1 /* 2 * linux/net/sunrpc/svcsock.c 3 * 4 * These are the RPC server socket internals. 5 * 6 * The server scheduling algorithm does not always distribute the load 7 * evenly when servicing a single client. May need to modify the 8 * svc_xprt_enqueue procedure... 9 * 10 * TCP support is largely untested and may be a little slow. The problem 11 * is that we currently do two separate recvfrom's, one for the 4-byte 12 * record length, and the second for the actual record. This could possibly 13 * be improved by always reading a minimum size of around 100 bytes and 14 * tucking any superfluous bytes away in a temporary store. Still, that 15 * leaves write requests out in the rain. An alternative may be to peek at 16 * the first skb in the queue, and if it matches the next TCP sequence 17 * number, to extract the record marker. Yuck. 18 * 19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched.h> 24 #include <linux/errno.h> 25 #include <linux/fcntl.h> 26 #include <linux/net.h> 27 #include <linux/in.h> 28 #include <linux/inet.h> 29 #include <linux/udp.h> 30 #include <linux/tcp.h> 31 #include <linux/unistd.h> 32 #include <linux/slab.h> 33 #include <linux/netdevice.h> 34 #include <linux/skbuff.h> 35 #include <linux/file.h> 36 #include <linux/freezer.h> 37 #include <net/sock.h> 38 #include <net/checksum.h> 39 #include <net/ip.h> 40 #include <net/ipv6.h> 41 #include <net/tcp.h> 42 #include <net/tcp_states.h> 43 #include <asm/uaccess.h> 44 #include <asm/ioctls.h> 45 46 #include <linux/sunrpc/types.h> 47 #include <linux/sunrpc/clnt.h> 48 #include <linux/sunrpc/xdr.h> 49 #include <linux/sunrpc/msg_prot.h> 50 #include <linux/sunrpc/svcsock.h> 51 #include <linux/sunrpc/stats.h> 52 #include <linux/sunrpc/xprt.h> 53 54 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 55 56 57 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *, 58 int *errp, int flags); 59 static void svc_udp_data_ready(struct sock *, int); 60 static int svc_udp_recvfrom(struct svc_rqst *); 61 static int svc_udp_sendto(struct svc_rqst *); 62 static void svc_sock_detach(struct svc_xprt *); 63 static void svc_tcp_sock_detach(struct svc_xprt *); 64 static void svc_sock_free(struct svc_xprt *); 65 66 static struct svc_xprt *svc_create_socket(struct svc_serv *, int, 67 struct net *, struct sockaddr *, 68 int, int); 69 #if defined(CONFIG_NFS_V4_1) 70 static struct svc_xprt *svc_bc_create_socket(struct svc_serv *, int, 71 struct net *, struct sockaddr *, 72 int, int); 73 static void svc_bc_sock_free(struct svc_xprt *xprt); 74 #endif /* CONFIG_NFS_V4_1 */ 75 76 #ifdef CONFIG_DEBUG_LOCK_ALLOC 77 static struct lock_class_key svc_key[2]; 78 static struct lock_class_key svc_slock_key[2]; 79 80 static void svc_reclassify_socket(struct socket *sock) 81 { 82 struct sock *sk = sock->sk; 83 BUG_ON(sock_owned_by_user(sk)); 84 switch (sk->sk_family) { 85 case AF_INET: 86 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD", 87 &svc_slock_key[0], 88 "sk_xprt.xpt_lock-AF_INET-NFSD", 89 &svc_key[0]); 90 break; 91 92 case AF_INET6: 93 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD", 94 &svc_slock_key[1], 95 "sk_xprt.xpt_lock-AF_INET6-NFSD", 96 &svc_key[1]); 97 break; 98 99 default: 100 BUG(); 101 } 102 } 103 #else 104 static void svc_reclassify_socket(struct socket *sock) 105 { 106 } 107 #endif 108 109 /* 110 * Release an skbuff after use 111 */ 112 static void svc_release_skb(struct svc_rqst *rqstp) 113 { 114 struct sk_buff *skb = rqstp->rq_xprt_ctxt; 115 116 if (skb) { 117 struct svc_sock *svsk = 118 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 119 rqstp->rq_xprt_ctxt = NULL; 120 121 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb); 122 skb_free_datagram_locked(svsk->sk_sk, skb); 123 } 124 } 125 126 union svc_pktinfo_u { 127 struct in_pktinfo pkti; 128 struct in6_pktinfo pkti6; 129 }; 130 #define SVC_PKTINFO_SPACE \ 131 CMSG_SPACE(sizeof(union svc_pktinfo_u)) 132 133 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh) 134 { 135 struct svc_sock *svsk = 136 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 137 switch (svsk->sk_sk->sk_family) { 138 case AF_INET: { 139 struct in_pktinfo *pki = CMSG_DATA(cmh); 140 141 cmh->cmsg_level = SOL_IP; 142 cmh->cmsg_type = IP_PKTINFO; 143 pki->ipi_ifindex = 0; 144 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr; 145 cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); 146 } 147 break; 148 149 case AF_INET6: { 150 struct in6_pktinfo *pki = CMSG_DATA(cmh); 151 152 cmh->cmsg_level = SOL_IPV6; 153 cmh->cmsg_type = IPV6_PKTINFO; 154 pki->ipi6_ifindex = 0; 155 ipv6_addr_copy(&pki->ipi6_addr, 156 &rqstp->rq_daddr.addr6); 157 cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); 158 } 159 break; 160 } 161 } 162 163 /* 164 * send routine intended to be shared by the fore- and back-channel 165 */ 166 int svc_send_common(struct socket *sock, struct xdr_buf *xdr, 167 struct page *headpage, unsigned long headoffset, 168 struct page *tailpage, unsigned long tailoffset) 169 { 170 int result; 171 int size; 172 struct page **ppage = xdr->pages; 173 size_t base = xdr->page_base; 174 unsigned int pglen = xdr->page_len; 175 unsigned int flags = MSG_MORE; 176 int slen; 177 int len = 0; 178 179 slen = xdr->len; 180 181 /* send head */ 182 if (slen == xdr->head[0].iov_len) 183 flags = 0; 184 len = kernel_sendpage(sock, headpage, headoffset, 185 xdr->head[0].iov_len, flags); 186 if (len != xdr->head[0].iov_len) 187 goto out; 188 slen -= xdr->head[0].iov_len; 189 if (slen == 0) 190 goto out; 191 192 /* send page data */ 193 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen; 194 while (pglen > 0) { 195 if (slen == size) 196 flags = 0; 197 result = kernel_sendpage(sock, *ppage, base, size, flags); 198 if (result > 0) 199 len += result; 200 if (result != size) 201 goto out; 202 slen -= size; 203 pglen -= size; 204 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen; 205 base = 0; 206 ppage++; 207 } 208 209 /* send tail */ 210 if (xdr->tail[0].iov_len) { 211 result = kernel_sendpage(sock, tailpage, tailoffset, 212 xdr->tail[0].iov_len, 0); 213 if (result > 0) 214 len += result; 215 } 216 217 out: 218 return len; 219 } 220 221 222 /* 223 * Generic sendto routine 224 */ 225 static int svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr) 226 { 227 struct svc_sock *svsk = 228 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 229 struct socket *sock = svsk->sk_sock; 230 union { 231 struct cmsghdr hdr; 232 long all[SVC_PKTINFO_SPACE / sizeof(long)]; 233 } buffer; 234 struct cmsghdr *cmh = &buffer.hdr; 235 int len = 0; 236 unsigned long tailoff; 237 unsigned long headoff; 238 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]); 239 240 if (rqstp->rq_prot == IPPROTO_UDP) { 241 struct msghdr msg = { 242 .msg_name = &rqstp->rq_addr, 243 .msg_namelen = rqstp->rq_addrlen, 244 .msg_control = cmh, 245 .msg_controllen = sizeof(buffer), 246 .msg_flags = MSG_MORE, 247 }; 248 249 svc_set_cmsg_data(rqstp, cmh); 250 251 if (sock_sendmsg(sock, &msg, 0) < 0) 252 goto out; 253 } 254 255 tailoff = ((unsigned long)xdr->tail[0].iov_base) & (PAGE_SIZE-1); 256 headoff = 0; 257 len = svc_send_common(sock, xdr, rqstp->rq_respages[0], headoff, 258 rqstp->rq_respages[0], tailoff); 259 260 out: 261 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n", 262 svsk, xdr->head[0].iov_base, xdr->head[0].iov_len, 263 xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf))); 264 265 return len; 266 } 267 268 /* 269 * Report socket names for nfsdfs 270 */ 271 static int svc_one_sock_name(struct svc_sock *svsk, char *buf, int remaining) 272 { 273 const struct sock *sk = svsk->sk_sk; 274 const char *proto_name = sk->sk_protocol == IPPROTO_UDP ? 275 "udp" : "tcp"; 276 int len; 277 278 switch (sk->sk_family) { 279 case PF_INET: 280 len = snprintf(buf, remaining, "ipv4 %s %pI4 %d\n", 281 proto_name, 282 &inet_sk(sk)->inet_rcv_saddr, 283 inet_sk(sk)->inet_num); 284 break; 285 case PF_INET6: 286 len = snprintf(buf, remaining, "ipv6 %s %pI6 %d\n", 287 proto_name, 288 &inet6_sk(sk)->rcv_saddr, 289 inet_sk(sk)->inet_num); 290 break; 291 default: 292 len = snprintf(buf, remaining, "*unknown-%d*\n", 293 sk->sk_family); 294 } 295 296 if (len >= remaining) { 297 *buf = '\0'; 298 return -ENAMETOOLONG; 299 } 300 return len; 301 } 302 303 /** 304 * svc_sock_names - construct a list of listener names in a string 305 * @serv: pointer to RPC service 306 * @buf: pointer to a buffer to fill in with socket names 307 * @buflen: size of the buffer to be filled 308 * @toclose: pointer to '\0'-terminated C string containing the name 309 * of a listener to be closed 310 * 311 * Fills in @buf with a '\n'-separated list of names of listener 312 * sockets. If @toclose is not NULL, the socket named by @toclose 313 * is closed, and is not included in the output list. 314 * 315 * Returns positive length of the socket name string, or a negative 316 * errno value on error. 317 */ 318 int svc_sock_names(struct svc_serv *serv, char *buf, const size_t buflen, 319 const char *toclose) 320 { 321 struct svc_sock *svsk, *closesk = NULL; 322 int len = 0; 323 324 if (!serv) 325 return 0; 326 327 spin_lock_bh(&serv->sv_lock); 328 list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) { 329 int onelen = svc_one_sock_name(svsk, buf + len, buflen - len); 330 if (onelen < 0) { 331 len = onelen; 332 break; 333 } 334 if (toclose && strcmp(toclose, buf + len) == 0) { 335 closesk = svsk; 336 svc_xprt_get(&closesk->sk_xprt); 337 } else 338 len += onelen; 339 } 340 spin_unlock_bh(&serv->sv_lock); 341 342 if (closesk) { 343 /* Should unregister with portmap, but you cannot 344 * unregister just one protocol... 345 */ 346 svc_close_xprt(&closesk->sk_xprt); 347 svc_xprt_put(&closesk->sk_xprt); 348 } else if (toclose) 349 return -ENOENT; 350 return len; 351 } 352 EXPORT_SYMBOL_GPL(svc_sock_names); 353 354 /* 355 * Check input queue length 356 */ 357 static int svc_recv_available(struct svc_sock *svsk) 358 { 359 struct socket *sock = svsk->sk_sock; 360 int avail, err; 361 362 err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail); 363 364 return (err >= 0)? avail : err; 365 } 366 367 /* 368 * Generic recvfrom routine. 369 */ 370 static int svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, 371 int buflen) 372 { 373 struct svc_sock *svsk = 374 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 375 struct msghdr msg = { 376 .msg_flags = MSG_DONTWAIT, 377 }; 378 int len; 379 380 rqstp->rq_xprt_hlen = 0; 381 382 len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen, 383 msg.msg_flags); 384 385 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n", 386 svsk, iov[0].iov_base, iov[0].iov_len, len); 387 return len; 388 } 389 390 /* 391 * Set socket snd and rcv buffer lengths 392 */ 393 static void svc_sock_setbufsize(struct socket *sock, unsigned int snd, 394 unsigned int rcv) 395 { 396 #if 0 397 mm_segment_t oldfs; 398 oldfs = get_fs(); set_fs(KERNEL_DS); 399 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF, 400 (char*)&snd, sizeof(snd)); 401 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF, 402 (char*)&rcv, sizeof(rcv)); 403 #else 404 /* sock_setsockopt limits use to sysctl_?mem_max, 405 * which isn't acceptable. Until that is made conditional 406 * on not having CAP_SYS_RESOURCE or similar, we go direct... 407 * DaveM said I could! 408 */ 409 lock_sock(sock->sk); 410 sock->sk->sk_sndbuf = snd * 2; 411 sock->sk->sk_rcvbuf = rcv * 2; 412 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK; 413 sock->sk->sk_write_space(sock->sk); 414 release_sock(sock->sk); 415 #endif 416 } 417 /* 418 * INET callback when data has been received on the socket. 419 */ 420 static void svc_udp_data_ready(struct sock *sk, int count) 421 { 422 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 423 wait_queue_head_t *wq = sk_sleep(sk); 424 425 if (svsk) { 426 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n", 427 svsk, sk, count, 428 test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags)); 429 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 430 svc_xprt_enqueue(&svsk->sk_xprt); 431 } 432 if (wq && waitqueue_active(wq)) 433 wake_up_interruptible(wq); 434 } 435 436 /* 437 * INET callback when space is newly available on the socket. 438 */ 439 static void svc_write_space(struct sock *sk) 440 { 441 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data); 442 wait_queue_head_t *wq = sk_sleep(sk); 443 444 if (svsk) { 445 dprintk("svc: socket %p(inet %p), write_space busy=%d\n", 446 svsk, sk, test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags)); 447 svc_xprt_enqueue(&svsk->sk_xprt); 448 } 449 450 if (wq && waitqueue_active(wq)) { 451 dprintk("RPC svc_write_space: someone sleeping on %p\n", 452 svsk); 453 wake_up_interruptible(wq); 454 } 455 } 456 457 static void svc_tcp_write_space(struct sock *sk) 458 { 459 struct socket *sock = sk->sk_socket; 460 461 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && sock) 462 clear_bit(SOCK_NOSPACE, &sock->flags); 463 svc_write_space(sk); 464 } 465 466 /* 467 * See net/ipv6/ip_sockglue.c : ip_cmsg_recv_pktinfo 468 */ 469 static int svc_udp_get_dest_address4(struct svc_rqst *rqstp, 470 struct cmsghdr *cmh) 471 { 472 struct in_pktinfo *pki = CMSG_DATA(cmh); 473 if (cmh->cmsg_type != IP_PKTINFO) 474 return 0; 475 rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr; 476 return 1; 477 } 478 479 /* 480 * See net/ipv6/datagram.c : datagram_recv_ctl 481 */ 482 static int svc_udp_get_dest_address6(struct svc_rqst *rqstp, 483 struct cmsghdr *cmh) 484 { 485 struct in6_pktinfo *pki = CMSG_DATA(cmh); 486 if (cmh->cmsg_type != IPV6_PKTINFO) 487 return 0; 488 ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr); 489 return 1; 490 } 491 492 /* 493 * Copy the UDP datagram's destination address to the rqstp structure. 494 * The 'destination' address in this case is the address to which the 495 * peer sent the datagram, i.e. our local address. For multihomed 496 * hosts, this can change from msg to msg. Note that only the IP 497 * address changes, the port number should remain the same. 498 */ 499 static int svc_udp_get_dest_address(struct svc_rqst *rqstp, 500 struct cmsghdr *cmh) 501 { 502 switch (cmh->cmsg_level) { 503 case SOL_IP: 504 return svc_udp_get_dest_address4(rqstp, cmh); 505 case SOL_IPV6: 506 return svc_udp_get_dest_address6(rqstp, cmh); 507 } 508 509 return 0; 510 } 511 512 /* 513 * Receive a datagram from a UDP socket. 514 */ 515 static int svc_udp_recvfrom(struct svc_rqst *rqstp) 516 { 517 struct svc_sock *svsk = 518 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 519 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 520 struct sk_buff *skb; 521 union { 522 struct cmsghdr hdr; 523 long all[SVC_PKTINFO_SPACE / sizeof(long)]; 524 } buffer; 525 struct cmsghdr *cmh = &buffer.hdr; 526 struct msghdr msg = { 527 .msg_name = svc_addr(rqstp), 528 .msg_control = cmh, 529 .msg_controllen = sizeof(buffer), 530 .msg_flags = MSG_DONTWAIT, 531 }; 532 size_t len; 533 int err; 534 535 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags)) 536 /* udp sockets need large rcvbuf as all pending 537 * requests are still in that buffer. sndbuf must 538 * also be large enough that there is enough space 539 * for one reply per thread. We count all threads 540 * rather than threads in a particular pool, which 541 * provides an upper bound on the number of threads 542 * which will access the socket. 543 */ 544 svc_sock_setbufsize(svsk->sk_sock, 545 (serv->sv_nrthreads+3) * serv->sv_max_mesg, 546 (serv->sv_nrthreads+3) * serv->sv_max_mesg); 547 548 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 549 skb = NULL; 550 err = kernel_recvmsg(svsk->sk_sock, &msg, NULL, 551 0, 0, MSG_PEEK | MSG_DONTWAIT); 552 if (err >= 0) 553 skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err); 554 555 if (skb == NULL) { 556 if (err != -EAGAIN) { 557 /* possibly an icmp error */ 558 dprintk("svc: recvfrom returned error %d\n", -err); 559 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 560 } 561 return -EAGAIN; 562 } 563 len = svc_addr_len(svc_addr(rqstp)); 564 if (len == 0) 565 return -EAFNOSUPPORT; 566 rqstp->rq_addrlen = len; 567 if (skb->tstamp.tv64 == 0) { 568 skb->tstamp = ktime_get_real(); 569 /* Don't enable netstamp, sunrpc doesn't 570 need that much accuracy */ 571 } 572 svsk->sk_sk->sk_stamp = skb->tstamp; 573 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */ 574 575 len = skb->len - sizeof(struct udphdr); 576 rqstp->rq_arg.len = len; 577 578 rqstp->rq_prot = IPPROTO_UDP; 579 580 if (!svc_udp_get_dest_address(rqstp, cmh)) { 581 if (net_ratelimit()) 582 printk(KERN_WARNING 583 "svc: received unknown control message %d/%d; " 584 "dropping RPC reply datagram\n", 585 cmh->cmsg_level, cmh->cmsg_type); 586 skb_free_datagram_locked(svsk->sk_sk, skb); 587 return 0; 588 } 589 590 if (skb_is_nonlinear(skb)) { 591 /* we have to copy */ 592 local_bh_disable(); 593 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) { 594 local_bh_enable(); 595 /* checksum error */ 596 skb_free_datagram_locked(svsk->sk_sk, skb); 597 return 0; 598 } 599 local_bh_enable(); 600 skb_free_datagram_locked(svsk->sk_sk, skb); 601 } else { 602 /* we can use it in-place */ 603 rqstp->rq_arg.head[0].iov_base = skb->data + 604 sizeof(struct udphdr); 605 rqstp->rq_arg.head[0].iov_len = len; 606 if (skb_checksum_complete(skb)) { 607 skb_free_datagram_locked(svsk->sk_sk, skb); 608 return 0; 609 } 610 rqstp->rq_xprt_ctxt = skb; 611 } 612 613 rqstp->rq_arg.page_base = 0; 614 if (len <= rqstp->rq_arg.head[0].iov_len) { 615 rqstp->rq_arg.head[0].iov_len = len; 616 rqstp->rq_arg.page_len = 0; 617 rqstp->rq_respages = rqstp->rq_pages+1; 618 } else { 619 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len; 620 rqstp->rq_respages = rqstp->rq_pages + 1 + 621 DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE); 622 } 623 624 if (serv->sv_stats) 625 serv->sv_stats->netudpcnt++; 626 627 return len; 628 } 629 630 static int 631 svc_udp_sendto(struct svc_rqst *rqstp) 632 { 633 int error; 634 635 error = svc_sendto(rqstp, &rqstp->rq_res); 636 if (error == -ECONNREFUSED) 637 /* ICMP error on earlier request. */ 638 error = svc_sendto(rqstp, &rqstp->rq_res); 639 640 return error; 641 } 642 643 static void svc_udp_prep_reply_hdr(struct svc_rqst *rqstp) 644 { 645 } 646 647 static int svc_udp_has_wspace(struct svc_xprt *xprt) 648 { 649 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 650 struct svc_serv *serv = xprt->xpt_server; 651 unsigned long required; 652 653 /* 654 * Set the SOCK_NOSPACE flag before checking the available 655 * sock space. 656 */ 657 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 658 required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg; 659 if (required*2 > sock_wspace(svsk->sk_sk)) 660 return 0; 661 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 662 return 1; 663 } 664 665 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt) 666 { 667 BUG(); 668 return NULL; 669 } 670 671 static struct svc_xprt *svc_udp_create(struct svc_serv *serv, 672 struct net *net, 673 struct sockaddr *sa, int salen, 674 int flags) 675 { 676 return svc_create_socket(serv, IPPROTO_UDP, net, sa, salen, flags); 677 } 678 679 static struct svc_xprt_ops svc_udp_ops = { 680 .xpo_create = svc_udp_create, 681 .xpo_recvfrom = svc_udp_recvfrom, 682 .xpo_sendto = svc_udp_sendto, 683 .xpo_release_rqst = svc_release_skb, 684 .xpo_detach = svc_sock_detach, 685 .xpo_free = svc_sock_free, 686 .xpo_prep_reply_hdr = svc_udp_prep_reply_hdr, 687 .xpo_has_wspace = svc_udp_has_wspace, 688 .xpo_accept = svc_udp_accept, 689 }; 690 691 static struct svc_xprt_class svc_udp_class = { 692 .xcl_name = "udp", 693 .xcl_owner = THIS_MODULE, 694 .xcl_ops = &svc_udp_ops, 695 .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP, 696 }; 697 698 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv) 699 { 700 int err, level, optname, one = 1; 701 702 svc_xprt_init(&svc_udp_class, &svsk->sk_xprt, serv); 703 clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags); 704 svsk->sk_sk->sk_data_ready = svc_udp_data_ready; 705 svsk->sk_sk->sk_write_space = svc_write_space; 706 707 /* initialise setting must have enough space to 708 * receive and respond to one request. 709 * svc_udp_recvfrom will re-adjust if necessary 710 */ 711 svc_sock_setbufsize(svsk->sk_sock, 712 3 * svsk->sk_xprt.xpt_server->sv_max_mesg, 713 3 * svsk->sk_xprt.xpt_server->sv_max_mesg); 714 715 /* data might have come in before data_ready set up */ 716 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 717 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 718 719 /* make sure we get destination address info */ 720 switch (svsk->sk_sk->sk_family) { 721 case AF_INET: 722 level = SOL_IP; 723 optname = IP_PKTINFO; 724 break; 725 case AF_INET6: 726 level = SOL_IPV6; 727 optname = IPV6_RECVPKTINFO; 728 break; 729 default: 730 BUG(); 731 } 732 err = kernel_setsockopt(svsk->sk_sock, level, optname, 733 (char *)&one, sizeof(one)); 734 dprintk("svc: kernel_setsockopt returned %d\n", err); 735 } 736 737 /* 738 * A data_ready event on a listening socket means there's a connection 739 * pending. Do not use state_change as a substitute for it. 740 */ 741 static void svc_tcp_listen_data_ready(struct sock *sk, int count_unused) 742 { 743 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 744 wait_queue_head_t *wq; 745 746 dprintk("svc: socket %p TCP (listen) state change %d\n", 747 sk, sk->sk_state); 748 749 /* 750 * This callback may called twice when a new connection 751 * is established as a child socket inherits everything 752 * from a parent LISTEN socket. 753 * 1) data_ready method of the parent socket will be called 754 * when one of child sockets become ESTABLISHED. 755 * 2) data_ready method of the child socket may be called 756 * when it receives data before the socket is accepted. 757 * In case of 2, we should ignore it silently. 758 */ 759 if (sk->sk_state == TCP_LISTEN) { 760 if (svsk) { 761 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 762 svc_xprt_enqueue(&svsk->sk_xprt); 763 } else 764 printk("svc: socket %p: no user data\n", sk); 765 } 766 767 wq = sk_sleep(sk); 768 if (wq && waitqueue_active(wq)) 769 wake_up_interruptible_all(wq); 770 } 771 772 /* 773 * A state change on a connected socket means it's dying or dead. 774 */ 775 static void svc_tcp_state_change(struct sock *sk) 776 { 777 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 778 wait_queue_head_t *wq = sk_sleep(sk); 779 780 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n", 781 sk, sk->sk_state, sk->sk_user_data); 782 783 if (!svsk) 784 printk("svc: socket %p: no user data\n", sk); 785 else { 786 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags); 787 svc_xprt_enqueue(&svsk->sk_xprt); 788 } 789 if (wq && waitqueue_active(wq)) 790 wake_up_interruptible_all(wq); 791 } 792 793 static void svc_tcp_data_ready(struct sock *sk, int count) 794 { 795 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 796 wait_queue_head_t *wq = sk_sleep(sk); 797 798 dprintk("svc: socket %p TCP data ready (svsk %p)\n", 799 sk, sk->sk_user_data); 800 if (svsk) { 801 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 802 svc_xprt_enqueue(&svsk->sk_xprt); 803 } 804 if (wq && waitqueue_active(wq)) 805 wake_up_interruptible(wq); 806 } 807 808 /* 809 * Accept a TCP connection 810 */ 811 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt) 812 { 813 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 814 struct sockaddr_storage addr; 815 struct sockaddr *sin = (struct sockaddr *) &addr; 816 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 817 struct socket *sock = svsk->sk_sock; 818 struct socket *newsock; 819 struct svc_sock *newsvsk; 820 int err, slen; 821 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]); 822 823 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock); 824 if (!sock) 825 return NULL; 826 827 clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 828 err = kernel_accept(sock, &newsock, O_NONBLOCK); 829 if (err < 0) { 830 if (err == -ENOMEM) 831 printk(KERN_WARNING "%s: no more sockets!\n", 832 serv->sv_name); 833 else if (err != -EAGAIN && net_ratelimit()) 834 printk(KERN_WARNING "%s: accept failed (err %d)!\n", 835 serv->sv_name, -err); 836 return NULL; 837 } 838 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 839 840 err = kernel_getpeername(newsock, sin, &slen); 841 if (err < 0) { 842 if (net_ratelimit()) 843 printk(KERN_WARNING "%s: peername failed (err %d)!\n", 844 serv->sv_name, -err); 845 goto failed; /* aborted connection or whatever */ 846 } 847 848 /* Ideally, we would want to reject connections from unauthorized 849 * hosts here, but when we get encryption, the IP of the host won't 850 * tell us anything. For now just warn about unpriv connections. 851 */ 852 if (!svc_port_is_privileged(sin)) { 853 dprintk(KERN_WARNING 854 "%s: connect from unprivileged port: %s\n", 855 serv->sv_name, 856 __svc_print_addr(sin, buf, sizeof(buf))); 857 } 858 dprintk("%s: connect from %s\n", serv->sv_name, 859 __svc_print_addr(sin, buf, sizeof(buf))); 860 861 /* make sure that a write doesn't block forever when 862 * low on memory 863 */ 864 newsock->sk->sk_sndtimeo = HZ*30; 865 866 if (!(newsvsk = svc_setup_socket(serv, newsock, &err, 867 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY)))) 868 goto failed; 869 svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen); 870 err = kernel_getsockname(newsock, sin, &slen); 871 if (unlikely(err < 0)) { 872 dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err); 873 slen = offsetof(struct sockaddr, sa_data); 874 } 875 svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen); 876 877 if (serv->sv_stats) 878 serv->sv_stats->nettcpconn++; 879 880 return &newsvsk->sk_xprt; 881 882 failed: 883 sock_release(newsock); 884 return NULL; 885 } 886 887 /* 888 * Receive data. 889 * If we haven't gotten the record length yet, get the next four bytes. 890 * Otherwise try to gobble up as much as possible up to the complete 891 * record length. 892 */ 893 static int svc_tcp_recv_record(struct svc_sock *svsk, struct svc_rqst *rqstp) 894 { 895 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 896 int len; 897 898 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags)) 899 /* sndbuf needs to have room for one request 900 * per thread, otherwise we can stall even when the 901 * network isn't a bottleneck. 902 * 903 * We count all threads rather than threads in a 904 * particular pool, which provides an upper bound 905 * on the number of threads which will access the socket. 906 * 907 * rcvbuf just needs to be able to hold a few requests. 908 * Normally they will be removed from the queue 909 * as soon a a complete request arrives. 910 */ 911 svc_sock_setbufsize(svsk->sk_sock, 912 (serv->sv_nrthreads+3) * serv->sv_max_mesg, 913 3 * serv->sv_max_mesg); 914 915 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 916 917 if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) { 918 int want = sizeof(rpc_fraghdr) - svsk->sk_tcplen; 919 struct kvec iov; 920 921 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen; 922 iov.iov_len = want; 923 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0) 924 goto error; 925 svsk->sk_tcplen += len; 926 927 if (len < want) { 928 dprintk("svc: short recvfrom while reading record " 929 "length (%d of %d)\n", len, want); 930 goto err_again; /* record header not complete */ 931 } 932 933 svsk->sk_reclen = ntohl(svsk->sk_reclen); 934 if (!(svsk->sk_reclen & RPC_LAST_STREAM_FRAGMENT)) { 935 /* FIXME: technically, a record can be fragmented, 936 * and non-terminal fragments will not have the top 937 * bit set in the fragment length header. 938 * But apparently no known nfs clients send fragmented 939 * records. */ 940 if (net_ratelimit()) 941 printk(KERN_NOTICE "RPC: multiple fragments " 942 "per record not supported\n"); 943 goto err_delete; 944 } 945 946 svsk->sk_reclen &= RPC_FRAGMENT_SIZE_MASK; 947 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen); 948 if (svsk->sk_reclen > serv->sv_max_mesg) { 949 if (net_ratelimit()) 950 printk(KERN_NOTICE "RPC: " 951 "fragment too large: 0x%08lx\n", 952 (unsigned long)svsk->sk_reclen); 953 goto err_delete; 954 } 955 } 956 957 /* Check whether enough data is available */ 958 len = svc_recv_available(svsk); 959 if (len < 0) 960 goto error; 961 962 if (len < svsk->sk_reclen) { 963 dprintk("svc: incomplete TCP record (%d of %d)\n", 964 len, svsk->sk_reclen); 965 goto err_again; /* record not complete */ 966 } 967 len = svsk->sk_reclen; 968 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 969 970 return len; 971 error: 972 if (len == -EAGAIN) 973 dprintk("RPC: TCP recv_record got EAGAIN\n"); 974 return len; 975 err_delete: 976 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags); 977 err_again: 978 return -EAGAIN; 979 } 980 981 static int svc_process_calldir(struct svc_sock *svsk, struct svc_rqst *rqstp, 982 struct rpc_rqst **reqpp, struct kvec *vec) 983 { 984 struct rpc_rqst *req = NULL; 985 u32 *p; 986 u32 xid; 987 u32 calldir; 988 int len; 989 990 len = svc_recvfrom(rqstp, vec, 1, 8); 991 if (len < 0) 992 goto error; 993 994 p = (u32 *)rqstp->rq_arg.head[0].iov_base; 995 xid = *p++; 996 calldir = *p; 997 998 if (calldir == 0) { 999 /* REQUEST is the most common case */ 1000 vec[0] = rqstp->rq_arg.head[0]; 1001 } else { 1002 /* REPLY */ 1003 struct rpc_xprt *bc_xprt = svsk->sk_xprt.xpt_bc_xprt; 1004 1005 if (bc_xprt) 1006 req = xprt_lookup_rqst(bc_xprt, xid); 1007 1008 if (!req) { 1009 printk(KERN_NOTICE 1010 "%s: Got unrecognized reply: " 1011 "calldir 0x%x xpt_bc_xprt %p xid %08x\n", 1012 __func__, ntohl(calldir), 1013 bc_xprt, xid); 1014 vec[0] = rqstp->rq_arg.head[0]; 1015 goto out; 1016 } 1017 1018 memcpy(&req->rq_private_buf, &req->rq_rcv_buf, 1019 sizeof(struct xdr_buf)); 1020 /* copy the xid and call direction */ 1021 memcpy(req->rq_private_buf.head[0].iov_base, 1022 rqstp->rq_arg.head[0].iov_base, 8); 1023 vec[0] = req->rq_private_buf.head[0]; 1024 } 1025 out: 1026 vec[0].iov_base += 8; 1027 vec[0].iov_len -= 8; 1028 len = svsk->sk_reclen - 8; 1029 error: 1030 *reqpp = req; 1031 return len; 1032 } 1033 1034 /* 1035 * Receive data from a TCP socket. 1036 */ 1037 static int svc_tcp_recvfrom(struct svc_rqst *rqstp) 1038 { 1039 struct svc_sock *svsk = 1040 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); 1041 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 1042 int len; 1043 struct kvec *vec; 1044 int pnum, vlen; 1045 struct rpc_rqst *req = NULL; 1046 1047 dprintk("svc: tcp_recv %p data %d conn %d close %d\n", 1048 svsk, test_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags), 1049 test_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags), 1050 test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags)); 1051 1052 len = svc_tcp_recv_record(svsk, rqstp); 1053 if (len < 0) 1054 goto error; 1055 1056 vec = rqstp->rq_vec; 1057 vec[0] = rqstp->rq_arg.head[0]; 1058 vlen = PAGE_SIZE; 1059 1060 /* 1061 * We have enough data for the whole tcp record. Let's try and read the 1062 * first 8 bytes to get the xid and the call direction. We can use this 1063 * to figure out if this is a call or a reply to a callback. If 1064 * sk_reclen is < 8 (xid and calldir), then this is a malformed packet. 1065 * In that case, don't bother with the calldir and just read the data. 1066 * It will be rejected in svc_process. 1067 */ 1068 if (len >= 8) { 1069 len = svc_process_calldir(svsk, rqstp, &req, vec); 1070 if (len < 0) 1071 goto err_again; 1072 vlen -= 8; 1073 } 1074 1075 pnum = 1; 1076 while (vlen < len) { 1077 vec[pnum].iov_base = (req) ? 1078 page_address(req->rq_private_buf.pages[pnum - 1]) : 1079 page_address(rqstp->rq_pages[pnum]); 1080 vec[pnum].iov_len = PAGE_SIZE; 1081 pnum++; 1082 vlen += PAGE_SIZE; 1083 } 1084 rqstp->rq_respages = &rqstp->rq_pages[pnum]; 1085 1086 /* Now receive data */ 1087 len = svc_recvfrom(rqstp, vec, pnum, len); 1088 if (len < 0) 1089 goto err_again; 1090 1091 /* 1092 * Account for the 8 bytes we read earlier 1093 */ 1094 len += 8; 1095 1096 if (req) { 1097 xprt_complete_rqst(req->rq_task, len); 1098 len = 0; 1099 goto out; 1100 } 1101 dprintk("svc: TCP complete record (%d bytes)\n", len); 1102 rqstp->rq_arg.len = len; 1103 rqstp->rq_arg.page_base = 0; 1104 if (len <= rqstp->rq_arg.head[0].iov_len) { 1105 rqstp->rq_arg.head[0].iov_len = len; 1106 rqstp->rq_arg.page_len = 0; 1107 } else { 1108 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len; 1109 } 1110 1111 rqstp->rq_xprt_ctxt = NULL; 1112 rqstp->rq_prot = IPPROTO_TCP; 1113 1114 out: 1115 /* Reset TCP read info */ 1116 svsk->sk_reclen = 0; 1117 svsk->sk_tcplen = 0; 1118 1119 svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt); 1120 if (serv->sv_stats) 1121 serv->sv_stats->nettcpcnt++; 1122 1123 return len; 1124 1125 err_again: 1126 if (len == -EAGAIN) { 1127 dprintk("RPC: TCP recvfrom got EAGAIN\n"); 1128 return len; 1129 } 1130 error: 1131 if (len != -EAGAIN) { 1132 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n", 1133 svsk->sk_xprt.xpt_server->sv_name, -len); 1134 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags); 1135 } 1136 return -EAGAIN; 1137 } 1138 1139 /* 1140 * Send out data on TCP socket. 1141 */ 1142 static int svc_tcp_sendto(struct svc_rqst *rqstp) 1143 { 1144 struct xdr_buf *xbufp = &rqstp->rq_res; 1145 int sent; 1146 __be32 reclen; 1147 1148 /* Set up the first element of the reply kvec. 1149 * Any other kvecs that may be in use have been taken 1150 * care of by the server implementation itself. 1151 */ 1152 reclen = htonl(0x80000000|((xbufp->len ) - 4)); 1153 memcpy(xbufp->head[0].iov_base, &reclen, 4); 1154 1155 sent = svc_sendto(rqstp, &rqstp->rq_res); 1156 if (sent != xbufp->len) { 1157 printk(KERN_NOTICE 1158 "rpc-srv/tcp: %s: %s %d when sending %d bytes " 1159 "- shutting down socket\n", 1160 rqstp->rq_xprt->xpt_server->sv_name, 1161 (sent<0)?"got error":"sent only", 1162 sent, xbufp->len); 1163 set_bit(XPT_CLOSE, &rqstp->rq_xprt->xpt_flags); 1164 svc_xprt_enqueue(rqstp->rq_xprt); 1165 sent = -EAGAIN; 1166 } 1167 return sent; 1168 } 1169 1170 /* 1171 * Setup response header. TCP has a 4B record length field. 1172 */ 1173 static void svc_tcp_prep_reply_hdr(struct svc_rqst *rqstp) 1174 { 1175 struct kvec *resv = &rqstp->rq_res.head[0]; 1176 1177 /* tcp needs a space for the record length... */ 1178 svc_putnl(resv, 0); 1179 } 1180 1181 static int svc_tcp_has_wspace(struct svc_xprt *xprt) 1182 { 1183 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1184 struct svc_serv *serv = svsk->sk_xprt.xpt_server; 1185 int required; 1186 1187 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) 1188 return 1; 1189 required = atomic_read(&xprt->xpt_reserved) + serv->sv_max_mesg; 1190 if (sk_stream_wspace(svsk->sk_sk) >= required) 1191 return 1; 1192 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 1193 return 0; 1194 } 1195 1196 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv, 1197 struct net *net, 1198 struct sockaddr *sa, int salen, 1199 int flags) 1200 { 1201 return svc_create_socket(serv, IPPROTO_TCP, net, sa, salen, flags); 1202 } 1203 1204 #if defined(CONFIG_NFS_V4_1) 1205 static struct svc_xprt *svc_bc_create_socket(struct svc_serv *, int, 1206 struct net *, struct sockaddr *, 1207 int, int); 1208 static void svc_bc_sock_free(struct svc_xprt *xprt); 1209 1210 static struct svc_xprt *svc_bc_tcp_create(struct svc_serv *serv, 1211 struct net *net, 1212 struct sockaddr *sa, int salen, 1213 int flags) 1214 { 1215 return svc_bc_create_socket(serv, IPPROTO_TCP, net, sa, salen, flags); 1216 } 1217 1218 static void svc_bc_tcp_sock_detach(struct svc_xprt *xprt) 1219 { 1220 } 1221 1222 static struct svc_xprt_ops svc_tcp_bc_ops = { 1223 .xpo_create = svc_bc_tcp_create, 1224 .xpo_detach = svc_bc_tcp_sock_detach, 1225 .xpo_free = svc_bc_sock_free, 1226 .xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr, 1227 }; 1228 1229 static struct svc_xprt_class svc_tcp_bc_class = { 1230 .xcl_name = "tcp-bc", 1231 .xcl_owner = THIS_MODULE, 1232 .xcl_ops = &svc_tcp_bc_ops, 1233 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP, 1234 }; 1235 1236 static void svc_init_bc_xprt_sock(void) 1237 { 1238 svc_reg_xprt_class(&svc_tcp_bc_class); 1239 } 1240 1241 static void svc_cleanup_bc_xprt_sock(void) 1242 { 1243 svc_unreg_xprt_class(&svc_tcp_bc_class); 1244 } 1245 #else /* CONFIG_NFS_V4_1 */ 1246 static void svc_init_bc_xprt_sock(void) 1247 { 1248 } 1249 1250 static void svc_cleanup_bc_xprt_sock(void) 1251 { 1252 } 1253 #endif /* CONFIG_NFS_V4_1 */ 1254 1255 static struct svc_xprt_ops svc_tcp_ops = { 1256 .xpo_create = svc_tcp_create, 1257 .xpo_recvfrom = svc_tcp_recvfrom, 1258 .xpo_sendto = svc_tcp_sendto, 1259 .xpo_release_rqst = svc_release_skb, 1260 .xpo_detach = svc_tcp_sock_detach, 1261 .xpo_free = svc_sock_free, 1262 .xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr, 1263 .xpo_has_wspace = svc_tcp_has_wspace, 1264 .xpo_accept = svc_tcp_accept, 1265 }; 1266 1267 static struct svc_xprt_class svc_tcp_class = { 1268 .xcl_name = "tcp", 1269 .xcl_owner = THIS_MODULE, 1270 .xcl_ops = &svc_tcp_ops, 1271 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP, 1272 }; 1273 1274 void svc_init_xprt_sock(void) 1275 { 1276 svc_reg_xprt_class(&svc_tcp_class); 1277 svc_reg_xprt_class(&svc_udp_class); 1278 svc_init_bc_xprt_sock(); 1279 } 1280 1281 void svc_cleanup_xprt_sock(void) 1282 { 1283 svc_unreg_xprt_class(&svc_tcp_class); 1284 svc_unreg_xprt_class(&svc_udp_class); 1285 svc_cleanup_bc_xprt_sock(); 1286 } 1287 1288 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv) 1289 { 1290 struct sock *sk = svsk->sk_sk; 1291 1292 svc_xprt_init(&svc_tcp_class, &svsk->sk_xprt, serv); 1293 set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags); 1294 if (sk->sk_state == TCP_LISTEN) { 1295 dprintk("setting up TCP socket for listening\n"); 1296 set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags); 1297 sk->sk_data_ready = svc_tcp_listen_data_ready; 1298 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); 1299 } else { 1300 dprintk("setting up TCP socket for reading\n"); 1301 sk->sk_state_change = svc_tcp_state_change; 1302 sk->sk_data_ready = svc_tcp_data_ready; 1303 sk->sk_write_space = svc_tcp_write_space; 1304 1305 svsk->sk_reclen = 0; 1306 svsk->sk_tcplen = 0; 1307 1308 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF; 1309 1310 /* initialise setting must have enough space to 1311 * receive and respond to one request. 1312 * svc_tcp_recvfrom will re-adjust if necessary 1313 */ 1314 svc_sock_setbufsize(svsk->sk_sock, 1315 3 * svsk->sk_xprt.xpt_server->sv_max_mesg, 1316 3 * svsk->sk_xprt.xpt_server->sv_max_mesg); 1317 1318 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 1319 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); 1320 if (sk->sk_state != TCP_ESTABLISHED) 1321 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags); 1322 } 1323 } 1324 1325 void svc_sock_update_bufs(struct svc_serv *serv) 1326 { 1327 /* 1328 * The number of server threads has changed. Update 1329 * rcvbuf and sndbuf accordingly on all sockets 1330 */ 1331 struct svc_sock *svsk; 1332 1333 spin_lock_bh(&serv->sv_lock); 1334 list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) 1335 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 1336 list_for_each_entry(svsk, &serv->sv_tempsocks, sk_xprt.xpt_list) 1337 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); 1338 spin_unlock_bh(&serv->sv_lock); 1339 } 1340 EXPORT_SYMBOL_GPL(svc_sock_update_bufs); 1341 1342 /* 1343 * Initialize socket for RPC use and create svc_sock struct 1344 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF. 1345 */ 1346 static struct svc_sock *svc_setup_socket(struct svc_serv *serv, 1347 struct socket *sock, 1348 int *errp, int flags) 1349 { 1350 struct svc_sock *svsk; 1351 struct sock *inet; 1352 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS); 1353 1354 dprintk("svc: svc_setup_socket %p\n", sock); 1355 if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) { 1356 *errp = -ENOMEM; 1357 return NULL; 1358 } 1359 1360 inet = sock->sk; 1361 1362 /* Register socket with portmapper */ 1363 if (*errp >= 0 && pmap_register) 1364 *errp = svc_register(serv, inet->sk_family, inet->sk_protocol, 1365 ntohs(inet_sk(inet)->inet_sport)); 1366 1367 if (*errp < 0) { 1368 kfree(svsk); 1369 return NULL; 1370 } 1371 1372 inet->sk_user_data = svsk; 1373 svsk->sk_sock = sock; 1374 svsk->sk_sk = inet; 1375 svsk->sk_ostate = inet->sk_state_change; 1376 svsk->sk_odata = inet->sk_data_ready; 1377 svsk->sk_owspace = inet->sk_write_space; 1378 1379 /* Initialize the socket */ 1380 if (sock->type == SOCK_DGRAM) 1381 svc_udp_init(svsk, serv); 1382 else 1383 svc_tcp_init(svsk, serv); 1384 1385 dprintk("svc: svc_setup_socket created %p (inet %p)\n", 1386 svsk, svsk->sk_sk); 1387 1388 return svsk; 1389 } 1390 1391 /** 1392 * svc_addsock - add a listener socket to an RPC service 1393 * @serv: pointer to RPC service to which to add a new listener 1394 * @fd: file descriptor of the new listener 1395 * @name_return: pointer to buffer to fill in with name of listener 1396 * @len: size of the buffer 1397 * 1398 * Fills in socket name and returns positive length of name if successful. 1399 * Name is terminated with '\n'. On error, returns a negative errno 1400 * value. 1401 */ 1402 int svc_addsock(struct svc_serv *serv, const int fd, char *name_return, 1403 const size_t len) 1404 { 1405 int err = 0; 1406 struct socket *so = sockfd_lookup(fd, &err); 1407 struct svc_sock *svsk = NULL; 1408 1409 if (!so) 1410 return err; 1411 if ((so->sk->sk_family != PF_INET) && (so->sk->sk_family != PF_INET6)) 1412 err = -EAFNOSUPPORT; 1413 else if (so->sk->sk_protocol != IPPROTO_TCP && 1414 so->sk->sk_protocol != IPPROTO_UDP) 1415 err = -EPROTONOSUPPORT; 1416 else if (so->state > SS_UNCONNECTED) 1417 err = -EISCONN; 1418 else { 1419 if (!try_module_get(THIS_MODULE)) 1420 err = -ENOENT; 1421 else 1422 svsk = svc_setup_socket(serv, so, &err, 1423 SVC_SOCK_DEFAULTS); 1424 if (svsk) { 1425 struct sockaddr_storage addr; 1426 struct sockaddr *sin = (struct sockaddr *)&addr; 1427 int salen; 1428 if (kernel_getsockname(svsk->sk_sock, sin, &salen) == 0) 1429 svc_xprt_set_local(&svsk->sk_xprt, sin, salen); 1430 clear_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags); 1431 spin_lock_bh(&serv->sv_lock); 1432 list_add(&svsk->sk_xprt.xpt_list, &serv->sv_permsocks); 1433 spin_unlock_bh(&serv->sv_lock); 1434 svc_xprt_received(&svsk->sk_xprt); 1435 err = 0; 1436 } else 1437 module_put(THIS_MODULE); 1438 } 1439 if (err) { 1440 sockfd_put(so); 1441 return err; 1442 } 1443 return svc_one_sock_name(svsk, name_return, len); 1444 } 1445 EXPORT_SYMBOL_GPL(svc_addsock); 1446 1447 /* 1448 * Create socket for RPC service. 1449 */ 1450 static struct svc_xprt *svc_create_socket(struct svc_serv *serv, 1451 int protocol, 1452 struct net *net, 1453 struct sockaddr *sin, int len, 1454 int flags) 1455 { 1456 struct svc_sock *svsk; 1457 struct socket *sock; 1458 int error; 1459 int type; 1460 struct sockaddr_storage addr; 1461 struct sockaddr *newsin = (struct sockaddr *)&addr; 1462 int newlen; 1463 int family; 1464 int val; 1465 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]); 1466 1467 dprintk("svc: svc_create_socket(%s, %d, %s)\n", 1468 serv->sv_program->pg_name, protocol, 1469 __svc_print_addr(sin, buf, sizeof(buf))); 1470 1471 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) { 1472 printk(KERN_WARNING "svc: only UDP and TCP " 1473 "sockets supported\n"); 1474 return ERR_PTR(-EINVAL); 1475 } 1476 1477 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM; 1478 switch (sin->sa_family) { 1479 case AF_INET6: 1480 family = PF_INET6; 1481 break; 1482 case AF_INET: 1483 family = PF_INET; 1484 break; 1485 default: 1486 return ERR_PTR(-EINVAL); 1487 } 1488 1489 error = __sock_create(net, family, type, protocol, &sock, 1); 1490 if (error < 0) 1491 return ERR_PTR(error); 1492 1493 svc_reclassify_socket(sock); 1494 1495 /* 1496 * If this is an PF_INET6 listener, we want to avoid 1497 * getting requests from IPv4 remotes. Those should 1498 * be shunted to a PF_INET listener via rpcbind. 1499 */ 1500 val = 1; 1501 if (family == PF_INET6) 1502 kernel_setsockopt(sock, SOL_IPV6, IPV6_V6ONLY, 1503 (char *)&val, sizeof(val)); 1504 1505 if (type == SOCK_STREAM) 1506 sock->sk->sk_reuse = 1; /* allow address reuse */ 1507 error = kernel_bind(sock, sin, len); 1508 if (error < 0) 1509 goto bummer; 1510 1511 newlen = len; 1512 error = kernel_getsockname(sock, newsin, &newlen); 1513 if (error < 0) 1514 goto bummer; 1515 1516 if (protocol == IPPROTO_TCP) { 1517 if ((error = kernel_listen(sock, 64)) < 0) 1518 goto bummer; 1519 } 1520 1521 if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) { 1522 svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen); 1523 return (struct svc_xprt *)svsk; 1524 } 1525 1526 bummer: 1527 dprintk("svc: svc_create_socket error = %d\n", -error); 1528 sock_release(sock); 1529 return ERR_PTR(error); 1530 } 1531 1532 /* 1533 * Detach the svc_sock from the socket so that no 1534 * more callbacks occur. 1535 */ 1536 static void svc_sock_detach(struct svc_xprt *xprt) 1537 { 1538 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1539 struct sock *sk = svsk->sk_sk; 1540 wait_queue_head_t *wq; 1541 1542 dprintk("svc: svc_sock_detach(%p)\n", svsk); 1543 1544 /* put back the old socket callbacks */ 1545 sk->sk_state_change = svsk->sk_ostate; 1546 sk->sk_data_ready = svsk->sk_odata; 1547 sk->sk_write_space = svsk->sk_owspace; 1548 1549 wq = sk_sleep(sk); 1550 if (wq && waitqueue_active(wq)) 1551 wake_up_interruptible(wq); 1552 } 1553 1554 /* 1555 * Disconnect the socket, and reset the callbacks 1556 */ 1557 static void svc_tcp_sock_detach(struct svc_xprt *xprt) 1558 { 1559 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1560 1561 dprintk("svc: svc_tcp_sock_detach(%p)\n", svsk); 1562 1563 svc_sock_detach(xprt); 1564 1565 if (!test_bit(XPT_LISTENER, &xprt->xpt_flags)) 1566 kernel_sock_shutdown(svsk->sk_sock, SHUT_RDWR); 1567 } 1568 1569 /* 1570 * Free the svc_sock's socket resources and the svc_sock itself. 1571 */ 1572 static void svc_sock_free(struct svc_xprt *xprt) 1573 { 1574 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); 1575 dprintk("svc: svc_sock_free(%p)\n", svsk); 1576 1577 if (svsk->sk_sock->file) 1578 sockfd_put(svsk->sk_sock); 1579 else 1580 sock_release(svsk->sk_sock); 1581 kfree(svsk); 1582 } 1583 1584 #if defined(CONFIG_NFS_V4_1) 1585 /* 1586 * Create a back channel svc_xprt which shares the fore channel socket. 1587 */ 1588 static struct svc_xprt *svc_bc_create_socket(struct svc_serv *serv, 1589 int protocol, 1590 struct net *net, 1591 struct sockaddr *sin, int len, 1592 int flags) 1593 { 1594 struct svc_sock *svsk; 1595 struct svc_xprt *xprt; 1596 1597 if (protocol != IPPROTO_TCP) { 1598 printk(KERN_WARNING "svc: only TCP sockets" 1599 " supported on shared back channel\n"); 1600 return ERR_PTR(-EINVAL); 1601 } 1602 1603 svsk = kzalloc(sizeof(*svsk), GFP_KERNEL); 1604 if (!svsk) 1605 return ERR_PTR(-ENOMEM); 1606 1607 xprt = &svsk->sk_xprt; 1608 svc_xprt_init(&svc_tcp_bc_class, xprt, serv); 1609 1610 serv->sv_bc_xprt = xprt; 1611 1612 return xprt; 1613 } 1614 1615 /* 1616 * Free a back channel svc_sock. 1617 */ 1618 static void svc_bc_sock_free(struct svc_xprt *xprt) 1619 { 1620 if (xprt) 1621 kfree(container_of(xprt, struct svc_sock, sk_xprt)); 1622 } 1623 #endif /* CONFIG_NFS_V4_1 */ 1624