1 /* 2 * linux/net/sunrpc/svcsock.c 3 * 4 * These are the RPC server socket internals. 5 * 6 * The server scheduling algorithm does not always distribute the load 7 * evenly when servicing a single client. May need to modify the 8 * svc_xprt_enqueue procedure... 9 * 10 * TCP support is largely untested and may be a little slow. The problem 11 * is that we currently do two separate recvfrom's, one for the 4-byte 12 * record length, and the second for the actual record. This could possibly 13 * be improved by always reading a minimum size of around 100 bytes and 14 * tucking any superfluous bytes away in a temporary store. Still, that 15 * leaves write requests out in the rain. An alternative may be to peek at 16 * the first skb in the queue, and if it matches the next TCP sequence 17 * number, to extract the record marker. Yuck. 18 * 19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched.h> 24 #include <linux/errno.h> 25 #include <linux/fcntl.h> 26 #include <linux/net.h> 27 #include <linux/in.h> 28 #include <linux/inet.h> 29 #include <linux/udp.h> 30 #include <linux/tcp.h> 31 #include <linux/unistd.h> 32 #include <linux/slab.h> 33 #include <linux/netdevice.h> 34 #include <linux/skbuff.h> 35 #include <linux/file.h> 36 #include <linux/freezer.h> 37 #include <net/sock.h> 38 #include <net/checksum.h> 39 #include <net/ip.h> 40 #include <net/ipv6.h> 41 #include <net/tcp.h> 42 #include <net/tcp_states.h> 43 #include <asm/uaccess.h> 44 #include <asm/ioctls.h> 45 46 #include <linux/sunrpc/types.h> 47 #include <linux/sunrpc/clnt.h> 48 #include <linux/sunrpc/xdr.h> 49 #include <linux/sunrpc/msg_prot.h> 50 #include <linux/sunrpc/svcsock.h> 51 #include <linux/sunrpc/stats.h> 52 #include <linux/sunrpc/xprt.h> 53 54 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 55 56 57 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *, 58 int *errp, int flags); 59 static void svc_udp_data_ready(struct sock *, int); 60 static int svc_udp_recvfrom(struct svc_rqst *); 61 static int svc_udp_sendto(struct svc_rqst *); 62 static void svc_sock_detach(struct svc_xprt *); 63 static void svc_tcp_sock_detach(struct svc_xprt *); 64 static void svc_sock_free(struct svc_xprt *); 65 66 static struct svc_xprt *svc_create_socket(struct svc_serv *, int, 67 struct sockaddr *, int, int); 68 #ifdef CONFIG_DEBUG_LOCK_ALLOC 69 static struct lock_class_key svc_key[2]; 70 static struct lock_class_key svc_slock_key[2]; 71 72 static void svc_reclassify_socket(struct socket *sock) 73 { 74 struct sock *sk = sock->sk; 75 BUG_ON(sock_owned_by_user(sk)); 76 switch (sk->sk_family) { 77 case AF_INET: 78 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD", 79 &svc_slock_key[0], 80 "sk_xprt.xpt_lock-AF_INET-NFSD", 81 &svc_key[0]); 82 break; 83 84 case AF_INET6: 85 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD", 86 &svc_slock_key[1], 87 "sk_xprt.xpt_lock-AF_INET6-NFSD", 88 &svc_key[1]); 89 break; 90 91 default: 92 BUG(); 93 } 94 } 95 #else 96 static void svc_reclassify_socket(struct socket *sock) 97 { 98 } 99 #endif 100 101 /* 102 * Release an skbuff after use 103 */ 104 static void svc_release_skb(struct svc_rqst *rqstp) 105 { 106 struct sk_buff *skb = rqstp->rq_xprt_ctxt; 107 108 if (skb) { 109 struct svc_sock *svsk = 110 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 111 rqstp->rq_xprt_ctxt = NULL; 112 113 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb); 114 skb_free_datagram_locked(svsk->sk_sk, skb); 115 } 116 } 117 118 union svc_pktinfo_u { 119 struct in_pktinfo pkti; 120 struct in6_pktinfo pkti6; 121 }; 122 #define SVC_PKTINFO_SPACE \ 123 CMSG_SPACE(sizeof(union svc_pktinfo_u)) 124 125 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh) 126 { 127 struct svc_sock *svsk = 128 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 129 switch (svsk->sk_sk->sk_family) { 130 case AF_INET: { 131 struct in_pktinfo *pki = CMSG_DATA(cmh); 132 133 cmh->cmsg_level = SOL_IP; 134 cmh->cmsg_type = IP_PKTINFO; 135 pki->ipi_ifindex = 0; 136 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr; 137 cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); 138 } 139 break; 140 141 case AF_INET6: { 142 struct in6_pktinfo *pki = CMSG_DATA(cmh); 143 144 cmh->cmsg_level = SOL_IPV6; 145 cmh->cmsg_type = IPV6_PKTINFO; 146 pki->ipi6_ifindex = 0; 147 ipv6_addr_copy(&pki->ipi6_addr, 148 &rqstp->rq_daddr.addr6); 149 cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); 150 } 151 break; 152 } 153 return; 154 } 155 156 /* 157 * send routine intended to be shared by the fore- and back-channel 158 */ 159 int svc_send_common(struct socket *sock, struct xdr_buf *xdr, 160 struct page *headpage, unsigned long headoffset, 161 struct page *tailpage, unsigned long tailoffset) 162 { 163 int result; 164 int size; 165 struct page **ppage = xdr->pages; 166 size_t base = xdr->page_base; 167 unsigned int pglen = xdr->page_len; 168 unsigned int flags = MSG_MORE; 169 int slen; 170 int len = 0; 171 172 slen = xdr->len; 173 174 /* send head */ 175 if (slen == xdr->head[0].iov_len) 176 flags = 0; 177 len = kernel_sendpage(sock, headpage, headoffset, 178 xdr->head[0].iov_len, flags); 179 if (len != xdr->head[0].iov_len) 180 goto out; 181 slen -= xdr->head[0].iov_len; 182 if (slen == 0) 183 goto out; 184 185 /* send page data */ 186 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen; 187 while (pglen > 0) { 188 if (slen == size) 189 flags = 0; 190 result = kernel_sendpage(sock, *ppage, base, size, flags); 191 if (result > 0) 192 len += result; 193 if (result != size) 194 goto out; 195 slen -= size; 196 pglen -= size; 197 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen; 198 base = 0; 199 ppage++; 200 } 201 202 /* send tail */ 203 if (xdr->tail[0].iov_len) { 204 result = kernel_sendpage(sock, tailpage, tailoffset, 205 xdr->tail[0].iov_len, 0); 206 if (result > 0) 207 len += result; 208 } 209 210 out: 211 return len; 212 } 213 214 215 /* 216 * Generic sendto routine 217 */ 218 static int svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr) 219 { 220 struct svc_sock *svsk = 221 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 222 struct socket *sock = svsk->sk_sock; 223 union { 224 struct cmsghdr hdr; 225 long all[SVC_PKTINFO_SPACE / sizeof(long)]; 226 } buffer; 227 struct cmsghdr *cmh = &buffer.hdr; 228 int len = 0; 229 unsigned long tailoff; 230 unsigned long headoff; 231 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]); 232 233 if (rqstp->rq_prot == IPPROTO_UDP) { 234 struct msghdr msg = { 235 .msg_name = &rqstp->rq_addr, 236 .msg_namelen = rqstp->rq_addrlen, 237 .msg_control = cmh, 238 .msg_controllen = sizeof(buffer), 239 .msg_flags = MSG_MORE, 240 }; 241 242 svc_set_cmsg_data(rqstp, cmh); 243 244 if (sock_sendmsg(sock, &msg, 0) < 0) 245 goto out; 246 } 247 248 tailoff = ((unsigned long)xdr->tail[0].iov_base) & (PAGE_SIZE-1); 249 headoff = 0; 250 len = svc_send_common(sock, xdr, rqstp->rq_respages[0], headoff, 251 rqstp->rq_respages[0], tailoff); 252 253 out: 254 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n", 255 svsk, xdr->head[0].iov_base, xdr->head[0].iov_len, 256 xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf))); 257 258 return len; 259 } 260 261 /* 262 * Report socket names for nfsdfs 263 */ 264 static int svc_one_sock_name(struct svc_sock *svsk, char *buf, int remaining) 265 { 266 const struct sock *sk = svsk->sk_sk; 267 const char *proto_name = sk->sk_protocol == IPPROTO_UDP ? 268 "udp" : "tcp"; 269 int len; 270 271 switch (sk->sk_family) { 272 case PF_INET: 273 len = snprintf(buf, remaining, "ipv4 %s %pI4 %d\n", 274 proto_name, 275 &inet_sk(sk)->rcv_saddr, 276 inet_sk(sk)->num); 277 break; 278 case PF_INET6: 279 len = snprintf(buf, remaining, "ipv6 %s %pI6 %d\n", 280 proto_name, 281 &inet6_sk(sk)->rcv_saddr, 282 inet_sk(sk)->num); 283 break; 284 default: 285 len = snprintf(buf, remaining, "*unknown-%d*\n", 286 sk->sk_family); 287 } 288 289 if (len >= remaining) { 290 *buf = '\0'; 291 return -ENAMETOOLONG; 292 } 293 return len; 294 } 295 296 /** 297 * svc_sock_names - construct a list of listener names in a string 298 * @serv: pointer to RPC service 299 * @buf: pointer to a buffer to fill in with socket names 300 * @buflen: size of the buffer to be filled 301 * @toclose: pointer to '\0'-terminated C string containing the name 302 * of a listener to be closed 303 * 304 * Fills in @buf with a '\n'-separated list of names of listener 305 * sockets. If @toclose is not NULL, the socket named by @toclose 306 * is closed, and is not included in the output list. 307 * 308 * Returns positive length of the socket name string, or a negative 309 * errno value on error. 310 */ 311 int svc_sock_names(struct svc_serv *serv, char *buf, const size_t buflen, 312 const char *toclose) 313 { 314 struct svc_sock *svsk, *closesk = NULL; 315 int len = 0; 316 317 if (!serv) 318 return 0; 319 320 spin_lock_bh(&serv->sv_lock); 321 list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) { 322 int onelen = svc_one_sock_name(svsk, buf + len, buflen - len); 323 if (onelen < 0) { 324 len = onelen; 325 break; 326 } 327 if (toclose && strcmp(toclose, buf + len) == 0) 328 closesk = svsk; 329 else 330 len += onelen; 331 } 332 spin_unlock_bh(&serv->sv_lock); 333 334 if (closesk) 335 /* Should unregister with portmap, but you cannot 336 * unregister just one protocol... 337 */ 338 svc_close_xprt(&closesk->sk_xprt); 339 else if (toclose) 340 return -ENOENT; 341 return len; 342 } 343 EXPORT_SYMBOL_GPL(svc_sock_names); 344 345 /* 346 * Check input queue length 347 */ 348 static int svc_recv_available(struct svc_sock *svsk) 349 { 350 struct socket *sock = svsk->sk_sock; 351 int avail, err; 352 353 err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail); 354 355 return (err >= 0)? avail : err; 356 } 357 358 /* 359 * Generic recvfrom routine. 360 */ 361 static int svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, 362 int buflen) 363 { 364 struct svc_sock *svsk = 365 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 366 struct msghdr msg = { 367 .msg_flags = MSG_DONTWAIT, 368 }; 369 int len; 370 371 rqstp->rq_xprt_hlen = 0; 372 373 len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen, 374 msg.msg_flags); 375 376 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n", 377 svsk, iov[0].iov_base, iov[0].iov_len, len); 378 return len; 379 } 380 381 /* 382 * Set socket snd and rcv buffer lengths 383 */ 384 static void svc_sock_setbufsize(struct socket *sock, unsigned int snd, 385 unsigned int rcv) 386 { 387 #if 0 388 mm_segment_t oldfs; 389 oldfs = get_fs(); set_fs(KERNEL_DS); 390 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF, 391 (char*)&snd, sizeof(snd)); 392 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF, 393 (char*)&rcv, sizeof(rcv)); 394 #else 395 /* sock_setsockopt limits use to sysctl_?mem_max, 396 * which isn't acceptable. Until that is made conditional 397 * on not having CAP_SYS_RESOURCE or similar, we go direct... 398 * DaveM said I could! 399 */ 400 lock_sock(sock->sk); 401 sock->sk->sk_sndbuf = snd * 2; 402 sock->sk->sk_rcvbuf = rcv * 2; 403 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK; 404 sock->sk->sk_write_space(sock->sk); 405 release_sock(sock->sk); 406 #endif 407 } 408 /* 409 * INET callback when data has been received on the socket. 410 */ 411 static void svc_udp_data_ready(struct sock *sk, int count) 412 { 413 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 414 415 if (svsk) { 416 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n", 417 svsk, sk, count, 418 test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags)); 419 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 420 svc_xprt_enqueue(&svsk->sk_xprt); 421 } 422 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 423 wake_up_interruptible(sk->sk_sleep); 424 } 425 426 /* 427 * INET callback when space is newly available on the socket. 428 */ 429 static void svc_write_space(struct sock *sk) 430 { 431 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data); 432 433 if (svsk) { 434 dprintk("svc: socket %p(inet %p), write_space busy=%d\n", 435 svsk, sk, test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags)); 436 svc_xprt_enqueue(&svsk->sk_xprt); 437 } 438 439 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) { 440 dprintk("RPC svc_write_space: someone sleeping on %p\n", 441 svsk); 442 wake_up_interruptible(sk->sk_sleep); 443 } 444 } 445 446 static void svc_tcp_write_space(struct sock *sk) 447 { 448 struct socket *sock = sk->sk_socket; 449 450 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && sock) 451 clear_bit(SOCK_NOSPACE, &sock->flags); 452 svc_write_space(sk); 453 } 454 455 /* 456 * See net/ipv6/ip_sockglue.c : ip_cmsg_recv_pktinfo 457 */ 458 static int svc_udp_get_dest_address4(struct svc_rqst *rqstp, 459 struct cmsghdr *cmh) 460 { 461 struct in_pktinfo *pki = CMSG_DATA(cmh); 462 if (cmh->cmsg_type != IP_PKTINFO) 463 return 0; 464 rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr; 465 return 1; 466 } 467 468 /* 469 * See net/ipv6/datagram.c : datagram_recv_ctl 470 */ 471 static int svc_udp_get_dest_address6(struct svc_rqst *rqstp, 472 struct cmsghdr *cmh) 473 { 474 struct in6_pktinfo *pki = CMSG_DATA(cmh); 475 if (cmh->cmsg_type != IPV6_PKTINFO) 476 return 0; 477 ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr); 478 return 1; 479 } 480 481 /* 482 * Copy the UDP datagram's destination address to the rqstp structure. 483 * The 'destination' address in this case is the address to which the 484 * peer sent the datagram, i.e. our local address. For multihomed 485 * hosts, this can change from msg to msg. Note that only the IP 486 * address changes, the port number should remain the same. 487 */ 488 static int svc_udp_get_dest_address(struct svc_rqst *rqstp, 489 struct cmsghdr *cmh) 490 { 491 switch (cmh->cmsg_level) { 492 case SOL_IP: 493 return svc_udp_get_dest_address4(rqstp, cmh); 494 case SOL_IPV6: 495 return svc_udp_get_dest_address6(rqstp, cmh); 496 } 497 498 return 0; 499 } 500 501 /* 502 * Receive a datagram from a UDP socket. 503 */ 504 static int svc_udp_recvfrom(struct svc_rqst *rqstp) 505 { 506 struct svc_sock *svsk = 507 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 508 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 509 struct sk_buff *skb; 510 union { 511 struct cmsghdr hdr; 512 long all[SVC_PKTINFO_SPACE / sizeof(long)]; 513 } buffer; 514 struct cmsghdr *cmh = &buffer.hdr; 515 struct msghdr msg = { 516 .msg_name = svc_addr(rqstp), 517 .msg_control = cmh, 518 .msg_controllen = sizeof(buffer), 519 .msg_flags = MSG_DONTWAIT, 520 }; 521 size_t len; 522 int err; 523 524 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags)) 525 /* udp sockets need large rcvbuf as all pending 526 * requests are still in that buffer. sndbuf must 527 * also be large enough that there is enough space 528 * for one reply per thread. We count all threads 529 * rather than threads in a particular pool, which 530 * provides an upper bound on the number of threads 531 * which will access the socket. 532 */ 533 svc_sock_setbufsize(svsk->sk_sock, 534 (serv->sv_nrthreads+3) * serv->sv_max_mesg, 535 (serv->sv_nrthreads+3) * serv->sv_max_mesg); 536 537 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 538 skb = NULL; 539 err = kernel_recvmsg(svsk->sk_sock, &msg, NULL, 540 0, 0, MSG_PEEK | MSG_DONTWAIT); 541 if (err >= 0) 542 skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err); 543 544 if (skb == NULL) { 545 if (err != -EAGAIN) { 546 /* possibly an icmp error */ 547 dprintk("svc: recvfrom returned error %d\n", -err); 548 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 549 } 550 svc_xprt_received(&svsk->sk_xprt); 551 return -EAGAIN; 552 } 553 len = svc_addr_len(svc_addr(rqstp)); 554 if (len == 0) 555 return -EAFNOSUPPORT; 556 rqstp->rq_addrlen = len; 557 if (skb->tstamp.tv64 == 0) { 558 skb->tstamp = ktime_get_real(); 559 /* Don't enable netstamp, sunrpc doesn't 560 need that much accuracy */ 561 } 562 svsk->sk_sk->sk_stamp = skb->tstamp; 563 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */ 564 565 /* 566 * Maybe more packets - kick another thread ASAP. 567 */ 568 svc_xprt_received(&svsk->sk_xprt); 569 570 len = skb->len - sizeof(struct udphdr); 571 rqstp->rq_arg.len = len; 572 573 rqstp->rq_prot = IPPROTO_UDP; 574 575 if (!svc_udp_get_dest_address(rqstp, cmh)) { 576 if (net_ratelimit()) 577 printk(KERN_WARNING 578 "svc: received unknown control message %d/%d; " 579 "dropping RPC reply datagram\n", 580 cmh->cmsg_level, cmh->cmsg_type); 581 skb_free_datagram_locked(svsk->sk_sk, skb); 582 return 0; 583 } 584 585 if (skb_is_nonlinear(skb)) { 586 /* we have to copy */ 587 local_bh_disable(); 588 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) { 589 local_bh_enable(); 590 /* checksum error */ 591 skb_free_datagram_locked(svsk->sk_sk, skb); 592 return 0; 593 } 594 local_bh_enable(); 595 skb_free_datagram_locked(svsk->sk_sk, skb); 596 } else { 597 /* we can use it in-place */ 598 rqstp->rq_arg.head[0].iov_base = skb->data + 599 sizeof(struct udphdr); 600 rqstp->rq_arg.head[0].iov_len = len; 601 if (skb_checksum_complete(skb)) { 602 skb_free_datagram_locked(svsk->sk_sk, skb); 603 return 0; 604 } 605 rqstp->rq_xprt_ctxt = skb; 606 } 607 608 rqstp->rq_arg.page_base = 0; 609 if (len <= rqstp->rq_arg.head[0].iov_len) { 610 rqstp->rq_arg.head[0].iov_len = len; 611 rqstp->rq_arg.page_len = 0; 612 rqstp->rq_respages = rqstp->rq_pages+1; 613 } else { 614 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len; 615 rqstp->rq_respages = rqstp->rq_pages + 1 + 616 DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE); 617 } 618 619 if (serv->sv_stats) 620 serv->sv_stats->netudpcnt++; 621 622 return len; 623 } 624 625 static int 626 svc_udp_sendto(struct svc_rqst *rqstp) 627 { 628 int error; 629 630 error = svc_sendto(rqstp, &rqstp->rq_res); 631 if (error == -ECONNREFUSED) 632 /* ICMP error on earlier request. */ 633 error = svc_sendto(rqstp, &rqstp->rq_res); 634 635 return error; 636 } 637 638 static void svc_udp_prep_reply_hdr(struct svc_rqst *rqstp) 639 { 640 } 641 642 static int svc_udp_has_wspace(struct svc_xprt *xprt) 643 { 644 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 645 struct svc_serv *serv = xprt->xpt_server; 646 unsigned long required; 647 648 /* 649 * Set the SOCK_NOSPACE flag before checking the available 650 * sock space. 651 */ 652 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 653 required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg; 654 if (required*2 > sock_wspace(svsk->sk_sk)) 655 return 0; 656 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 657 return 1; 658 } 659 660 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt) 661 { 662 BUG(); 663 return NULL; 664 } 665 666 static struct svc_xprt *svc_udp_create(struct svc_serv *serv, 667 struct sockaddr *sa, int salen, 668 int flags) 669 { 670 return svc_create_socket(serv, IPPROTO_UDP, sa, salen, flags); 671 } 672 673 static struct svc_xprt_ops svc_udp_ops = { 674 .xpo_create = svc_udp_create, 675 .xpo_recvfrom = svc_udp_recvfrom, 676 .xpo_sendto = svc_udp_sendto, 677 .xpo_release_rqst = svc_release_skb, 678 .xpo_detach = svc_sock_detach, 679 .xpo_free = svc_sock_free, 680 .xpo_prep_reply_hdr = svc_udp_prep_reply_hdr, 681 .xpo_has_wspace = svc_udp_has_wspace, 682 .xpo_accept = svc_udp_accept, 683 }; 684 685 static struct svc_xprt_class svc_udp_class = { 686 .xcl_name = "udp", 687 .xcl_owner = THIS_MODULE, 688 .xcl_ops = &svc_udp_ops, 689 .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP, 690 }; 691 692 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv) 693 { 694 int err, level, optname, one = 1; 695 696 svc_xprt_init(&svc_udp_class, &svsk->sk_xprt, serv); 697 clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags); 698 svsk->sk_sk->sk_data_ready = svc_udp_data_ready; 699 svsk->sk_sk->sk_write_space = svc_write_space; 700 701 /* initialise setting must have enough space to 702 * receive and respond to one request. 703 * svc_udp_recvfrom will re-adjust if necessary 704 */ 705 svc_sock_setbufsize(svsk->sk_sock, 706 3 * svsk->sk_xprt.xpt_server->sv_max_mesg, 707 3 * svsk->sk_xprt.xpt_server->sv_max_mesg); 708 709 /* data might have come in before data_ready set up */ 710 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 711 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 712 713 /* make sure we get destination address info */ 714 switch (svsk->sk_sk->sk_family) { 715 case AF_INET: 716 level = SOL_IP; 717 optname = IP_PKTINFO; 718 break; 719 case AF_INET6: 720 level = SOL_IPV6; 721 optname = IPV6_RECVPKTINFO; 722 break; 723 default: 724 BUG(); 725 } 726 err = kernel_setsockopt(svsk->sk_sock, level, optname, 727 (char *)&one, sizeof(one)); 728 dprintk("svc: kernel_setsockopt returned %d\n", err); 729 } 730 731 /* 732 * A data_ready event on a listening socket means there's a connection 733 * pending. Do not use state_change as a substitute for it. 734 */ 735 static void svc_tcp_listen_data_ready(struct sock *sk, int count_unused) 736 { 737 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 738 739 dprintk("svc: socket %p TCP (listen) state change %d\n", 740 sk, sk->sk_state); 741 742 /* 743 * This callback may called twice when a new connection 744 * is established as a child socket inherits everything 745 * from a parent LISTEN socket. 746 * 1) data_ready method of the parent socket will be called 747 * when one of child sockets become ESTABLISHED. 748 * 2) data_ready method of the child socket may be called 749 * when it receives data before the socket is accepted. 750 * In case of 2, we should ignore it silently. 751 */ 752 if (sk->sk_state == TCP_LISTEN) { 753 if (svsk) { 754 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 755 svc_xprt_enqueue(&svsk->sk_xprt); 756 } else 757 printk("svc: socket %p: no user data\n", sk); 758 } 759 760 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 761 wake_up_interruptible_all(sk->sk_sleep); 762 } 763 764 /* 765 * A state change on a connected socket means it's dying or dead. 766 */ 767 static void svc_tcp_state_change(struct sock *sk) 768 { 769 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 770 771 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n", 772 sk, sk->sk_state, sk->sk_user_data); 773 774 if (!svsk) 775 printk("svc: socket %p: no user data\n", sk); 776 else { 777 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags); 778 svc_xprt_enqueue(&svsk->sk_xprt); 779 } 780 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 781 wake_up_interruptible_all(sk->sk_sleep); 782 } 783 784 static void svc_tcp_data_ready(struct sock *sk, int count) 785 { 786 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 787 788 dprintk("svc: socket %p TCP data ready (svsk %p)\n", 789 sk, sk->sk_user_data); 790 if (svsk) { 791 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 792 svc_xprt_enqueue(&svsk->sk_xprt); 793 } 794 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 795 wake_up_interruptible(sk->sk_sleep); 796 } 797 798 /* 799 * Accept a TCP connection 800 */ 801 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt) 802 { 803 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 804 struct sockaddr_storage addr; 805 struct sockaddr *sin = (struct sockaddr *) &addr; 806 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 807 struct socket *sock = svsk->sk_sock; 808 struct socket *newsock; 809 struct svc_sock *newsvsk; 810 int err, slen; 811 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]); 812 813 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock); 814 if (!sock) 815 return NULL; 816 817 clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 818 err = kernel_accept(sock, &newsock, O_NONBLOCK); 819 if (err < 0) { 820 if (err == -ENOMEM) 821 printk(KERN_WARNING "%s: no more sockets!\n", 822 serv->sv_name); 823 else if (err != -EAGAIN && net_ratelimit()) 824 printk(KERN_WARNING "%s: accept failed (err %d)!\n", 825 serv->sv_name, -err); 826 return NULL; 827 } 828 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 829 830 err = kernel_getpeername(newsock, sin, &slen); 831 if (err < 0) { 832 if (net_ratelimit()) 833 printk(KERN_WARNING "%s: peername failed (err %d)!\n", 834 serv->sv_name, -err); 835 goto failed; /* aborted connection or whatever */ 836 } 837 838 /* Ideally, we would want to reject connections from unauthorized 839 * hosts here, but when we get encryption, the IP of the host won't 840 * tell us anything. For now just warn about unpriv connections. 841 */ 842 if (!svc_port_is_privileged(sin)) { 843 dprintk(KERN_WARNING 844 "%s: connect from unprivileged port: %s\n", 845 serv->sv_name, 846 __svc_print_addr(sin, buf, sizeof(buf))); 847 } 848 dprintk("%s: connect from %s\n", serv->sv_name, 849 __svc_print_addr(sin, buf, sizeof(buf))); 850 851 /* make sure that a write doesn't block forever when 852 * low on memory 853 */ 854 newsock->sk->sk_sndtimeo = HZ*30; 855 856 if (!(newsvsk = svc_setup_socket(serv, newsock, &err, 857 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY)))) 858 goto failed; 859 svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen); 860 err = kernel_getsockname(newsock, sin, &slen); 861 if (unlikely(err < 0)) { 862 dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err); 863 slen = offsetof(struct sockaddr, sa_data); 864 } 865 svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen); 866 867 if (serv->sv_stats) 868 serv->sv_stats->nettcpconn++; 869 870 return &newsvsk->sk_xprt; 871 872 failed: 873 sock_release(newsock); 874 return NULL; 875 } 876 877 /* 878 * Receive data. 879 * If we haven't gotten the record length yet, get the next four bytes. 880 * Otherwise try to gobble up as much as possible up to the complete 881 * record length. 882 */ 883 static int svc_tcp_recv_record(struct svc_sock *svsk, struct svc_rqst *rqstp) 884 { 885 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 886 int len; 887 888 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags)) 889 /* sndbuf needs to have room for one request 890 * per thread, otherwise we can stall even when the 891 * network isn't a bottleneck. 892 * 893 * We count all threads rather than threads in a 894 * particular pool, which provides an upper bound 895 * on the number of threads which will access the socket. 896 * 897 * rcvbuf just needs to be able to hold a few requests. 898 * Normally they will be removed from the queue 899 * as soon a a complete request arrives. 900 */ 901 svc_sock_setbufsize(svsk->sk_sock, 902 (serv->sv_nrthreads+3) * serv->sv_max_mesg, 903 3 * serv->sv_max_mesg); 904 905 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 906 907 if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) { 908 int want = sizeof(rpc_fraghdr) - svsk->sk_tcplen; 909 struct kvec iov; 910 911 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen; 912 iov.iov_len = want; 913 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0) 914 goto error; 915 svsk->sk_tcplen += len; 916 917 if (len < want) { 918 dprintk("svc: short recvfrom while reading record " 919 "length (%d of %d)\n", len, want); 920 svc_xprt_received(&svsk->sk_xprt); 921 goto err_again; /* record header not complete */ 922 } 923 924 svsk->sk_reclen = ntohl(svsk->sk_reclen); 925 if (!(svsk->sk_reclen & RPC_LAST_STREAM_FRAGMENT)) { 926 /* FIXME: technically, a record can be fragmented, 927 * and non-terminal fragments will not have the top 928 * bit set in the fragment length header. 929 * But apparently no known nfs clients send fragmented 930 * records. */ 931 if (net_ratelimit()) 932 printk(KERN_NOTICE "RPC: multiple fragments " 933 "per record not supported\n"); 934 goto err_delete; 935 } 936 937 svsk->sk_reclen &= RPC_FRAGMENT_SIZE_MASK; 938 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen); 939 if (svsk->sk_reclen > serv->sv_max_mesg) { 940 if (net_ratelimit()) 941 printk(KERN_NOTICE "RPC: " 942 "fragment too large: 0x%08lx\n", 943 (unsigned long)svsk->sk_reclen); 944 goto err_delete; 945 } 946 } 947 948 /* Check whether enough data is available */ 949 len = svc_recv_available(svsk); 950 if (len < 0) 951 goto error; 952 953 if (len < svsk->sk_reclen) { 954 dprintk("svc: incomplete TCP record (%d of %d)\n", 955 len, svsk->sk_reclen); 956 svc_xprt_received(&svsk->sk_xprt); 957 goto err_again; /* record not complete */ 958 } 959 len = svsk->sk_reclen; 960 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 961 962 return len; 963 error: 964 if (len == -EAGAIN) { 965 dprintk("RPC: TCP recv_record got EAGAIN\n"); 966 svc_xprt_received(&svsk->sk_xprt); 967 } 968 return len; 969 err_delete: 970 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags); 971 err_again: 972 return -EAGAIN; 973 } 974 975 static int svc_process_calldir(struct svc_sock *svsk, struct svc_rqst *rqstp, 976 struct rpc_rqst **reqpp, struct kvec *vec) 977 { 978 struct rpc_rqst *req = NULL; 979 u32 *p; 980 u32 xid; 981 u32 calldir; 982 int len; 983 984 len = svc_recvfrom(rqstp, vec, 1, 8); 985 if (len < 0) 986 goto error; 987 988 p = (u32 *)rqstp->rq_arg.head[0].iov_base; 989 xid = *p++; 990 calldir = *p; 991 992 if (calldir == 0) { 993 /* REQUEST is the most common case */ 994 vec[0] = rqstp->rq_arg.head[0]; 995 } else { 996 /* REPLY */ 997 if (svsk->sk_bc_xprt) 998 req = xprt_lookup_rqst(svsk->sk_bc_xprt, xid); 999 1000 if (!req) { 1001 printk(KERN_NOTICE 1002 "%s: Got unrecognized reply: " 1003 "calldir 0x%x sk_bc_xprt %p xid %08x\n", 1004 __func__, ntohl(calldir), 1005 svsk->sk_bc_xprt, xid); 1006 vec[0] = rqstp->rq_arg.head[0]; 1007 goto out; 1008 } 1009 1010 memcpy(&req->rq_private_buf, &req->rq_rcv_buf, 1011 sizeof(struct xdr_buf)); 1012 /* copy the xid and call direction */ 1013 memcpy(req->rq_private_buf.head[0].iov_base, 1014 rqstp->rq_arg.head[0].iov_base, 8); 1015 vec[0] = req->rq_private_buf.head[0]; 1016 } 1017 out: 1018 vec[0].iov_base += 8; 1019 vec[0].iov_len -= 8; 1020 len = svsk->sk_reclen - 8; 1021 error: 1022 *reqpp = req; 1023 return len; 1024 } 1025 1026 /* 1027 * Receive data from a TCP socket. 1028 */ 1029 static int svc_tcp_recvfrom(struct svc_rqst *rqstp) 1030 { 1031 struct svc_sock *svsk = 1032 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 1033 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 1034 int len; 1035 struct kvec *vec; 1036 int pnum, vlen; 1037 struct rpc_rqst *req = NULL; 1038 1039 dprintk("svc: tcp_recv %p data %d conn %d close %d\n", 1040 svsk, test_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags), 1041 test_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags), 1042 test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags)); 1043 1044 len = svc_tcp_recv_record(svsk, rqstp); 1045 if (len < 0) 1046 goto error; 1047 1048 vec = rqstp->rq_vec; 1049 vec[0] = rqstp->rq_arg.head[0]; 1050 vlen = PAGE_SIZE; 1051 1052 /* 1053 * We have enough data for the whole tcp record. Let's try and read the 1054 * first 8 bytes to get the xid and the call direction. We can use this 1055 * to figure out if this is a call or a reply to a callback. If 1056 * sk_reclen is < 8 (xid and calldir), then this is a malformed packet. 1057 * In that case, don't bother with the calldir and just read the data. 1058 * It will be rejected in svc_process. 1059 */ 1060 if (len >= 8) { 1061 len = svc_process_calldir(svsk, rqstp, &req, vec); 1062 if (len < 0) 1063 goto err_again; 1064 vlen -= 8; 1065 } 1066 1067 pnum = 1; 1068 while (vlen < len) { 1069 vec[pnum].iov_base = (req) ? 1070 page_address(req->rq_private_buf.pages[pnum - 1]) : 1071 page_address(rqstp->rq_pages[pnum]); 1072 vec[pnum].iov_len = PAGE_SIZE; 1073 pnum++; 1074 vlen += PAGE_SIZE; 1075 } 1076 rqstp->rq_respages = &rqstp->rq_pages[pnum]; 1077 1078 /* Now receive data */ 1079 len = svc_recvfrom(rqstp, vec, pnum, len); 1080 if (len < 0) 1081 goto err_again; 1082 1083 /* 1084 * Account for the 8 bytes we read earlier 1085 */ 1086 len += 8; 1087 1088 if (req) { 1089 xprt_complete_rqst(req->rq_task, len); 1090 len = 0; 1091 goto out; 1092 } 1093 dprintk("svc: TCP complete record (%d bytes)\n", len); 1094 rqstp->rq_arg.len = len; 1095 rqstp->rq_arg.page_base = 0; 1096 if (len <= rqstp->rq_arg.head[0].iov_len) { 1097 rqstp->rq_arg.head[0].iov_len = len; 1098 rqstp->rq_arg.page_len = 0; 1099 } else { 1100 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len; 1101 } 1102 1103 rqstp->rq_xprt_ctxt = NULL; 1104 rqstp->rq_prot = IPPROTO_TCP; 1105 1106 out: 1107 /* Reset TCP read info */ 1108 svsk->sk_reclen = 0; 1109 svsk->sk_tcplen = 0; 1110 1111 svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt); 1112 svc_xprt_received(&svsk->sk_xprt); 1113 if (serv->sv_stats) 1114 serv->sv_stats->nettcpcnt++; 1115 1116 return len; 1117 1118 err_again: 1119 if (len == -EAGAIN) { 1120 dprintk("RPC: TCP recvfrom got EAGAIN\n"); 1121 svc_xprt_received(&svsk->sk_xprt); 1122 return len; 1123 } 1124 error: 1125 if (len != -EAGAIN) { 1126 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n", 1127 svsk->sk_xprt.xpt_server->sv_name, -len); 1128 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags); 1129 } 1130 return -EAGAIN; 1131 } 1132 1133 /* 1134 * Send out data on TCP socket. 1135 */ 1136 static int svc_tcp_sendto(struct svc_rqst *rqstp) 1137 { 1138 struct xdr_buf *xbufp = &rqstp->rq_res; 1139 int sent; 1140 __be32 reclen; 1141 1142 /* Set up the first element of the reply kvec. 1143 * Any other kvecs that may be in use have been taken 1144 * care of by the server implementation itself. 1145 */ 1146 reclen = htonl(0x80000000|((xbufp->len ) - 4)); 1147 memcpy(xbufp->head[0].iov_base, &reclen, 4); 1148 1149 if (test_bit(XPT_DEAD, &rqstp->rq_xprt->xpt_flags)) 1150 return -ENOTCONN; 1151 1152 sent = svc_sendto(rqstp, &rqstp->rq_res); 1153 if (sent != xbufp->len) { 1154 printk(KERN_NOTICE 1155 "rpc-srv/tcp: %s: %s %d when sending %d bytes " 1156 "- shutting down socket\n", 1157 rqstp->rq_xprt->xpt_server->sv_name, 1158 (sent<0)?"got error":"sent only", 1159 sent, xbufp->len); 1160 set_bit(XPT_CLOSE, &rqstp->rq_xprt->xpt_flags); 1161 svc_xprt_enqueue(rqstp->rq_xprt); 1162 sent = -EAGAIN; 1163 } 1164 return sent; 1165 } 1166 1167 /* 1168 * Setup response header. TCP has a 4B record length field. 1169 */ 1170 static void svc_tcp_prep_reply_hdr(struct svc_rqst *rqstp) 1171 { 1172 struct kvec *resv = &rqstp->rq_res.head[0]; 1173 1174 /* tcp needs a space for the record length... */ 1175 svc_putnl(resv, 0); 1176 } 1177 1178 static int svc_tcp_has_wspace(struct svc_xprt *xprt) 1179 { 1180 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1181 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 1182 int required; 1183 1184 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) 1185 return 1; 1186 required = atomic_read(&xprt->xpt_reserved) + serv->sv_max_mesg; 1187 if (sk_stream_wspace(svsk->sk_sk) >= required) 1188 return 1; 1189 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 1190 return 0; 1191 } 1192 1193 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv, 1194 struct sockaddr *sa, int salen, 1195 int flags) 1196 { 1197 return svc_create_socket(serv, IPPROTO_TCP, sa, salen, flags); 1198 } 1199 1200 static struct svc_xprt_ops svc_tcp_ops = { 1201 .xpo_create = svc_tcp_create, 1202 .xpo_recvfrom = svc_tcp_recvfrom, 1203 .xpo_sendto = svc_tcp_sendto, 1204 .xpo_release_rqst = svc_release_skb, 1205 .xpo_detach = svc_tcp_sock_detach, 1206 .xpo_free = svc_sock_free, 1207 .xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr, 1208 .xpo_has_wspace = svc_tcp_has_wspace, 1209 .xpo_accept = svc_tcp_accept, 1210 }; 1211 1212 static struct svc_xprt_class svc_tcp_class = { 1213 .xcl_name = "tcp", 1214 .xcl_owner = THIS_MODULE, 1215 .xcl_ops = &svc_tcp_ops, 1216 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP, 1217 }; 1218 1219 void svc_init_xprt_sock(void) 1220 { 1221 svc_reg_xprt_class(&svc_tcp_class); 1222 svc_reg_xprt_class(&svc_udp_class); 1223 } 1224 1225 void svc_cleanup_xprt_sock(void) 1226 { 1227 svc_unreg_xprt_class(&svc_tcp_class); 1228 svc_unreg_xprt_class(&svc_udp_class); 1229 } 1230 1231 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv) 1232 { 1233 struct sock *sk = svsk->sk_sk; 1234 1235 svc_xprt_init(&svc_tcp_class, &svsk->sk_xprt, serv); 1236 set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags); 1237 if (sk->sk_state == TCP_LISTEN) { 1238 dprintk("setting up TCP socket for listening\n"); 1239 set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags); 1240 sk->sk_data_ready = svc_tcp_listen_data_ready; 1241 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 1242 } else { 1243 dprintk("setting up TCP socket for reading\n"); 1244 sk->sk_state_change = svc_tcp_state_change; 1245 sk->sk_data_ready = svc_tcp_data_ready; 1246 sk->sk_write_space = svc_tcp_write_space; 1247 1248 svsk->sk_reclen = 0; 1249 svsk->sk_tcplen = 0; 1250 1251 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF; 1252 1253 /* initialise setting must have enough space to 1254 * receive and respond to one request. 1255 * svc_tcp_recvfrom will re-adjust if necessary 1256 */ 1257 svc_sock_setbufsize(svsk->sk_sock, 1258 3 * svsk->sk_xprt.xpt_server->sv_max_mesg, 1259 3 * svsk->sk_xprt.xpt_server->sv_max_mesg); 1260 1261 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 1262 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 1263 if (sk->sk_state != TCP_ESTABLISHED) 1264 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags); 1265 } 1266 } 1267 1268 void svc_sock_update_bufs(struct svc_serv *serv) 1269 { 1270 /* 1271 * The number of server threads has changed. Update 1272 * rcvbuf and sndbuf accordingly on all sockets 1273 */ 1274 struct list_head *le; 1275 1276 spin_lock_bh(&serv->sv_lock); 1277 list_for_each(le, &serv->sv_permsocks) { 1278 struct svc_sock *svsk = 1279 list_entry(le, struct svc_sock, sk_xprt.xpt_list); 1280 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 1281 } 1282 list_for_each(le, &serv->sv_tempsocks) { 1283 struct svc_sock *svsk = 1284 list_entry(le, struct svc_sock, sk_xprt.xpt_list); 1285 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 1286 } 1287 spin_unlock_bh(&serv->sv_lock); 1288 } 1289 EXPORT_SYMBOL_GPL(svc_sock_update_bufs); 1290 1291 /* 1292 * Initialize socket for RPC use and create svc_sock struct 1293 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF. 1294 */ 1295 static struct svc_sock *svc_setup_socket(struct svc_serv *serv, 1296 struct socket *sock, 1297 int *errp, int flags) 1298 { 1299 struct svc_sock *svsk; 1300 struct sock *inet; 1301 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS); 1302 1303 dprintk("svc: svc_setup_socket %p\n", sock); 1304 if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) { 1305 *errp = -ENOMEM; 1306 return NULL; 1307 } 1308 1309 inet = sock->sk; 1310 1311 /* Register socket with portmapper */ 1312 if (*errp >= 0 && pmap_register) 1313 *errp = svc_register(serv, inet->sk_family, inet->sk_protocol, 1314 ntohs(inet_sk(inet)->sport)); 1315 1316 if (*errp < 0) { 1317 kfree(svsk); 1318 return NULL; 1319 } 1320 1321 inet->sk_user_data = svsk; 1322 svsk->sk_sock = sock; 1323 svsk->sk_sk = inet; 1324 svsk->sk_ostate = inet->sk_state_change; 1325 svsk->sk_odata = inet->sk_data_ready; 1326 svsk->sk_owspace = inet->sk_write_space; 1327 1328 /* Initialize the socket */ 1329 if (sock->type == SOCK_DGRAM) 1330 svc_udp_init(svsk, serv); 1331 else 1332 svc_tcp_init(svsk, serv); 1333 1334 dprintk("svc: svc_setup_socket created %p (inet %p)\n", 1335 svsk, svsk->sk_sk); 1336 1337 return svsk; 1338 } 1339 1340 /** 1341 * svc_addsock - add a listener socket to an RPC service 1342 * @serv: pointer to RPC service to which to add a new listener 1343 * @fd: file descriptor of the new listener 1344 * @name_return: pointer to buffer to fill in with name of listener 1345 * @len: size of the buffer 1346 * 1347 * Fills in socket name and returns positive length of name if successful. 1348 * Name is terminated with '\n'. On error, returns a negative errno 1349 * value. 1350 */ 1351 int svc_addsock(struct svc_serv *serv, const int fd, char *name_return, 1352 const size_t len) 1353 { 1354 int err = 0; 1355 struct socket *so = sockfd_lookup(fd, &err); 1356 struct svc_sock *svsk = NULL; 1357 1358 if (!so) 1359 return err; 1360 if (so->sk->sk_family != AF_INET) 1361 err = -EAFNOSUPPORT; 1362 else if (so->sk->sk_protocol != IPPROTO_TCP && 1363 so->sk->sk_protocol != IPPROTO_UDP) 1364 err = -EPROTONOSUPPORT; 1365 else if (so->state > SS_UNCONNECTED) 1366 err = -EISCONN; 1367 else { 1368 if (!try_module_get(THIS_MODULE)) 1369 err = -ENOENT; 1370 else 1371 svsk = svc_setup_socket(serv, so, &err, 1372 SVC_SOCK_DEFAULTS); 1373 if (svsk) { 1374 struct sockaddr_storage addr; 1375 struct sockaddr *sin = (struct sockaddr *)&addr; 1376 int salen; 1377 if (kernel_getsockname(svsk->sk_sock, sin, &salen) == 0) 1378 svc_xprt_set_local(&svsk->sk_xprt, sin, salen); 1379 clear_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags); 1380 spin_lock_bh(&serv->sv_lock); 1381 list_add(&svsk->sk_xprt.xpt_list, &serv->sv_permsocks); 1382 spin_unlock_bh(&serv->sv_lock); 1383 svc_xprt_received(&svsk->sk_xprt); 1384 err = 0; 1385 } else 1386 module_put(THIS_MODULE); 1387 } 1388 if (err) { 1389 sockfd_put(so); 1390 return err; 1391 } 1392 return svc_one_sock_name(svsk, name_return, len); 1393 } 1394 EXPORT_SYMBOL_GPL(svc_addsock); 1395 1396 /* 1397 * Create socket for RPC service. 1398 */ 1399 static struct svc_xprt *svc_create_socket(struct svc_serv *serv, 1400 int protocol, 1401 struct sockaddr *sin, int len, 1402 int flags) 1403 { 1404 struct svc_sock *svsk; 1405 struct socket *sock; 1406 int error; 1407 int type; 1408 struct sockaddr_storage addr; 1409 struct sockaddr *newsin = (struct sockaddr *)&addr; 1410 int newlen; 1411 int family; 1412 int val; 1413 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]); 1414 1415 dprintk("svc: svc_create_socket(%s, %d, %s)\n", 1416 serv->sv_program->pg_name, protocol, 1417 __svc_print_addr(sin, buf, sizeof(buf))); 1418 1419 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) { 1420 printk(KERN_WARNING "svc: only UDP and TCP " 1421 "sockets supported\n"); 1422 return ERR_PTR(-EINVAL); 1423 } 1424 1425 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM; 1426 switch (sin->sa_family) { 1427 case AF_INET6: 1428 family = PF_INET6; 1429 break; 1430 case AF_INET: 1431 family = PF_INET; 1432 break; 1433 default: 1434 return ERR_PTR(-EINVAL); 1435 } 1436 1437 error = sock_create_kern(family, type, protocol, &sock); 1438 if (error < 0) 1439 return ERR_PTR(error); 1440 1441 svc_reclassify_socket(sock); 1442 1443 /* 1444 * If this is an PF_INET6 listener, we want to avoid 1445 * getting requests from IPv4 remotes. Those should 1446 * be shunted to a PF_INET listener via rpcbind. 1447 */ 1448 val = 1; 1449 if (family == PF_INET6) 1450 kernel_setsockopt(sock, SOL_IPV6, IPV6_V6ONLY, 1451 (char *)&val, sizeof(val)); 1452 1453 if (type == SOCK_STREAM) 1454 sock->sk->sk_reuse = 1; /* allow address reuse */ 1455 error = kernel_bind(sock, sin, len); 1456 if (error < 0) 1457 goto bummer; 1458 1459 newlen = len; 1460 error = kernel_getsockname(sock, newsin, &newlen); 1461 if (error < 0) 1462 goto bummer; 1463 1464 if (protocol == IPPROTO_TCP) { 1465 if ((error = kernel_listen(sock, 64)) < 0) 1466 goto bummer; 1467 } 1468 1469 if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) { 1470 svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen); 1471 return (struct svc_xprt *)svsk; 1472 } 1473 1474 bummer: 1475 dprintk("svc: svc_create_socket error = %d\n", -error); 1476 sock_release(sock); 1477 return ERR_PTR(error); 1478 } 1479 1480 /* 1481 * Detach the svc_sock from the socket so that no 1482 * more callbacks occur. 1483 */ 1484 static void svc_sock_detach(struct svc_xprt *xprt) 1485 { 1486 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1487 struct sock *sk = svsk->sk_sk; 1488 1489 dprintk("svc: svc_sock_detach(%p)\n", svsk); 1490 1491 /* put back the old socket callbacks */ 1492 sk->sk_state_change = svsk->sk_ostate; 1493 sk->sk_data_ready = svsk->sk_odata; 1494 sk->sk_write_space = svsk->sk_owspace; 1495 1496 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 1497 wake_up_interruptible(sk->sk_sleep); 1498 } 1499 1500 /* 1501 * Disconnect the socket, and reset the callbacks 1502 */ 1503 static void svc_tcp_sock_detach(struct svc_xprt *xprt) 1504 { 1505 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1506 1507 dprintk("svc: svc_tcp_sock_detach(%p)\n", svsk); 1508 1509 svc_sock_detach(xprt); 1510 1511 if (!test_bit(XPT_LISTENER, &xprt->xpt_flags)) 1512 kernel_sock_shutdown(svsk->sk_sock, SHUT_RDWR); 1513 } 1514 1515 /* 1516 * Free the svc_sock's socket resources and the svc_sock itself. 1517 */ 1518 static void svc_sock_free(struct svc_xprt *xprt) 1519 { 1520 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1521 dprintk("svc: svc_sock_free(%p)\n", svsk); 1522 1523 if (svsk->sk_sock->file) 1524 sockfd_put(svsk->sk_sock); 1525 else 1526 sock_release(svsk->sk_sock); 1527 kfree(svsk); 1528 } 1529 1530 /* 1531 * Create a svc_xprt. 1532 * 1533 * For internal use only (e.g. nfsv4.1 backchannel). 1534 * Callers should typically use the xpo_create() method. 1535 */ 1536 struct svc_xprt *svc_sock_create(struct svc_serv *serv, int prot) 1537 { 1538 struct svc_sock *svsk; 1539 struct svc_xprt *xprt = NULL; 1540 1541 dprintk("svc: %s\n", __func__); 1542 svsk = kzalloc(sizeof(*svsk), GFP_KERNEL); 1543 if (!svsk) 1544 goto out; 1545 1546 xprt = &svsk->sk_xprt; 1547 if (prot == IPPROTO_TCP) 1548 svc_xprt_init(&svc_tcp_class, xprt, serv); 1549 else if (prot == IPPROTO_UDP) 1550 svc_xprt_init(&svc_udp_class, xprt, serv); 1551 else 1552 BUG(); 1553 out: 1554 dprintk("svc: %s return %p\n", __func__, xprt); 1555 return xprt; 1556 } 1557 EXPORT_SYMBOL_GPL(svc_sock_create); 1558 1559 /* 1560 * Destroy a svc_sock. 1561 */ 1562 void svc_sock_destroy(struct svc_xprt *xprt) 1563 { 1564 if (xprt) 1565 kfree(container_of(xprt, struct svc_sock, sk_xprt)); 1566 } 1567 EXPORT_SYMBOL_GPL(svc_sock_destroy); 1568