1 /* 2 * linux/net/sunrpc/svcsock.c 3 * 4 * These are the RPC server socket internals. 5 * 6 * The server scheduling algorithm does not always distribute the load 7 * evenly when servicing a single client. May need to modify the 8 * svc_sock_enqueue procedure... 9 * 10 * TCP support is largely untested and may be a little slow. The problem 11 * is that we currently do two separate recvfrom's, one for the 4-byte 12 * record length, and the second for the actual record. This could possibly 13 * be improved by always reading a minimum size of around 100 bytes and 14 * tucking any superfluous bytes away in a temporary store. Still, that 15 * leaves write requests out in the rain. An alternative may be to peek at 16 * the first skb in the queue, and if it matches the next TCP sequence 17 * number, to extract the record marker. Yuck. 18 * 19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 20 */ 21 22 #include <linux/sched.h> 23 #include <linux/errno.h> 24 #include <linux/fcntl.h> 25 #include <linux/net.h> 26 #include <linux/in.h> 27 #include <linux/inet.h> 28 #include <linux/udp.h> 29 #include <linux/tcp.h> 30 #include <linux/unistd.h> 31 #include <linux/slab.h> 32 #include <linux/netdevice.h> 33 #include <linux/skbuff.h> 34 #include <net/sock.h> 35 #include <net/checksum.h> 36 #include <net/ip.h> 37 #include <net/tcp_states.h> 38 #include <asm/uaccess.h> 39 #include <asm/ioctls.h> 40 41 #include <linux/sunrpc/types.h> 42 #include <linux/sunrpc/xdr.h> 43 #include <linux/sunrpc/svcsock.h> 44 #include <linux/sunrpc/stats.h> 45 46 /* SMP locking strategy: 47 * 48 * svc_serv->sv_lock protects most stuff for that service. 49 * 50 * Some flags can be set to certain values at any time 51 * providing that certain rules are followed: 52 * 53 * SK_BUSY can be set to 0 at any time. 54 * svc_sock_enqueue must be called afterwards 55 * SK_CONN, SK_DATA, can be set or cleared at any time. 56 * after a set, svc_sock_enqueue must be called. 57 * after a clear, the socket must be read/accepted 58 * if this succeeds, it must be set again. 59 * SK_CLOSE can set at any time. It is never cleared. 60 * 61 */ 62 63 #define RPCDBG_FACILITY RPCDBG_SVCSOCK 64 65 66 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *, 67 int *errp, int pmap_reg); 68 static void svc_udp_data_ready(struct sock *, int); 69 static int svc_udp_recvfrom(struct svc_rqst *); 70 static int svc_udp_sendto(struct svc_rqst *); 71 72 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk); 73 static int svc_deferred_recv(struct svc_rqst *rqstp); 74 static struct cache_deferred_req *svc_defer(struct cache_req *req); 75 76 /* 77 * Queue up an idle server thread. Must have serv->sv_lock held. 78 * Note: this is really a stack rather than a queue, so that we only 79 * use as many different threads as we need, and the rest don't polute 80 * the cache. 81 */ 82 static inline void 83 svc_serv_enqueue(struct svc_serv *serv, struct svc_rqst *rqstp) 84 { 85 list_add(&rqstp->rq_list, &serv->sv_threads); 86 } 87 88 /* 89 * Dequeue an nfsd thread. Must have serv->sv_lock held. 90 */ 91 static inline void 92 svc_serv_dequeue(struct svc_serv *serv, struct svc_rqst *rqstp) 93 { 94 list_del(&rqstp->rq_list); 95 } 96 97 /* 98 * Release an skbuff after use 99 */ 100 static inline void 101 svc_release_skb(struct svc_rqst *rqstp) 102 { 103 struct sk_buff *skb = rqstp->rq_skbuff; 104 struct svc_deferred_req *dr = rqstp->rq_deferred; 105 106 if (skb) { 107 rqstp->rq_skbuff = NULL; 108 109 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb); 110 skb_free_datagram(rqstp->rq_sock->sk_sk, skb); 111 } 112 if (dr) { 113 rqstp->rq_deferred = NULL; 114 kfree(dr); 115 } 116 } 117 118 /* 119 * Any space to write? 120 */ 121 static inline unsigned long 122 svc_sock_wspace(struct svc_sock *svsk) 123 { 124 int wspace; 125 126 if (svsk->sk_sock->type == SOCK_STREAM) 127 wspace = sk_stream_wspace(svsk->sk_sk); 128 else 129 wspace = sock_wspace(svsk->sk_sk); 130 131 return wspace; 132 } 133 134 /* 135 * Queue up a socket with data pending. If there are idle nfsd 136 * processes, wake 'em up. 137 * 138 */ 139 static void 140 svc_sock_enqueue(struct svc_sock *svsk) 141 { 142 struct svc_serv *serv = svsk->sk_server; 143 struct svc_rqst *rqstp; 144 145 if (!(svsk->sk_flags & 146 ( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) )) 147 return; 148 if (test_bit(SK_DEAD, &svsk->sk_flags)) 149 return; 150 151 spin_lock_bh(&serv->sv_lock); 152 153 if (!list_empty(&serv->sv_threads) && 154 !list_empty(&serv->sv_sockets)) 155 printk(KERN_ERR 156 "svc_sock_enqueue: threads and sockets both waiting??\n"); 157 158 if (test_bit(SK_DEAD, &svsk->sk_flags)) { 159 /* Don't enqueue dead sockets */ 160 dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk); 161 goto out_unlock; 162 } 163 164 if (test_bit(SK_BUSY, &svsk->sk_flags)) { 165 /* Don't enqueue socket while daemon is receiving */ 166 dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk); 167 goto out_unlock; 168 } 169 170 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 171 if (((svsk->sk_reserved + serv->sv_bufsz)*2 172 > svc_sock_wspace(svsk)) 173 && !test_bit(SK_CLOSE, &svsk->sk_flags) 174 && !test_bit(SK_CONN, &svsk->sk_flags)) { 175 /* Don't enqueue while not enough space for reply */ 176 dprintk("svc: socket %p no space, %d*2 > %ld, not enqueued\n", 177 svsk->sk_sk, svsk->sk_reserved+serv->sv_bufsz, 178 svc_sock_wspace(svsk)); 179 goto out_unlock; 180 } 181 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 182 183 /* Mark socket as busy. It will remain in this state until the 184 * server has processed all pending data and put the socket back 185 * on the idle list. 186 */ 187 set_bit(SK_BUSY, &svsk->sk_flags); 188 189 if (!list_empty(&serv->sv_threads)) { 190 rqstp = list_entry(serv->sv_threads.next, 191 struct svc_rqst, 192 rq_list); 193 dprintk("svc: socket %p served by daemon %p\n", 194 svsk->sk_sk, rqstp); 195 svc_serv_dequeue(serv, rqstp); 196 if (rqstp->rq_sock) 197 printk(KERN_ERR 198 "svc_sock_enqueue: server %p, rq_sock=%p!\n", 199 rqstp, rqstp->rq_sock); 200 rqstp->rq_sock = svsk; 201 svsk->sk_inuse++; 202 rqstp->rq_reserved = serv->sv_bufsz; 203 svsk->sk_reserved += rqstp->rq_reserved; 204 wake_up(&rqstp->rq_wait); 205 } else { 206 dprintk("svc: socket %p put into queue\n", svsk->sk_sk); 207 list_add_tail(&svsk->sk_ready, &serv->sv_sockets); 208 } 209 210 out_unlock: 211 spin_unlock_bh(&serv->sv_lock); 212 } 213 214 /* 215 * Dequeue the first socket. Must be called with the serv->sv_lock held. 216 */ 217 static inline struct svc_sock * 218 svc_sock_dequeue(struct svc_serv *serv) 219 { 220 struct svc_sock *svsk; 221 222 if (list_empty(&serv->sv_sockets)) 223 return NULL; 224 225 svsk = list_entry(serv->sv_sockets.next, 226 struct svc_sock, sk_ready); 227 list_del_init(&svsk->sk_ready); 228 229 dprintk("svc: socket %p dequeued, inuse=%d\n", 230 svsk->sk_sk, svsk->sk_inuse); 231 232 return svsk; 233 } 234 235 /* 236 * Having read something from a socket, check whether it 237 * needs to be re-enqueued. 238 * Note: SK_DATA only gets cleared when a read-attempt finds 239 * no (or insufficient) data. 240 */ 241 static inline void 242 svc_sock_received(struct svc_sock *svsk) 243 { 244 clear_bit(SK_BUSY, &svsk->sk_flags); 245 svc_sock_enqueue(svsk); 246 } 247 248 249 /** 250 * svc_reserve - change the space reserved for the reply to a request. 251 * @rqstp: The request in question 252 * @space: new max space to reserve 253 * 254 * Each request reserves some space on the output queue of the socket 255 * to make sure the reply fits. This function reduces that reserved 256 * space to be the amount of space used already, plus @space. 257 * 258 */ 259 void svc_reserve(struct svc_rqst *rqstp, int space) 260 { 261 space += rqstp->rq_res.head[0].iov_len; 262 263 if (space < rqstp->rq_reserved) { 264 struct svc_sock *svsk = rqstp->rq_sock; 265 spin_lock_bh(&svsk->sk_server->sv_lock); 266 svsk->sk_reserved -= (rqstp->rq_reserved - space); 267 rqstp->rq_reserved = space; 268 spin_unlock_bh(&svsk->sk_server->sv_lock); 269 270 svc_sock_enqueue(svsk); 271 } 272 } 273 274 /* 275 * Release a socket after use. 276 */ 277 static inline void 278 svc_sock_put(struct svc_sock *svsk) 279 { 280 struct svc_serv *serv = svsk->sk_server; 281 282 spin_lock_bh(&serv->sv_lock); 283 if (!--(svsk->sk_inuse) && test_bit(SK_DEAD, &svsk->sk_flags)) { 284 spin_unlock_bh(&serv->sv_lock); 285 dprintk("svc: releasing dead socket\n"); 286 sock_release(svsk->sk_sock); 287 kfree(svsk); 288 } 289 else 290 spin_unlock_bh(&serv->sv_lock); 291 } 292 293 static void 294 svc_sock_release(struct svc_rqst *rqstp) 295 { 296 struct svc_sock *svsk = rqstp->rq_sock; 297 298 svc_release_skb(rqstp); 299 300 svc_free_allpages(rqstp); 301 rqstp->rq_res.page_len = 0; 302 rqstp->rq_res.page_base = 0; 303 304 305 /* Reset response buffer and release 306 * the reservation. 307 * But first, check that enough space was reserved 308 * for the reply, otherwise we have a bug! 309 */ 310 if ((rqstp->rq_res.len) > rqstp->rq_reserved) 311 printk(KERN_ERR "RPC request reserved %d but used %d\n", 312 rqstp->rq_reserved, 313 rqstp->rq_res.len); 314 315 rqstp->rq_res.head[0].iov_len = 0; 316 svc_reserve(rqstp, 0); 317 rqstp->rq_sock = NULL; 318 319 svc_sock_put(svsk); 320 } 321 322 /* 323 * External function to wake up a server waiting for data 324 */ 325 void 326 svc_wake_up(struct svc_serv *serv) 327 { 328 struct svc_rqst *rqstp; 329 330 spin_lock_bh(&serv->sv_lock); 331 if (!list_empty(&serv->sv_threads)) { 332 rqstp = list_entry(serv->sv_threads.next, 333 struct svc_rqst, 334 rq_list); 335 dprintk("svc: daemon %p woken up.\n", rqstp); 336 /* 337 svc_serv_dequeue(serv, rqstp); 338 rqstp->rq_sock = NULL; 339 */ 340 wake_up(&rqstp->rq_wait); 341 } 342 spin_unlock_bh(&serv->sv_lock); 343 } 344 345 /* 346 * Generic sendto routine 347 */ 348 static int 349 svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr) 350 { 351 struct svc_sock *svsk = rqstp->rq_sock; 352 struct socket *sock = svsk->sk_sock; 353 int slen; 354 char buffer[CMSG_SPACE(sizeof(struct in_pktinfo))]; 355 struct cmsghdr *cmh = (struct cmsghdr *)buffer; 356 struct in_pktinfo *pki = (struct in_pktinfo *)CMSG_DATA(cmh); 357 int len = 0; 358 int result; 359 int size; 360 struct page **ppage = xdr->pages; 361 size_t base = xdr->page_base; 362 unsigned int pglen = xdr->page_len; 363 unsigned int flags = MSG_MORE; 364 365 slen = xdr->len; 366 367 if (rqstp->rq_prot == IPPROTO_UDP) { 368 /* set the source and destination */ 369 struct msghdr msg; 370 msg.msg_name = &rqstp->rq_addr; 371 msg.msg_namelen = sizeof(rqstp->rq_addr); 372 msg.msg_iov = NULL; 373 msg.msg_iovlen = 0; 374 msg.msg_flags = MSG_MORE; 375 376 msg.msg_control = cmh; 377 msg.msg_controllen = sizeof(buffer); 378 cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); 379 cmh->cmsg_level = SOL_IP; 380 cmh->cmsg_type = IP_PKTINFO; 381 pki->ipi_ifindex = 0; 382 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr; 383 384 if (sock_sendmsg(sock, &msg, 0) < 0) 385 goto out; 386 } 387 388 /* send head */ 389 if (slen == xdr->head[0].iov_len) 390 flags = 0; 391 len = sock->ops->sendpage(sock, rqstp->rq_respages[0], 0, xdr->head[0].iov_len, flags); 392 if (len != xdr->head[0].iov_len) 393 goto out; 394 slen -= xdr->head[0].iov_len; 395 if (slen == 0) 396 goto out; 397 398 /* send page data */ 399 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen; 400 while (pglen > 0) { 401 if (slen == size) 402 flags = 0; 403 result = sock->ops->sendpage(sock, *ppage, base, size, flags); 404 if (result > 0) 405 len += result; 406 if (result != size) 407 goto out; 408 slen -= size; 409 pglen -= size; 410 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen; 411 base = 0; 412 ppage++; 413 } 414 /* send tail */ 415 if (xdr->tail[0].iov_len) { 416 result = sock->ops->sendpage(sock, rqstp->rq_respages[rqstp->rq_restailpage], 417 ((unsigned long)xdr->tail[0].iov_base)& (PAGE_SIZE-1), 418 xdr->tail[0].iov_len, 0); 419 420 if (result > 0) 421 len += result; 422 } 423 out: 424 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %x)\n", 425 rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len, xdr->len, len, 426 rqstp->rq_addr.sin_addr.s_addr); 427 428 return len; 429 } 430 431 /* 432 * Check input queue length 433 */ 434 static int 435 svc_recv_available(struct svc_sock *svsk) 436 { 437 mm_segment_t oldfs; 438 struct socket *sock = svsk->sk_sock; 439 int avail, err; 440 441 oldfs = get_fs(); set_fs(KERNEL_DS); 442 err = sock->ops->ioctl(sock, TIOCINQ, (unsigned long) &avail); 443 set_fs(oldfs); 444 445 return (err >= 0)? avail : err; 446 } 447 448 /* 449 * Generic recvfrom routine. 450 */ 451 static int 452 svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen) 453 { 454 struct msghdr msg; 455 struct socket *sock; 456 int len, alen; 457 458 rqstp->rq_addrlen = sizeof(rqstp->rq_addr); 459 sock = rqstp->rq_sock->sk_sock; 460 461 msg.msg_name = &rqstp->rq_addr; 462 msg.msg_namelen = sizeof(rqstp->rq_addr); 463 msg.msg_control = NULL; 464 msg.msg_controllen = 0; 465 466 msg.msg_flags = MSG_DONTWAIT; 467 468 len = kernel_recvmsg(sock, &msg, iov, nr, buflen, MSG_DONTWAIT); 469 470 /* sock_recvmsg doesn't fill in the name/namelen, so we must.. 471 * possibly we should cache this in the svc_sock structure 472 * at accept time. FIXME 473 */ 474 alen = sizeof(rqstp->rq_addr); 475 sock->ops->getname(sock, (struct sockaddr *)&rqstp->rq_addr, &alen, 1); 476 477 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n", 478 rqstp->rq_sock, iov[0].iov_base, iov[0].iov_len, len); 479 480 return len; 481 } 482 483 /* 484 * Set socket snd and rcv buffer lengths 485 */ 486 static inline void 487 svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv) 488 { 489 #if 0 490 mm_segment_t oldfs; 491 oldfs = get_fs(); set_fs(KERNEL_DS); 492 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF, 493 (char*)&snd, sizeof(snd)); 494 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF, 495 (char*)&rcv, sizeof(rcv)); 496 #else 497 /* sock_setsockopt limits use to sysctl_?mem_max, 498 * which isn't acceptable. Until that is made conditional 499 * on not having CAP_SYS_RESOURCE or similar, we go direct... 500 * DaveM said I could! 501 */ 502 lock_sock(sock->sk); 503 sock->sk->sk_sndbuf = snd * 2; 504 sock->sk->sk_rcvbuf = rcv * 2; 505 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK; 506 release_sock(sock->sk); 507 #endif 508 } 509 /* 510 * INET callback when data has been received on the socket. 511 */ 512 static void 513 svc_udp_data_ready(struct sock *sk, int count) 514 { 515 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data); 516 517 if (!svsk) 518 goto out; 519 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n", 520 svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags)); 521 set_bit(SK_DATA, &svsk->sk_flags); 522 svc_sock_enqueue(svsk); 523 out: 524 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 525 wake_up_interruptible(sk->sk_sleep); 526 } 527 528 /* 529 * INET callback when space is newly available on the socket. 530 */ 531 static void 532 svc_write_space(struct sock *sk) 533 { 534 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data); 535 536 if (svsk) { 537 dprintk("svc: socket %p(inet %p), write_space busy=%d\n", 538 svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags)); 539 svc_sock_enqueue(svsk); 540 } 541 542 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) { 543 printk(KERN_WARNING "RPC svc_write_space: some sleeping on %p\n", 544 svsk); 545 wake_up_interruptible(sk->sk_sleep); 546 } 547 } 548 549 /* 550 * Receive a datagram from a UDP socket. 551 */ 552 extern int 553 csum_partial_copy_to_xdr(struct xdr_buf *xdr, struct sk_buff *skb); 554 555 static int 556 svc_udp_recvfrom(struct svc_rqst *rqstp) 557 { 558 struct svc_sock *svsk = rqstp->rq_sock; 559 struct svc_serv *serv = svsk->sk_server; 560 struct sk_buff *skb; 561 int err, len; 562 563 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags)) 564 /* udp sockets need large rcvbuf as all pending 565 * requests are still in that buffer. sndbuf must 566 * also be large enough that there is enough space 567 * for one reply per thread. 568 */ 569 svc_sock_setbufsize(svsk->sk_sock, 570 (serv->sv_nrthreads+3) * serv->sv_bufsz, 571 (serv->sv_nrthreads+3) * serv->sv_bufsz); 572 573 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) { 574 svc_sock_received(svsk); 575 return svc_deferred_recv(rqstp); 576 } 577 578 clear_bit(SK_DATA, &svsk->sk_flags); 579 while ((skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err)) == NULL) { 580 if (err == -EAGAIN) { 581 svc_sock_received(svsk); 582 return err; 583 } 584 /* possibly an icmp error */ 585 dprintk("svc: recvfrom returned error %d\n", -err); 586 } 587 if (skb->tstamp.off_sec == 0) { 588 struct timeval tv; 589 590 tv.tv_sec = xtime.tv_sec; 591 tv.tv_usec = xtime.tv_nsec * 1000; 592 skb_set_timestamp(skb, &tv); 593 /* Don't enable netstamp, sunrpc doesn't 594 need that much accuracy */ 595 } 596 skb_get_timestamp(skb, &svsk->sk_sk->sk_stamp); 597 set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */ 598 599 /* 600 * Maybe more packets - kick another thread ASAP. 601 */ 602 svc_sock_received(svsk); 603 604 len = skb->len - sizeof(struct udphdr); 605 rqstp->rq_arg.len = len; 606 607 rqstp->rq_prot = IPPROTO_UDP; 608 609 /* Get sender address */ 610 rqstp->rq_addr.sin_family = AF_INET; 611 rqstp->rq_addr.sin_port = skb->h.uh->source; 612 rqstp->rq_addr.sin_addr.s_addr = skb->nh.iph->saddr; 613 rqstp->rq_daddr = skb->nh.iph->daddr; 614 615 if (skb_is_nonlinear(skb)) { 616 /* we have to copy */ 617 local_bh_disable(); 618 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) { 619 local_bh_enable(); 620 /* checksum error */ 621 skb_free_datagram(svsk->sk_sk, skb); 622 return 0; 623 } 624 local_bh_enable(); 625 skb_free_datagram(svsk->sk_sk, skb); 626 } else { 627 /* we can use it in-place */ 628 rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr); 629 rqstp->rq_arg.head[0].iov_len = len; 630 if (skb->ip_summed != CHECKSUM_UNNECESSARY) { 631 if ((unsigned short)csum_fold(skb_checksum(skb, 0, skb->len, skb->csum))) { 632 skb_free_datagram(svsk->sk_sk, skb); 633 return 0; 634 } 635 skb->ip_summed = CHECKSUM_UNNECESSARY; 636 } 637 rqstp->rq_skbuff = skb; 638 } 639 640 rqstp->rq_arg.page_base = 0; 641 if (len <= rqstp->rq_arg.head[0].iov_len) { 642 rqstp->rq_arg.head[0].iov_len = len; 643 rqstp->rq_arg.page_len = 0; 644 } else { 645 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len; 646 rqstp->rq_argused += (rqstp->rq_arg.page_len + PAGE_SIZE - 1)/ PAGE_SIZE; 647 } 648 649 if (serv->sv_stats) 650 serv->sv_stats->netudpcnt++; 651 652 return len; 653 } 654 655 static int 656 svc_udp_sendto(struct svc_rqst *rqstp) 657 { 658 int error; 659 660 error = svc_sendto(rqstp, &rqstp->rq_res); 661 if (error == -ECONNREFUSED) 662 /* ICMP error on earlier request. */ 663 error = svc_sendto(rqstp, &rqstp->rq_res); 664 665 return error; 666 } 667 668 static void 669 svc_udp_init(struct svc_sock *svsk) 670 { 671 svsk->sk_sk->sk_data_ready = svc_udp_data_ready; 672 svsk->sk_sk->sk_write_space = svc_write_space; 673 svsk->sk_recvfrom = svc_udp_recvfrom; 674 svsk->sk_sendto = svc_udp_sendto; 675 676 /* initialise setting must have enough space to 677 * receive and respond to one request. 678 * svc_udp_recvfrom will re-adjust if necessary 679 */ 680 svc_sock_setbufsize(svsk->sk_sock, 681 3 * svsk->sk_server->sv_bufsz, 682 3 * svsk->sk_server->sv_bufsz); 683 684 set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */ 685 set_bit(SK_CHNGBUF, &svsk->sk_flags); 686 } 687 688 /* 689 * A data_ready event on a listening socket means there's a connection 690 * pending. Do not use state_change as a substitute for it. 691 */ 692 static void 693 svc_tcp_listen_data_ready(struct sock *sk, int count_unused) 694 { 695 struct svc_sock *svsk; 696 697 dprintk("svc: socket %p TCP (listen) state change %d\n", 698 sk, sk->sk_state); 699 700 if (sk->sk_state != TCP_LISTEN) { 701 /* 702 * This callback may called twice when a new connection 703 * is established as a child socket inherits everything 704 * from a parent LISTEN socket. 705 * 1) data_ready method of the parent socket will be called 706 * when one of child sockets become ESTABLISHED. 707 * 2) data_ready method of the child socket may be called 708 * when it receives data before the socket is accepted. 709 * In case of 2, we should ignore it silently. 710 */ 711 goto out; 712 } 713 if (!(svsk = (struct svc_sock *) sk->sk_user_data)) { 714 printk("svc: socket %p: no user data\n", sk); 715 goto out; 716 } 717 set_bit(SK_CONN, &svsk->sk_flags); 718 svc_sock_enqueue(svsk); 719 out: 720 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 721 wake_up_interruptible_all(sk->sk_sleep); 722 } 723 724 /* 725 * A state change on a connected socket means it's dying or dead. 726 */ 727 static void 728 svc_tcp_state_change(struct sock *sk) 729 { 730 struct svc_sock *svsk; 731 732 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n", 733 sk, sk->sk_state, sk->sk_user_data); 734 735 if (!(svsk = (struct svc_sock *) sk->sk_user_data)) { 736 printk("svc: socket %p: no user data\n", sk); 737 goto out; 738 } 739 set_bit(SK_CLOSE, &svsk->sk_flags); 740 svc_sock_enqueue(svsk); 741 out: 742 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 743 wake_up_interruptible_all(sk->sk_sleep); 744 } 745 746 static void 747 svc_tcp_data_ready(struct sock *sk, int count) 748 { 749 struct svc_sock * svsk; 750 751 dprintk("svc: socket %p TCP data ready (svsk %p)\n", 752 sk, sk->sk_user_data); 753 if (!(svsk = (struct svc_sock *)(sk->sk_user_data))) 754 goto out; 755 set_bit(SK_DATA, &svsk->sk_flags); 756 svc_sock_enqueue(svsk); 757 out: 758 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 759 wake_up_interruptible(sk->sk_sleep); 760 } 761 762 /* 763 * Accept a TCP connection 764 */ 765 static void 766 svc_tcp_accept(struct svc_sock *svsk) 767 { 768 struct sockaddr_in sin; 769 struct svc_serv *serv = svsk->sk_server; 770 struct socket *sock = svsk->sk_sock; 771 struct socket *newsock; 772 struct proto_ops *ops; 773 struct svc_sock *newsvsk; 774 int err, slen; 775 776 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock); 777 if (!sock) 778 return; 779 780 err = sock_create_lite(PF_INET, SOCK_STREAM, IPPROTO_TCP, &newsock); 781 if (err) { 782 if (err == -ENOMEM) 783 printk(KERN_WARNING "%s: no more sockets!\n", 784 serv->sv_name); 785 return; 786 } 787 788 dprintk("svc: tcp_accept %p allocated\n", newsock); 789 newsock->ops = ops = sock->ops; 790 791 clear_bit(SK_CONN, &svsk->sk_flags); 792 if ((err = ops->accept(sock, newsock, O_NONBLOCK)) < 0) { 793 if (err != -EAGAIN && net_ratelimit()) 794 printk(KERN_WARNING "%s: accept failed (err %d)!\n", 795 serv->sv_name, -err); 796 goto failed; /* aborted connection or whatever */ 797 } 798 set_bit(SK_CONN, &svsk->sk_flags); 799 svc_sock_enqueue(svsk); 800 801 slen = sizeof(sin); 802 err = ops->getname(newsock, (struct sockaddr *) &sin, &slen, 1); 803 if (err < 0) { 804 if (net_ratelimit()) 805 printk(KERN_WARNING "%s: peername failed (err %d)!\n", 806 serv->sv_name, -err); 807 goto failed; /* aborted connection or whatever */ 808 } 809 810 /* Ideally, we would want to reject connections from unauthorized 811 * hosts here, but when we get encription, the IP of the host won't 812 * tell us anything. For now just warn about unpriv connections. 813 */ 814 if (ntohs(sin.sin_port) >= 1024) { 815 dprintk(KERN_WARNING 816 "%s: connect from unprivileged port: %u.%u.%u.%u:%d\n", 817 serv->sv_name, 818 NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port)); 819 } 820 821 dprintk("%s: connect from %u.%u.%u.%u:%04x\n", serv->sv_name, 822 NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port)); 823 824 /* make sure that a write doesn't block forever when 825 * low on memory 826 */ 827 newsock->sk->sk_sndtimeo = HZ*30; 828 829 if (!(newsvsk = svc_setup_socket(serv, newsock, &err, 0))) 830 goto failed; 831 832 833 /* make sure that we don't have too many active connections. 834 * If we have, something must be dropped. 835 * 836 * There's no point in trying to do random drop here for 837 * DoS prevention. The NFS clients does 1 reconnect in 15 838 * seconds. An attacker can easily beat that. 839 * 840 * The only somewhat efficient mechanism would be if drop 841 * old connections from the same IP first. But right now 842 * we don't even record the client IP in svc_sock. 843 */ 844 if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) { 845 struct svc_sock *svsk = NULL; 846 spin_lock_bh(&serv->sv_lock); 847 if (!list_empty(&serv->sv_tempsocks)) { 848 if (net_ratelimit()) { 849 /* Try to help the admin */ 850 printk(KERN_NOTICE "%s: too many open TCP " 851 "sockets, consider increasing the " 852 "number of nfsd threads\n", 853 serv->sv_name); 854 printk(KERN_NOTICE "%s: last TCP connect from " 855 "%u.%u.%u.%u:%d\n", 856 serv->sv_name, 857 NIPQUAD(sin.sin_addr.s_addr), 858 ntohs(sin.sin_port)); 859 } 860 /* 861 * Always select the oldest socket. It's not fair, 862 * but so is life 863 */ 864 svsk = list_entry(serv->sv_tempsocks.prev, 865 struct svc_sock, 866 sk_list); 867 set_bit(SK_CLOSE, &svsk->sk_flags); 868 svsk->sk_inuse ++; 869 } 870 spin_unlock_bh(&serv->sv_lock); 871 872 if (svsk) { 873 svc_sock_enqueue(svsk); 874 svc_sock_put(svsk); 875 } 876 877 } 878 879 if (serv->sv_stats) 880 serv->sv_stats->nettcpconn++; 881 882 return; 883 884 failed: 885 sock_release(newsock); 886 return; 887 } 888 889 /* 890 * Receive data from a TCP socket. 891 */ 892 static int 893 svc_tcp_recvfrom(struct svc_rqst *rqstp) 894 { 895 struct svc_sock *svsk = rqstp->rq_sock; 896 struct svc_serv *serv = svsk->sk_server; 897 int len; 898 struct kvec vec[RPCSVC_MAXPAGES]; 899 int pnum, vlen; 900 901 dprintk("svc: tcp_recv %p data %d conn %d close %d\n", 902 svsk, test_bit(SK_DATA, &svsk->sk_flags), 903 test_bit(SK_CONN, &svsk->sk_flags), 904 test_bit(SK_CLOSE, &svsk->sk_flags)); 905 906 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) { 907 svc_sock_received(svsk); 908 return svc_deferred_recv(rqstp); 909 } 910 911 if (test_bit(SK_CLOSE, &svsk->sk_flags)) { 912 svc_delete_socket(svsk); 913 return 0; 914 } 915 916 if (test_bit(SK_CONN, &svsk->sk_flags)) { 917 svc_tcp_accept(svsk); 918 svc_sock_received(svsk); 919 return 0; 920 } 921 922 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags)) 923 /* sndbuf needs to have room for one request 924 * per thread, otherwise we can stall even when the 925 * network isn't a bottleneck. 926 * rcvbuf just needs to be able to hold a few requests. 927 * Normally they will be removed from the queue 928 * as soon a a complete request arrives. 929 */ 930 svc_sock_setbufsize(svsk->sk_sock, 931 (serv->sv_nrthreads+3) * serv->sv_bufsz, 932 3 * serv->sv_bufsz); 933 934 clear_bit(SK_DATA, &svsk->sk_flags); 935 936 /* Receive data. If we haven't got the record length yet, get 937 * the next four bytes. Otherwise try to gobble up as much as 938 * possible up to the complete record length. 939 */ 940 if (svsk->sk_tcplen < 4) { 941 unsigned long want = 4 - svsk->sk_tcplen; 942 struct kvec iov; 943 944 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen; 945 iov.iov_len = want; 946 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0) 947 goto error; 948 svsk->sk_tcplen += len; 949 950 if (len < want) { 951 dprintk("svc: short recvfrom while reading record length (%d of %lu)\n", 952 len, want); 953 svc_sock_received(svsk); 954 return -EAGAIN; /* record header not complete */ 955 } 956 957 svsk->sk_reclen = ntohl(svsk->sk_reclen); 958 if (!(svsk->sk_reclen & 0x80000000)) { 959 /* FIXME: technically, a record can be fragmented, 960 * and non-terminal fragments will not have the top 961 * bit set in the fragment length header. 962 * But apparently no known nfs clients send fragmented 963 * records. */ 964 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx (non-terminal)\n", 965 (unsigned long) svsk->sk_reclen); 966 goto err_delete; 967 } 968 svsk->sk_reclen &= 0x7fffffff; 969 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen); 970 if (svsk->sk_reclen > serv->sv_bufsz) { 971 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx (large)\n", 972 (unsigned long) svsk->sk_reclen); 973 goto err_delete; 974 } 975 } 976 977 /* Check whether enough data is available */ 978 len = svc_recv_available(svsk); 979 if (len < 0) 980 goto error; 981 982 if (len < svsk->sk_reclen) { 983 dprintk("svc: incomplete TCP record (%d of %d)\n", 984 len, svsk->sk_reclen); 985 svc_sock_received(svsk); 986 return -EAGAIN; /* record not complete */ 987 } 988 len = svsk->sk_reclen; 989 set_bit(SK_DATA, &svsk->sk_flags); 990 991 vec[0] = rqstp->rq_arg.head[0]; 992 vlen = PAGE_SIZE; 993 pnum = 1; 994 while (vlen < len) { 995 vec[pnum].iov_base = page_address(rqstp->rq_argpages[rqstp->rq_argused++]); 996 vec[pnum].iov_len = PAGE_SIZE; 997 pnum++; 998 vlen += PAGE_SIZE; 999 } 1000 1001 /* Now receive data */ 1002 len = svc_recvfrom(rqstp, vec, pnum, len); 1003 if (len < 0) 1004 goto error; 1005 1006 dprintk("svc: TCP complete record (%d bytes)\n", len); 1007 rqstp->rq_arg.len = len; 1008 rqstp->rq_arg.page_base = 0; 1009 if (len <= rqstp->rq_arg.head[0].iov_len) { 1010 rqstp->rq_arg.head[0].iov_len = len; 1011 rqstp->rq_arg.page_len = 0; 1012 } else { 1013 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len; 1014 } 1015 1016 rqstp->rq_skbuff = NULL; 1017 rqstp->rq_prot = IPPROTO_TCP; 1018 1019 /* Reset TCP read info */ 1020 svsk->sk_reclen = 0; 1021 svsk->sk_tcplen = 0; 1022 1023 svc_sock_received(svsk); 1024 if (serv->sv_stats) 1025 serv->sv_stats->nettcpcnt++; 1026 1027 return len; 1028 1029 err_delete: 1030 svc_delete_socket(svsk); 1031 return -EAGAIN; 1032 1033 error: 1034 if (len == -EAGAIN) { 1035 dprintk("RPC: TCP recvfrom got EAGAIN\n"); 1036 svc_sock_received(svsk); 1037 } else { 1038 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n", 1039 svsk->sk_server->sv_name, -len); 1040 svc_sock_received(svsk); 1041 } 1042 1043 return len; 1044 } 1045 1046 /* 1047 * Send out data on TCP socket. 1048 */ 1049 static int 1050 svc_tcp_sendto(struct svc_rqst *rqstp) 1051 { 1052 struct xdr_buf *xbufp = &rqstp->rq_res; 1053 int sent; 1054 u32 reclen; 1055 1056 /* Set up the first element of the reply kvec. 1057 * Any other kvecs that may be in use have been taken 1058 * care of by the server implementation itself. 1059 */ 1060 reclen = htonl(0x80000000|((xbufp->len ) - 4)); 1061 memcpy(xbufp->head[0].iov_base, &reclen, 4); 1062 1063 if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags)) 1064 return -ENOTCONN; 1065 1066 sent = svc_sendto(rqstp, &rqstp->rq_res); 1067 if (sent != xbufp->len) { 1068 printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n", 1069 rqstp->rq_sock->sk_server->sv_name, 1070 (sent<0)?"got error":"sent only", 1071 sent, xbufp->len); 1072 svc_delete_socket(rqstp->rq_sock); 1073 sent = -EAGAIN; 1074 } 1075 return sent; 1076 } 1077 1078 static void 1079 svc_tcp_init(struct svc_sock *svsk) 1080 { 1081 struct sock *sk = svsk->sk_sk; 1082 struct tcp_sock *tp = tcp_sk(sk); 1083 1084 svsk->sk_recvfrom = svc_tcp_recvfrom; 1085 svsk->sk_sendto = svc_tcp_sendto; 1086 1087 if (sk->sk_state == TCP_LISTEN) { 1088 dprintk("setting up TCP socket for listening\n"); 1089 sk->sk_data_ready = svc_tcp_listen_data_ready; 1090 set_bit(SK_CONN, &svsk->sk_flags); 1091 } else { 1092 dprintk("setting up TCP socket for reading\n"); 1093 sk->sk_state_change = svc_tcp_state_change; 1094 sk->sk_data_ready = svc_tcp_data_ready; 1095 sk->sk_write_space = svc_write_space; 1096 1097 svsk->sk_reclen = 0; 1098 svsk->sk_tcplen = 0; 1099 1100 tp->nonagle = 1; /* disable Nagle's algorithm */ 1101 1102 /* initialise setting must have enough space to 1103 * receive and respond to one request. 1104 * svc_tcp_recvfrom will re-adjust if necessary 1105 */ 1106 svc_sock_setbufsize(svsk->sk_sock, 1107 3 * svsk->sk_server->sv_bufsz, 1108 3 * svsk->sk_server->sv_bufsz); 1109 1110 set_bit(SK_CHNGBUF, &svsk->sk_flags); 1111 set_bit(SK_DATA, &svsk->sk_flags); 1112 if (sk->sk_state != TCP_ESTABLISHED) 1113 set_bit(SK_CLOSE, &svsk->sk_flags); 1114 } 1115 } 1116 1117 void 1118 svc_sock_update_bufs(struct svc_serv *serv) 1119 { 1120 /* 1121 * The number of server threads has changed. Update 1122 * rcvbuf and sndbuf accordingly on all sockets 1123 */ 1124 struct list_head *le; 1125 1126 spin_lock_bh(&serv->sv_lock); 1127 list_for_each(le, &serv->sv_permsocks) { 1128 struct svc_sock *svsk = 1129 list_entry(le, struct svc_sock, sk_list); 1130 set_bit(SK_CHNGBUF, &svsk->sk_flags); 1131 } 1132 list_for_each(le, &serv->sv_tempsocks) { 1133 struct svc_sock *svsk = 1134 list_entry(le, struct svc_sock, sk_list); 1135 set_bit(SK_CHNGBUF, &svsk->sk_flags); 1136 } 1137 spin_unlock_bh(&serv->sv_lock); 1138 } 1139 1140 /* 1141 * Receive the next request on any socket. 1142 */ 1143 int 1144 svc_recv(struct svc_serv *serv, struct svc_rqst *rqstp, long timeout) 1145 { 1146 struct svc_sock *svsk =NULL; 1147 int len; 1148 int pages; 1149 struct xdr_buf *arg; 1150 DECLARE_WAITQUEUE(wait, current); 1151 1152 dprintk("svc: server %p waiting for data (to = %ld)\n", 1153 rqstp, timeout); 1154 1155 if (rqstp->rq_sock) 1156 printk(KERN_ERR 1157 "svc_recv: service %p, socket not NULL!\n", 1158 rqstp); 1159 if (waitqueue_active(&rqstp->rq_wait)) 1160 printk(KERN_ERR 1161 "svc_recv: service %p, wait queue active!\n", 1162 rqstp); 1163 1164 /* Initialize the buffers */ 1165 /* first reclaim pages that were moved to response list */ 1166 svc_pushback_allpages(rqstp); 1167 1168 /* now allocate needed pages. If we get a failure, sleep briefly */ 1169 pages = 2 + (serv->sv_bufsz + PAGE_SIZE -1) / PAGE_SIZE; 1170 while (rqstp->rq_arghi < pages) { 1171 struct page *p = alloc_page(GFP_KERNEL); 1172 if (!p) { 1173 set_current_state(TASK_UNINTERRUPTIBLE); 1174 schedule_timeout(HZ/2); 1175 continue; 1176 } 1177 rqstp->rq_argpages[rqstp->rq_arghi++] = p; 1178 } 1179 1180 /* Make arg->head point to first page and arg->pages point to rest */ 1181 arg = &rqstp->rq_arg; 1182 arg->head[0].iov_base = page_address(rqstp->rq_argpages[0]); 1183 arg->head[0].iov_len = PAGE_SIZE; 1184 rqstp->rq_argused = 1; 1185 arg->pages = rqstp->rq_argpages + 1; 1186 arg->page_base = 0; 1187 /* save at least one page for response */ 1188 arg->page_len = (pages-2)*PAGE_SIZE; 1189 arg->len = (pages-1)*PAGE_SIZE; 1190 arg->tail[0].iov_len = 0; 1191 1192 try_to_freeze(); 1193 if (signalled()) 1194 return -EINTR; 1195 1196 spin_lock_bh(&serv->sv_lock); 1197 if (!list_empty(&serv->sv_tempsocks)) { 1198 svsk = list_entry(serv->sv_tempsocks.next, 1199 struct svc_sock, sk_list); 1200 /* apparently the "standard" is that clients close 1201 * idle connections after 5 minutes, servers after 1202 * 6 minutes 1203 * http://www.connectathon.org/talks96/nfstcp.pdf 1204 */ 1205 if (get_seconds() - svsk->sk_lastrecv < 6*60 1206 || test_bit(SK_BUSY, &svsk->sk_flags)) 1207 svsk = NULL; 1208 } 1209 if (svsk) { 1210 set_bit(SK_BUSY, &svsk->sk_flags); 1211 set_bit(SK_CLOSE, &svsk->sk_flags); 1212 rqstp->rq_sock = svsk; 1213 svsk->sk_inuse++; 1214 } else if ((svsk = svc_sock_dequeue(serv)) != NULL) { 1215 rqstp->rq_sock = svsk; 1216 svsk->sk_inuse++; 1217 rqstp->rq_reserved = serv->sv_bufsz; 1218 svsk->sk_reserved += rqstp->rq_reserved; 1219 } else { 1220 /* No data pending. Go to sleep */ 1221 svc_serv_enqueue(serv, rqstp); 1222 1223 /* 1224 * We have to be able to interrupt this wait 1225 * to bring down the daemons ... 1226 */ 1227 set_current_state(TASK_INTERRUPTIBLE); 1228 add_wait_queue(&rqstp->rq_wait, &wait); 1229 spin_unlock_bh(&serv->sv_lock); 1230 1231 schedule_timeout(timeout); 1232 1233 try_to_freeze(); 1234 1235 spin_lock_bh(&serv->sv_lock); 1236 remove_wait_queue(&rqstp->rq_wait, &wait); 1237 1238 if (!(svsk = rqstp->rq_sock)) { 1239 svc_serv_dequeue(serv, rqstp); 1240 spin_unlock_bh(&serv->sv_lock); 1241 dprintk("svc: server %p, no data yet\n", rqstp); 1242 return signalled()? -EINTR : -EAGAIN; 1243 } 1244 } 1245 spin_unlock_bh(&serv->sv_lock); 1246 1247 dprintk("svc: server %p, socket %p, inuse=%d\n", 1248 rqstp, svsk, svsk->sk_inuse); 1249 len = svsk->sk_recvfrom(rqstp); 1250 dprintk("svc: got len=%d\n", len); 1251 1252 /* No data, incomplete (TCP) read, or accept() */ 1253 if (len == 0 || len == -EAGAIN) { 1254 rqstp->rq_res.len = 0; 1255 svc_sock_release(rqstp); 1256 return -EAGAIN; 1257 } 1258 svsk->sk_lastrecv = get_seconds(); 1259 if (test_bit(SK_TEMP, &svsk->sk_flags)) { 1260 /* push active sockets to end of list */ 1261 spin_lock_bh(&serv->sv_lock); 1262 if (!list_empty(&svsk->sk_list)) 1263 list_move_tail(&svsk->sk_list, &serv->sv_tempsocks); 1264 spin_unlock_bh(&serv->sv_lock); 1265 } 1266 1267 rqstp->rq_secure = ntohs(rqstp->rq_addr.sin_port) < 1024; 1268 rqstp->rq_chandle.defer = svc_defer; 1269 1270 if (serv->sv_stats) 1271 serv->sv_stats->netcnt++; 1272 return len; 1273 } 1274 1275 /* 1276 * Drop request 1277 */ 1278 void 1279 svc_drop(struct svc_rqst *rqstp) 1280 { 1281 dprintk("svc: socket %p dropped request\n", rqstp->rq_sock); 1282 svc_sock_release(rqstp); 1283 } 1284 1285 /* 1286 * Return reply to client. 1287 */ 1288 int 1289 svc_send(struct svc_rqst *rqstp) 1290 { 1291 struct svc_sock *svsk; 1292 int len; 1293 struct xdr_buf *xb; 1294 1295 if ((svsk = rqstp->rq_sock) == NULL) { 1296 printk(KERN_WARNING "NULL socket pointer in %s:%d\n", 1297 __FILE__, __LINE__); 1298 return -EFAULT; 1299 } 1300 1301 /* release the receive skb before sending the reply */ 1302 svc_release_skb(rqstp); 1303 1304 /* calculate over-all length */ 1305 xb = & rqstp->rq_res; 1306 xb->len = xb->head[0].iov_len + 1307 xb->page_len + 1308 xb->tail[0].iov_len; 1309 1310 /* Grab svsk->sk_sem to serialize outgoing data. */ 1311 down(&svsk->sk_sem); 1312 if (test_bit(SK_DEAD, &svsk->sk_flags)) 1313 len = -ENOTCONN; 1314 else 1315 len = svsk->sk_sendto(rqstp); 1316 up(&svsk->sk_sem); 1317 svc_sock_release(rqstp); 1318 1319 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN) 1320 return 0; 1321 return len; 1322 } 1323 1324 /* 1325 * Initialize socket for RPC use and create svc_sock struct 1326 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF. 1327 */ 1328 static struct svc_sock * 1329 svc_setup_socket(struct svc_serv *serv, struct socket *sock, 1330 int *errp, int pmap_register) 1331 { 1332 struct svc_sock *svsk; 1333 struct sock *inet; 1334 1335 dprintk("svc: svc_setup_socket %p\n", sock); 1336 if (!(svsk = kmalloc(sizeof(*svsk), GFP_KERNEL))) { 1337 *errp = -ENOMEM; 1338 return NULL; 1339 } 1340 memset(svsk, 0, sizeof(*svsk)); 1341 1342 inet = sock->sk; 1343 1344 /* Register socket with portmapper */ 1345 if (*errp >= 0 && pmap_register) 1346 *errp = svc_register(serv, inet->sk_protocol, 1347 ntohs(inet_sk(inet)->sport)); 1348 1349 if (*errp < 0) { 1350 kfree(svsk); 1351 return NULL; 1352 } 1353 1354 set_bit(SK_BUSY, &svsk->sk_flags); 1355 inet->sk_user_data = svsk; 1356 svsk->sk_sock = sock; 1357 svsk->sk_sk = inet; 1358 svsk->sk_ostate = inet->sk_state_change; 1359 svsk->sk_odata = inet->sk_data_ready; 1360 svsk->sk_owspace = inet->sk_write_space; 1361 svsk->sk_server = serv; 1362 svsk->sk_lastrecv = get_seconds(); 1363 INIT_LIST_HEAD(&svsk->sk_deferred); 1364 INIT_LIST_HEAD(&svsk->sk_ready); 1365 sema_init(&svsk->sk_sem, 1); 1366 1367 /* Initialize the socket */ 1368 if (sock->type == SOCK_DGRAM) 1369 svc_udp_init(svsk); 1370 else 1371 svc_tcp_init(svsk); 1372 1373 spin_lock_bh(&serv->sv_lock); 1374 if (!pmap_register) { 1375 set_bit(SK_TEMP, &svsk->sk_flags); 1376 list_add(&svsk->sk_list, &serv->sv_tempsocks); 1377 serv->sv_tmpcnt++; 1378 } else { 1379 clear_bit(SK_TEMP, &svsk->sk_flags); 1380 list_add(&svsk->sk_list, &serv->sv_permsocks); 1381 } 1382 spin_unlock_bh(&serv->sv_lock); 1383 1384 dprintk("svc: svc_setup_socket created %p (inet %p)\n", 1385 svsk, svsk->sk_sk); 1386 1387 clear_bit(SK_BUSY, &svsk->sk_flags); 1388 svc_sock_enqueue(svsk); 1389 return svsk; 1390 } 1391 1392 /* 1393 * Create socket for RPC service. 1394 */ 1395 static int 1396 svc_create_socket(struct svc_serv *serv, int protocol, struct sockaddr_in *sin) 1397 { 1398 struct svc_sock *svsk; 1399 struct socket *sock; 1400 int error; 1401 int type; 1402 1403 dprintk("svc: svc_create_socket(%s, %d, %u.%u.%u.%u:%d)\n", 1404 serv->sv_program->pg_name, protocol, 1405 NIPQUAD(sin->sin_addr.s_addr), 1406 ntohs(sin->sin_port)); 1407 1408 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) { 1409 printk(KERN_WARNING "svc: only UDP and TCP " 1410 "sockets supported\n"); 1411 return -EINVAL; 1412 } 1413 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM; 1414 1415 if ((error = sock_create_kern(PF_INET, type, protocol, &sock)) < 0) 1416 return error; 1417 1418 if (sin != NULL) { 1419 if (type == SOCK_STREAM) 1420 sock->sk->sk_reuse = 1; /* allow address reuse */ 1421 error = sock->ops->bind(sock, (struct sockaddr *) sin, 1422 sizeof(*sin)); 1423 if (error < 0) 1424 goto bummer; 1425 } 1426 1427 if (protocol == IPPROTO_TCP) { 1428 if ((error = sock->ops->listen(sock, 64)) < 0) 1429 goto bummer; 1430 } 1431 1432 if ((svsk = svc_setup_socket(serv, sock, &error, 1)) != NULL) 1433 return 0; 1434 1435 bummer: 1436 dprintk("svc: svc_create_socket error = %d\n", -error); 1437 sock_release(sock); 1438 return error; 1439 } 1440 1441 /* 1442 * Remove a dead socket 1443 */ 1444 void 1445 svc_delete_socket(struct svc_sock *svsk) 1446 { 1447 struct svc_serv *serv; 1448 struct sock *sk; 1449 1450 dprintk("svc: svc_delete_socket(%p)\n", svsk); 1451 1452 serv = svsk->sk_server; 1453 sk = svsk->sk_sk; 1454 1455 sk->sk_state_change = svsk->sk_ostate; 1456 sk->sk_data_ready = svsk->sk_odata; 1457 sk->sk_write_space = svsk->sk_owspace; 1458 1459 spin_lock_bh(&serv->sv_lock); 1460 1461 list_del_init(&svsk->sk_list); 1462 list_del_init(&svsk->sk_ready); 1463 if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags)) 1464 if (test_bit(SK_TEMP, &svsk->sk_flags)) 1465 serv->sv_tmpcnt--; 1466 1467 if (!svsk->sk_inuse) { 1468 spin_unlock_bh(&serv->sv_lock); 1469 sock_release(svsk->sk_sock); 1470 kfree(svsk); 1471 } else { 1472 spin_unlock_bh(&serv->sv_lock); 1473 dprintk(KERN_NOTICE "svc: server socket destroy delayed\n"); 1474 /* svsk->sk_server = NULL; */ 1475 } 1476 } 1477 1478 /* 1479 * Make a socket for nfsd and lockd 1480 */ 1481 int 1482 svc_makesock(struct svc_serv *serv, int protocol, unsigned short port) 1483 { 1484 struct sockaddr_in sin; 1485 1486 dprintk("svc: creating socket proto = %d\n", protocol); 1487 sin.sin_family = AF_INET; 1488 sin.sin_addr.s_addr = INADDR_ANY; 1489 sin.sin_port = htons(port); 1490 return svc_create_socket(serv, protocol, &sin); 1491 } 1492 1493 /* 1494 * Handle defer and revisit of requests 1495 */ 1496 1497 static void svc_revisit(struct cache_deferred_req *dreq, int too_many) 1498 { 1499 struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle); 1500 struct svc_serv *serv = dreq->owner; 1501 struct svc_sock *svsk; 1502 1503 if (too_many) { 1504 svc_sock_put(dr->svsk); 1505 kfree(dr); 1506 return; 1507 } 1508 dprintk("revisit queued\n"); 1509 svsk = dr->svsk; 1510 dr->svsk = NULL; 1511 spin_lock_bh(&serv->sv_lock); 1512 list_add(&dr->handle.recent, &svsk->sk_deferred); 1513 spin_unlock_bh(&serv->sv_lock); 1514 set_bit(SK_DEFERRED, &svsk->sk_flags); 1515 svc_sock_enqueue(svsk); 1516 svc_sock_put(svsk); 1517 } 1518 1519 static struct cache_deferred_req * 1520 svc_defer(struct cache_req *req) 1521 { 1522 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle); 1523 int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len); 1524 struct svc_deferred_req *dr; 1525 1526 if (rqstp->rq_arg.page_len) 1527 return NULL; /* if more than a page, give up FIXME */ 1528 if (rqstp->rq_deferred) { 1529 dr = rqstp->rq_deferred; 1530 rqstp->rq_deferred = NULL; 1531 } else { 1532 int skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; 1533 /* FIXME maybe discard if size too large */ 1534 dr = kmalloc(size, GFP_KERNEL); 1535 if (dr == NULL) 1536 return NULL; 1537 1538 dr->handle.owner = rqstp->rq_server; 1539 dr->prot = rqstp->rq_prot; 1540 dr->addr = rqstp->rq_addr; 1541 dr->argslen = rqstp->rq_arg.len >> 2; 1542 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2); 1543 } 1544 spin_lock_bh(&rqstp->rq_server->sv_lock); 1545 rqstp->rq_sock->sk_inuse++; 1546 dr->svsk = rqstp->rq_sock; 1547 spin_unlock_bh(&rqstp->rq_server->sv_lock); 1548 1549 dr->handle.revisit = svc_revisit; 1550 return &dr->handle; 1551 } 1552 1553 /* 1554 * recv data from a deferred request into an active one 1555 */ 1556 static int svc_deferred_recv(struct svc_rqst *rqstp) 1557 { 1558 struct svc_deferred_req *dr = rqstp->rq_deferred; 1559 1560 rqstp->rq_arg.head[0].iov_base = dr->args; 1561 rqstp->rq_arg.head[0].iov_len = dr->argslen<<2; 1562 rqstp->rq_arg.page_len = 0; 1563 rqstp->rq_arg.len = dr->argslen<<2; 1564 rqstp->rq_prot = dr->prot; 1565 rqstp->rq_addr = dr->addr; 1566 return dr->argslen<<2; 1567 } 1568 1569 1570 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk) 1571 { 1572 struct svc_deferred_req *dr = NULL; 1573 struct svc_serv *serv = svsk->sk_server; 1574 1575 if (!test_bit(SK_DEFERRED, &svsk->sk_flags)) 1576 return NULL; 1577 spin_lock_bh(&serv->sv_lock); 1578 clear_bit(SK_DEFERRED, &svsk->sk_flags); 1579 if (!list_empty(&svsk->sk_deferred)) { 1580 dr = list_entry(svsk->sk_deferred.next, 1581 struct svc_deferred_req, 1582 handle.recent); 1583 list_del_init(&dr->handle.recent); 1584 set_bit(SK_DEFERRED, &svsk->sk_flags); 1585 } 1586 spin_unlock_bh(&serv->sv_lock); 1587 return dr; 1588 } 1589