock); 803 return NULL; 804 } 805 806 static size_t svc_tcp_restore_pages(struct svc_sock *svsk, 807 struct svc_rqst *rqstp) 808 { 809 size_t len = svsk->sk_datalen; 810 unsigned int i, npages; 811 812 if (!len) 813 return 0; 814 npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 815 for (i = 0; i < npages; i++) { 816 if (rqstp->rq_pages[i] != NULL) 817 put_page(rqstp->rq_pages[i]); 818 BUG_ON(svsk->sk_pages[i] == NULL); 819 rqstp->rq_pages[i] = svsk->sk_pages[i]; 820 svsk->sk_pages[i] = NULL; 821 } 822 rqstp->rq_arg.head[0].iov_base = page_address(rqstp->rq_pages[0]); 823 return len; 824 } 825 826 static void svc_tcp_save_pages(struct svc_sock *svsk, struct svc_rqst *rqstp) 827 { 828 unsigned int i, len, npages; 829 830 if (svsk->sk_datalen == 0) 831 return; 832 len = svsk->sk_datalen; 833 npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 834 for (i = 0; i < npages; i++) { 835 svsk->sk_pages[i] = rqstp->rq_pages[i]; 836 rqstp->rq_pages[i] = NULL; 837 } 838 } 839 840 static void svc_tcp_clear_pages(struct svc_sock *svsk) 841 { 842 unsigned int i, len, npages; 843 844 if (svsk->sk_datalen == 0) 845 goto out; 846 len = svsk->sk_datalen; 847 npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 848 for (i = 0; i < npages; i++) { 849 if (svsk->sk_pages[i] == NULL) { 850 WARN_ON_ONCE(1); 851 continue; 852 } 853 put_page(svsk->sk_pages[i]); 854 svsk->sk_pages[i] = NULL; 855 } 856 out: 857 svsk->sk_tcplen = 0; 858 svsk->sk_datalen = 0; 859 } 860 861 /* 862 * Receive fragment record header into sk_marker. 863 */ 864 static ssize_t svc_tcp_read_marker(struct svc_sock *svsk, 865 struct svc_rqst *rqstp) 866 { 867 ssize_t want, len; 868 869 /* If we haven't gotten the record length yet, 870 * get the next four bytes. 871 */ 872 if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) { 873 struct msghdr msg = { NULL }; 874 struct kvec iov; 875 876 want = sizeof(rpc_fraghdr) - svsk->sk_tcplen; 877 iov.iov_base = ((char *)&svsk->sk_marker) + svsk->sk_tcplen; 878 iov.iov_len = want; 879 iov_iter_kvec(&msg.msg_iter, ITER_DEST, &iov, 1, want); 880 len = sock_recvmsg(svsk->sk_sock, &msg, MSG_DONTWAIT); 881 if (len < 0) 882 return len; 883 svsk->sk_tcplen += len; 884 if (len < want) { 885 /* call again to read the remaining bytes */ 886 goto err_short; 887 } 888 trace_svcsock_marker(&svsk->sk_xprt, svsk->sk_marker); 889 if (svc_sock_reclen(svsk) + svsk->sk_datalen > 890 svsk->sk_xprt.xpt_server->sv_max_mesg) 891 goto err_too_large; 892 } 893 return svc_sock_reclen(svsk); 894 895 err_too_large: 896 net_notice_ratelimited("svc: %s %s RPC fragment too large: %d\n", 897 __func__, svsk->sk_xprt.xpt_server->sv_name, 898 svc_sock_reclen(svsk)); 899 svc_xprt_deferred_close(&svsk->sk_xprt); 900 err_short: 901 return -EAGAIN; 902 } 903 904 static int receive_cb_reply(struct svc_sock *svsk, struct svc_rqst *rqstp) 905 { 906 struct rpc_xprt *bc_xprt = svsk->sk_xprt.xpt_bc_xprt; 907 struct rpc_rqst *req = NULL; 908 struct kvec *src, *dst; 909 __be32 *p = (__be32 *)rqstp->rq_arg.head[0].iov_base; 910 __be32 xid; 911 __be32 calldir; 912 913 xid = *p++; 914 calldir = *p; 915 916 if (!bc_xprt) 917 return -EAGAIN; 918 spin_lock(&bc_xprt->queue_lock); 919 req = xprt_lookup_rqst(bc_xprt, xid); 920 if (!req) 921 goto unlock_notfound; 922 923 memcpy(&req->rq_private_buf, &req->rq_rcv_buf, sizeof(struct xdr_buf)); 924 /* 925 * XXX!: cheating for now! Only copying HEAD. 926 * But we know this is good enough for now (in fact, for any 927 * callback reply in the forseeable future). 928 */ 929 dst = &req->rq_private_buf.head[0]; 930 src = &rqstp->rq_arg.head[0]; 931 if (dst->iov_len < src->iov_len) 932 goto unlock_eagain; /* whatever; just giving up. */ 933 memcpy(dst->iov_base, src->iov_base, src->iov_len); 934 xprt_complete_rqst(req->rq_task, rqstp->rq_arg.len); 935 rqstp->rq_arg.len = 0; 936 spin_unlock(&bc_xprt->queue_lock); 937 return 0; 938 unlock_notfound: 939 printk(KERN_NOTICE 940 "%s: Got unrecognized reply: " 941 "calldir 0x%x xpt_bc_xprt %p xid %08x\n", 942 __func__, ntohl(calldir), 943 bc_xprt, ntohl(xid)); 944 unlock_eagain: 945 spin_unlock(&bc_xprt->queue_lock); 946 return -EAGAIN; 947 } 948 949 static void svc_tcp_fragment_received(struct svc_sock *svsk) 950 { 951 /* If we have more data, signal svc_xprt_enqueue() to try again */ 952 svsk->sk_tcplen = 0; 953 svsk->sk_marker = xdr_zero; 954 } 955 956 /** 957 * svc_tcp_recvfrom - Receive data from a TCP socket 958 * @rqstp: request structure into which to receive an RPC Call 959 * 960 * Called in a loop when XPT_DATA has been set. 961 * 962 * Read the 4-byte stream record marker, then use the record length 963 * in that marker to set up exactly the resources needed to receive 964 * the next RPC message into @rqstp. 965 * 966 * Returns: 967 * On success, the number of bytes in a received RPC Call, or 968 * %0 if a complete RPC Call message was not ready to return 969 * 970 * The zero return case handles partial receives and callback Replies. 971 * The state of a partial receive is preserved in the svc_sock for 972 * the next call to svc_tcp_recvfrom. 973 */ 974 static int svc_tcp_recvfrom(struct svc_rqst *rqstp) 975 { 976 struct svc_sock *svsk = 977 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 978 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 979 size_t want, base; 980 ssize_t len; 981 __be32 *p; 982 __be32 calldir; 983 984 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 985 len = svc_tcp_read_marker(svsk, rqstp); 986 if (len < 0) 987 goto error; 988 989 base = svc_tcp_restore_pages(svsk, rqstp); 990 want = len - (svsk->sk_tcplen - sizeof(rpc_fraghdr)); 991 len = svc_tcp_read_msg(rqstp, base + want, base); 992 if (len >= 0) { 993 trace_svcsock_tcp_recv(&svsk->sk_xprt, len); 994 svsk->sk_tcplen += len; 995 svsk->sk_datalen += len; 996 } 997 if (len != want || !svc_sock_final_rec(svsk)) 998 goto err_incomplete; 999 if (svsk->sk_datalen < 8) 1000 goto err_nuts; 1001 1002 rqstp->rq_arg.len = svsk->sk_datalen; 1003 rqstp->rq_arg.page_base = 0; 1004 if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) { 1005 rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len; 1006 rqstp->rq_arg.page_len = 0; 1007 } else 1008 rqstp->rq_arg.page_len = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; 1009 1010 rqstp->rq_xprt_ctxt = NULL; 1011 rqstp->rq_prot = IPPROTO_TCP; 1012 if (test_bit(XPT_LOCAL, &svsk->sk_xprt.xpt_flags)) 1013 set_bit(RQ_LOCAL, &rqstp->rq_flags); 1014 else 1015 clear_bit(RQ_LOCAL, &rqstp->rq_flags); 1016 1017 p = (__be32 *)rqstp->rq_arg.head[0].iov_base; 1018 calldir = p[1]; 1019 if (calldir) 1020 len = receive_cb_reply(svsk, rqstp); 1021 1022 /* Reset TCP read info */ 1023 svsk->sk_datalen = 0; 1024 svc_tcp_fragment_received(svsk); 1025 1026 if (len < 0) 1027 goto error; 1028 1029 svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt); 1030 if (serv->sv_stats) 1031 serv->sv_stats->nettcpcnt++; 1032 1033 svc_xprt_received(rqstp->rq_xprt); 1034 return rqstp->rq_arg.len; 1035 1036 err_incomplete: 1037 svc_tcp_save_pages(svsk, rqstp); 1038 if (len < 0 && len != -EAGAIN) 1039 goto err_delete; 1040 if (len == want) 1041 svc_tcp_fragment_received(svsk); 1042 else 1043 trace_svcsock_tcp_recv_short(&svsk->sk_xprt, 1044 svc_sock_reclen(svsk), 1045 svsk->sk_tcplen - sizeof(rpc_fraghdr)); 1046 goto err_noclose; 1047 error: 1048 if (len != -EAGAIN) 1049 goto err_delete; 1050 trace_svcsock_tcp_recv_eagain(&svsk->sk_xprt, 0); 1051 goto err_noclose; 1052 err_nuts: 1053 svsk->sk_datalen = 0; 1054 err_delete: 1055 trace_svcsock_tcp_recv_err(&svsk->sk_xprt, len); 1056 svc_xprt_deferred_close(&svsk->sk_xprt); 1057 err_noclose: 1058 svc_xprt_received(rqstp->rq_xprt); 1059 return 0; /* record not complete */ 1060 } 1061 1062 static int svc_tcp_send_kvec(struct socket *sock, const struct kvec *vec, 1063 int flags) 1064 { 1065 return kernel_sendpage(sock, virt_to_page(vec->iov_base), 1066 offset_in_page(vec->iov_base), 1067 vec->iov_len, flags); 1068 } 1069 1070 /* 1071 * kernel_sendpage() is used exclusively to reduce the number of 1072 * copy operations in this path. Therefore the caller must ensure 1073 * that the pages backing @xdr are unchanging. 1074 * 1075 * In addition, the logic assumes that * .bv_len is never larger 1076 * than PAGE_SIZE. 1077 */ 1078 static int svc_tcp_sendmsg(struct socket *sock, struct xdr_buf *xdr, 1079 rpc_fraghdr marker, unsigned int *sentp) 1080 { 1081 const struct kvec *head = xdr->head; 1082 const struct kvec *tail = xdr->tail; 1083 struct kvec rm = { 1084 .iov_base = &marker, 1085 .iov_len = sizeof(marker), 1086 }; 1087 struct msghdr msg = { 1088 .msg_flags = 0, 1089 }; 1090 int ret; 1091 1092 *sentp = 0; 1093 ret = xdr_alloc_bvec(xdr, GFP_KERNEL); 1094 if (ret < 0) 1095 return ret; 1096 1097 ret = kernel_sendmsg(sock, &msg, &rm, 1, rm.iov_len); 1098 if (ret < 0) 1099 return ret; 1100 *sentp += ret; 1101 if (ret != rm.iov_len) 1102 return -EAGAIN; 1103 1104 ret = svc_tcp_send_kvec(sock, head, 0); 1105 if (ret < 0) 1106 return ret; 1107 *sentp += ret; 1108 if (ret != head->iov_len) 1109 goto out; 1110 1111 if (xdr->page_len) { 1112 unsigned int offset, len, remaining; 1113 struct bio_vec *bvec; 1114 1115 bvec = xdr->bvec + (xdr->page_base >> PAGE_SHIFT); 1116 offset = offset_in_page(xdr->page_base); 1117 remaining = xdr->page_len; 1118 while (remaining > 0) { 1119 len = min(remaining, bvec->bv_len - offset); 1120 ret = kernel_sendpage(sock, bvec->bv_page, 1121 bvec->bv_offset + offset, 1122 len, 0); 1123 if (ret < 0) 1124 return ret; 1125 *sentp += ret; 1126 if (ret != len) 1127 goto out; 1128 remaining -= len; 1129 offset = 0; 1130 bvec++; 1131 } 1132 } 1133 1134 if (tail->iov_len) { 1135 ret = svc_tcp_send_kvec(sock, tail, 0); 1136 if (ret < 0) 1137 return ret; 1138 *sentp += ret; 1139 } 1140 1141 out: 1142 return 0; 1143 } 1144 1145 /** 1146 * svc_tcp_sendto - Send out a reply on a TCP socket 1147 * @rqstp: completed svc_rqst 1148 * 1149 * xpt_mutex ensures @rqstp's whole message is written to the socket 1150 * without interruption. 1151 * 1152 * Returns the number of bytes sent, or a negative errno. 1153 */ 1154 static int svc_tcp_sendto(struct svc_rqst *rqstp) 1155 { 1156 struct svc_xprt *xprt = rqstp->rq_xprt; 1157 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1158 struct xdr_buf *xdr = &rqstp->rq_res; 1159 rpc_fraghdr marker = cpu_to_be32(RPC_LAST_STREAM_FRAGMENT | 1160 (u32)xdr->len); 1161 unsigned int sent; 1162 int err; 1163 1164 svc_tcp_release_rqst(rqstp); 1165 1166 atomic_inc(&svsk->sk_sendqlen); 1167 mutex_lock(&xprt->xpt_mutex); 1168 if (svc_xprt_is_dead(xprt)) 1169 goto out_notconn; 1170 tcp_sock_set_cork(svsk->sk_sk, true); 1171 err = svc_tcp_sendmsg(svsk->sk_sock, xdr, marker, &sent); 1172 xdr_free_bvec(xdr); 1173 trace_svcsock_tcp_send(xprt, err < 0 ? (long)err : sent); 1174 if (err < 0 || sent != (xdr->len + sizeof(marker))) 1175 goto out_close; 1176 if (atomic_dec_and_test(&svsk->sk_sendqlen)) 1177 tcp_sock_set_cork(svsk->sk_sk, false); 1178 mutex_unlock(&xprt->xpt_mutex); 1179 return sent; 1180 1181 out_notconn: 1182 atomic_dec(&svsk->sk_sendqlen); 1183 mutex_unlock(&xprt->xpt_mutex); 1184 return -ENOTCONN; 1185 out_close: 1186 pr_notice("rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n", 1187 xprt->xpt_server->sv_name, 1188 (err < 0) ? "got error" : "sent", 1189 (err < 0) ? err : sent, xdr->len); 1190 svc_xprt_deferred_close(xprt); 1191 atomic_dec(&svsk->sk_sendqlen); 1192 mutex_unlock(&xprt->xpt_mutex); 1193 return -EAGAIN; 1194 } 1195 1196 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv, 1197 struct net *net, 1198 struct sockaddr *sa, int salen, 1199 int flags) 1200 { 1201 return svc_create_socket(serv, IPPROTO_TCP, net, sa, salen, flags); 1202 } 1203 1204 static const struct svc_xprt_ops svc_tcp_ops = { 1205 .xpo_create = svc_tcp_create, 1206 .xpo_recvfrom = svc_tcp_recvfrom, 1207 .xpo_sendto = svc_tcp_sendto, 1208 .xpo_result_payload = svc_sock_result_payload, 1209 .xpo_release_rqst = svc_tcp_release_rqst, 1210 .xpo_detach = svc_tcp_sock_detach, 1211 .xpo_free = svc_sock_free, 1212 .xpo_has_wspace = svc_tcp_has_wspace, 1213 .xpo_accept = svc_tcp_accept, 1214 .xpo_secure_port = svc_sock_secure_port, 1215 .xpo_kill_temp_xprt = svc_tcp_kill_temp_xprt, 1216 }; 1217 1218 static struct svc_xprt_class svc_tcp_class = { 1219 .xcl_name = "tcp", 1220 .xcl_owner = THIS_MODULE, 1221 .xcl_ops = &svc_tcp_ops, 1222 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP, 1223 .xcl_ident = XPRT_TRANSPORT_TCP, 1224 }; 1225 1226 void svc_init_xprt_sock(void) 1227 { 1228 svc_reg_xprt_class(&svc_tcp_class); 1229 svc_reg_xprt_class(&svc_udp_class); 1230 } 1231 1232 void svc_cleanup_xprt_sock(void) 1233 { 1234 svc_unreg_xprt_class(&svc_tcp_class); 1235 svc_unreg_xprt_class(&svc_udp_class); 1236 } 1237 1238 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv) 1239 { 1240 struct sock *sk = svsk->sk_sk; 1241 1242 svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_tcp_class, 1243 &svsk->sk_xprt, serv); 1244 set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags); 1245 set_bit(XPT_CONG_CTRL, &svsk->sk_xprt.xpt_flags); 1246 if (sk->sk_state == TCP_LISTEN) { 1247 strcpy(svsk->sk_xprt.xpt_remotebuf, "listener"); 1248 set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags); 1249 sk->sk_data_ready = svc_tcp_listen_data_ready; 1250 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 1251 } else { 1252 sk->sk_state_change = svc_tcp_state_change; 1253 sk->sk_data_ready = svc_data_ready; 1254 sk->sk_write_space = svc_write_space; 1255 1256 svsk->sk_marker = xdr_zero; 1257 svsk->sk_tcplen = 0; 1258 svsk->sk_datalen = 0; 1259 memset(&svsk->sk_pages[0], 0, sizeof(svsk->sk_pages)); 1260 1261 tcp_sock_set_nodelay(sk); 1262 1263 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 1264 switch (sk->sk_state) { 1265 case TCP_SYN_RECV: 1266 case TCP_ESTABLISHED: 1267 break; 1268 default: 1269 svc_xprt_deferred_close(&svsk->sk_xprt); 1270 } 1271 } 1272 } 1273 1274 void svc_sock_update_bufs(struct svc_serv *serv) 1275 { 1276 /* 1277 * The number of server threads has changed. Update 1278 * rcvbuf and sndbuf accordingly on all sockets 1279 */ 1280 struct svc_sock *svsk; 1281 1282 spin_lock_bh(&serv->sv_lock); 1283 list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) 1284 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 1285 spin_unlock_bh(&serv->sv_lock); 1286 } 1287 EXPORT_SYMBOL_GPL(svc_sock_update_bufs); 1288 1289 /* 1290 * Initialize socket for RPC use and create svc_sock struct 1291 */ 1292 static struct svc_sock *svc_setup_socket(struct svc_serv *serv, 1293 struct socket *sock, 1294 int flags) 1295 { 1296 struct svc_sock *svsk; 1297 struct sock *inet; 1298 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS); 1299 int err = 0; 1300 1301 svsk = kzalloc(sizeof(*svsk), GFP_KERNEL); 1302 if (!svsk) 1303 return ERR_PTR(-ENOMEM); 1304 1305 inet = sock->sk; 1306 1307 /* Register socket with portmapper */ 1308 if (pmap_register) 1309 err = svc_register(serv, sock_net(sock->sk), inet->sk_family, 1310 inet->sk_protocol, 1311 ntohs(inet_sk(inet)->inet_sport)); 1312 1313 if (err < 0) { 1314 kfree(svsk); 1315 return ERR_PTR(err); 1316 } 1317 1318 svsk->sk_sock = sock; 1319 svsk->sk_sk = inet; 1320 svsk->sk_ostate = inet->sk_state_change; 1321 svsk->sk_odata = inet->sk_data_ready; 1322 svsk->sk_owspace = inet->sk_write_space; 1323 /* 1324 * This barrier is necessary in order to prevent race condition 1325 * with svc_data_ready(), svc_listen_data_ready() and others 1326 * when calling callbacks above. 1327 */ 1328 wmb(); 1329 inet->sk_user_data = svsk; 1330 1331 /* Initialize the socket */ 1332 if (sock->type == SOCK_DGRAM) 1333 svc_udp_init(svsk, serv); 1334 else 1335 svc_tcp_init(svsk, serv); 1336 1337 trace_svcsock_new_socket(sock); 1338 return svsk; 1339 } 1340 1341 bool svc_alien_sock(struct net *net, int fd) 1342 { 1343 int err; 1344 struct socket *sock = sockfd_lookup(fd, &err); 1345 bool ret = false; 1346 1347 if (!sock) 1348 goto out; 1349 if (sock_net(sock->sk) != net) 1350 ret = true; 1351 sockfd_put(sock); 1352 out: 1353 return ret; 1354 } 1355 EXPORT_SYMBOL_GPL(svc_alien_sock); 1356 1357 /** 1358 * svc_addsock - add a listener socket to an RPC service 1359 * @serv: pointer to RPC service to which to add a new listener 1360 * @fd: file descriptor of the new listener 1361 * @name_return: pointer to buffer to fill in with name of listener 1362 * @len: size of the buffer 1363 * @cred: credential 1364 * 1365 * Fills in socket name and returns positive length of name if successful. 1366 * Name is terminated with '\n'. On error, returns a negative errno 1367 * value. 1368 */ 1369 int svc_addsock(struct svc_serv *serv, const int fd, char *name_return, 1370 const size_t len, const struct cred *cred) 1371 { 1372 int err = 0; 1373 struct socket *so = sockfd_lookup(fd, &err); 1374 struct svc_sock *svsk = NULL; 1375 struct sockaddr_storage addr; 1376 struct sockaddr *sin = (struct sockaddr *)&addr; 1377 int salen; 1378 1379 if (!so) 1380 return err; 1381 err = -EAFNOSUPPORT; 1382 if ((so->sk->sk_family != PF_INET) && (so->sk->sk_family != PF_INET6)) 1383 goto out; 1384 err = -EPROTONOSUPPORT; 1385 if (so->sk->sk_protocol != IPPROTO_TCP && 1386 so->sk->sk_protocol != IPPROTO_UDP) 1387 goto out; 1388 err = -EISCONN; 1389 if (so->state > SS_UNCONNECTED) 1390 goto out; 1391 err = -ENOENT; 1392 if (!try_module_get(THIS_MODULE)) 1393 goto out; 1394 svsk = svc_setup_socket(serv, so, SVC_SOCK_DEFAULTS); 1395 if (IS_ERR(svsk)) { 1396 module_put(THIS_MODULE); 1397 err = PTR_ERR(svsk); 1398 goto out; 1399 } 1400 salen = kernel_getsockname(svsk->sk_sock, sin); 1401 if (salen >= 0) 1402 svc_xprt_set_local(&svsk->sk_xprt, sin, salen); 1403 svsk->sk_xprt.xpt_cred = get_cred(cred); 1404 svc_add_new_perm_xprt(serv, &svsk->sk_xprt); 1405 return svc_one_sock_name(svsk, name_return, len); 1406 out: 1407 sockfd_put(so); 1408 return err; 1409 } 1410 EXPORT_SYMBOL_GPL(svc_addsock); 1411 1412 /* 1413 * Create socket for RPC service. 1414 */ 1415 static struct svc_xprt *svc_create_socket(struct svc_serv *serv, 1416 int protocol, 1417 struct net *net, 1418 struct sockaddr *sin, int len, 1419 int flags) 1420 { 1421 struct svc_sock *svsk; 1422 struct socket *sock; 1423 int error; 1424 int type; 1425 struct sockaddr_storage addr; 1426 struct sockaddr *newsin = (struct sockaddr *)&addr; 1427 int newlen; 1428 int family; 1429 1430 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) { 1431 printk(KERN_WARNING "svc: only UDP and TCP " 1432 "sockets supported\n"); 1433 return ERR_PTR(-EINVAL); 1434 } 1435 1436 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM; 1437 switch (sin->sa_family) { 1438 case AF_INET6: 1439 family = PF_INET6; 1440 break; 1441 case AF_INET: 1442 family = PF_INET; 1443 break; 1444 default: 1445 return ERR_PTR(-EINVAL); 1446 } 1447 1448 error = __sock_create(net, family, type, protocol, &sock, 1); 1449 if (error < 0) 1450 return ERR_PTR(error); 1451 1452 svc_reclassify_socket(sock); 1453 1454 /* 1455 * If this is an PF_INET6 listener, we want to avoid 1456 * getting requests from IPv4 remotes. Those should 1457 * be shunted to a PF_INET listener via rpcbind. 1458 */ 1459 if (family == PF_INET6) 1460 ip6_sock_set_v6only(sock->sk); 1461 if (type == SOCK_STREAM) 1462 sock->sk->sk_reuse = SK_CAN_REUSE; /* allow address reuse */ 1463 error = kernel_bind(sock, sin, len); 1464 if (error < 0) 1465 goto bummer; 1466 1467 error = kernel_getsockname(sock, newsin); 1468 if (error < 0) 1469 goto bummer; 1470 newlen = error; 1471 1472 if (protocol == IPPROTO_TCP) { 1473 if ((error = kernel_listen(sock, 64)) < 0) 1474 goto bummer; 1475 } 1476 1477 svsk = svc_setup_socket(serv, sock, flags); 1478 if (IS_ERR(svsk)) { 1479 error = PTR_ERR(svsk); 1480 goto bummer; 1481 } 1482 svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen); 1483 return (struct svc_xprt *)svsk; 1484 bummer: 1485 sock_release(sock); 1486 return ERR_PTR(error); 1487 } 1488 1489 /* 1490 * Detach the svc_sock from the socket so that no 1491 * more callbacks occur. 1492 */ 1493 static void svc_sock_detach(struct svc_xprt *xprt) 1494 { 1495 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1496 struct sock *sk = svsk->sk_sk; 1497 1498 /* put back the old socket callbacks */ 1499 lock_sock(sk); 1500 sk->sk_state_change = svsk->sk_ostate; 1501 sk->sk_data_ready = svsk->sk_odata; 1502 sk->sk_write_space = svsk->sk_owspace; 1503 sk->sk_user_data = NULL; 1504 release_sock(sk); 1505 } 1506 1507 /* 1508 * Disconnect the socket, and reset the callbacks 1509 */ 1510 static void svc_tcp_sock_detach(struct svc_xprt *xprt) 1511 { 1512 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1513 1514 svc_sock_detach(xprt); 1515 1516 if (!test_bit(XPT_LISTENER, &xprt->xpt_flags)) { 1517 svc_tcp_clear_pages(svsk); 1518 kernel_sock_shutdown(svsk->sk_sock, SHUT_RDWR); 1519 } 1520 } 1521 1522 /* 1523 * Free the svc_sock's socket resources and the svc_sock itself. 1524 */ 1525 static void svc_sock_free(struct svc_xprt *xprt) 1526 { 1527 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1528 1529 if (svsk->sk_sock->file) 1530 sockfd_put(svsk->sk_sock); 1531 else 1532 sock_release(svsk->sk_sock); 1533 kfree(svsk); 1534 } 1535