xref: /linux/net/sunrpc/svcsock.c (revision b0148a98ec5151fec82064d95f11eb9efbc628ea)
1 /*
2  * linux/net/sunrpc/svcsock.c
3  *
4  * These are the RPC server socket internals.
5  *
6  * The server scheduling algorithm does not always distribute the load
7  * evenly when servicing a single client. May need to modify the
8  * svc_sock_enqueue procedure...
9  *
10  * TCP support is largely untested and may be a little slow. The problem
11  * is that we currently do two separate recvfrom's, one for the 4-byte
12  * record length, and the second for the actual record. This could possibly
13  * be improved by always reading a minimum size of around 100 bytes and
14  * tucking any superfluous bytes away in a temporary store. Still, that
15  * leaves write requests out in the rain. An alternative may be to peek at
16  * the first skb in the queue, and if it matches the next TCP sequence
17  * number, to extract the record marker. Yuck.
18  *
19  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
20  */
21 
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/fcntl.h>
25 #include <linux/net.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/udp.h>
29 #include <linux/tcp.h>
30 #include <linux/unistd.h>
31 #include <linux/slab.h>
32 #include <linux/netdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/file.h>
35 #include <linux/freezer.h>
36 #include <net/sock.h>
37 #include <net/checksum.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <asm/uaccess.h>
41 #include <asm/ioctls.h>
42 
43 #include <linux/sunrpc/types.h>
44 #include <linux/sunrpc/xdr.h>
45 #include <linux/sunrpc/svcsock.h>
46 #include <linux/sunrpc/stats.h>
47 
48 /* SMP locking strategy:
49  *
50  *	svc_pool->sp_lock protects most of the fields of that pool.
51  * 	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
52  *	when both need to be taken (rare), svc_serv->sv_lock is first.
53  *	BKL protects svc_serv->sv_nrthread.
54  *	svc_sock->sk_defer_lock protects the svc_sock->sk_deferred list
55  *	svc_sock->sk_flags.SK_BUSY prevents a svc_sock being enqueued multiply.
56  *
57  *	Some flags can be set to certain values at any time
58  *	providing that certain rules are followed:
59  *
60  *	SK_CONN, SK_DATA, can be set or cleared at any time.
61  *		after a set, svc_sock_enqueue must be called.
62  *		after a clear, the socket must be read/accepted
63  *		 if this succeeds, it must be set again.
64  *	SK_CLOSE can set at any time. It is never cleared.
65  *
66  */
67 
68 #define RPCDBG_FACILITY	RPCDBG_SVCSOCK
69 
70 
71 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
72 					 int *errp, int pmap_reg);
73 static void		svc_udp_data_ready(struct sock *, int);
74 static int		svc_udp_recvfrom(struct svc_rqst *);
75 static int		svc_udp_sendto(struct svc_rqst *);
76 
77 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk);
78 static int svc_deferred_recv(struct svc_rqst *rqstp);
79 static struct cache_deferred_req *svc_defer(struct cache_req *req);
80 
81 /* apparently the "standard" is that clients close
82  * idle connections after 5 minutes, servers after
83  * 6 minutes
84  *   http://www.connectathon.org/talks96/nfstcp.pdf
85  */
86 static int svc_conn_age_period = 6*60;
87 
88 #ifdef CONFIG_DEBUG_LOCK_ALLOC
89 static struct lock_class_key svc_key[2];
90 static struct lock_class_key svc_slock_key[2];
91 
92 static inline void svc_reclassify_socket(struct socket *sock)
93 {
94 	struct sock *sk = sock->sk;
95 	BUG_ON(sk->sk_lock.owner != NULL);
96 	switch (sk->sk_family) {
97 	case AF_INET:
98 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
99 		    &svc_slock_key[0], "sk_lock-AF_INET-NFSD", &svc_key[0]);
100 		break;
101 
102 	case AF_INET6:
103 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
104 		    &svc_slock_key[1], "sk_lock-AF_INET6-NFSD", &svc_key[1]);
105 		break;
106 
107 	default:
108 		BUG();
109 	}
110 }
111 #else
112 static inline void svc_reclassify_socket(struct socket *sock)
113 {
114 }
115 #endif
116 
117 /*
118  * Queue up an idle server thread.  Must have pool->sp_lock held.
119  * Note: this is really a stack rather than a queue, so that we only
120  * use as many different threads as we need, and the rest don't pollute
121  * the cache.
122  */
123 static inline void
124 svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
125 {
126 	list_add(&rqstp->rq_list, &pool->sp_threads);
127 }
128 
129 /*
130  * Dequeue an nfsd thread.  Must have pool->sp_lock held.
131  */
132 static inline void
133 svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
134 {
135 	list_del(&rqstp->rq_list);
136 }
137 
138 /*
139  * Release an skbuff after use
140  */
141 static inline void
142 svc_release_skb(struct svc_rqst *rqstp)
143 {
144 	struct sk_buff *skb = rqstp->rq_skbuff;
145 	struct svc_deferred_req *dr = rqstp->rq_deferred;
146 
147 	if (skb) {
148 		rqstp->rq_skbuff = NULL;
149 
150 		dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
151 		skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
152 	}
153 	if (dr) {
154 		rqstp->rq_deferred = NULL;
155 		kfree(dr);
156 	}
157 }
158 
159 /*
160  * Any space to write?
161  */
162 static inline unsigned long
163 svc_sock_wspace(struct svc_sock *svsk)
164 {
165 	int wspace;
166 
167 	if (svsk->sk_sock->type == SOCK_STREAM)
168 		wspace = sk_stream_wspace(svsk->sk_sk);
169 	else
170 		wspace = sock_wspace(svsk->sk_sk);
171 
172 	return wspace;
173 }
174 
175 /*
176  * Queue up a socket with data pending. If there are idle nfsd
177  * processes, wake 'em up.
178  *
179  */
180 static void
181 svc_sock_enqueue(struct svc_sock *svsk)
182 {
183 	struct svc_serv	*serv = svsk->sk_server;
184 	struct svc_pool *pool;
185 	struct svc_rqst	*rqstp;
186 	int cpu;
187 
188 	if (!(svsk->sk_flags &
189 	      ( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) ))
190 		return;
191 	if (test_bit(SK_DEAD, &svsk->sk_flags))
192 		return;
193 
194 	cpu = get_cpu();
195 	pool = svc_pool_for_cpu(svsk->sk_server, cpu);
196 	put_cpu();
197 
198 	spin_lock_bh(&pool->sp_lock);
199 
200 	if (!list_empty(&pool->sp_threads) &&
201 	    !list_empty(&pool->sp_sockets))
202 		printk(KERN_ERR
203 			"svc_sock_enqueue: threads and sockets both waiting??\n");
204 
205 	if (test_bit(SK_DEAD, &svsk->sk_flags)) {
206 		/* Don't enqueue dead sockets */
207 		dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk);
208 		goto out_unlock;
209 	}
210 
211 	/* Mark socket as busy. It will remain in this state until the
212 	 * server has processed all pending data and put the socket back
213 	 * on the idle list.  We update SK_BUSY atomically because
214 	 * it also guards against trying to enqueue the svc_sock twice.
215 	 */
216 	if (test_and_set_bit(SK_BUSY, &svsk->sk_flags)) {
217 		/* Don't enqueue socket while already enqueued */
218 		dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk);
219 		goto out_unlock;
220 	}
221 	BUG_ON(svsk->sk_pool != NULL);
222 	svsk->sk_pool = pool;
223 
224 	set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
225 	if (((atomic_read(&svsk->sk_reserved) + serv->sv_max_mesg)*2
226 	     > svc_sock_wspace(svsk))
227 	    && !test_bit(SK_CLOSE, &svsk->sk_flags)
228 	    && !test_bit(SK_CONN, &svsk->sk_flags)) {
229 		/* Don't enqueue while not enough space for reply */
230 		dprintk("svc: socket %p  no space, %d*2 > %ld, not enqueued\n",
231 			svsk->sk_sk, atomic_read(&svsk->sk_reserved)+serv->sv_max_mesg,
232 			svc_sock_wspace(svsk));
233 		svsk->sk_pool = NULL;
234 		clear_bit(SK_BUSY, &svsk->sk_flags);
235 		goto out_unlock;
236 	}
237 	clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
238 
239 
240 	if (!list_empty(&pool->sp_threads)) {
241 		rqstp = list_entry(pool->sp_threads.next,
242 				   struct svc_rqst,
243 				   rq_list);
244 		dprintk("svc: socket %p served by daemon %p\n",
245 			svsk->sk_sk, rqstp);
246 		svc_thread_dequeue(pool, rqstp);
247 		if (rqstp->rq_sock)
248 			printk(KERN_ERR
249 				"svc_sock_enqueue: server %p, rq_sock=%p!\n",
250 				rqstp, rqstp->rq_sock);
251 		rqstp->rq_sock = svsk;
252 		atomic_inc(&svsk->sk_inuse);
253 		rqstp->rq_reserved = serv->sv_max_mesg;
254 		atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
255 		BUG_ON(svsk->sk_pool != pool);
256 		wake_up(&rqstp->rq_wait);
257 	} else {
258 		dprintk("svc: socket %p put into queue\n", svsk->sk_sk);
259 		list_add_tail(&svsk->sk_ready, &pool->sp_sockets);
260 		BUG_ON(svsk->sk_pool != pool);
261 	}
262 
263 out_unlock:
264 	spin_unlock_bh(&pool->sp_lock);
265 }
266 
267 /*
268  * Dequeue the first socket.  Must be called with the pool->sp_lock held.
269  */
270 static inline struct svc_sock *
271 svc_sock_dequeue(struct svc_pool *pool)
272 {
273 	struct svc_sock	*svsk;
274 
275 	if (list_empty(&pool->sp_sockets))
276 		return NULL;
277 
278 	svsk = list_entry(pool->sp_sockets.next,
279 			  struct svc_sock, sk_ready);
280 	list_del_init(&svsk->sk_ready);
281 
282 	dprintk("svc: socket %p dequeued, inuse=%d\n",
283 		svsk->sk_sk, atomic_read(&svsk->sk_inuse));
284 
285 	return svsk;
286 }
287 
288 /*
289  * Having read something from a socket, check whether it
290  * needs to be re-enqueued.
291  * Note: SK_DATA only gets cleared when a read-attempt finds
292  * no (or insufficient) data.
293  */
294 static inline void
295 svc_sock_received(struct svc_sock *svsk)
296 {
297 	svsk->sk_pool = NULL;
298 	clear_bit(SK_BUSY, &svsk->sk_flags);
299 	svc_sock_enqueue(svsk);
300 }
301 
302 
303 /**
304  * svc_reserve - change the space reserved for the reply to a request.
305  * @rqstp:  The request in question
306  * @space: new max space to reserve
307  *
308  * Each request reserves some space on the output queue of the socket
309  * to make sure the reply fits.  This function reduces that reserved
310  * space to be the amount of space used already, plus @space.
311  *
312  */
313 void svc_reserve(struct svc_rqst *rqstp, int space)
314 {
315 	space += rqstp->rq_res.head[0].iov_len;
316 
317 	if (space < rqstp->rq_reserved) {
318 		struct svc_sock *svsk = rqstp->rq_sock;
319 		atomic_sub((rqstp->rq_reserved - space), &svsk->sk_reserved);
320 		rqstp->rq_reserved = space;
321 
322 		svc_sock_enqueue(svsk);
323 	}
324 }
325 
326 /*
327  * Release a socket after use.
328  */
329 static inline void
330 svc_sock_put(struct svc_sock *svsk)
331 {
332 	if (atomic_dec_and_test(&svsk->sk_inuse) &&
333 			test_bit(SK_DEAD, &svsk->sk_flags)) {
334 		dprintk("svc: releasing dead socket\n");
335 		if (svsk->sk_sock->file)
336 			sockfd_put(svsk->sk_sock);
337 		else
338 			sock_release(svsk->sk_sock);
339 		if (svsk->sk_info_authunix != NULL)
340 			svcauth_unix_info_release(svsk->sk_info_authunix);
341 		kfree(svsk);
342 	}
343 }
344 
345 static void
346 svc_sock_release(struct svc_rqst *rqstp)
347 {
348 	struct svc_sock	*svsk = rqstp->rq_sock;
349 
350 	svc_release_skb(rqstp);
351 
352 	svc_free_res_pages(rqstp);
353 	rqstp->rq_res.page_len = 0;
354 	rqstp->rq_res.page_base = 0;
355 
356 
357 	/* Reset response buffer and release
358 	 * the reservation.
359 	 * But first, check that enough space was reserved
360 	 * for the reply, otherwise we have a bug!
361 	 */
362 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
363 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
364 		       rqstp->rq_reserved,
365 		       rqstp->rq_res.len);
366 
367 	rqstp->rq_res.head[0].iov_len = 0;
368 	svc_reserve(rqstp, 0);
369 	rqstp->rq_sock = NULL;
370 
371 	svc_sock_put(svsk);
372 }
373 
374 /*
375  * External function to wake up a server waiting for data
376  * This really only makes sense for services like lockd
377  * which have exactly one thread anyway.
378  */
379 void
380 svc_wake_up(struct svc_serv *serv)
381 {
382 	struct svc_rqst	*rqstp;
383 	unsigned int i;
384 	struct svc_pool *pool;
385 
386 	for (i = 0; i < serv->sv_nrpools; i++) {
387 		pool = &serv->sv_pools[i];
388 
389 		spin_lock_bh(&pool->sp_lock);
390 		if (!list_empty(&pool->sp_threads)) {
391 			rqstp = list_entry(pool->sp_threads.next,
392 					   struct svc_rqst,
393 					   rq_list);
394 			dprintk("svc: daemon %p woken up.\n", rqstp);
395 			/*
396 			svc_thread_dequeue(pool, rqstp);
397 			rqstp->rq_sock = NULL;
398 			 */
399 			wake_up(&rqstp->rq_wait);
400 		}
401 		spin_unlock_bh(&pool->sp_lock);
402 	}
403 }
404 
405 /*
406  * Generic sendto routine
407  */
408 static int
409 svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
410 {
411 	struct svc_sock	*svsk = rqstp->rq_sock;
412 	struct socket	*sock = svsk->sk_sock;
413 	int		slen;
414 	char 		buffer[CMSG_SPACE(sizeof(struct in_pktinfo))];
415 	struct cmsghdr *cmh = (struct cmsghdr *)buffer;
416 	struct in_pktinfo *pki = (struct in_pktinfo *)CMSG_DATA(cmh);
417 	int		len = 0;
418 	int		result;
419 	int		size;
420 	struct page	**ppage = xdr->pages;
421 	size_t		base = xdr->page_base;
422 	unsigned int	pglen = xdr->page_len;
423 	unsigned int	flags = MSG_MORE;
424 
425 	slen = xdr->len;
426 
427 	if (rqstp->rq_prot == IPPROTO_UDP) {
428 		/* set the source and destination */
429 		struct msghdr	msg;
430 		msg.msg_name    = &rqstp->rq_addr;
431 		msg.msg_namelen = sizeof(rqstp->rq_addr);
432 		msg.msg_iov     = NULL;
433 		msg.msg_iovlen  = 0;
434 		msg.msg_flags	= MSG_MORE;
435 
436 		msg.msg_control = cmh;
437 		msg.msg_controllen = sizeof(buffer);
438 		cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
439 		cmh->cmsg_level = SOL_IP;
440 		cmh->cmsg_type = IP_PKTINFO;
441 		pki->ipi_ifindex = 0;
442 		pki->ipi_spec_dst.s_addr = rqstp->rq_daddr;
443 
444 		if (sock_sendmsg(sock, &msg, 0) < 0)
445 			goto out;
446 	}
447 
448 	/* send head */
449 	if (slen == xdr->head[0].iov_len)
450 		flags = 0;
451 	len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
452 				  xdr->head[0].iov_len, flags);
453 	if (len != xdr->head[0].iov_len)
454 		goto out;
455 	slen -= xdr->head[0].iov_len;
456 	if (slen == 0)
457 		goto out;
458 
459 	/* send page data */
460 	size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
461 	while (pglen > 0) {
462 		if (slen == size)
463 			flags = 0;
464 		result = kernel_sendpage(sock, *ppage, base, size, flags);
465 		if (result > 0)
466 			len += result;
467 		if (result != size)
468 			goto out;
469 		slen -= size;
470 		pglen -= size;
471 		size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
472 		base = 0;
473 		ppage++;
474 	}
475 	/* send tail */
476 	if (xdr->tail[0].iov_len) {
477 		result = kernel_sendpage(sock, rqstp->rq_respages[0],
478 					     ((unsigned long)xdr->tail[0].iov_base)
479 					        & (PAGE_SIZE-1),
480 					     xdr->tail[0].iov_len, 0);
481 
482 		if (result > 0)
483 			len += result;
484 	}
485 out:
486 	dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %x)\n",
487 			rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len, xdr->len, len,
488 		rqstp->rq_addr.sin_addr.s_addr);
489 
490 	return len;
491 }
492 
493 /*
494  * Report socket names for nfsdfs
495  */
496 static int one_sock_name(char *buf, struct svc_sock *svsk)
497 {
498 	int len;
499 
500 	switch(svsk->sk_sk->sk_family) {
501 	case AF_INET:
502 		len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n",
503 			      svsk->sk_sk->sk_protocol==IPPROTO_UDP?
504 			      "udp" : "tcp",
505 			      NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr),
506 			      inet_sk(svsk->sk_sk)->num);
507 		break;
508 	default:
509 		len = sprintf(buf, "*unknown-%d*\n",
510 			       svsk->sk_sk->sk_family);
511 	}
512 	return len;
513 }
514 
515 int
516 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
517 {
518 	struct svc_sock *svsk, *closesk = NULL;
519 	int len = 0;
520 
521 	if (!serv)
522 		return 0;
523 	spin_lock(&serv->sv_lock);
524 	list_for_each_entry(svsk, &serv->sv_permsocks, sk_list) {
525 		int onelen = one_sock_name(buf+len, svsk);
526 		if (toclose && strcmp(toclose, buf+len) == 0)
527 			closesk = svsk;
528 		else
529 			len += onelen;
530 	}
531 	spin_unlock(&serv->sv_lock);
532 	if (closesk)
533 		/* Should unregister with portmap, but you cannot
534 		 * unregister just one protocol...
535 		 */
536 		svc_delete_socket(closesk);
537 	else if (toclose)
538 		return -ENOENT;
539 	return len;
540 }
541 EXPORT_SYMBOL(svc_sock_names);
542 
543 /*
544  * Check input queue length
545  */
546 static int
547 svc_recv_available(struct svc_sock *svsk)
548 {
549 	struct socket	*sock = svsk->sk_sock;
550 	int		avail, err;
551 
552 	err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
553 
554 	return (err >= 0)? avail : err;
555 }
556 
557 /*
558  * Generic recvfrom routine.
559  */
560 static int
561 svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
562 {
563 	struct msghdr	msg;
564 	struct socket	*sock;
565 	int		len, alen;
566 
567 	rqstp->rq_addrlen = sizeof(rqstp->rq_addr);
568 	sock = rqstp->rq_sock->sk_sock;
569 
570 	msg.msg_name    = &rqstp->rq_addr;
571 	msg.msg_namelen = sizeof(rqstp->rq_addr);
572 	msg.msg_control = NULL;
573 	msg.msg_controllen = 0;
574 
575 	msg.msg_flags	= MSG_DONTWAIT;
576 
577 	len = kernel_recvmsg(sock, &msg, iov, nr, buflen, MSG_DONTWAIT);
578 
579 	/* sock_recvmsg doesn't fill in the name/namelen, so we must..
580 	 * possibly we should cache this in the svc_sock structure
581 	 * at accept time. FIXME
582 	 */
583 	alen = sizeof(rqstp->rq_addr);
584 	kernel_getpeername(sock, (struct sockaddr *)&rqstp->rq_addr, &alen);
585 
586 	dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
587 		rqstp->rq_sock, iov[0].iov_base, iov[0].iov_len, len);
588 
589 	return len;
590 }
591 
592 /*
593  * Set socket snd and rcv buffer lengths
594  */
595 static inline void
596 svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
597 {
598 #if 0
599 	mm_segment_t	oldfs;
600 	oldfs = get_fs(); set_fs(KERNEL_DS);
601 	sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
602 			(char*)&snd, sizeof(snd));
603 	sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
604 			(char*)&rcv, sizeof(rcv));
605 #else
606 	/* sock_setsockopt limits use to sysctl_?mem_max,
607 	 * which isn't acceptable.  Until that is made conditional
608 	 * on not having CAP_SYS_RESOURCE or similar, we go direct...
609 	 * DaveM said I could!
610 	 */
611 	lock_sock(sock->sk);
612 	sock->sk->sk_sndbuf = snd * 2;
613 	sock->sk->sk_rcvbuf = rcv * 2;
614 	sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
615 	release_sock(sock->sk);
616 #endif
617 }
618 /*
619  * INET callback when data has been received on the socket.
620  */
621 static void
622 svc_udp_data_ready(struct sock *sk, int count)
623 {
624 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
625 
626 	if (svsk) {
627 		dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
628 			svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags));
629 		set_bit(SK_DATA, &svsk->sk_flags);
630 		svc_sock_enqueue(svsk);
631 	}
632 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
633 		wake_up_interruptible(sk->sk_sleep);
634 }
635 
636 /*
637  * INET callback when space is newly available on the socket.
638  */
639 static void
640 svc_write_space(struct sock *sk)
641 {
642 	struct svc_sock	*svsk = (struct svc_sock *)(sk->sk_user_data);
643 
644 	if (svsk) {
645 		dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
646 			svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags));
647 		svc_sock_enqueue(svsk);
648 	}
649 
650 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
651 		dprintk("RPC svc_write_space: someone sleeping on %p\n",
652 		       svsk);
653 		wake_up_interruptible(sk->sk_sleep);
654 	}
655 }
656 
657 /*
658  * Receive a datagram from a UDP socket.
659  */
660 static int
661 svc_udp_recvfrom(struct svc_rqst *rqstp)
662 {
663 	struct svc_sock	*svsk = rqstp->rq_sock;
664 	struct svc_serv	*serv = svsk->sk_server;
665 	struct sk_buff	*skb;
666 	int		err, len;
667 
668 	if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
669 	    /* udp sockets need large rcvbuf as all pending
670 	     * requests are still in that buffer.  sndbuf must
671 	     * also be large enough that there is enough space
672 	     * for one reply per thread.  We count all threads
673 	     * rather than threads in a particular pool, which
674 	     * provides an upper bound on the number of threads
675 	     * which will access the socket.
676 	     */
677 	    svc_sock_setbufsize(svsk->sk_sock,
678 				(serv->sv_nrthreads+3) * serv->sv_max_mesg,
679 				(serv->sv_nrthreads+3) * serv->sv_max_mesg);
680 
681 	if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
682 		svc_sock_received(svsk);
683 		return svc_deferred_recv(rqstp);
684 	}
685 
686 	clear_bit(SK_DATA, &svsk->sk_flags);
687 	while ((skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err)) == NULL) {
688 		if (err == -EAGAIN) {
689 			svc_sock_received(svsk);
690 			return err;
691 		}
692 		/* possibly an icmp error */
693 		dprintk("svc: recvfrom returned error %d\n", -err);
694 	}
695 	if (skb->tstamp.off_sec == 0) {
696 		struct timeval tv;
697 
698 		tv.tv_sec = xtime.tv_sec;
699 		tv.tv_usec = xtime.tv_nsec / NSEC_PER_USEC;
700 		skb_set_timestamp(skb, &tv);
701 		/* Don't enable netstamp, sunrpc doesn't
702 		   need that much accuracy */
703 	}
704 	skb_get_timestamp(skb, &svsk->sk_sk->sk_stamp);
705 	set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */
706 
707 	/*
708 	 * Maybe more packets - kick another thread ASAP.
709 	 */
710 	svc_sock_received(svsk);
711 
712 	len  = skb->len - sizeof(struct udphdr);
713 	rqstp->rq_arg.len = len;
714 
715 	rqstp->rq_prot        = IPPROTO_UDP;
716 
717 	/* Get sender address */
718 	rqstp->rq_addr.sin_family = AF_INET;
719 	rqstp->rq_addr.sin_port = skb->h.uh->source;
720 	rqstp->rq_addr.sin_addr.s_addr = skb->nh.iph->saddr;
721 	rqstp->rq_daddr = skb->nh.iph->daddr;
722 
723 	if (skb_is_nonlinear(skb)) {
724 		/* we have to copy */
725 		local_bh_disable();
726 		if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
727 			local_bh_enable();
728 			/* checksum error */
729 			skb_free_datagram(svsk->sk_sk, skb);
730 			return 0;
731 		}
732 		local_bh_enable();
733 		skb_free_datagram(svsk->sk_sk, skb);
734 	} else {
735 		/* we can use it in-place */
736 		rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
737 		rqstp->rq_arg.head[0].iov_len = len;
738 		if (skb_checksum_complete(skb)) {
739 			skb_free_datagram(svsk->sk_sk, skb);
740 			return 0;
741 		}
742 		rqstp->rq_skbuff = skb;
743 	}
744 
745 	rqstp->rq_arg.page_base = 0;
746 	if (len <= rqstp->rq_arg.head[0].iov_len) {
747 		rqstp->rq_arg.head[0].iov_len = len;
748 		rqstp->rq_arg.page_len = 0;
749 		rqstp->rq_respages = rqstp->rq_pages+1;
750 	} else {
751 		rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
752 		rqstp->rq_respages = rqstp->rq_pages + 1 +
753 			(rqstp->rq_arg.page_len + PAGE_SIZE - 1)/ PAGE_SIZE;
754 	}
755 
756 	if (serv->sv_stats)
757 		serv->sv_stats->netudpcnt++;
758 
759 	return len;
760 }
761 
762 static int
763 svc_udp_sendto(struct svc_rqst *rqstp)
764 {
765 	int		error;
766 
767 	error = svc_sendto(rqstp, &rqstp->rq_res);
768 	if (error == -ECONNREFUSED)
769 		/* ICMP error on earlier request. */
770 		error = svc_sendto(rqstp, &rqstp->rq_res);
771 
772 	return error;
773 }
774 
775 static void
776 svc_udp_init(struct svc_sock *svsk)
777 {
778 	svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
779 	svsk->sk_sk->sk_write_space = svc_write_space;
780 	svsk->sk_recvfrom = svc_udp_recvfrom;
781 	svsk->sk_sendto = svc_udp_sendto;
782 
783 	/* initialise setting must have enough space to
784 	 * receive and respond to one request.
785 	 * svc_udp_recvfrom will re-adjust if necessary
786 	 */
787 	svc_sock_setbufsize(svsk->sk_sock,
788 			    3 * svsk->sk_server->sv_max_mesg,
789 			    3 * svsk->sk_server->sv_max_mesg);
790 
791 	set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */
792 	set_bit(SK_CHNGBUF, &svsk->sk_flags);
793 }
794 
795 /*
796  * A data_ready event on a listening socket means there's a connection
797  * pending. Do not use state_change as a substitute for it.
798  */
799 static void
800 svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
801 {
802 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
803 
804 	dprintk("svc: socket %p TCP (listen) state change %d\n",
805 		sk, sk->sk_state);
806 
807 	/*
808 	 * This callback may called twice when a new connection
809 	 * is established as a child socket inherits everything
810 	 * from a parent LISTEN socket.
811 	 * 1) data_ready method of the parent socket will be called
812 	 *    when one of child sockets become ESTABLISHED.
813 	 * 2) data_ready method of the child socket may be called
814 	 *    when it receives data before the socket is accepted.
815 	 * In case of 2, we should ignore it silently.
816 	 */
817 	if (sk->sk_state == TCP_LISTEN) {
818 		if (svsk) {
819 			set_bit(SK_CONN, &svsk->sk_flags);
820 			svc_sock_enqueue(svsk);
821 		} else
822 			printk("svc: socket %p: no user data\n", sk);
823 	}
824 
825 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
826 		wake_up_interruptible_all(sk->sk_sleep);
827 }
828 
829 /*
830  * A state change on a connected socket means it's dying or dead.
831  */
832 static void
833 svc_tcp_state_change(struct sock *sk)
834 {
835 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
836 
837 	dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
838 		sk, sk->sk_state, sk->sk_user_data);
839 
840 	if (!svsk)
841 		printk("svc: socket %p: no user data\n", sk);
842 	else {
843 		set_bit(SK_CLOSE, &svsk->sk_flags);
844 		svc_sock_enqueue(svsk);
845 	}
846 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
847 		wake_up_interruptible_all(sk->sk_sleep);
848 }
849 
850 static void
851 svc_tcp_data_ready(struct sock *sk, int count)
852 {
853 	struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
854 
855 	dprintk("svc: socket %p TCP data ready (svsk %p)\n",
856 		sk, sk->sk_user_data);
857 	if (svsk) {
858 		set_bit(SK_DATA, &svsk->sk_flags);
859 		svc_sock_enqueue(svsk);
860 	}
861 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
862 		wake_up_interruptible(sk->sk_sleep);
863 }
864 
865 /*
866  * Accept a TCP connection
867  */
868 static void
869 svc_tcp_accept(struct svc_sock *svsk)
870 {
871 	struct sockaddr_in sin;
872 	struct svc_serv	*serv = svsk->sk_server;
873 	struct socket	*sock = svsk->sk_sock;
874 	struct socket	*newsock;
875 	struct svc_sock	*newsvsk;
876 	int		err, slen;
877 
878 	dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
879 	if (!sock)
880 		return;
881 
882 	clear_bit(SK_CONN, &svsk->sk_flags);
883 	err = kernel_accept(sock, &newsock, O_NONBLOCK);
884 	if (err < 0) {
885 		if (err == -ENOMEM)
886 			printk(KERN_WARNING "%s: no more sockets!\n",
887 			       serv->sv_name);
888 		else if (err != -EAGAIN && net_ratelimit())
889 			printk(KERN_WARNING "%s: accept failed (err %d)!\n",
890 				   serv->sv_name, -err);
891 		return;
892 	}
893 
894 	set_bit(SK_CONN, &svsk->sk_flags);
895 	svc_sock_enqueue(svsk);
896 
897 	slen = sizeof(sin);
898 	err = kernel_getpeername(newsock, (struct sockaddr *) &sin, &slen);
899 	if (err < 0) {
900 		if (net_ratelimit())
901 			printk(KERN_WARNING "%s: peername failed (err %d)!\n",
902 				   serv->sv_name, -err);
903 		goto failed;		/* aborted connection or whatever */
904 	}
905 
906 	/* Ideally, we would want to reject connections from unauthorized
907 	 * hosts here, but when we get encription, the IP of the host won't
908 	 * tell us anything. For now just warn about unpriv connections.
909 	 */
910 	if (ntohs(sin.sin_port) >= 1024) {
911 		dprintk(KERN_WARNING
912 			"%s: connect from unprivileged port: %u.%u.%u.%u:%d\n",
913 			serv->sv_name,
914 			NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port));
915 	}
916 
917 	dprintk("%s: connect from %u.%u.%u.%u:%04x\n", serv->sv_name,
918 			NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port));
919 
920 	/* make sure that a write doesn't block forever when
921 	 * low on memory
922 	 */
923 	newsock->sk->sk_sndtimeo = HZ*30;
924 
925 	if (!(newsvsk = svc_setup_socket(serv, newsock, &err, 0)))
926 		goto failed;
927 
928 
929 	/* make sure that we don't have too many active connections.
930 	 * If we have, something must be dropped.
931 	 *
932 	 * There's no point in trying to do random drop here for
933 	 * DoS prevention. The NFS clients does 1 reconnect in 15
934 	 * seconds. An attacker can easily beat that.
935 	 *
936 	 * The only somewhat efficient mechanism would be if drop
937 	 * old connections from the same IP first. But right now
938 	 * we don't even record the client IP in svc_sock.
939 	 */
940 	if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
941 		struct svc_sock *svsk = NULL;
942 		spin_lock_bh(&serv->sv_lock);
943 		if (!list_empty(&serv->sv_tempsocks)) {
944 			if (net_ratelimit()) {
945 				/* Try to help the admin */
946 				printk(KERN_NOTICE "%s: too many open TCP "
947 					"sockets, consider increasing the "
948 					"number of nfsd threads\n",
949 						   serv->sv_name);
950 				printk(KERN_NOTICE "%s: last TCP connect from "
951 					"%u.%u.%u.%u:%d\n",
952 					serv->sv_name,
953 					NIPQUAD(sin.sin_addr.s_addr),
954 					ntohs(sin.sin_port));
955 			}
956 			/*
957 			 * Always select the oldest socket. It's not fair,
958 			 * but so is life
959 			 */
960 			svsk = list_entry(serv->sv_tempsocks.prev,
961 					  struct svc_sock,
962 					  sk_list);
963 			set_bit(SK_CLOSE, &svsk->sk_flags);
964 			atomic_inc(&svsk->sk_inuse);
965 		}
966 		spin_unlock_bh(&serv->sv_lock);
967 
968 		if (svsk) {
969 			svc_sock_enqueue(svsk);
970 			svc_sock_put(svsk);
971 		}
972 
973 	}
974 
975 	if (serv->sv_stats)
976 		serv->sv_stats->nettcpconn++;
977 
978 	return;
979 
980 failed:
981 	sock_release(newsock);
982 	return;
983 }
984 
985 /*
986  * Receive data from a TCP socket.
987  */
988 static int
989 svc_tcp_recvfrom(struct svc_rqst *rqstp)
990 {
991 	struct svc_sock	*svsk = rqstp->rq_sock;
992 	struct svc_serv	*serv = svsk->sk_server;
993 	int		len;
994 	struct kvec *vec;
995 	int pnum, vlen;
996 
997 	dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
998 		svsk, test_bit(SK_DATA, &svsk->sk_flags),
999 		test_bit(SK_CONN, &svsk->sk_flags),
1000 		test_bit(SK_CLOSE, &svsk->sk_flags));
1001 
1002 	if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
1003 		svc_sock_received(svsk);
1004 		return svc_deferred_recv(rqstp);
1005 	}
1006 
1007 	if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
1008 		svc_delete_socket(svsk);
1009 		return 0;
1010 	}
1011 
1012 	if (svsk->sk_sk->sk_state == TCP_LISTEN) {
1013 		svc_tcp_accept(svsk);
1014 		svc_sock_received(svsk);
1015 		return 0;
1016 	}
1017 
1018 	if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
1019 		/* sndbuf needs to have room for one request
1020 		 * per thread, otherwise we can stall even when the
1021 		 * network isn't a bottleneck.
1022 		 *
1023 		 * We count all threads rather than threads in a
1024 		 * particular pool, which provides an upper bound
1025 		 * on the number of threads which will access the socket.
1026 		 *
1027 		 * rcvbuf just needs to be able to hold a few requests.
1028 		 * Normally they will be removed from the queue
1029 		 * as soon a a complete request arrives.
1030 		 */
1031 		svc_sock_setbufsize(svsk->sk_sock,
1032 				    (serv->sv_nrthreads+3) * serv->sv_max_mesg,
1033 				    3 * serv->sv_max_mesg);
1034 
1035 	clear_bit(SK_DATA, &svsk->sk_flags);
1036 
1037 	/* Receive data. If we haven't got the record length yet, get
1038 	 * the next four bytes. Otherwise try to gobble up as much as
1039 	 * possible up to the complete record length.
1040 	 */
1041 	if (svsk->sk_tcplen < 4) {
1042 		unsigned long	want = 4 - svsk->sk_tcplen;
1043 		struct kvec	iov;
1044 
1045 		iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
1046 		iov.iov_len  = want;
1047 		if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
1048 			goto error;
1049 		svsk->sk_tcplen += len;
1050 
1051 		if (len < want) {
1052 			dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
1053 			        len, want);
1054 			svc_sock_received(svsk);
1055 			return -EAGAIN; /* record header not complete */
1056 		}
1057 
1058 		svsk->sk_reclen = ntohl(svsk->sk_reclen);
1059 		if (!(svsk->sk_reclen & 0x80000000)) {
1060 			/* FIXME: technically, a record can be fragmented,
1061 			 *  and non-terminal fragments will not have the top
1062 			 *  bit set in the fragment length header.
1063 			 *  But apparently no known nfs clients send fragmented
1064 			 *  records. */
1065 			if (net_ratelimit())
1066 				printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1067 				       " (non-terminal)\n",
1068 				       (unsigned long) svsk->sk_reclen);
1069 			goto err_delete;
1070 		}
1071 		svsk->sk_reclen &= 0x7fffffff;
1072 		dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
1073 		if (svsk->sk_reclen > serv->sv_max_mesg) {
1074 			if (net_ratelimit())
1075 				printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1076 				       " (large)\n",
1077 				       (unsigned long) svsk->sk_reclen);
1078 			goto err_delete;
1079 		}
1080 	}
1081 
1082 	/* Check whether enough data is available */
1083 	len = svc_recv_available(svsk);
1084 	if (len < 0)
1085 		goto error;
1086 
1087 	if (len < svsk->sk_reclen) {
1088 		dprintk("svc: incomplete TCP record (%d of %d)\n",
1089 			len, svsk->sk_reclen);
1090 		svc_sock_received(svsk);
1091 		return -EAGAIN;	/* record not complete */
1092 	}
1093 	len = svsk->sk_reclen;
1094 	set_bit(SK_DATA, &svsk->sk_flags);
1095 
1096 	vec = rqstp->rq_vec;
1097 	vec[0] = rqstp->rq_arg.head[0];
1098 	vlen = PAGE_SIZE;
1099 	pnum = 1;
1100 	while (vlen < len) {
1101 		vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
1102 		vec[pnum].iov_len = PAGE_SIZE;
1103 		pnum++;
1104 		vlen += PAGE_SIZE;
1105 	}
1106 	rqstp->rq_respages = &rqstp->rq_pages[pnum];
1107 
1108 	/* Now receive data */
1109 	len = svc_recvfrom(rqstp, vec, pnum, len);
1110 	if (len < 0)
1111 		goto error;
1112 
1113 	dprintk("svc: TCP complete record (%d bytes)\n", len);
1114 	rqstp->rq_arg.len = len;
1115 	rqstp->rq_arg.page_base = 0;
1116 	if (len <= rqstp->rq_arg.head[0].iov_len) {
1117 		rqstp->rq_arg.head[0].iov_len = len;
1118 		rqstp->rq_arg.page_len = 0;
1119 	} else {
1120 		rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1121 	}
1122 
1123 	rqstp->rq_skbuff      = NULL;
1124 	rqstp->rq_prot	      = IPPROTO_TCP;
1125 
1126 	/* Reset TCP read info */
1127 	svsk->sk_reclen = 0;
1128 	svsk->sk_tcplen = 0;
1129 
1130 	svc_sock_received(svsk);
1131 	if (serv->sv_stats)
1132 		serv->sv_stats->nettcpcnt++;
1133 
1134 	return len;
1135 
1136  err_delete:
1137 	svc_delete_socket(svsk);
1138 	return -EAGAIN;
1139 
1140  error:
1141 	if (len == -EAGAIN) {
1142 		dprintk("RPC: TCP recvfrom got EAGAIN\n");
1143 		svc_sock_received(svsk);
1144 	} else {
1145 		printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1146 					svsk->sk_server->sv_name, -len);
1147 		goto err_delete;
1148 	}
1149 
1150 	return len;
1151 }
1152 
1153 /*
1154  * Send out data on TCP socket.
1155  */
1156 static int
1157 svc_tcp_sendto(struct svc_rqst *rqstp)
1158 {
1159 	struct xdr_buf	*xbufp = &rqstp->rq_res;
1160 	int sent;
1161 	__be32 reclen;
1162 
1163 	/* Set up the first element of the reply kvec.
1164 	 * Any other kvecs that may be in use have been taken
1165 	 * care of by the server implementation itself.
1166 	 */
1167 	reclen = htonl(0x80000000|((xbufp->len ) - 4));
1168 	memcpy(xbufp->head[0].iov_base, &reclen, 4);
1169 
1170 	if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags))
1171 		return -ENOTCONN;
1172 
1173 	sent = svc_sendto(rqstp, &rqstp->rq_res);
1174 	if (sent != xbufp->len) {
1175 		printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1176 		       rqstp->rq_sock->sk_server->sv_name,
1177 		       (sent<0)?"got error":"sent only",
1178 		       sent, xbufp->len);
1179 		svc_delete_socket(rqstp->rq_sock);
1180 		sent = -EAGAIN;
1181 	}
1182 	return sent;
1183 }
1184 
1185 static void
1186 svc_tcp_init(struct svc_sock *svsk)
1187 {
1188 	struct sock	*sk = svsk->sk_sk;
1189 	struct tcp_sock *tp = tcp_sk(sk);
1190 
1191 	svsk->sk_recvfrom = svc_tcp_recvfrom;
1192 	svsk->sk_sendto = svc_tcp_sendto;
1193 
1194 	if (sk->sk_state == TCP_LISTEN) {
1195 		dprintk("setting up TCP socket for listening\n");
1196 		sk->sk_data_ready = svc_tcp_listen_data_ready;
1197 		set_bit(SK_CONN, &svsk->sk_flags);
1198 	} else {
1199 		dprintk("setting up TCP socket for reading\n");
1200 		sk->sk_state_change = svc_tcp_state_change;
1201 		sk->sk_data_ready = svc_tcp_data_ready;
1202 		sk->sk_write_space = svc_write_space;
1203 
1204 		svsk->sk_reclen = 0;
1205 		svsk->sk_tcplen = 0;
1206 
1207 		tp->nonagle = 1;        /* disable Nagle's algorithm */
1208 
1209 		/* initialise setting must have enough space to
1210 		 * receive and respond to one request.
1211 		 * svc_tcp_recvfrom will re-adjust if necessary
1212 		 */
1213 		svc_sock_setbufsize(svsk->sk_sock,
1214 				    3 * svsk->sk_server->sv_max_mesg,
1215 				    3 * svsk->sk_server->sv_max_mesg);
1216 
1217 		set_bit(SK_CHNGBUF, &svsk->sk_flags);
1218 		set_bit(SK_DATA, &svsk->sk_flags);
1219 		if (sk->sk_state != TCP_ESTABLISHED)
1220 			set_bit(SK_CLOSE, &svsk->sk_flags);
1221 	}
1222 }
1223 
1224 void
1225 svc_sock_update_bufs(struct svc_serv *serv)
1226 {
1227 	/*
1228 	 * The number of server threads has changed. Update
1229 	 * rcvbuf and sndbuf accordingly on all sockets
1230 	 */
1231 	struct list_head *le;
1232 
1233 	spin_lock_bh(&serv->sv_lock);
1234 	list_for_each(le, &serv->sv_permsocks) {
1235 		struct svc_sock *svsk =
1236 			list_entry(le, struct svc_sock, sk_list);
1237 		set_bit(SK_CHNGBUF, &svsk->sk_flags);
1238 	}
1239 	list_for_each(le, &serv->sv_tempsocks) {
1240 		struct svc_sock *svsk =
1241 			list_entry(le, struct svc_sock, sk_list);
1242 		set_bit(SK_CHNGBUF, &svsk->sk_flags);
1243 	}
1244 	spin_unlock_bh(&serv->sv_lock);
1245 }
1246 
1247 /*
1248  * Receive the next request on any socket.  This code is carefully
1249  * organised not to touch any cachelines in the shared svc_serv
1250  * structure, only cachelines in the local svc_pool.
1251  */
1252 int
1253 svc_recv(struct svc_rqst *rqstp, long timeout)
1254 {
1255 	struct svc_sock		*svsk =NULL;
1256 	struct svc_serv		*serv = rqstp->rq_server;
1257 	struct svc_pool		*pool = rqstp->rq_pool;
1258 	int			len, i;
1259 	int 			pages;
1260 	struct xdr_buf		*arg;
1261 	DECLARE_WAITQUEUE(wait, current);
1262 
1263 	dprintk("svc: server %p waiting for data (to = %ld)\n",
1264 		rqstp, timeout);
1265 
1266 	if (rqstp->rq_sock)
1267 		printk(KERN_ERR
1268 			"svc_recv: service %p, socket not NULL!\n",
1269 			 rqstp);
1270 	if (waitqueue_active(&rqstp->rq_wait))
1271 		printk(KERN_ERR
1272 			"svc_recv: service %p, wait queue active!\n",
1273 			 rqstp);
1274 
1275 
1276 	/* now allocate needed pages.  If we get a failure, sleep briefly */
1277 	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
1278 	for (i=0; i < pages ; i++)
1279 		while (rqstp->rq_pages[i] == NULL) {
1280 			struct page *p = alloc_page(GFP_KERNEL);
1281 			if (!p)
1282 				schedule_timeout_uninterruptible(msecs_to_jiffies(500));
1283 			rqstp->rq_pages[i] = p;
1284 		}
1285 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
1286 	BUG_ON(pages >= RPCSVC_MAXPAGES);
1287 
1288 	/* Make arg->head point to first page and arg->pages point to rest */
1289 	arg = &rqstp->rq_arg;
1290 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
1291 	arg->head[0].iov_len = PAGE_SIZE;
1292 	arg->pages = rqstp->rq_pages + 1;
1293 	arg->page_base = 0;
1294 	/* save at least one page for response */
1295 	arg->page_len = (pages-2)*PAGE_SIZE;
1296 	arg->len = (pages-1)*PAGE_SIZE;
1297 	arg->tail[0].iov_len = 0;
1298 
1299 	try_to_freeze();
1300 	cond_resched();
1301 	if (signalled())
1302 		return -EINTR;
1303 
1304 	spin_lock_bh(&pool->sp_lock);
1305 	if ((svsk = svc_sock_dequeue(pool)) != NULL) {
1306 		rqstp->rq_sock = svsk;
1307 		atomic_inc(&svsk->sk_inuse);
1308 		rqstp->rq_reserved = serv->sv_max_mesg;
1309 		atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
1310 	} else {
1311 		/* No data pending. Go to sleep */
1312 		svc_thread_enqueue(pool, rqstp);
1313 
1314 		/*
1315 		 * We have to be able to interrupt this wait
1316 		 * to bring down the daemons ...
1317 		 */
1318 		set_current_state(TASK_INTERRUPTIBLE);
1319 		add_wait_queue(&rqstp->rq_wait, &wait);
1320 		spin_unlock_bh(&pool->sp_lock);
1321 
1322 		schedule_timeout(timeout);
1323 
1324 		try_to_freeze();
1325 
1326 		spin_lock_bh(&pool->sp_lock);
1327 		remove_wait_queue(&rqstp->rq_wait, &wait);
1328 
1329 		if (!(svsk = rqstp->rq_sock)) {
1330 			svc_thread_dequeue(pool, rqstp);
1331 			spin_unlock_bh(&pool->sp_lock);
1332 			dprintk("svc: server %p, no data yet\n", rqstp);
1333 			return signalled()? -EINTR : -EAGAIN;
1334 		}
1335 	}
1336 	spin_unlock_bh(&pool->sp_lock);
1337 
1338 	dprintk("svc: server %p, pool %u, socket %p, inuse=%d\n",
1339 		 rqstp, pool->sp_id, svsk, atomic_read(&svsk->sk_inuse));
1340 	len = svsk->sk_recvfrom(rqstp);
1341 	dprintk("svc: got len=%d\n", len);
1342 
1343 	/* No data, incomplete (TCP) read, or accept() */
1344 	if (len == 0 || len == -EAGAIN) {
1345 		rqstp->rq_res.len = 0;
1346 		svc_sock_release(rqstp);
1347 		return -EAGAIN;
1348 	}
1349 	svsk->sk_lastrecv = get_seconds();
1350 	clear_bit(SK_OLD, &svsk->sk_flags);
1351 
1352 	rqstp->rq_secure  = ntohs(rqstp->rq_addr.sin_port) < 1024;
1353 	rqstp->rq_chandle.defer = svc_defer;
1354 
1355 	if (serv->sv_stats)
1356 		serv->sv_stats->netcnt++;
1357 	return len;
1358 }
1359 
1360 /*
1361  * Drop request
1362  */
1363 void
1364 svc_drop(struct svc_rqst *rqstp)
1365 {
1366 	dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
1367 	svc_sock_release(rqstp);
1368 }
1369 
1370 /*
1371  * Return reply to client.
1372  */
1373 int
1374 svc_send(struct svc_rqst *rqstp)
1375 {
1376 	struct svc_sock	*svsk;
1377 	int		len;
1378 	struct xdr_buf	*xb;
1379 
1380 	if ((svsk = rqstp->rq_sock) == NULL) {
1381 		printk(KERN_WARNING "NULL socket pointer in %s:%d\n",
1382 				__FILE__, __LINE__);
1383 		return -EFAULT;
1384 	}
1385 
1386 	/* release the receive skb before sending the reply */
1387 	svc_release_skb(rqstp);
1388 
1389 	/* calculate over-all length */
1390 	xb = & rqstp->rq_res;
1391 	xb->len = xb->head[0].iov_len +
1392 		xb->page_len +
1393 		xb->tail[0].iov_len;
1394 
1395 	/* Grab svsk->sk_mutex to serialize outgoing data. */
1396 	mutex_lock(&svsk->sk_mutex);
1397 	if (test_bit(SK_DEAD, &svsk->sk_flags))
1398 		len = -ENOTCONN;
1399 	else
1400 		len = svsk->sk_sendto(rqstp);
1401 	mutex_unlock(&svsk->sk_mutex);
1402 	svc_sock_release(rqstp);
1403 
1404 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
1405 		return 0;
1406 	return len;
1407 }
1408 
1409 /*
1410  * Timer function to close old temporary sockets, using
1411  * a mark-and-sweep algorithm.
1412  */
1413 static void
1414 svc_age_temp_sockets(unsigned long closure)
1415 {
1416 	struct svc_serv *serv = (struct svc_serv *)closure;
1417 	struct svc_sock *svsk;
1418 	struct list_head *le, *next;
1419 	LIST_HEAD(to_be_aged);
1420 
1421 	dprintk("svc_age_temp_sockets\n");
1422 
1423 	if (!spin_trylock_bh(&serv->sv_lock)) {
1424 		/* busy, try again 1 sec later */
1425 		dprintk("svc_age_temp_sockets: busy\n");
1426 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
1427 		return;
1428 	}
1429 
1430 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
1431 		svsk = list_entry(le, struct svc_sock, sk_list);
1432 
1433 		if (!test_and_set_bit(SK_OLD, &svsk->sk_flags))
1434 			continue;
1435 		if (atomic_read(&svsk->sk_inuse) || test_bit(SK_BUSY, &svsk->sk_flags))
1436 			continue;
1437 		atomic_inc(&svsk->sk_inuse);
1438 		list_move(le, &to_be_aged);
1439 		set_bit(SK_CLOSE, &svsk->sk_flags);
1440 		set_bit(SK_DETACHED, &svsk->sk_flags);
1441 	}
1442 	spin_unlock_bh(&serv->sv_lock);
1443 
1444 	while (!list_empty(&to_be_aged)) {
1445 		le = to_be_aged.next;
1446 		/* fiddling the sk_list node is safe 'cos we're SK_DETACHED */
1447 		list_del_init(le);
1448 		svsk = list_entry(le, struct svc_sock, sk_list);
1449 
1450 		dprintk("queuing svsk %p for closing, %lu seconds old\n",
1451 			svsk, get_seconds() - svsk->sk_lastrecv);
1452 
1453 		/* a thread will dequeue and close it soon */
1454 		svc_sock_enqueue(svsk);
1455 		svc_sock_put(svsk);
1456 	}
1457 
1458 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
1459 }
1460 
1461 /*
1462  * Initialize socket for RPC use and create svc_sock struct
1463  * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1464  */
1465 static struct svc_sock *
1466 svc_setup_socket(struct svc_serv *serv, struct socket *sock,
1467 					int *errp, int pmap_register)
1468 {
1469 	struct svc_sock	*svsk;
1470 	struct sock	*inet;
1471 
1472 	dprintk("svc: svc_setup_socket %p\n", sock);
1473 	if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1474 		*errp = -ENOMEM;
1475 		return NULL;
1476 	}
1477 
1478 	inet = sock->sk;
1479 
1480 	/* Register socket with portmapper */
1481 	if (*errp >= 0 && pmap_register)
1482 		*errp = svc_register(serv, inet->sk_protocol,
1483 				     ntohs(inet_sk(inet)->sport));
1484 
1485 	if (*errp < 0) {
1486 		kfree(svsk);
1487 		return NULL;
1488 	}
1489 
1490 	set_bit(SK_BUSY, &svsk->sk_flags);
1491 	inet->sk_user_data = svsk;
1492 	svsk->sk_sock = sock;
1493 	svsk->sk_sk = inet;
1494 	svsk->sk_ostate = inet->sk_state_change;
1495 	svsk->sk_odata = inet->sk_data_ready;
1496 	svsk->sk_owspace = inet->sk_write_space;
1497 	svsk->sk_server = serv;
1498 	atomic_set(&svsk->sk_inuse, 0);
1499 	svsk->sk_lastrecv = get_seconds();
1500 	spin_lock_init(&svsk->sk_defer_lock);
1501 	INIT_LIST_HEAD(&svsk->sk_deferred);
1502 	INIT_LIST_HEAD(&svsk->sk_ready);
1503 	mutex_init(&svsk->sk_mutex);
1504 
1505 	/* Initialize the socket */
1506 	if (sock->type == SOCK_DGRAM)
1507 		svc_udp_init(svsk);
1508 	else
1509 		svc_tcp_init(svsk);
1510 
1511 	spin_lock_bh(&serv->sv_lock);
1512 	if (!pmap_register) {
1513 		set_bit(SK_TEMP, &svsk->sk_flags);
1514 		list_add(&svsk->sk_list, &serv->sv_tempsocks);
1515 		serv->sv_tmpcnt++;
1516 		if (serv->sv_temptimer.function == NULL) {
1517 			/* setup timer to age temp sockets */
1518 			setup_timer(&serv->sv_temptimer, svc_age_temp_sockets,
1519 					(unsigned long)serv);
1520 			mod_timer(&serv->sv_temptimer,
1521 					jiffies + svc_conn_age_period * HZ);
1522 		}
1523 	} else {
1524 		clear_bit(SK_TEMP, &svsk->sk_flags);
1525 		list_add(&svsk->sk_list, &serv->sv_permsocks);
1526 	}
1527 	spin_unlock_bh(&serv->sv_lock);
1528 
1529 	dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1530 				svsk, svsk->sk_sk);
1531 
1532 	clear_bit(SK_BUSY, &svsk->sk_flags);
1533 	svc_sock_enqueue(svsk);
1534 	return svsk;
1535 }
1536 
1537 int svc_addsock(struct svc_serv *serv,
1538 		int fd,
1539 		char *name_return,
1540 		int *proto)
1541 {
1542 	int err = 0;
1543 	struct socket *so = sockfd_lookup(fd, &err);
1544 	struct svc_sock *svsk = NULL;
1545 
1546 	if (!so)
1547 		return err;
1548 	if (so->sk->sk_family != AF_INET)
1549 		err =  -EAFNOSUPPORT;
1550 	else if (so->sk->sk_protocol != IPPROTO_TCP &&
1551 	    so->sk->sk_protocol != IPPROTO_UDP)
1552 		err =  -EPROTONOSUPPORT;
1553 	else if (so->state > SS_UNCONNECTED)
1554 		err = -EISCONN;
1555 	else {
1556 		svsk = svc_setup_socket(serv, so, &err, 1);
1557 		if (svsk)
1558 			err = 0;
1559 	}
1560 	if (err) {
1561 		sockfd_put(so);
1562 		return err;
1563 	}
1564 	if (proto) *proto = so->sk->sk_protocol;
1565 	return one_sock_name(name_return, svsk);
1566 }
1567 EXPORT_SYMBOL_GPL(svc_addsock);
1568 
1569 /*
1570  * Create socket for RPC service.
1571  */
1572 static int
1573 svc_create_socket(struct svc_serv *serv, int protocol, struct sockaddr_in *sin)
1574 {
1575 	struct svc_sock	*svsk;
1576 	struct socket	*sock;
1577 	int		error;
1578 	int		type;
1579 
1580 	dprintk("svc: svc_create_socket(%s, %d, %u.%u.%u.%u:%d)\n",
1581 				serv->sv_program->pg_name, protocol,
1582 				NIPQUAD(sin->sin_addr.s_addr),
1583 				ntohs(sin->sin_port));
1584 
1585 	if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1586 		printk(KERN_WARNING "svc: only UDP and TCP "
1587 				"sockets supported\n");
1588 		return -EINVAL;
1589 	}
1590 	type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1591 
1592 	if ((error = sock_create_kern(PF_INET, type, protocol, &sock)) < 0)
1593 		return error;
1594 
1595 	svc_reclassify_socket(sock);
1596 
1597 	if (type == SOCK_STREAM)
1598 		sock->sk->sk_reuse = 1; /* allow address reuse */
1599 	error = kernel_bind(sock, (struct sockaddr *) sin,
1600 					sizeof(*sin));
1601 	if (error < 0)
1602 		goto bummer;
1603 
1604 	if (protocol == IPPROTO_TCP) {
1605 		if ((error = kernel_listen(sock, 64)) < 0)
1606 			goto bummer;
1607 	}
1608 
1609 	if ((svsk = svc_setup_socket(serv, sock, &error, 1)) != NULL)
1610 		return 0;
1611 
1612 bummer:
1613 	dprintk("svc: svc_create_socket error = %d\n", -error);
1614 	sock_release(sock);
1615 	return error;
1616 }
1617 
1618 /*
1619  * Remove a dead socket
1620  */
1621 void
1622 svc_delete_socket(struct svc_sock *svsk)
1623 {
1624 	struct svc_serv	*serv;
1625 	struct sock	*sk;
1626 
1627 	dprintk("svc: svc_delete_socket(%p)\n", svsk);
1628 
1629 	serv = svsk->sk_server;
1630 	sk = svsk->sk_sk;
1631 
1632 	sk->sk_state_change = svsk->sk_ostate;
1633 	sk->sk_data_ready = svsk->sk_odata;
1634 	sk->sk_write_space = svsk->sk_owspace;
1635 
1636 	spin_lock_bh(&serv->sv_lock);
1637 
1638 	if (!test_and_set_bit(SK_DETACHED, &svsk->sk_flags))
1639 		list_del_init(&svsk->sk_list);
1640     	/*
1641 	 * We used to delete the svc_sock from whichever list
1642 	 * it's sk_ready node was on, but we don't actually
1643 	 * need to.  This is because the only time we're called
1644 	 * while still attached to a queue, the queue itself
1645 	 * is about to be destroyed (in svc_destroy).
1646 	 */
1647 	if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags))
1648 		if (test_bit(SK_TEMP, &svsk->sk_flags))
1649 			serv->sv_tmpcnt--;
1650 
1651 	/* This atomic_inc should be needed - svc_delete_socket
1652 	 * should have the semantic of dropping a reference.
1653 	 * But it doesn't yet....
1654 	 */
1655 	atomic_inc(&svsk->sk_inuse);
1656 	spin_unlock_bh(&serv->sv_lock);
1657 	svc_sock_put(svsk);
1658 }
1659 
1660 /*
1661  * Make a socket for nfsd and lockd
1662  */
1663 int
1664 svc_makesock(struct svc_serv *serv, int protocol, unsigned short port)
1665 {
1666 	struct sockaddr_in	sin;
1667 
1668 	dprintk("svc: creating socket proto = %d\n", protocol);
1669 	sin.sin_family      = AF_INET;
1670 	sin.sin_addr.s_addr = INADDR_ANY;
1671 	sin.sin_port        = htons(port);
1672 	return svc_create_socket(serv, protocol, &sin);
1673 }
1674 
1675 /*
1676  * Handle defer and revisit of requests
1677  */
1678 
1679 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1680 {
1681 	struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
1682 	struct svc_sock *svsk;
1683 
1684 	if (too_many) {
1685 		svc_sock_put(dr->svsk);
1686 		kfree(dr);
1687 		return;
1688 	}
1689 	dprintk("revisit queued\n");
1690 	svsk = dr->svsk;
1691 	dr->svsk = NULL;
1692 	spin_lock_bh(&svsk->sk_defer_lock);
1693 	list_add(&dr->handle.recent, &svsk->sk_deferred);
1694 	spin_unlock_bh(&svsk->sk_defer_lock);
1695 	set_bit(SK_DEFERRED, &svsk->sk_flags);
1696 	svc_sock_enqueue(svsk);
1697 	svc_sock_put(svsk);
1698 }
1699 
1700 static struct cache_deferred_req *
1701 svc_defer(struct cache_req *req)
1702 {
1703 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1704 	int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
1705 	struct svc_deferred_req *dr;
1706 
1707 	if (rqstp->rq_arg.page_len)
1708 		return NULL; /* if more than a page, give up FIXME */
1709 	if (rqstp->rq_deferred) {
1710 		dr = rqstp->rq_deferred;
1711 		rqstp->rq_deferred = NULL;
1712 	} else {
1713 		int skip  = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1714 		/* FIXME maybe discard if size too large */
1715 		dr = kmalloc(size, GFP_KERNEL);
1716 		if (dr == NULL)
1717 			return NULL;
1718 
1719 		dr->handle.owner = rqstp->rq_server;
1720 		dr->prot = rqstp->rq_prot;
1721 		dr->addr = rqstp->rq_addr;
1722 		dr->daddr = rqstp->rq_daddr;
1723 		dr->argslen = rqstp->rq_arg.len >> 2;
1724 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
1725 	}
1726 	atomic_inc(&rqstp->rq_sock->sk_inuse);
1727 	dr->svsk = rqstp->rq_sock;
1728 
1729 	dr->handle.revisit = svc_revisit;
1730 	return &dr->handle;
1731 }
1732 
1733 /*
1734  * recv data from a deferred request into an active one
1735  */
1736 static int svc_deferred_recv(struct svc_rqst *rqstp)
1737 {
1738 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1739 
1740 	rqstp->rq_arg.head[0].iov_base = dr->args;
1741 	rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
1742 	rqstp->rq_arg.page_len = 0;
1743 	rqstp->rq_arg.len = dr->argslen<<2;
1744 	rqstp->rq_prot        = dr->prot;
1745 	rqstp->rq_addr        = dr->addr;
1746 	rqstp->rq_daddr       = dr->daddr;
1747 	rqstp->rq_respages    = rqstp->rq_pages;
1748 	return dr->argslen<<2;
1749 }
1750 
1751 
1752 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk)
1753 {
1754 	struct svc_deferred_req *dr = NULL;
1755 
1756 	if (!test_bit(SK_DEFERRED, &svsk->sk_flags))
1757 		return NULL;
1758 	spin_lock_bh(&svsk->sk_defer_lock);
1759 	clear_bit(SK_DEFERRED, &svsk->sk_flags);
1760 	if (!list_empty(&svsk->sk_deferred)) {
1761 		dr = list_entry(svsk->sk_deferred.next,
1762 				struct svc_deferred_req,
1763 				handle.recent);
1764 		list_del_init(&dr->handle.recent);
1765 		set_bit(SK_DEFERRED, &svsk->sk_flags);
1766 	}
1767 	spin_unlock_bh(&svsk->sk_defer_lock);
1768 	return dr;
1769 }
1770