xref: /linux/net/sunrpc/svcsock.c (revision cd354f1ae75e6466a7e31b727faede57a1f89ca5)
1 /*
2  * linux/net/sunrpc/svcsock.c
3  *
4  * These are the RPC server socket internals.
5  *
6  * The server scheduling algorithm does not always distribute the load
7  * evenly when servicing a single client. May need to modify the
8  * svc_sock_enqueue procedure...
9  *
10  * TCP support is largely untested and may be a little slow. The problem
11  * is that we currently do two separate recvfrom's, one for the 4-byte
12  * record length, and the second for the actual record. This could possibly
13  * be improved by always reading a minimum size of around 100 bytes and
14  * tucking any superfluous bytes away in a temporary store. Still, that
15  * leaves write requests out in the rain. An alternative may be to peek at
16  * the first skb in the queue, and if it matches the next TCP sequence
17  * number, to extract the record marker. Yuck.
18  *
19  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
20  */
21 
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/fcntl.h>
25 #include <linux/net.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/udp.h>
29 #include <linux/tcp.h>
30 #include <linux/unistd.h>
31 #include <linux/slab.h>
32 #include <linux/netdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/file.h>
35 #include <linux/freezer.h>
36 #include <net/sock.h>
37 #include <net/checksum.h>
38 #include <net/ip.h>
39 #include <net/ipv6.h>
40 #include <net/tcp_states.h>
41 #include <asm/uaccess.h>
42 #include <asm/ioctls.h>
43 
44 #include <linux/sunrpc/types.h>
45 #include <linux/sunrpc/clnt.h>
46 #include <linux/sunrpc/xdr.h>
47 #include <linux/sunrpc/svcsock.h>
48 #include <linux/sunrpc/stats.h>
49 
50 /* SMP locking strategy:
51  *
52  *	svc_pool->sp_lock protects most of the fields of that pool.
53  * 	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
54  *	when both need to be taken (rare), svc_serv->sv_lock is first.
55  *	BKL protects svc_serv->sv_nrthread.
56  *	svc_sock->sk_defer_lock protects the svc_sock->sk_deferred list
57  *	svc_sock->sk_flags.SK_BUSY prevents a svc_sock being enqueued multiply.
58  *
59  *	Some flags can be set to certain values at any time
60  *	providing that certain rules are followed:
61  *
62  *	SK_CONN, SK_DATA, can be set or cleared at any time.
63  *		after a set, svc_sock_enqueue must be called.
64  *		after a clear, the socket must be read/accepted
65  *		 if this succeeds, it must be set again.
66  *	SK_CLOSE can set at any time. It is never cleared.
67  *      sk_inuse contains a bias of '1' until SK_DEAD is set.
68  *             so when sk_inuse hits zero, we know the socket is dead
69  *             and no-one is using it.
70  *      SK_DEAD can only be set while SK_BUSY is held which ensures
71  *             no other thread will be using the socket or will try to
72  *	       set SK_DEAD.
73  *
74  */
75 
76 #define RPCDBG_FACILITY	RPCDBG_SVCSOCK
77 
78 
79 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
80 					 int *errp, int flags);
81 static void		svc_delete_socket(struct svc_sock *svsk);
82 static void		svc_udp_data_ready(struct sock *, int);
83 static int		svc_udp_recvfrom(struct svc_rqst *);
84 static int		svc_udp_sendto(struct svc_rqst *);
85 
86 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk);
87 static int svc_deferred_recv(struct svc_rqst *rqstp);
88 static struct cache_deferred_req *svc_defer(struct cache_req *req);
89 
90 /* apparently the "standard" is that clients close
91  * idle connections after 5 minutes, servers after
92  * 6 minutes
93  *   http://www.connectathon.org/talks96/nfstcp.pdf
94  */
95 static int svc_conn_age_period = 6*60;
96 
97 #ifdef CONFIG_DEBUG_LOCK_ALLOC
98 static struct lock_class_key svc_key[2];
99 static struct lock_class_key svc_slock_key[2];
100 
101 static inline void svc_reclassify_socket(struct socket *sock)
102 {
103 	struct sock *sk = sock->sk;
104 	BUG_ON(sk->sk_lock.owner != NULL);
105 	switch (sk->sk_family) {
106 	case AF_INET:
107 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
108 		    &svc_slock_key[0], "sk_lock-AF_INET-NFSD", &svc_key[0]);
109 		break;
110 
111 	case AF_INET6:
112 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
113 		    &svc_slock_key[1], "sk_lock-AF_INET6-NFSD", &svc_key[1]);
114 		break;
115 
116 	default:
117 		BUG();
118 	}
119 }
120 #else
121 static inline void svc_reclassify_socket(struct socket *sock)
122 {
123 }
124 #endif
125 
126 static char *__svc_print_addr(struct sockaddr *addr, char *buf, size_t len)
127 {
128 	switch (addr->sa_family) {
129 	case AF_INET:
130 		snprintf(buf, len, "%u.%u.%u.%u, port=%u",
131 			NIPQUAD(((struct sockaddr_in *) addr)->sin_addr),
132 			htons(((struct sockaddr_in *) addr)->sin_port));
133 		break;
134 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
135 	case AF_INET6:
136 		snprintf(buf, len, "%x:%x:%x:%x:%x:%x:%x:%x, port=%u",
137 			NIP6(((struct sockaddr_in6 *) addr)->sin6_addr),
138 			htons(((struct sockaddr_in6 *) addr)->sin6_port));
139 		break;
140 #endif
141 	default:
142 		snprintf(buf, len, "unknown address type: %d", addr->sa_family);
143 		break;
144 	}
145 	return buf;
146 }
147 
148 /**
149  * svc_print_addr - Format rq_addr field for printing
150  * @rqstp: svc_rqst struct containing address to print
151  * @buf: target buffer for formatted address
152  * @len: length of target buffer
153  *
154  */
155 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
156 {
157 	return __svc_print_addr(svc_addr(rqstp), buf, len);
158 }
159 EXPORT_SYMBOL_GPL(svc_print_addr);
160 
161 /*
162  * Queue up an idle server thread.  Must have pool->sp_lock held.
163  * Note: this is really a stack rather than a queue, so that we only
164  * use as many different threads as we need, and the rest don't pollute
165  * the cache.
166  */
167 static inline void
168 svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
169 {
170 	list_add(&rqstp->rq_list, &pool->sp_threads);
171 }
172 
173 /*
174  * Dequeue an nfsd thread.  Must have pool->sp_lock held.
175  */
176 static inline void
177 svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
178 {
179 	list_del(&rqstp->rq_list);
180 }
181 
182 /*
183  * Release an skbuff after use
184  */
185 static inline void
186 svc_release_skb(struct svc_rqst *rqstp)
187 {
188 	struct sk_buff *skb = rqstp->rq_skbuff;
189 	struct svc_deferred_req *dr = rqstp->rq_deferred;
190 
191 	if (skb) {
192 		rqstp->rq_skbuff = NULL;
193 
194 		dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
195 		skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
196 	}
197 	if (dr) {
198 		rqstp->rq_deferred = NULL;
199 		kfree(dr);
200 	}
201 }
202 
203 /*
204  * Any space to write?
205  */
206 static inline unsigned long
207 svc_sock_wspace(struct svc_sock *svsk)
208 {
209 	int wspace;
210 
211 	if (svsk->sk_sock->type == SOCK_STREAM)
212 		wspace = sk_stream_wspace(svsk->sk_sk);
213 	else
214 		wspace = sock_wspace(svsk->sk_sk);
215 
216 	return wspace;
217 }
218 
219 /*
220  * Queue up a socket with data pending. If there are idle nfsd
221  * processes, wake 'em up.
222  *
223  */
224 static void
225 svc_sock_enqueue(struct svc_sock *svsk)
226 {
227 	struct svc_serv	*serv = svsk->sk_server;
228 	struct svc_pool *pool;
229 	struct svc_rqst	*rqstp;
230 	int cpu;
231 
232 	if (!(svsk->sk_flags &
233 	      ( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) ))
234 		return;
235 	if (test_bit(SK_DEAD, &svsk->sk_flags))
236 		return;
237 
238 	cpu = get_cpu();
239 	pool = svc_pool_for_cpu(svsk->sk_server, cpu);
240 	put_cpu();
241 
242 	spin_lock_bh(&pool->sp_lock);
243 
244 	if (!list_empty(&pool->sp_threads) &&
245 	    !list_empty(&pool->sp_sockets))
246 		printk(KERN_ERR
247 			"svc_sock_enqueue: threads and sockets both waiting??\n");
248 
249 	if (test_bit(SK_DEAD, &svsk->sk_flags)) {
250 		/* Don't enqueue dead sockets */
251 		dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk);
252 		goto out_unlock;
253 	}
254 
255 	/* Mark socket as busy. It will remain in this state until the
256 	 * server has processed all pending data and put the socket back
257 	 * on the idle list.  We update SK_BUSY atomically because
258 	 * it also guards against trying to enqueue the svc_sock twice.
259 	 */
260 	if (test_and_set_bit(SK_BUSY, &svsk->sk_flags)) {
261 		/* Don't enqueue socket while already enqueued */
262 		dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk);
263 		goto out_unlock;
264 	}
265 	BUG_ON(svsk->sk_pool != NULL);
266 	svsk->sk_pool = pool;
267 
268 	set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
269 	if (((atomic_read(&svsk->sk_reserved) + serv->sv_max_mesg)*2
270 	     > svc_sock_wspace(svsk))
271 	    && !test_bit(SK_CLOSE, &svsk->sk_flags)
272 	    && !test_bit(SK_CONN, &svsk->sk_flags)) {
273 		/* Don't enqueue while not enough space for reply */
274 		dprintk("svc: socket %p  no space, %d*2 > %ld, not enqueued\n",
275 			svsk->sk_sk, atomic_read(&svsk->sk_reserved)+serv->sv_max_mesg,
276 			svc_sock_wspace(svsk));
277 		svsk->sk_pool = NULL;
278 		clear_bit(SK_BUSY, &svsk->sk_flags);
279 		goto out_unlock;
280 	}
281 	clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
282 
283 
284 	if (!list_empty(&pool->sp_threads)) {
285 		rqstp = list_entry(pool->sp_threads.next,
286 				   struct svc_rqst,
287 				   rq_list);
288 		dprintk("svc: socket %p served by daemon %p\n",
289 			svsk->sk_sk, rqstp);
290 		svc_thread_dequeue(pool, rqstp);
291 		if (rqstp->rq_sock)
292 			printk(KERN_ERR
293 				"svc_sock_enqueue: server %p, rq_sock=%p!\n",
294 				rqstp, rqstp->rq_sock);
295 		rqstp->rq_sock = svsk;
296 		atomic_inc(&svsk->sk_inuse);
297 		rqstp->rq_reserved = serv->sv_max_mesg;
298 		atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
299 		BUG_ON(svsk->sk_pool != pool);
300 		wake_up(&rqstp->rq_wait);
301 	} else {
302 		dprintk("svc: socket %p put into queue\n", svsk->sk_sk);
303 		list_add_tail(&svsk->sk_ready, &pool->sp_sockets);
304 		BUG_ON(svsk->sk_pool != pool);
305 	}
306 
307 out_unlock:
308 	spin_unlock_bh(&pool->sp_lock);
309 }
310 
311 /*
312  * Dequeue the first socket.  Must be called with the pool->sp_lock held.
313  */
314 static inline struct svc_sock *
315 svc_sock_dequeue(struct svc_pool *pool)
316 {
317 	struct svc_sock	*svsk;
318 
319 	if (list_empty(&pool->sp_sockets))
320 		return NULL;
321 
322 	svsk = list_entry(pool->sp_sockets.next,
323 			  struct svc_sock, sk_ready);
324 	list_del_init(&svsk->sk_ready);
325 
326 	dprintk("svc: socket %p dequeued, inuse=%d\n",
327 		svsk->sk_sk, atomic_read(&svsk->sk_inuse));
328 
329 	return svsk;
330 }
331 
332 /*
333  * Having read something from a socket, check whether it
334  * needs to be re-enqueued.
335  * Note: SK_DATA only gets cleared when a read-attempt finds
336  * no (or insufficient) data.
337  */
338 static inline void
339 svc_sock_received(struct svc_sock *svsk)
340 {
341 	svsk->sk_pool = NULL;
342 	clear_bit(SK_BUSY, &svsk->sk_flags);
343 	svc_sock_enqueue(svsk);
344 }
345 
346 
347 /**
348  * svc_reserve - change the space reserved for the reply to a request.
349  * @rqstp:  The request in question
350  * @space: new max space to reserve
351  *
352  * Each request reserves some space on the output queue of the socket
353  * to make sure the reply fits.  This function reduces that reserved
354  * space to be the amount of space used already, plus @space.
355  *
356  */
357 void svc_reserve(struct svc_rqst *rqstp, int space)
358 {
359 	space += rqstp->rq_res.head[0].iov_len;
360 
361 	if (space < rqstp->rq_reserved) {
362 		struct svc_sock *svsk = rqstp->rq_sock;
363 		atomic_sub((rqstp->rq_reserved - space), &svsk->sk_reserved);
364 		rqstp->rq_reserved = space;
365 
366 		svc_sock_enqueue(svsk);
367 	}
368 }
369 
370 /*
371  * Release a socket after use.
372  */
373 static inline void
374 svc_sock_put(struct svc_sock *svsk)
375 {
376 	if (atomic_dec_and_test(&svsk->sk_inuse)) {
377 		BUG_ON(! test_bit(SK_DEAD, &svsk->sk_flags));
378 
379 		dprintk("svc: releasing dead socket\n");
380 		if (svsk->sk_sock->file)
381 			sockfd_put(svsk->sk_sock);
382 		else
383 			sock_release(svsk->sk_sock);
384 		if (svsk->sk_info_authunix != NULL)
385 			svcauth_unix_info_release(svsk->sk_info_authunix);
386 		kfree(svsk);
387 	}
388 }
389 
390 static void
391 svc_sock_release(struct svc_rqst *rqstp)
392 {
393 	struct svc_sock	*svsk = rqstp->rq_sock;
394 
395 	svc_release_skb(rqstp);
396 
397 	svc_free_res_pages(rqstp);
398 	rqstp->rq_res.page_len = 0;
399 	rqstp->rq_res.page_base = 0;
400 
401 
402 	/* Reset response buffer and release
403 	 * the reservation.
404 	 * But first, check that enough space was reserved
405 	 * for the reply, otherwise we have a bug!
406 	 */
407 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
408 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
409 		       rqstp->rq_reserved,
410 		       rqstp->rq_res.len);
411 
412 	rqstp->rq_res.head[0].iov_len = 0;
413 	svc_reserve(rqstp, 0);
414 	rqstp->rq_sock = NULL;
415 
416 	svc_sock_put(svsk);
417 }
418 
419 /*
420  * External function to wake up a server waiting for data
421  * This really only makes sense for services like lockd
422  * which have exactly one thread anyway.
423  */
424 void
425 svc_wake_up(struct svc_serv *serv)
426 {
427 	struct svc_rqst	*rqstp;
428 	unsigned int i;
429 	struct svc_pool *pool;
430 
431 	for (i = 0; i < serv->sv_nrpools; i++) {
432 		pool = &serv->sv_pools[i];
433 
434 		spin_lock_bh(&pool->sp_lock);
435 		if (!list_empty(&pool->sp_threads)) {
436 			rqstp = list_entry(pool->sp_threads.next,
437 					   struct svc_rqst,
438 					   rq_list);
439 			dprintk("svc: daemon %p woken up.\n", rqstp);
440 			/*
441 			svc_thread_dequeue(pool, rqstp);
442 			rqstp->rq_sock = NULL;
443 			 */
444 			wake_up(&rqstp->rq_wait);
445 		}
446 		spin_unlock_bh(&pool->sp_lock);
447 	}
448 }
449 
450 union svc_pktinfo_u {
451 	struct in_pktinfo pkti;
452 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
453 	struct in6_pktinfo pkti6;
454 #endif
455 };
456 
457 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
458 {
459 	switch (rqstp->rq_sock->sk_sk->sk_family) {
460 	case AF_INET: {
461 			struct in_pktinfo *pki = CMSG_DATA(cmh);
462 
463 			cmh->cmsg_level = SOL_IP;
464 			cmh->cmsg_type = IP_PKTINFO;
465 			pki->ipi_ifindex = 0;
466 			pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
467 			cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
468 		}
469 		break;
470 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
471 	case AF_INET6: {
472 			struct in6_pktinfo *pki = CMSG_DATA(cmh);
473 
474 			cmh->cmsg_level = SOL_IPV6;
475 			cmh->cmsg_type = IPV6_PKTINFO;
476 			pki->ipi6_ifindex = 0;
477 			ipv6_addr_copy(&pki->ipi6_addr,
478 					&rqstp->rq_daddr.addr6);
479 			cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
480 		}
481 		break;
482 #endif
483 	}
484 	return;
485 }
486 
487 /*
488  * Generic sendto routine
489  */
490 static int
491 svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
492 {
493 	struct svc_sock	*svsk = rqstp->rq_sock;
494 	struct socket	*sock = svsk->sk_sock;
495 	int		slen;
496 	char 		buffer[CMSG_SPACE(sizeof(union svc_pktinfo_u))];
497 	struct cmsghdr *cmh = (struct cmsghdr *)buffer;
498 	int		len = 0;
499 	int		result;
500 	int		size;
501 	struct page	**ppage = xdr->pages;
502 	size_t		base = xdr->page_base;
503 	unsigned int	pglen = xdr->page_len;
504 	unsigned int	flags = MSG_MORE;
505 	char		buf[RPC_MAX_ADDRBUFLEN];
506 
507 	slen = xdr->len;
508 
509 	if (rqstp->rq_prot == IPPROTO_UDP) {
510 		struct msghdr msg = {
511 			.msg_name	= &rqstp->rq_addr,
512 			.msg_namelen	= rqstp->rq_addrlen,
513 			.msg_control	= cmh,
514 			.msg_controllen	= sizeof(buffer),
515 			.msg_flags	= MSG_MORE,
516 		};
517 
518 		svc_set_cmsg_data(rqstp, cmh);
519 
520 		if (sock_sendmsg(sock, &msg, 0) < 0)
521 			goto out;
522 	}
523 
524 	/* send head */
525 	if (slen == xdr->head[0].iov_len)
526 		flags = 0;
527 	len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
528 				  xdr->head[0].iov_len, flags);
529 	if (len != xdr->head[0].iov_len)
530 		goto out;
531 	slen -= xdr->head[0].iov_len;
532 	if (slen == 0)
533 		goto out;
534 
535 	/* send page data */
536 	size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
537 	while (pglen > 0) {
538 		if (slen == size)
539 			flags = 0;
540 		result = kernel_sendpage(sock, *ppage, base, size, flags);
541 		if (result > 0)
542 			len += result;
543 		if (result != size)
544 			goto out;
545 		slen -= size;
546 		pglen -= size;
547 		size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
548 		base = 0;
549 		ppage++;
550 	}
551 	/* send tail */
552 	if (xdr->tail[0].iov_len) {
553 		result = kernel_sendpage(sock, rqstp->rq_respages[0],
554 					     ((unsigned long)xdr->tail[0].iov_base)
555 						& (PAGE_SIZE-1),
556 					     xdr->tail[0].iov_len, 0);
557 
558 		if (result > 0)
559 			len += result;
560 	}
561 out:
562 	dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
563 		rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len,
564 		xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
565 
566 	return len;
567 }
568 
569 /*
570  * Report socket names for nfsdfs
571  */
572 static int one_sock_name(char *buf, struct svc_sock *svsk)
573 {
574 	int len;
575 
576 	switch(svsk->sk_sk->sk_family) {
577 	case AF_INET:
578 		len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n",
579 			      svsk->sk_sk->sk_protocol==IPPROTO_UDP?
580 			      "udp" : "tcp",
581 			      NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr),
582 			      inet_sk(svsk->sk_sk)->num);
583 		break;
584 	default:
585 		len = sprintf(buf, "*unknown-%d*\n",
586 			       svsk->sk_sk->sk_family);
587 	}
588 	return len;
589 }
590 
591 int
592 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
593 {
594 	struct svc_sock *svsk, *closesk = NULL;
595 	int len = 0;
596 
597 	if (!serv)
598 		return 0;
599 	spin_lock_bh(&serv->sv_lock);
600 	list_for_each_entry(svsk, &serv->sv_permsocks, sk_list) {
601 		int onelen = one_sock_name(buf+len, svsk);
602 		if (toclose && strcmp(toclose, buf+len) == 0)
603 			closesk = svsk;
604 		else
605 			len += onelen;
606 	}
607 	spin_unlock_bh(&serv->sv_lock);
608 	if (closesk)
609 		/* Should unregister with portmap, but you cannot
610 		 * unregister just one protocol...
611 		 */
612 		svc_close_socket(closesk);
613 	else if (toclose)
614 		return -ENOENT;
615 	return len;
616 }
617 EXPORT_SYMBOL(svc_sock_names);
618 
619 /*
620  * Check input queue length
621  */
622 static int
623 svc_recv_available(struct svc_sock *svsk)
624 {
625 	struct socket	*sock = svsk->sk_sock;
626 	int		avail, err;
627 
628 	err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
629 
630 	return (err >= 0)? avail : err;
631 }
632 
633 /*
634  * Generic recvfrom routine.
635  */
636 static int
637 svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
638 {
639 	struct svc_sock *svsk = rqstp->rq_sock;
640 	struct msghdr msg = {
641 		.msg_flags	= MSG_DONTWAIT,
642 	};
643 	int len;
644 
645 	len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
646 				msg.msg_flags);
647 
648 	/* sock_recvmsg doesn't fill in the name/namelen, so we must..
649 	 */
650 	memcpy(&rqstp->rq_addr, &svsk->sk_remote, svsk->sk_remotelen);
651 	rqstp->rq_addrlen = svsk->sk_remotelen;
652 
653 	dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
654 		svsk, iov[0].iov_base, iov[0].iov_len, len);
655 
656 	return len;
657 }
658 
659 /*
660  * Set socket snd and rcv buffer lengths
661  */
662 static inline void
663 svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
664 {
665 #if 0
666 	mm_segment_t	oldfs;
667 	oldfs = get_fs(); set_fs(KERNEL_DS);
668 	sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
669 			(char*)&snd, sizeof(snd));
670 	sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
671 			(char*)&rcv, sizeof(rcv));
672 #else
673 	/* sock_setsockopt limits use to sysctl_?mem_max,
674 	 * which isn't acceptable.  Until that is made conditional
675 	 * on not having CAP_SYS_RESOURCE or similar, we go direct...
676 	 * DaveM said I could!
677 	 */
678 	lock_sock(sock->sk);
679 	sock->sk->sk_sndbuf = snd * 2;
680 	sock->sk->sk_rcvbuf = rcv * 2;
681 	sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
682 	release_sock(sock->sk);
683 #endif
684 }
685 /*
686  * INET callback when data has been received on the socket.
687  */
688 static void
689 svc_udp_data_ready(struct sock *sk, int count)
690 {
691 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
692 
693 	if (svsk) {
694 		dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
695 			svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags));
696 		set_bit(SK_DATA, &svsk->sk_flags);
697 		svc_sock_enqueue(svsk);
698 	}
699 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
700 		wake_up_interruptible(sk->sk_sleep);
701 }
702 
703 /*
704  * INET callback when space is newly available on the socket.
705  */
706 static void
707 svc_write_space(struct sock *sk)
708 {
709 	struct svc_sock	*svsk = (struct svc_sock *)(sk->sk_user_data);
710 
711 	if (svsk) {
712 		dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
713 			svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags));
714 		svc_sock_enqueue(svsk);
715 	}
716 
717 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
718 		dprintk("RPC svc_write_space: someone sleeping on %p\n",
719 		       svsk);
720 		wake_up_interruptible(sk->sk_sleep);
721 	}
722 }
723 
724 static void svc_udp_get_sender_address(struct svc_rqst *rqstp,
725 					struct sk_buff *skb)
726 {
727 	switch (rqstp->rq_sock->sk_sk->sk_family) {
728 	case AF_INET: {
729 		/* this seems to come from net/ipv4/udp.c:udp_recvmsg */
730 			struct sockaddr_in *sin = svc_addr_in(rqstp);
731 
732 			sin->sin_family = AF_INET;
733 			sin->sin_port = skb->h.uh->source;
734 			sin->sin_addr.s_addr = skb->nh.iph->saddr;
735 			rqstp->rq_addrlen = sizeof(struct sockaddr_in);
736 			/* Remember which interface received this request */
737 			rqstp->rq_daddr.addr.s_addr = skb->nh.iph->daddr;
738 		}
739 		break;
740 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
741 	case AF_INET6: {
742 		/* this is derived from net/ipv6/udp.c:udpv6_recvmesg */
743 			struct sockaddr_in6 *sin6 = svc_addr_in6(rqstp);
744 
745 			sin6->sin6_family = AF_INET6;
746 			sin6->sin6_port = skb->h.uh->source;
747 			sin6->sin6_flowinfo = 0;
748 			sin6->sin6_scope_id = 0;
749 			if (ipv6_addr_type(&sin6->sin6_addr) &
750 							IPV6_ADDR_LINKLOCAL)
751 				sin6->sin6_scope_id = IP6CB(skb)->iif;
752 			ipv6_addr_copy(&sin6->sin6_addr,
753 							&skb->nh.ipv6h->saddr);
754 			rqstp->rq_addrlen = sizeof(struct sockaddr_in);
755 			/* Remember which interface received this request */
756 			ipv6_addr_copy(&rqstp->rq_daddr.addr6,
757 							&skb->nh.ipv6h->saddr);
758 		}
759 		break;
760 #endif
761 	}
762 	return;
763 }
764 
765 /*
766  * Receive a datagram from a UDP socket.
767  */
768 static int
769 svc_udp_recvfrom(struct svc_rqst *rqstp)
770 {
771 	struct svc_sock	*svsk = rqstp->rq_sock;
772 	struct svc_serv	*serv = svsk->sk_server;
773 	struct sk_buff	*skb;
774 	int		err, len;
775 
776 	if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
777 	    /* udp sockets need large rcvbuf as all pending
778 	     * requests are still in that buffer.  sndbuf must
779 	     * also be large enough that there is enough space
780 	     * for one reply per thread.  We count all threads
781 	     * rather than threads in a particular pool, which
782 	     * provides an upper bound on the number of threads
783 	     * which will access the socket.
784 	     */
785 	    svc_sock_setbufsize(svsk->sk_sock,
786 				(serv->sv_nrthreads+3) * serv->sv_max_mesg,
787 				(serv->sv_nrthreads+3) * serv->sv_max_mesg);
788 
789 	if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
790 		svc_sock_received(svsk);
791 		return svc_deferred_recv(rqstp);
792 	}
793 
794 	if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
795 		svc_delete_socket(svsk);
796 		return 0;
797 	}
798 
799 	clear_bit(SK_DATA, &svsk->sk_flags);
800 	while ((skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err)) == NULL) {
801 		if (err == -EAGAIN) {
802 			svc_sock_received(svsk);
803 			return err;
804 		}
805 		/* possibly an icmp error */
806 		dprintk("svc: recvfrom returned error %d\n", -err);
807 	}
808 	if (skb->tstamp.off_sec == 0) {
809 		struct timeval tv;
810 
811 		tv.tv_sec = xtime.tv_sec;
812 		tv.tv_usec = xtime.tv_nsec / NSEC_PER_USEC;
813 		skb_set_timestamp(skb, &tv);
814 		/* Don't enable netstamp, sunrpc doesn't
815 		   need that much accuracy */
816 	}
817 	skb_get_timestamp(skb, &svsk->sk_sk->sk_stamp);
818 	set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */
819 
820 	/*
821 	 * Maybe more packets - kick another thread ASAP.
822 	 */
823 	svc_sock_received(svsk);
824 
825 	len  = skb->len - sizeof(struct udphdr);
826 	rqstp->rq_arg.len = len;
827 
828 	rqstp->rq_prot = IPPROTO_UDP;
829 
830 	svc_udp_get_sender_address(rqstp, skb);
831 
832 	if (skb_is_nonlinear(skb)) {
833 		/* we have to copy */
834 		local_bh_disable();
835 		if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
836 			local_bh_enable();
837 			/* checksum error */
838 			skb_free_datagram(svsk->sk_sk, skb);
839 			return 0;
840 		}
841 		local_bh_enable();
842 		skb_free_datagram(svsk->sk_sk, skb);
843 	} else {
844 		/* we can use it in-place */
845 		rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
846 		rqstp->rq_arg.head[0].iov_len = len;
847 		if (skb_checksum_complete(skb)) {
848 			skb_free_datagram(svsk->sk_sk, skb);
849 			return 0;
850 		}
851 		rqstp->rq_skbuff = skb;
852 	}
853 
854 	rqstp->rq_arg.page_base = 0;
855 	if (len <= rqstp->rq_arg.head[0].iov_len) {
856 		rqstp->rq_arg.head[0].iov_len = len;
857 		rqstp->rq_arg.page_len = 0;
858 		rqstp->rq_respages = rqstp->rq_pages+1;
859 	} else {
860 		rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
861 		rqstp->rq_respages = rqstp->rq_pages + 1 +
862 			(rqstp->rq_arg.page_len + PAGE_SIZE - 1)/ PAGE_SIZE;
863 	}
864 
865 	if (serv->sv_stats)
866 		serv->sv_stats->netudpcnt++;
867 
868 	return len;
869 }
870 
871 static int
872 svc_udp_sendto(struct svc_rqst *rqstp)
873 {
874 	int		error;
875 
876 	error = svc_sendto(rqstp, &rqstp->rq_res);
877 	if (error == -ECONNREFUSED)
878 		/* ICMP error on earlier request. */
879 		error = svc_sendto(rqstp, &rqstp->rq_res);
880 
881 	return error;
882 }
883 
884 static void
885 svc_udp_init(struct svc_sock *svsk)
886 {
887 	svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
888 	svsk->sk_sk->sk_write_space = svc_write_space;
889 	svsk->sk_recvfrom = svc_udp_recvfrom;
890 	svsk->sk_sendto = svc_udp_sendto;
891 
892 	/* initialise setting must have enough space to
893 	 * receive and respond to one request.
894 	 * svc_udp_recvfrom will re-adjust if necessary
895 	 */
896 	svc_sock_setbufsize(svsk->sk_sock,
897 			    3 * svsk->sk_server->sv_max_mesg,
898 			    3 * svsk->sk_server->sv_max_mesg);
899 
900 	set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */
901 	set_bit(SK_CHNGBUF, &svsk->sk_flags);
902 }
903 
904 /*
905  * A data_ready event on a listening socket means there's a connection
906  * pending. Do not use state_change as a substitute for it.
907  */
908 static void
909 svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
910 {
911 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
912 
913 	dprintk("svc: socket %p TCP (listen) state change %d\n",
914 		sk, sk->sk_state);
915 
916 	/*
917 	 * This callback may called twice when a new connection
918 	 * is established as a child socket inherits everything
919 	 * from a parent LISTEN socket.
920 	 * 1) data_ready method of the parent socket will be called
921 	 *    when one of child sockets become ESTABLISHED.
922 	 * 2) data_ready method of the child socket may be called
923 	 *    when it receives data before the socket is accepted.
924 	 * In case of 2, we should ignore it silently.
925 	 */
926 	if (sk->sk_state == TCP_LISTEN) {
927 		if (svsk) {
928 			set_bit(SK_CONN, &svsk->sk_flags);
929 			svc_sock_enqueue(svsk);
930 		} else
931 			printk("svc: socket %p: no user data\n", sk);
932 	}
933 
934 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
935 		wake_up_interruptible_all(sk->sk_sleep);
936 }
937 
938 /*
939  * A state change on a connected socket means it's dying or dead.
940  */
941 static void
942 svc_tcp_state_change(struct sock *sk)
943 {
944 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
945 
946 	dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
947 		sk, sk->sk_state, sk->sk_user_data);
948 
949 	if (!svsk)
950 		printk("svc: socket %p: no user data\n", sk);
951 	else {
952 		set_bit(SK_CLOSE, &svsk->sk_flags);
953 		svc_sock_enqueue(svsk);
954 	}
955 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
956 		wake_up_interruptible_all(sk->sk_sleep);
957 }
958 
959 static void
960 svc_tcp_data_ready(struct sock *sk, int count)
961 {
962 	struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
963 
964 	dprintk("svc: socket %p TCP data ready (svsk %p)\n",
965 		sk, sk->sk_user_data);
966 	if (svsk) {
967 		set_bit(SK_DATA, &svsk->sk_flags);
968 		svc_sock_enqueue(svsk);
969 	}
970 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
971 		wake_up_interruptible(sk->sk_sleep);
972 }
973 
974 static inline int svc_port_is_privileged(struct sockaddr *sin)
975 {
976 	switch (sin->sa_family) {
977 	case AF_INET:
978 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
979 			< PROT_SOCK;
980 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
981 	case AF_INET6:
982 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
983 			< PROT_SOCK;
984 #endif
985 	default:
986 		return 0;
987 	}
988 }
989 
990 /*
991  * Accept a TCP connection
992  */
993 static void
994 svc_tcp_accept(struct svc_sock *svsk)
995 {
996 	struct sockaddr_storage addr;
997 	struct sockaddr	*sin = (struct sockaddr *) &addr;
998 	struct svc_serv	*serv = svsk->sk_server;
999 	struct socket	*sock = svsk->sk_sock;
1000 	struct socket	*newsock;
1001 	struct svc_sock	*newsvsk;
1002 	int		err, slen;
1003 	char		buf[RPC_MAX_ADDRBUFLEN];
1004 
1005 	dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
1006 	if (!sock)
1007 		return;
1008 
1009 	clear_bit(SK_CONN, &svsk->sk_flags);
1010 	err = kernel_accept(sock, &newsock, O_NONBLOCK);
1011 	if (err < 0) {
1012 		if (err == -ENOMEM)
1013 			printk(KERN_WARNING "%s: no more sockets!\n",
1014 			       serv->sv_name);
1015 		else if (err != -EAGAIN && net_ratelimit())
1016 			printk(KERN_WARNING "%s: accept failed (err %d)!\n",
1017 				   serv->sv_name, -err);
1018 		return;
1019 	}
1020 
1021 	set_bit(SK_CONN, &svsk->sk_flags);
1022 	svc_sock_enqueue(svsk);
1023 
1024 	err = kernel_getpeername(newsock, sin, &slen);
1025 	if (err < 0) {
1026 		if (net_ratelimit())
1027 			printk(KERN_WARNING "%s: peername failed (err %d)!\n",
1028 				   serv->sv_name, -err);
1029 		goto failed;		/* aborted connection or whatever */
1030 	}
1031 
1032 	/* Ideally, we would want to reject connections from unauthorized
1033 	 * hosts here, but when we get encryption, the IP of the host won't
1034 	 * tell us anything.  For now just warn about unpriv connections.
1035 	 */
1036 	if (!svc_port_is_privileged(sin)) {
1037 		dprintk(KERN_WARNING
1038 			"%s: connect from unprivileged port: %s\n",
1039 			serv->sv_name,
1040 			__svc_print_addr(sin, buf, sizeof(buf)));
1041 	}
1042 	dprintk("%s: connect from %s\n", serv->sv_name,
1043 		__svc_print_addr(sin, buf, sizeof(buf)));
1044 
1045 	/* make sure that a write doesn't block forever when
1046 	 * low on memory
1047 	 */
1048 	newsock->sk->sk_sndtimeo = HZ*30;
1049 
1050 	if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
1051 				 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
1052 		goto failed;
1053 	memcpy(&newsvsk->sk_remote, sin, slen);
1054 	newsvsk->sk_remotelen = slen;
1055 
1056 	svc_sock_received(newsvsk);
1057 
1058 	/* make sure that we don't have too many active connections.
1059 	 * If we have, something must be dropped.
1060 	 *
1061 	 * There's no point in trying to do random drop here for
1062 	 * DoS prevention. The NFS clients does 1 reconnect in 15
1063 	 * seconds. An attacker can easily beat that.
1064 	 *
1065 	 * The only somewhat efficient mechanism would be if drop
1066 	 * old connections from the same IP first. But right now
1067 	 * we don't even record the client IP in svc_sock.
1068 	 */
1069 	if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
1070 		struct svc_sock *svsk = NULL;
1071 		spin_lock_bh(&serv->sv_lock);
1072 		if (!list_empty(&serv->sv_tempsocks)) {
1073 			if (net_ratelimit()) {
1074 				/* Try to help the admin */
1075 				printk(KERN_NOTICE "%s: too many open TCP "
1076 					"sockets, consider increasing the "
1077 					"number of nfsd threads\n",
1078 						   serv->sv_name);
1079 				printk(KERN_NOTICE
1080 				       "%s: last TCP connect from %s\n",
1081 				       serv->sv_name, buf);
1082 			}
1083 			/*
1084 			 * Always select the oldest socket. It's not fair,
1085 			 * but so is life
1086 			 */
1087 			svsk = list_entry(serv->sv_tempsocks.prev,
1088 					  struct svc_sock,
1089 					  sk_list);
1090 			set_bit(SK_CLOSE, &svsk->sk_flags);
1091 			atomic_inc(&svsk->sk_inuse);
1092 		}
1093 		spin_unlock_bh(&serv->sv_lock);
1094 
1095 		if (svsk) {
1096 			svc_sock_enqueue(svsk);
1097 			svc_sock_put(svsk);
1098 		}
1099 
1100 	}
1101 
1102 	if (serv->sv_stats)
1103 		serv->sv_stats->nettcpconn++;
1104 
1105 	return;
1106 
1107 failed:
1108 	sock_release(newsock);
1109 	return;
1110 }
1111 
1112 /*
1113  * Receive data from a TCP socket.
1114  */
1115 static int
1116 svc_tcp_recvfrom(struct svc_rqst *rqstp)
1117 {
1118 	struct svc_sock	*svsk = rqstp->rq_sock;
1119 	struct svc_serv	*serv = svsk->sk_server;
1120 	int		len;
1121 	struct kvec *vec;
1122 	int pnum, vlen;
1123 
1124 	dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
1125 		svsk, test_bit(SK_DATA, &svsk->sk_flags),
1126 		test_bit(SK_CONN, &svsk->sk_flags),
1127 		test_bit(SK_CLOSE, &svsk->sk_flags));
1128 
1129 	if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
1130 		svc_sock_received(svsk);
1131 		return svc_deferred_recv(rqstp);
1132 	}
1133 
1134 	if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
1135 		svc_delete_socket(svsk);
1136 		return 0;
1137 	}
1138 
1139 	if (svsk->sk_sk->sk_state == TCP_LISTEN) {
1140 		svc_tcp_accept(svsk);
1141 		svc_sock_received(svsk);
1142 		return 0;
1143 	}
1144 
1145 	if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
1146 		/* sndbuf needs to have room for one request
1147 		 * per thread, otherwise we can stall even when the
1148 		 * network isn't a bottleneck.
1149 		 *
1150 		 * We count all threads rather than threads in a
1151 		 * particular pool, which provides an upper bound
1152 		 * on the number of threads which will access the socket.
1153 		 *
1154 		 * rcvbuf just needs to be able to hold a few requests.
1155 		 * Normally they will be removed from the queue
1156 		 * as soon a a complete request arrives.
1157 		 */
1158 		svc_sock_setbufsize(svsk->sk_sock,
1159 				    (serv->sv_nrthreads+3) * serv->sv_max_mesg,
1160 				    3 * serv->sv_max_mesg);
1161 
1162 	clear_bit(SK_DATA, &svsk->sk_flags);
1163 
1164 	/* Receive data. If we haven't got the record length yet, get
1165 	 * the next four bytes. Otherwise try to gobble up as much as
1166 	 * possible up to the complete record length.
1167 	 */
1168 	if (svsk->sk_tcplen < 4) {
1169 		unsigned long	want = 4 - svsk->sk_tcplen;
1170 		struct kvec	iov;
1171 
1172 		iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
1173 		iov.iov_len  = want;
1174 		if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
1175 			goto error;
1176 		svsk->sk_tcplen += len;
1177 
1178 		if (len < want) {
1179 			dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
1180 				len, want);
1181 			svc_sock_received(svsk);
1182 			return -EAGAIN; /* record header not complete */
1183 		}
1184 
1185 		svsk->sk_reclen = ntohl(svsk->sk_reclen);
1186 		if (!(svsk->sk_reclen & 0x80000000)) {
1187 			/* FIXME: technically, a record can be fragmented,
1188 			 *  and non-terminal fragments will not have the top
1189 			 *  bit set in the fragment length header.
1190 			 *  But apparently no known nfs clients send fragmented
1191 			 *  records. */
1192 			if (net_ratelimit())
1193 				printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1194 				       " (non-terminal)\n",
1195 				       (unsigned long) svsk->sk_reclen);
1196 			goto err_delete;
1197 		}
1198 		svsk->sk_reclen &= 0x7fffffff;
1199 		dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
1200 		if (svsk->sk_reclen > serv->sv_max_mesg) {
1201 			if (net_ratelimit())
1202 				printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1203 				       " (large)\n",
1204 				       (unsigned long) svsk->sk_reclen);
1205 			goto err_delete;
1206 		}
1207 	}
1208 
1209 	/* Check whether enough data is available */
1210 	len = svc_recv_available(svsk);
1211 	if (len < 0)
1212 		goto error;
1213 
1214 	if (len < svsk->sk_reclen) {
1215 		dprintk("svc: incomplete TCP record (%d of %d)\n",
1216 			len, svsk->sk_reclen);
1217 		svc_sock_received(svsk);
1218 		return -EAGAIN;	/* record not complete */
1219 	}
1220 	len = svsk->sk_reclen;
1221 	set_bit(SK_DATA, &svsk->sk_flags);
1222 
1223 	vec = rqstp->rq_vec;
1224 	vec[0] = rqstp->rq_arg.head[0];
1225 	vlen = PAGE_SIZE;
1226 	pnum = 1;
1227 	while (vlen < len) {
1228 		vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
1229 		vec[pnum].iov_len = PAGE_SIZE;
1230 		pnum++;
1231 		vlen += PAGE_SIZE;
1232 	}
1233 	rqstp->rq_respages = &rqstp->rq_pages[pnum];
1234 
1235 	/* Now receive data */
1236 	len = svc_recvfrom(rqstp, vec, pnum, len);
1237 	if (len < 0)
1238 		goto error;
1239 
1240 	dprintk("svc: TCP complete record (%d bytes)\n", len);
1241 	rqstp->rq_arg.len = len;
1242 	rqstp->rq_arg.page_base = 0;
1243 	if (len <= rqstp->rq_arg.head[0].iov_len) {
1244 		rqstp->rq_arg.head[0].iov_len = len;
1245 		rqstp->rq_arg.page_len = 0;
1246 	} else {
1247 		rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1248 	}
1249 
1250 	rqstp->rq_skbuff      = NULL;
1251 	rqstp->rq_prot	      = IPPROTO_TCP;
1252 
1253 	/* Reset TCP read info */
1254 	svsk->sk_reclen = 0;
1255 	svsk->sk_tcplen = 0;
1256 
1257 	svc_sock_received(svsk);
1258 	if (serv->sv_stats)
1259 		serv->sv_stats->nettcpcnt++;
1260 
1261 	return len;
1262 
1263  err_delete:
1264 	svc_delete_socket(svsk);
1265 	return -EAGAIN;
1266 
1267  error:
1268 	if (len == -EAGAIN) {
1269 		dprintk("RPC: TCP recvfrom got EAGAIN\n");
1270 		svc_sock_received(svsk);
1271 	} else {
1272 		printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1273 					svsk->sk_server->sv_name, -len);
1274 		goto err_delete;
1275 	}
1276 
1277 	return len;
1278 }
1279 
1280 /*
1281  * Send out data on TCP socket.
1282  */
1283 static int
1284 svc_tcp_sendto(struct svc_rqst *rqstp)
1285 {
1286 	struct xdr_buf	*xbufp = &rqstp->rq_res;
1287 	int sent;
1288 	__be32 reclen;
1289 
1290 	/* Set up the first element of the reply kvec.
1291 	 * Any other kvecs that may be in use have been taken
1292 	 * care of by the server implementation itself.
1293 	 */
1294 	reclen = htonl(0x80000000|((xbufp->len ) - 4));
1295 	memcpy(xbufp->head[0].iov_base, &reclen, 4);
1296 
1297 	if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags))
1298 		return -ENOTCONN;
1299 
1300 	sent = svc_sendto(rqstp, &rqstp->rq_res);
1301 	if (sent != xbufp->len) {
1302 		printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1303 		       rqstp->rq_sock->sk_server->sv_name,
1304 		       (sent<0)?"got error":"sent only",
1305 		       sent, xbufp->len);
1306 		set_bit(SK_CLOSE, &rqstp->rq_sock->sk_flags);
1307 		svc_sock_enqueue(rqstp->rq_sock);
1308 		sent = -EAGAIN;
1309 	}
1310 	return sent;
1311 }
1312 
1313 static void
1314 svc_tcp_init(struct svc_sock *svsk)
1315 {
1316 	struct sock	*sk = svsk->sk_sk;
1317 	struct tcp_sock *tp = tcp_sk(sk);
1318 
1319 	svsk->sk_recvfrom = svc_tcp_recvfrom;
1320 	svsk->sk_sendto = svc_tcp_sendto;
1321 
1322 	if (sk->sk_state == TCP_LISTEN) {
1323 		dprintk("setting up TCP socket for listening\n");
1324 		sk->sk_data_ready = svc_tcp_listen_data_ready;
1325 		set_bit(SK_CONN, &svsk->sk_flags);
1326 	} else {
1327 		dprintk("setting up TCP socket for reading\n");
1328 		sk->sk_state_change = svc_tcp_state_change;
1329 		sk->sk_data_ready = svc_tcp_data_ready;
1330 		sk->sk_write_space = svc_write_space;
1331 
1332 		svsk->sk_reclen = 0;
1333 		svsk->sk_tcplen = 0;
1334 
1335 		tp->nonagle = 1;        /* disable Nagle's algorithm */
1336 
1337 		/* initialise setting must have enough space to
1338 		 * receive and respond to one request.
1339 		 * svc_tcp_recvfrom will re-adjust if necessary
1340 		 */
1341 		svc_sock_setbufsize(svsk->sk_sock,
1342 				    3 * svsk->sk_server->sv_max_mesg,
1343 				    3 * svsk->sk_server->sv_max_mesg);
1344 
1345 		set_bit(SK_CHNGBUF, &svsk->sk_flags);
1346 		set_bit(SK_DATA, &svsk->sk_flags);
1347 		if (sk->sk_state != TCP_ESTABLISHED)
1348 			set_bit(SK_CLOSE, &svsk->sk_flags);
1349 	}
1350 }
1351 
1352 void
1353 svc_sock_update_bufs(struct svc_serv *serv)
1354 {
1355 	/*
1356 	 * The number of server threads has changed. Update
1357 	 * rcvbuf and sndbuf accordingly on all sockets
1358 	 */
1359 	struct list_head *le;
1360 
1361 	spin_lock_bh(&serv->sv_lock);
1362 	list_for_each(le, &serv->sv_permsocks) {
1363 		struct svc_sock *svsk =
1364 			list_entry(le, struct svc_sock, sk_list);
1365 		set_bit(SK_CHNGBUF, &svsk->sk_flags);
1366 	}
1367 	list_for_each(le, &serv->sv_tempsocks) {
1368 		struct svc_sock *svsk =
1369 			list_entry(le, struct svc_sock, sk_list);
1370 		set_bit(SK_CHNGBUF, &svsk->sk_flags);
1371 	}
1372 	spin_unlock_bh(&serv->sv_lock);
1373 }
1374 
1375 /*
1376  * Receive the next request on any socket.  This code is carefully
1377  * organised not to touch any cachelines in the shared svc_serv
1378  * structure, only cachelines in the local svc_pool.
1379  */
1380 int
1381 svc_recv(struct svc_rqst *rqstp, long timeout)
1382 {
1383 	struct svc_sock		*svsk = NULL;
1384 	struct svc_serv		*serv = rqstp->rq_server;
1385 	struct svc_pool		*pool = rqstp->rq_pool;
1386 	int			len, i;
1387 	int 			pages;
1388 	struct xdr_buf		*arg;
1389 	DECLARE_WAITQUEUE(wait, current);
1390 
1391 	dprintk("svc: server %p waiting for data (to = %ld)\n",
1392 		rqstp, timeout);
1393 
1394 	if (rqstp->rq_sock)
1395 		printk(KERN_ERR
1396 			"svc_recv: service %p, socket not NULL!\n",
1397 			 rqstp);
1398 	if (waitqueue_active(&rqstp->rq_wait))
1399 		printk(KERN_ERR
1400 			"svc_recv: service %p, wait queue active!\n",
1401 			 rqstp);
1402 
1403 
1404 	/* now allocate needed pages.  If we get a failure, sleep briefly */
1405 	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
1406 	for (i=0; i < pages ; i++)
1407 		while (rqstp->rq_pages[i] == NULL) {
1408 			struct page *p = alloc_page(GFP_KERNEL);
1409 			if (!p)
1410 				schedule_timeout_uninterruptible(msecs_to_jiffies(500));
1411 			rqstp->rq_pages[i] = p;
1412 		}
1413 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
1414 	BUG_ON(pages >= RPCSVC_MAXPAGES);
1415 
1416 	/* Make arg->head point to first page and arg->pages point to rest */
1417 	arg = &rqstp->rq_arg;
1418 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
1419 	arg->head[0].iov_len = PAGE_SIZE;
1420 	arg->pages = rqstp->rq_pages + 1;
1421 	arg->page_base = 0;
1422 	/* save at least one page for response */
1423 	arg->page_len = (pages-2)*PAGE_SIZE;
1424 	arg->len = (pages-1)*PAGE_SIZE;
1425 	arg->tail[0].iov_len = 0;
1426 
1427 	try_to_freeze();
1428 	cond_resched();
1429 	if (signalled())
1430 		return -EINTR;
1431 
1432 	spin_lock_bh(&pool->sp_lock);
1433 	if ((svsk = svc_sock_dequeue(pool)) != NULL) {
1434 		rqstp->rq_sock = svsk;
1435 		atomic_inc(&svsk->sk_inuse);
1436 		rqstp->rq_reserved = serv->sv_max_mesg;
1437 		atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
1438 	} else {
1439 		/* No data pending. Go to sleep */
1440 		svc_thread_enqueue(pool, rqstp);
1441 
1442 		/*
1443 		 * We have to be able to interrupt this wait
1444 		 * to bring down the daemons ...
1445 		 */
1446 		set_current_state(TASK_INTERRUPTIBLE);
1447 		add_wait_queue(&rqstp->rq_wait, &wait);
1448 		spin_unlock_bh(&pool->sp_lock);
1449 
1450 		schedule_timeout(timeout);
1451 
1452 		try_to_freeze();
1453 
1454 		spin_lock_bh(&pool->sp_lock);
1455 		remove_wait_queue(&rqstp->rq_wait, &wait);
1456 
1457 		if (!(svsk = rqstp->rq_sock)) {
1458 			svc_thread_dequeue(pool, rqstp);
1459 			spin_unlock_bh(&pool->sp_lock);
1460 			dprintk("svc: server %p, no data yet\n", rqstp);
1461 			return signalled()? -EINTR : -EAGAIN;
1462 		}
1463 	}
1464 	spin_unlock_bh(&pool->sp_lock);
1465 
1466 	dprintk("svc: server %p, pool %u, socket %p, inuse=%d\n",
1467 		 rqstp, pool->sp_id, svsk, atomic_read(&svsk->sk_inuse));
1468 	len = svsk->sk_recvfrom(rqstp);
1469 	dprintk("svc: got len=%d\n", len);
1470 
1471 	/* No data, incomplete (TCP) read, or accept() */
1472 	if (len == 0 || len == -EAGAIN) {
1473 		rqstp->rq_res.len = 0;
1474 		svc_sock_release(rqstp);
1475 		return -EAGAIN;
1476 	}
1477 	svsk->sk_lastrecv = get_seconds();
1478 	clear_bit(SK_OLD, &svsk->sk_flags);
1479 
1480 	rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
1481 	rqstp->rq_chandle.defer = svc_defer;
1482 
1483 	if (serv->sv_stats)
1484 		serv->sv_stats->netcnt++;
1485 	return len;
1486 }
1487 
1488 /*
1489  * Drop request
1490  */
1491 void
1492 svc_drop(struct svc_rqst *rqstp)
1493 {
1494 	dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
1495 	svc_sock_release(rqstp);
1496 }
1497 
1498 /*
1499  * Return reply to client.
1500  */
1501 int
1502 svc_send(struct svc_rqst *rqstp)
1503 {
1504 	struct svc_sock	*svsk;
1505 	int		len;
1506 	struct xdr_buf	*xb;
1507 
1508 	if ((svsk = rqstp->rq_sock) == NULL) {
1509 		printk(KERN_WARNING "NULL socket pointer in %s:%d\n",
1510 				__FILE__, __LINE__);
1511 		return -EFAULT;
1512 	}
1513 
1514 	/* release the receive skb before sending the reply */
1515 	svc_release_skb(rqstp);
1516 
1517 	/* calculate over-all length */
1518 	xb = & rqstp->rq_res;
1519 	xb->len = xb->head[0].iov_len +
1520 		xb->page_len +
1521 		xb->tail[0].iov_len;
1522 
1523 	/* Grab svsk->sk_mutex to serialize outgoing data. */
1524 	mutex_lock(&svsk->sk_mutex);
1525 	if (test_bit(SK_DEAD, &svsk->sk_flags))
1526 		len = -ENOTCONN;
1527 	else
1528 		len = svsk->sk_sendto(rqstp);
1529 	mutex_unlock(&svsk->sk_mutex);
1530 	svc_sock_release(rqstp);
1531 
1532 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
1533 		return 0;
1534 	return len;
1535 }
1536 
1537 /*
1538  * Timer function to close old temporary sockets, using
1539  * a mark-and-sweep algorithm.
1540  */
1541 static void
1542 svc_age_temp_sockets(unsigned long closure)
1543 {
1544 	struct svc_serv *serv = (struct svc_serv *)closure;
1545 	struct svc_sock *svsk;
1546 	struct list_head *le, *next;
1547 	LIST_HEAD(to_be_aged);
1548 
1549 	dprintk("svc_age_temp_sockets\n");
1550 
1551 	if (!spin_trylock_bh(&serv->sv_lock)) {
1552 		/* busy, try again 1 sec later */
1553 		dprintk("svc_age_temp_sockets: busy\n");
1554 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
1555 		return;
1556 	}
1557 
1558 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
1559 		svsk = list_entry(le, struct svc_sock, sk_list);
1560 
1561 		if (!test_and_set_bit(SK_OLD, &svsk->sk_flags))
1562 			continue;
1563 		if (atomic_read(&svsk->sk_inuse) || test_bit(SK_BUSY, &svsk->sk_flags))
1564 			continue;
1565 		atomic_inc(&svsk->sk_inuse);
1566 		list_move(le, &to_be_aged);
1567 		set_bit(SK_CLOSE, &svsk->sk_flags);
1568 		set_bit(SK_DETACHED, &svsk->sk_flags);
1569 	}
1570 	spin_unlock_bh(&serv->sv_lock);
1571 
1572 	while (!list_empty(&to_be_aged)) {
1573 		le = to_be_aged.next;
1574 		/* fiddling the sk_list node is safe 'cos we're SK_DETACHED */
1575 		list_del_init(le);
1576 		svsk = list_entry(le, struct svc_sock, sk_list);
1577 
1578 		dprintk("queuing svsk %p for closing, %lu seconds old\n",
1579 			svsk, get_seconds() - svsk->sk_lastrecv);
1580 
1581 		/* a thread will dequeue and close it soon */
1582 		svc_sock_enqueue(svsk);
1583 		svc_sock_put(svsk);
1584 	}
1585 
1586 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
1587 }
1588 
1589 /*
1590  * Initialize socket for RPC use and create svc_sock struct
1591  * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1592  */
1593 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1594 						struct socket *sock,
1595 						int *errp, int flags)
1596 {
1597 	struct svc_sock	*svsk;
1598 	struct sock	*inet;
1599 	int		pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1600 	int		is_temporary = flags & SVC_SOCK_TEMPORARY;
1601 
1602 	dprintk("svc: svc_setup_socket %p\n", sock);
1603 	if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1604 		*errp = -ENOMEM;
1605 		return NULL;
1606 	}
1607 
1608 	inet = sock->sk;
1609 
1610 	/* Register socket with portmapper */
1611 	if (*errp >= 0 && pmap_register)
1612 		*errp = svc_register(serv, inet->sk_protocol,
1613 				     ntohs(inet_sk(inet)->sport));
1614 
1615 	if (*errp < 0) {
1616 		kfree(svsk);
1617 		return NULL;
1618 	}
1619 
1620 	set_bit(SK_BUSY, &svsk->sk_flags);
1621 	inet->sk_user_data = svsk;
1622 	svsk->sk_sock = sock;
1623 	svsk->sk_sk = inet;
1624 	svsk->sk_ostate = inet->sk_state_change;
1625 	svsk->sk_odata = inet->sk_data_ready;
1626 	svsk->sk_owspace = inet->sk_write_space;
1627 	svsk->sk_server = serv;
1628 	atomic_set(&svsk->sk_inuse, 1);
1629 	svsk->sk_lastrecv = get_seconds();
1630 	spin_lock_init(&svsk->sk_defer_lock);
1631 	INIT_LIST_HEAD(&svsk->sk_deferred);
1632 	INIT_LIST_HEAD(&svsk->sk_ready);
1633 	mutex_init(&svsk->sk_mutex);
1634 
1635 	/* Initialize the socket */
1636 	if (sock->type == SOCK_DGRAM)
1637 		svc_udp_init(svsk);
1638 	else
1639 		svc_tcp_init(svsk);
1640 
1641 	spin_lock_bh(&serv->sv_lock);
1642 	if (is_temporary) {
1643 		set_bit(SK_TEMP, &svsk->sk_flags);
1644 		list_add(&svsk->sk_list, &serv->sv_tempsocks);
1645 		serv->sv_tmpcnt++;
1646 		if (serv->sv_temptimer.function == NULL) {
1647 			/* setup timer to age temp sockets */
1648 			setup_timer(&serv->sv_temptimer, svc_age_temp_sockets,
1649 					(unsigned long)serv);
1650 			mod_timer(&serv->sv_temptimer,
1651 					jiffies + svc_conn_age_period * HZ);
1652 		}
1653 	} else {
1654 		clear_bit(SK_TEMP, &svsk->sk_flags);
1655 		list_add(&svsk->sk_list, &serv->sv_permsocks);
1656 	}
1657 	spin_unlock_bh(&serv->sv_lock);
1658 
1659 	dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1660 				svsk, svsk->sk_sk);
1661 
1662 	return svsk;
1663 }
1664 
1665 int svc_addsock(struct svc_serv *serv,
1666 		int fd,
1667 		char *name_return,
1668 		int *proto)
1669 {
1670 	int err = 0;
1671 	struct socket *so = sockfd_lookup(fd, &err);
1672 	struct svc_sock *svsk = NULL;
1673 
1674 	if (!so)
1675 		return err;
1676 	if (so->sk->sk_family != AF_INET)
1677 		err =  -EAFNOSUPPORT;
1678 	else if (so->sk->sk_protocol != IPPROTO_TCP &&
1679 	    so->sk->sk_protocol != IPPROTO_UDP)
1680 		err =  -EPROTONOSUPPORT;
1681 	else if (so->state > SS_UNCONNECTED)
1682 		err = -EISCONN;
1683 	else {
1684 		svsk = svc_setup_socket(serv, so, &err, SVC_SOCK_DEFAULTS);
1685 		if (svsk) {
1686 			svc_sock_received(svsk);
1687 			err = 0;
1688 		}
1689 	}
1690 	if (err) {
1691 		sockfd_put(so);
1692 		return err;
1693 	}
1694 	if (proto) *proto = so->sk->sk_protocol;
1695 	return one_sock_name(name_return, svsk);
1696 }
1697 EXPORT_SYMBOL_GPL(svc_addsock);
1698 
1699 /*
1700  * Create socket for RPC service.
1701  */
1702 static int svc_create_socket(struct svc_serv *serv, int protocol,
1703 				struct sockaddr *sin, int len, int flags)
1704 {
1705 	struct svc_sock	*svsk;
1706 	struct socket	*sock;
1707 	int		error;
1708 	int		type;
1709 	char		buf[RPC_MAX_ADDRBUFLEN];
1710 
1711 	dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1712 			serv->sv_program->pg_name, protocol,
1713 			__svc_print_addr(sin, buf, sizeof(buf)));
1714 
1715 	if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1716 		printk(KERN_WARNING "svc: only UDP and TCP "
1717 				"sockets supported\n");
1718 		return -EINVAL;
1719 	}
1720 	type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1721 
1722 	error = sock_create_kern(sin->sa_family, type, protocol, &sock);
1723 	if (error < 0)
1724 		return error;
1725 
1726 	svc_reclassify_socket(sock);
1727 
1728 	if (type == SOCK_STREAM)
1729 		sock->sk->sk_reuse = 1;		/* allow address reuse */
1730 	error = kernel_bind(sock, sin, len);
1731 	if (error < 0)
1732 		goto bummer;
1733 
1734 	if (protocol == IPPROTO_TCP) {
1735 		if ((error = kernel_listen(sock, 64)) < 0)
1736 			goto bummer;
1737 	}
1738 
1739 	if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
1740 		svc_sock_received(svsk);
1741 		return ntohs(inet_sk(svsk->sk_sk)->sport);
1742 	}
1743 
1744 bummer:
1745 	dprintk("svc: svc_create_socket error = %d\n", -error);
1746 	sock_release(sock);
1747 	return error;
1748 }
1749 
1750 /*
1751  * Remove a dead socket
1752  */
1753 static void
1754 svc_delete_socket(struct svc_sock *svsk)
1755 {
1756 	struct svc_serv	*serv;
1757 	struct sock	*sk;
1758 
1759 	dprintk("svc: svc_delete_socket(%p)\n", svsk);
1760 
1761 	serv = svsk->sk_server;
1762 	sk = svsk->sk_sk;
1763 
1764 	sk->sk_state_change = svsk->sk_ostate;
1765 	sk->sk_data_ready = svsk->sk_odata;
1766 	sk->sk_write_space = svsk->sk_owspace;
1767 
1768 	spin_lock_bh(&serv->sv_lock);
1769 
1770 	if (!test_and_set_bit(SK_DETACHED, &svsk->sk_flags))
1771 		list_del_init(&svsk->sk_list);
1772 	/*
1773 	 * We used to delete the svc_sock from whichever list
1774 	 * it's sk_ready node was on, but we don't actually
1775 	 * need to.  This is because the only time we're called
1776 	 * while still attached to a queue, the queue itself
1777 	 * is about to be destroyed (in svc_destroy).
1778 	 */
1779 	if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags)) {
1780 		BUG_ON(atomic_read(&svsk->sk_inuse)<2);
1781 		atomic_dec(&svsk->sk_inuse);
1782 		if (test_bit(SK_TEMP, &svsk->sk_flags))
1783 			serv->sv_tmpcnt--;
1784 	}
1785 
1786 	spin_unlock_bh(&serv->sv_lock);
1787 }
1788 
1789 void svc_close_socket(struct svc_sock *svsk)
1790 {
1791 	set_bit(SK_CLOSE, &svsk->sk_flags);
1792 	if (test_and_set_bit(SK_BUSY, &svsk->sk_flags))
1793 		/* someone else will have to effect the close */
1794 		return;
1795 
1796 	atomic_inc(&svsk->sk_inuse);
1797 	svc_delete_socket(svsk);
1798 	clear_bit(SK_BUSY, &svsk->sk_flags);
1799 	svc_sock_put(svsk);
1800 }
1801 
1802 /**
1803  * svc_makesock - Make a socket for nfsd and lockd
1804  * @serv: RPC server structure
1805  * @protocol: transport protocol to use
1806  * @port: port to use
1807  * @flags: requested socket characteristics
1808  *
1809  */
1810 int svc_makesock(struct svc_serv *serv, int protocol, unsigned short port,
1811 			int flags)
1812 {
1813 	struct sockaddr_in sin = {
1814 		.sin_family		= AF_INET,
1815 		.sin_addr.s_addr	= INADDR_ANY,
1816 		.sin_port		= htons(port),
1817 	};
1818 
1819 	dprintk("svc: creating socket proto = %d\n", protocol);
1820 	return svc_create_socket(serv, protocol, (struct sockaddr *) &sin,
1821 							sizeof(sin), flags);
1822 }
1823 
1824 /*
1825  * Handle defer and revisit of requests
1826  */
1827 
1828 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1829 {
1830 	struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
1831 	struct svc_sock *svsk;
1832 
1833 	if (too_many) {
1834 		svc_sock_put(dr->svsk);
1835 		kfree(dr);
1836 		return;
1837 	}
1838 	dprintk("revisit queued\n");
1839 	svsk = dr->svsk;
1840 	dr->svsk = NULL;
1841 	spin_lock_bh(&svsk->sk_defer_lock);
1842 	list_add(&dr->handle.recent, &svsk->sk_deferred);
1843 	spin_unlock_bh(&svsk->sk_defer_lock);
1844 	set_bit(SK_DEFERRED, &svsk->sk_flags);
1845 	svc_sock_enqueue(svsk);
1846 	svc_sock_put(svsk);
1847 }
1848 
1849 static struct cache_deferred_req *
1850 svc_defer(struct cache_req *req)
1851 {
1852 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1853 	int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
1854 	struct svc_deferred_req *dr;
1855 
1856 	if (rqstp->rq_arg.page_len)
1857 		return NULL; /* if more than a page, give up FIXME */
1858 	if (rqstp->rq_deferred) {
1859 		dr = rqstp->rq_deferred;
1860 		rqstp->rq_deferred = NULL;
1861 	} else {
1862 		int skip  = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1863 		/* FIXME maybe discard if size too large */
1864 		dr = kmalloc(size, GFP_KERNEL);
1865 		if (dr == NULL)
1866 			return NULL;
1867 
1868 		dr->handle.owner = rqstp->rq_server;
1869 		dr->prot = rqstp->rq_prot;
1870 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1871 		dr->addrlen = rqstp->rq_addrlen;
1872 		dr->daddr = rqstp->rq_daddr;
1873 		dr->argslen = rqstp->rq_arg.len >> 2;
1874 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
1875 	}
1876 	atomic_inc(&rqstp->rq_sock->sk_inuse);
1877 	dr->svsk = rqstp->rq_sock;
1878 
1879 	dr->handle.revisit = svc_revisit;
1880 	return &dr->handle;
1881 }
1882 
1883 /*
1884  * recv data from a deferred request into an active one
1885  */
1886 static int svc_deferred_recv(struct svc_rqst *rqstp)
1887 {
1888 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1889 
1890 	rqstp->rq_arg.head[0].iov_base = dr->args;
1891 	rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
1892 	rqstp->rq_arg.page_len = 0;
1893 	rqstp->rq_arg.len = dr->argslen<<2;
1894 	rqstp->rq_prot        = dr->prot;
1895 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1896 	rqstp->rq_addrlen     = dr->addrlen;
1897 	rqstp->rq_daddr       = dr->daddr;
1898 	rqstp->rq_respages    = rqstp->rq_pages;
1899 	return dr->argslen<<2;
1900 }
1901 
1902 
1903 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk)
1904 {
1905 	struct svc_deferred_req *dr = NULL;
1906 
1907 	if (!test_bit(SK_DEFERRED, &svsk->sk_flags))
1908 		return NULL;
1909 	spin_lock_bh(&svsk->sk_defer_lock);
1910 	clear_bit(SK_DEFERRED, &svsk->sk_flags);
1911 	if (!list_empty(&svsk->sk_deferred)) {
1912 		dr = list_entry(svsk->sk_deferred.next,
1913 				struct svc_deferred_req,
1914 				handle.recent);
1915 		list_del_init(&dr->handle.recent);
1916 		set_bit(SK_DEFERRED, &svsk->sk_flags);
1917 	}
1918 	spin_unlock_bh(&svsk->sk_defer_lock);
1919 	return dr;
1920 }
1921