xref: /linux/net/sunrpc/svcsock.c (revision 13abf8130139c2ccd4962a7e5a8902be5e6cb5a7)
1 /*
2  * linux/net/sunrpc/svcsock.c
3  *
4  * These are the RPC server socket internals.
5  *
6  * The server scheduling algorithm does not always distribute the load
7  * evenly when servicing a single client. May need to modify the
8  * svc_sock_enqueue procedure...
9  *
10  * TCP support is largely untested and may be a little slow. The problem
11  * is that we currently do two separate recvfrom's, one for the 4-byte
12  * record length, and the second for the actual record. This could possibly
13  * be improved by always reading a minimum size of around 100 bytes and
14  * tucking any superfluous bytes away in a temporary store. Still, that
15  * leaves write requests out in the rain. An alternative may be to peek at
16  * the first skb in the queue, and if it matches the next TCP sequence
17  * number, to extract the record marker. Yuck.
18  *
19  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
20  */
21 
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/fcntl.h>
25 #include <linux/net.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/udp.h>
29 #include <linux/tcp.h>
30 #include <linux/unistd.h>
31 #include <linux/slab.h>
32 #include <linux/netdevice.h>
33 #include <linux/skbuff.h>
34 #include <net/sock.h>
35 #include <net/checksum.h>
36 #include <net/ip.h>
37 #include <net/tcp_states.h>
38 #include <asm/uaccess.h>
39 #include <asm/ioctls.h>
40 
41 #include <linux/sunrpc/types.h>
42 #include <linux/sunrpc/xdr.h>
43 #include <linux/sunrpc/svcsock.h>
44 #include <linux/sunrpc/stats.h>
45 
46 /* SMP locking strategy:
47  *
48  * 	svc_serv->sv_lock protects most stuff for that service.
49  *
50  *	Some flags can be set to certain values at any time
51  *	providing that certain rules are followed:
52  *
53  *	SK_BUSY  can be set to 0 at any time.
54  *		svc_sock_enqueue must be called afterwards
55  *	SK_CONN, SK_DATA, can be set or cleared at any time.
56  *		after a set, svc_sock_enqueue must be called.
57  *		after a clear, the socket must be read/accepted
58  *		 if this succeeds, it must be set again.
59  *	SK_CLOSE can set at any time. It is never cleared.
60  *
61  */
62 
63 #define RPCDBG_FACILITY	RPCDBG_SVCSOCK
64 
65 
66 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
67 					 int *errp, int pmap_reg);
68 static void		svc_udp_data_ready(struct sock *, int);
69 static int		svc_udp_recvfrom(struct svc_rqst *);
70 static int		svc_udp_sendto(struct svc_rqst *);
71 
72 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk);
73 static int svc_deferred_recv(struct svc_rqst *rqstp);
74 static struct cache_deferred_req *svc_defer(struct cache_req *req);
75 
76 /*
77  * Queue up an idle server thread.  Must have serv->sv_lock held.
78  * Note: this is really a stack rather than a queue, so that we only
79  * use as many different threads as we need, and the rest don't polute
80  * the cache.
81  */
82 static inline void
83 svc_serv_enqueue(struct svc_serv *serv, struct svc_rqst *rqstp)
84 {
85 	list_add(&rqstp->rq_list, &serv->sv_threads);
86 }
87 
88 /*
89  * Dequeue an nfsd thread.  Must have serv->sv_lock held.
90  */
91 static inline void
92 svc_serv_dequeue(struct svc_serv *serv, struct svc_rqst *rqstp)
93 {
94 	list_del(&rqstp->rq_list);
95 }
96 
97 /*
98  * Release an skbuff after use
99  */
100 static inline void
101 svc_release_skb(struct svc_rqst *rqstp)
102 {
103 	struct sk_buff *skb = rqstp->rq_skbuff;
104 	struct svc_deferred_req *dr = rqstp->rq_deferred;
105 
106 	if (skb) {
107 		rqstp->rq_skbuff = NULL;
108 
109 		dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
110 		skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
111 	}
112 	if (dr) {
113 		rqstp->rq_deferred = NULL;
114 		kfree(dr);
115 	}
116 }
117 
118 /*
119  * Any space to write?
120  */
121 static inline unsigned long
122 svc_sock_wspace(struct svc_sock *svsk)
123 {
124 	int wspace;
125 
126 	if (svsk->sk_sock->type == SOCK_STREAM)
127 		wspace = sk_stream_wspace(svsk->sk_sk);
128 	else
129 		wspace = sock_wspace(svsk->sk_sk);
130 
131 	return wspace;
132 }
133 
134 /*
135  * Queue up a socket with data pending. If there are idle nfsd
136  * processes, wake 'em up.
137  *
138  */
139 static void
140 svc_sock_enqueue(struct svc_sock *svsk)
141 {
142 	struct svc_serv	*serv = svsk->sk_server;
143 	struct svc_rqst	*rqstp;
144 
145 	if (!(svsk->sk_flags &
146 	      ( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) ))
147 		return;
148 	if (test_bit(SK_DEAD, &svsk->sk_flags))
149 		return;
150 
151 	spin_lock_bh(&serv->sv_lock);
152 
153 	if (!list_empty(&serv->sv_threads) &&
154 	    !list_empty(&serv->sv_sockets))
155 		printk(KERN_ERR
156 			"svc_sock_enqueue: threads and sockets both waiting??\n");
157 
158 	if (test_bit(SK_DEAD, &svsk->sk_flags)) {
159 		/* Don't enqueue dead sockets */
160 		dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk);
161 		goto out_unlock;
162 	}
163 
164 	if (test_bit(SK_BUSY, &svsk->sk_flags)) {
165 		/* Don't enqueue socket while daemon is receiving */
166 		dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk);
167 		goto out_unlock;
168 	}
169 
170 	set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
171 	if (((svsk->sk_reserved + serv->sv_bufsz)*2
172 	     > svc_sock_wspace(svsk))
173 	    && !test_bit(SK_CLOSE, &svsk->sk_flags)
174 	    && !test_bit(SK_CONN, &svsk->sk_flags)) {
175 		/* Don't enqueue while not enough space for reply */
176 		dprintk("svc: socket %p  no space, %d*2 > %ld, not enqueued\n",
177 			svsk->sk_sk, svsk->sk_reserved+serv->sv_bufsz,
178 			svc_sock_wspace(svsk));
179 		goto out_unlock;
180 	}
181 	clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
182 
183 	/* Mark socket as busy. It will remain in this state until the
184 	 * server has processed all pending data and put the socket back
185 	 * on the idle list.
186 	 */
187 	set_bit(SK_BUSY, &svsk->sk_flags);
188 
189 	if (!list_empty(&serv->sv_threads)) {
190 		rqstp = list_entry(serv->sv_threads.next,
191 				   struct svc_rqst,
192 				   rq_list);
193 		dprintk("svc: socket %p served by daemon %p\n",
194 			svsk->sk_sk, rqstp);
195 		svc_serv_dequeue(serv, rqstp);
196 		if (rqstp->rq_sock)
197 			printk(KERN_ERR
198 				"svc_sock_enqueue: server %p, rq_sock=%p!\n",
199 				rqstp, rqstp->rq_sock);
200 		rqstp->rq_sock = svsk;
201 		svsk->sk_inuse++;
202 		rqstp->rq_reserved = serv->sv_bufsz;
203 		svsk->sk_reserved += rqstp->rq_reserved;
204 		wake_up(&rqstp->rq_wait);
205 	} else {
206 		dprintk("svc: socket %p put into queue\n", svsk->sk_sk);
207 		list_add_tail(&svsk->sk_ready, &serv->sv_sockets);
208 	}
209 
210 out_unlock:
211 	spin_unlock_bh(&serv->sv_lock);
212 }
213 
214 /*
215  * Dequeue the first socket.  Must be called with the serv->sv_lock held.
216  */
217 static inline struct svc_sock *
218 svc_sock_dequeue(struct svc_serv *serv)
219 {
220 	struct svc_sock	*svsk;
221 
222 	if (list_empty(&serv->sv_sockets))
223 		return NULL;
224 
225 	svsk = list_entry(serv->sv_sockets.next,
226 			  struct svc_sock, sk_ready);
227 	list_del_init(&svsk->sk_ready);
228 
229 	dprintk("svc: socket %p dequeued, inuse=%d\n",
230 		svsk->sk_sk, svsk->sk_inuse);
231 
232 	return svsk;
233 }
234 
235 /*
236  * Having read something from a socket, check whether it
237  * needs to be re-enqueued.
238  * Note: SK_DATA only gets cleared when a read-attempt finds
239  * no (or insufficient) data.
240  */
241 static inline void
242 svc_sock_received(struct svc_sock *svsk)
243 {
244 	clear_bit(SK_BUSY, &svsk->sk_flags);
245 	svc_sock_enqueue(svsk);
246 }
247 
248 
249 /**
250  * svc_reserve - change the space reserved for the reply to a request.
251  * @rqstp:  The request in question
252  * @space: new max space to reserve
253  *
254  * Each request reserves some space on the output queue of the socket
255  * to make sure the reply fits.  This function reduces that reserved
256  * space to be the amount of space used already, plus @space.
257  *
258  */
259 void svc_reserve(struct svc_rqst *rqstp, int space)
260 {
261 	space += rqstp->rq_res.head[0].iov_len;
262 
263 	if (space < rqstp->rq_reserved) {
264 		struct svc_sock *svsk = rqstp->rq_sock;
265 		spin_lock_bh(&svsk->sk_server->sv_lock);
266 		svsk->sk_reserved -= (rqstp->rq_reserved - space);
267 		rqstp->rq_reserved = space;
268 		spin_unlock_bh(&svsk->sk_server->sv_lock);
269 
270 		svc_sock_enqueue(svsk);
271 	}
272 }
273 
274 /*
275  * Release a socket after use.
276  */
277 static inline void
278 svc_sock_put(struct svc_sock *svsk)
279 {
280 	struct svc_serv *serv = svsk->sk_server;
281 
282 	spin_lock_bh(&serv->sv_lock);
283 	if (!--(svsk->sk_inuse) && test_bit(SK_DEAD, &svsk->sk_flags)) {
284 		spin_unlock_bh(&serv->sv_lock);
285 		dprintk("svc: releasing dead socket\n");
286 		sock_release(svsk->sk_sock);
287 		kfree(svsk);
288 	}
289 	else
290 		spin_unlock_bh(&serv->sv_lock);
291 }
292 
293 static void
294 svc_sock_release(struct svc_rqst *rqstp)
295 {
296 	struct svc_sock	*svsk = rqstp->rq_sock;
297 
298 	svc_release_skb(rqstp);
299 
300 	svc_free_allpages(rqstp);
301 	rqstp->rq_res.page_len = 0;
302 	rqstp->rq_res.page_base = 0;
303 
304 
305 	/* Reset response buffer and release
306 	 * the reservation.
307 	 * But first, check that enough space was reserved
308 	 * for the reply, otherwise we have a bug!
309 	 */
310 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
311 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
312 		       rqstp->rq_reserved,
313 		       rqstp->rq_res.len);
314 
315 	rqstp->rq_res.head[0].iov_len = 0;
316 	svc_reserve(rqstp, 0);
317 	rqstp->rq_sock = NULL;
318 
319 	svc_sock_put(svsk);
320 }
321 
322 /*
323  * External function to wake up a server waiting for data
324  */
325 void
326 svc_wake_up(struct svc_serv *serv)
327 {
328 	struct svc_rqst	*rqstp;
329 
330 	spin_lock_bh(&serv->sv_lock);
331 	if (!list_empty(&serv->sv_threads)) {
332 		rqstp = list_entry(serv->sv_threads.next,
333 				   struct svc_rqst,
334 				   rq_list);
335 		dprintk("svc: daemon %p woken up.\n", rqstp);
336 		/*
337 		svc_serv_dequeue(serv, rqstp);
338 		rqstp->rq_sock = NULL;
339 		 */
340 		wake_up(&rqstp->rq_wait);
341 	}
342 	spin_unlock_bh(&serv->sv_lock);
343 }
344 
345 /*
346  * Generic sendto routine
347  */
348 static int
349 svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
350 {
351 	struct svc_sock	*svsk = rqstp->rq_sock;
352 	struct socket	*sock = svsk->sk_sock;
353 	int		slen;
354 	char 		buffer[CMSG_SPACE(sizeof(struct in_pktinfo))];
355 	struct cmsghdr *cmh = (struct cmsghdr *)buffer;
356 	struct in_pktinfo *pki = (struct in_pktinfo *)CMSG_DATA(cmh);
357 	int		len = 0;
358 	int		result;
359 	int		size;
360 	struct page	**ppage = xdr->pages;
361 	size_t		base = xdr->page_base;
362 	unsigned int	pglen = xdr->page_len;
363 	unsigned int	flags = MSG_MORE;
364 
365 	slen = xdr->len;
366 
367 	if (rqstp->rq_prot == IPPROTO_UDP) {
368 		/* set the source and destination */
369 		struct msghdr	msg;
370 		msg.msg_name    = &rqstp->rq_addr;
371 		msg.msg_namelen = sizeof(rqstp->rq_addr);
372 		msg.msg_iov     = NULL;
373 		msg.msg_iovlen  = 0;
374 		msg.msg_flags	= MSG_MORE;
375 
376 		msg.msg_control = cmh;
377 		msg.msg_controllen = sizeof(buffer);
378 		cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
379 		cmh->cmsg_level = SOL_IP;
380 		cmh->cmsg_type = IP_PKTINFO;
381 		pki->ipi_ifindex = 0;
382 		pki->ipi_spec_dst.s_addr = rqstp->rq_daddr;
383 
384 		if (sock_sendmsg(sock, &msg, 0) < 0)
385 			goto out;
386 	}
387 
388 	/* send head */
389 	if (slen == xdr->head[0].iov_len)
390 		flags = 0;
391 	len = sock->ops->sendpage(sock, rqstp->rq_respages[0], 0, xdr->head[0].iov_len, flags);
392 	if (len != xdr->head[0].iov_len)
393 		goto out;
394 	slen -= xdr->head[0].iov_len;
395 	if (slen == 0)
396 		goto out;
397 
398 	/* send page data */
399 	size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
400 	while (pglen > 0) {
401 		if (slen == size)
402 			flags = 0;
403 		result = sock->ops->sendpage(sock, *ppage, base, size, flags);
404 		if (result > 0)
405 			len += result;
406 		if (result != size)
407 			goto out;
408 		slen -= size;
409 		pglen -= size;
410 		size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
411 		base = 0;
412 		ppage++;
413 	}
414 	/* send tail */
415 	if (xdr->tail[0].iov_len) {
416 		result = sock->ops->sendpage(sock, rqstp->rq_respages[rqstp->rq_restailpage],
417 					     ((unsigned long)xdr->tail[0].iov_base)& (PAGE_SIZE-1),
418 					     xdr->tail[0].iov_len, 0);
419 
420 		if (result > 0)
421 			len += result;
422 	}
423 out:
424 	dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %x)\n",
425 			rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len, xdr->len, len,
426 		rqstp->rq_addr.sin_addr.s_addr);
427 
428 	return len;
429 }
430 
431 /*
432  * Check input queue length
433  */
434 static int
435 svc_recv_available(struct svc_sock *svsk)
436 {
437 	mm_segment_t	oldfs;
438 	struct socket	*sock = svsk->sk_sock;
439 	int		avail, err;
440 
441 	oldfs = get_fs(); set_fs(KERNEL_DS);
442 	err = sock->ops->ioctl(sock, TIOCINQ, (unsigned long) &avail);
443 	set_fs(oldfs);
444 
445 	return (err >= 0)? avail : err;
446 }
447 
448 /*
449  * Generic recvfrom routine.
450  */
451 static int
452 svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
453 {
454 	struct msghdr	msg;
455 	struct socket	*sock;
456 	int		len, alen;
457 
458 	rqstp->rq_addrlen = sizeof(rqstp->rq_addr);
459 	sock = rqstp->rq_sock->sk_sock;
460 
461 	msg.msg_name    = &rqstp->rq_addr;
462 	msg.msg_namelen = sizeof(rqstp->rq_addr);
463 	msg.msg_control = NULL;
464 	msg.msg_controllen = 0;
465 
466 	msg.msg_flags	= MSG_DONTWAIT;
467 
468 	len = kernel_recvmsg(sock, &msg, iov, nr, buflen, MSG_DONTWAIT);
469 
470 	/* sock_recvmsg doesn't fill in the name/namelen, so we must..
471 	 * possibly we should cache this in the svc_sock structure
472 	 * at accept time. FIXME
473 	 */
474 	alen = sizeof(rqstp->rq_addr);
475 	sock->ops->getname(sock, (struct sockaddr *)&rqstp->rq_addr, &alen, 1);
476 
477 	dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
478 		rqstp->rq_sock, iov[0].iov_base, iov[0].iov_len, len);
479 
480 	return len;
481 }
482 
483 /*
484  * Set socket snd and rcv buffer lengths
485  */
486 static inline void
487 svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
488 {
489 #if 0
490 	mm_segment_t	oldfs;
491 	oldfs = get_fs(); set_fs(KERNEL_DS);
492 	sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
493 			(char*)&snd, sizeof(snd));
494 	sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
495 			(char*)&rcv, sizeof(rcv));
496 #else
497 	/* sock_setsockopt limits use to sysctl_?mem_max,
498 	 * which isn't acceptable.  Until that is made conditional
499 	 * on not having CAP_SYS_RESOURCE or similar, we go direct...
500 	 * DaveM said I could!
501 	 */
502 	lock_sock(sock->sk);
503 	sock->sk->sk_sndbuf = snd * 2;
504 	sock->sk->sk_rcvbuf = rcv * 2;
505 	sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
506 	release_sock(sock->sk);
507 #endif
508 }
509 /*
510  * INET callback when data has been received on the socket.
511  */
512 static void
513 svc_udp_data_ready(struct sock *sk, int count)
514 {
515 	struct svc_sock	*svsk = (struct svc_sock *)(sk->sk_user_data);
516 
517 	if (!svsk)
518 		goto out;
519 	dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
520 		svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags));
521 	set_bit(SK_DATA, &svsk->sk_flags);
522 	svc_sock_enqueue(svsk);
523  out:
524 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
525 		wake_up_interruptible(sk->sk_sleep);
526 }
527 
528 /*
529  * INET callback when space is newly available on the socket.
530  */
531 static void
532 svc_write_space(struct sock *sk)
533 {
534 	struct svc_sock	*svsk = (struct svc_sock *)(sk->sk_user_data);
535 
536 	if (svsk) {
537 		dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
538 			svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags));
539 		svc_sock_enqueue(svsk);
540 	}
541 
542 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
543 		printk(KERN_WARNING "RPC svc_write_space: some sleeping on %p\n",
544 		       svsk);
545 		wake_up_interruptible(sk->sk_sleep);
546 	}
547 }
548 
549 /*
550  * Receive a datagram from a UDP socket.
551  */
552 extern int
553 csum_partial_copy_to_xdr(struct xdr_buf *xdr, struct sk_buff *skb);
554 
555 static int
556 svc_udp_recvfrom(struct svc_rqst *rqstp)
557 {
558 	struct svc_sock	*svsk = rqstp->rq_sock;
559 	struct svc_serv	*serv = svsk->sk_server;
560 	struct sk_buff	*skb;
561 	int		err, len;
562 
563 	if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
564 	    /* udp sockets need large rcvbuf as all pending
565 	     * requests are still in that buffer.  sndbuf must
566 	     * also be large enough that there is enough space
567 	     * for one reply per thread.
568 	     */
569 	    svc_sock_setbufsize(svsk->sk_sock,
570 				(serv->sv_nrthreads+3) * serv->sv_bufsz,
571 				(serv->sv_nrthreads+3) * serv->sv_bufsz);
572 
573 	if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
574 		svc_sock_received(svsk);
575 		return svc_deferred_recv(rqstp);
576 	}
577 
578 	clear_bit(SK_DATA, &svsk->sk_flags);
579 	while ((skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err)) == NULL) {
580 		if (err == -EAGAIN) {
581 			svc_sock_received(svsk);
582 			return err;
583 		}
584 		/* possibly an icmp error */
585 		dprintk("svc: recvfrom returned error %d\n", -err);
586 	}
587 	if (skb->tstamp.off_sec == 0) {
588 		struct timeval tv;
589 
590 		tv.tv_sec = xtime.tv_sec;
591 		tv.tv_usec = xtime.tv_nsec * 1000;
592 		skb_set_timestamp(skb, &tv);
593 		/* Don't enable netstamp, sunrpc doesn't
594 		   need that much accuracy */
595 	}
596 	skb_get_timestamp(skb, &svsk->sk_sk->sk_stamp);
597 	set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */
598 
599 	/*
600 	 * Maybe more packets - kick another thread ASAP.
601 	 */
602 	svc_sock_received(svsk);
603 
604 	len  = skb->len - sizeof(struct udphdr);
605 	rqstp->rq_arg.len = len;
606 
607 	rqstp->rq_prot        = IPPROTO_UDP;
608 
609 	/* Get sender address */
610 	rqstp->rq_addr.sin_family = AF_INET;
611 	rqstp->rq_addr.sin_port = skb->h.uh->source;
612 	rqstp->rq_addr.sin_addr.s_addr = skb->nh.iph->saddr;
613 	rqstp->rq_daddr = skb->nh.iph->daddr;
614 
615 	if (skb_is_nonlinear(skb)) {
616 		/* we have to copy */
617 		local_bh_disable();
618 		if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
619 			local_bh_enable();
620 			/* checksum error */
621 			skb_free_datagram(svsk->sk_sk, skb);
622 			return 0;
623 		}
624 		local_bh_enable();
625 		skb_free_datagram(svsk->sk_sk, skb);
626 	} else {
627 		/* we can use it in-place */
628 		rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
629 		rqstp->rq_arg.head[0].iov_len = len;
630 		if (skb->ip_summed != CHECKSUM_UNNECESSARY) {
631 			if ((unsigned short)csum_fold(skb_checksum(skb, 0, skb->len, skb->csum))) {
632 				skb_free_datagram(svsk->sk_sk, skb);
633 				return 0;
634 			}
635 			skb->ip_summed = CHECKSUM_UNNECESSARY;
636 		}
637 		rqstp->rq_skbuff = skb;
638 	}
639 
640 	rqstp->rq_arg.page_base = 0;
641 	if (len <= rqstp->rq_arg.head[0].iov_len) {
642 		rqstp->rq_arg.head[0].iov_len = len;
643 		rqstp->rq_arg.page_len = 0;
644 	} else {
645 		rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
646 		rqstp->rq_argused += (rqstp->rq_arg.page_len + PAGE_SIZE - 1)/ PAGE_SIZE;
647 	}
648 
649 	if (serv->sv_stats)
650 		serv->sv_stats->netudpcnt++;
651 
652 	return len;
653 }
654 
655 static int
656 svc_udp_sendto(struct svc_rqst *rqstp)
657 {
658 	int		error;
659 
660 	error = svc_sendto(rqstp, &rqstp->rq_res);
661 	if (error == -ECONNREFUSED)
662 		/* ICMP error on earlier request. */
663 		error = svc_sendto(rqstp, &rqstp->rq_res);
664 
665 	return error;
666 }
667 
668 static void
669 svc_udp_init(struct svc_sock *svsk)
670 {
671 	svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
672 	svsk->sk_sk->sk_write_space = svc_write_space;
673 	svsk->sk_recvfrom = svc_udp_recvfrom;
674 	svsk->sk_sendto = svc_udp_sendto;
675 
676 	/* initialise setting must have enough space to
677 	 * receive and respond to one request.
678 	 * svc_udp_recvfrom will re-adjust if necessary
679 	 */
680 	svc_sock_setbufsize(svsk->sk_sock,
681 			    3 * svsk->sk_server->sv_bufsz,
682 			    3 * svsk->sk_server->sv_bufsz);
683 
684 	set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */
685 	set_bit(SK_CHNGBUF, &svsk->sk_flags);
686 }
687 
688 /*
689  * A data_ready event on a listening socket means there's a connection
690  * pending. Do not use state_change as a substitute for it.
691  */
692 static void
693 svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
694 {
695 	struct svc_sock	*svsk;
696 
697 	dprintk("svc: socket %p TCP (listen) state change %d\n",
698 			sk, sk->sk_state);
699 
700 	if  (sk->sk_state != TCP_LISTEN) {
701 		/*
702 		 * This callback may called twice when a new connection
703 		 * is established as a child socket inherits everything
704 		 * from a parent LISTEN socket.
705 		 * 1) data_ready method of the parent socket will be called
706 		 *    when one of child sockets become ESTABLISHED.
707 		 * 2) data_ready method of the child socket may be called
708 		 *    when it receives data before the socket is accepted.
709 		 * In case of 2, we should ignore it silently.
710 		 */
711 		goto out;
712 	}
713 	if (!(svsk = (struct svc_sock *) sk->sk_user_data)) {
714 		printk("svc: socket %p: no user data\n", sk);
715 		goto out;
716 	}
717 	set_bit(SK_CONN, &svsk->sk_flags);
718 	svc_sock_enqueue(svsk);
719  out:
720 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
721 		wake_up_interruptible_all(sk->sk_sleep);
722 }
723 
724 /*
725  * A state change on a connected socket means it's dying or dead.
726  */
727 static void
728 svc_tcp_state_change(struct sock *sk)
729 {
730 	struct svc_sock	*svsk;
731 
732 	dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
733 			sk, sk->sk_state, sk->sk_user_data);
734 
735 	if (!(svsk = (struct svc_sock *) sk->sk_user_data)) {
736 		printk("svc: socket %p: no user data\n", sk);
737 		goto out;
738 	}
739 	set_bit(SK_CLOSE, &svsk->sk_flags);
740 	svc_sock_enqueue(svsk);
741  out:
742 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
743 		wake_up_interruptible_all(sk->sk_sleep);
744 }
745 
746 static void
747 svc_tcp_data_ready(struct sock *sk, int count)
748 {
749 	struct svc_sock *	svsk;
750 
751 	dprintk("svc: socket %p TCP data ready (svsk %p)\n",
752 			sk, sk->sk_user_data);
753 	if (!(svsk = (struct svc_sock *)(sk->sk_user_data)))
754 		goto out;
755 	set_bit(SK_DATA, &svsk->sk_flags);
756 	svc_sock_enqueue(svsk);
757  out:
758 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
759 		wake_up_interruptible(sk->sk_sleep);
760 }
761 
762 /*
763  * Accept a TCP connection
764  */
765 static void
766 svc_tcp_accept(struct svc_sock *svsk)
767 {
768 	struct sockaddr_in sin;
769 	struct svc_serv	*serv = svsk->sk_server;
770 	struct socket	*sock = svsk->sk_sock;
771 	struct socket	*newsock;
772 	struct proto_ops *ops;
773 	struct svc_sock	*newsvsk;
774 	int		err, slen;
775 
776 	dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
777 	if (!sock)
778 		return;
779 
780 	err = sock_create_lite(PF_INET, SOCK_STREAM, IPPROTO_TCP, &newsock);
781 	if (err) {
782 		if (err == -ENOMEM)
783 			printk(KERN_WARNING "%s: no more sockets!\n",
784 			       serv->sv_name);
785 		return;
786 	}
787 
788 	dprintk("svc: tcp_accept %p allocated\n", newsock);
789 	newsock->ops = ops = sock->ops;
790 
791 	clear_bit(SK_CONN, &svsk->sk_flags);
792 	if ((err = ops->accept(sock, newsock, O_NONBLOCK)) < 0) {
793 		if (err != -EAGAIN && net_ratelimit())
794 			printk(KERN_WARNING "%s: accept failed (err %d)!\n",
795 				   serv->sv_name, -err);
796 		goto failed;		/* aborted connection or whatever */
797 	}
798 	set_bit(SK_CONN, &svsk->sk_flags);
799 	svc_sock_enqueue(svsk);
800 
801 	slen = sizeof(sin);
802 	err = ops->getname(newsock, (struct sockaddr *) &sin, &slen, 1);
803 	if (err < 0) {
804 		if (net_ratelimit())
805 			printk(KERN_WARNING "%s: peername failed (err %d)!\n",
806 				   serv->sv_name, -err);
807 		goto failed;		/* aborted connection or whatever */
808 	}
809 
810 	/* Ideally, we would want to reject connections from unauthorized
811 	 * hosts here, but when we get encription, the IP of the host won't
812 	 * tell us anything. For now just warn about unpriv connections.
813 	 */
814 	if (ntohs(sin.sin_port) >= 1024) {
815 		dprintk(KERN_WARNING
816 			"%s: connect from unprivileged port: %u.%u.%u.%u:%d\n",
817 			serv->sv_name,
818 			NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port));
819 	}
820 
821 	dprintk("%s: connect from %u.%u.%u.%u:%04x\n", serv->sv_name,
822 			NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port));
823 
824 	/* make sure that a write doesn't block forever when
825 	 * low on memory
826 	 */
827 	newsock->sk->sk_sndtimeo = HZ*30;
828 
829 	if (!(newsvsk = svc_setup_socket(serv, newsock, &err, 0)))
830 		goto failed;
831 
832 
833 	/* make sure that we don't have too many active connections.
834 	 * If we have, something must be dropped.
835 	 *
836 	 * There's no point in trying to do random drop here for
837 	 * DoS prevention. The NFS clients does 1 reconnect in 15
838 	 * seconds. An attacker can easily beat that.
839 	 *
840 	 * The only somewhat efficient mechanism would be if drop
841 	 * old connections from the same IP first. But right now
842 	 * we don't even record the client IP in svc_sock.
843 	 */
844 	if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
845 		struct svc_sock *svsk = NULL;
846 		spin_lock_bh(&serv->sv_lock);
847 		if (!list_empty(&serv->sv_tempsocks)) {
848 			if (net_ratelimit()) {
849 				/* Try to help the admin */
850 				printk(KERN_NOTICE "%s: too many open TCP "
851 					"sockets, consider increasing the "
852 					"number of nfsd threads\n",
853 						   serv->sv_name);
854 				printk(KERN_NOTICE "%s: last TCP connect from "
855 					"%u.%u.%u.%u:%d\n",
856 					serv->sv_name,
857 					NIPQUAD(sin.sin_addr.s_addr),
858 					ntohs(sin.sin_port));
859 			}
860 			/*
861 			 * Always select the oldest socket. It's not fair,
862 			 * but so is life
863 			 */
864 			svsk = list_entry(serv->sv_tempsocks.prev,
865 					  struct svc_sock,
866 					  sk_list);
867 			set_bit(SK_CLOSE, &svsk->sk_flags);
868 			svsk->sk_inuse ++;
869 		}
870 		spin_unlock_bh(&serv->sv_lock);
871 
872 		if (svsk) {
873 			svc_sock_enqueue(svsk);
874 			svc_sock_put(svsk);
875 		}
876 
877 	}
878 
879 	if (serv->sv_stats)
880 		serv->sv_stats->nettcpconn++;
881 
882 	return;
883 
884 failed:
885 	sock_release(newsock);
886 	return;
887 }
888 
889 /*
890  * Receive data from a TCP socket.
891  */
892 static int
893 svc_tcp_recvfrom(struct svc_rqst *rqstp)
894 {
895 	struct svc_sock	*svsk = rqstp->rq_sock;
896 	struct svc_serv	*serv = svsk->sk_server;
897 	int		len;
898 	struct kvec vec[RPCSVC_MAXPAGES];
899 	int pnum, vlen;
900 
901 	dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
902 		svsk, test_bit(SK_DATA, &svsk->sk_flags),
903 		test_bit(SK_CONN, &svsk->sk_flags),
904 		test_bit(SK_CLOSE, &svsk->sk_flags));
905 
906 	if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
907 		svc_sock_received(svsk);
908 		return svc_deferred_recv(rqstp);
909 	}
910 
911 	if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
912 		svc_delete_socket(svsk);
913 		return 0;
914 	}
915 
916 	if (test_bit(SK_CONN, &svsk->sk_flags)) {
917 		svc_tcp_accept(svsk);
918 		svc_sock_received(svsk);
919 		return 0;
920 	}
921 
922 	if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
923 		/* sndbuf needs to have room for one request
924 		 * per thread, otherwise we can stall even when the
925 		 * network isn't a bottleneck.
926 		 * rcvbuf just needs to be able to hold a few requests.
927 		 * Normally they will be removed from the queue
928 		 * as soon a a complete request arrives.
929 		 */
930 		svc_sock_setbufsize(svsk->sk_sock,
931 				    (serv->sv_nrthreads+3) * serv->sv_bufsz,
932 				    3 * serv->sv_bufsz);
933 
934 	clear_bit(SK_DATA, &svsk->sk_flags);
935 
936 	/* Receive data. If we haven't got the record length yet, get
937 	 * the next four bytes. Otherwise try to gobble up as much as
938 	 * possible up to the complete record length.
939 	 */
940 	if (svsk->sk_tcplen < 4) {
941 		unsigned long	want = 4 - svsk->sk_tcplen;
942 		struct kvec	iov;
943 
944 		iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
945 		iov.iov_len  = want;
946 		if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
947 			goto error;
948 		svsk->sk_tcplen += len;
949 
950 		if (len < want) {
951 			dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
952 			        len, want);
953 			svc_sock_received(svsk);
954 			return -EAGAIN; /* record header not complete */
955 		}
956 
957 		svsk->sk_reclen = ntohl(svsk->sk_reclen);
958 		if (!(svsk->sk_reclen & 0x80000000)) {
959 			/* FIXME: technically, a record can be fragmented,
960 			 *  and non-terminal fragments will not have the top
961 			 *  bit set in the fragment length header.
962 			 *  But apparently no known nfs clients send fragmented
963 			 *  records. */
964 			printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx (non-terminal)\n",
965 			       (unsigned long) svsk->sk_reclen);
966 			goto err_delete;
967 		}
968 		svsk->sk_reclen &= 0x7fffffff;
969 		dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
970 		if (svsk->sk_reclen > serv->sv_bufsz) {
971 			printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx (large)\n",
972 			       (unsigned long) svsk->sk_reclen);
973 			goto err_delete;
974 		}
975 	}
976 
977 	/* Check whether enough data is available */
978 	len = svc_recv_available(svsk);
979 	if (len < 0)
980 		goto error;
981 
982 	if (len < svsk->sk_reclen) {
983 		dprintk("svc: incomplete TCP record (%d of %d)\n",
984 			len, svsk->sk_reclen);
985 		svc_sock_received(svsk);
986 		return -EAGAIN;	/* record not complete */
987 	}
988 	len = svsk->sk_reclen;
989 	set_bit(SK_DATA, &svsk->sk_flags);
990 
991 	vec[0] = rqstp->rq_arg.head[0];
992 	vlen = PAGE_SIZE;
993 	pnum = 1;
994 	while (vlen < len) {
995 		vec[pnum].iov_base = page_address(rqstp->rq_argpages[rqstp->rq_argused++]);
996 		vec[pnum].iov_len = PAGE_SIZE;
997 		pnum++;
998 		vlen += PAGE_SIZE;
999 	}
1000 
1001 	/* Now receive data */
1002 	len = svc_recvfrom(rqstp, vec, pnum, len);
1003 	if (len < 0)
1004 		goto error;
1005 
1006 	dprintk("svc: TCP complete record (%d bytes)\n", len);
1007 	rqstp->rq_arg.len = len;
1008 	rqstp->rq_arg.page_base = 0;
1009 	if (len <= rqstp->rq_arg.head[0].iov_len) {
1010 		rqstp->rq_arg.head[0].iov_len = len;
1011 		rqstp->rq_arg.page_len = 0;
1012 	} else {
1013 		rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1014 	}
1015 
1016 	rqstp->rq_skbuff      = NULL;
1017 	rqstp->rq_prot	      = IPPROTO_TCP;
1018 
1019 	/* Reset TCP read info */
1020 	svsk->sk_reclen = 0;
1021 	svsk->sk_tcplen = 0;
1022 
1023 	svc_sock_received(svsk);
1024 	if (serv->sv_stats)
1025 		serv->sv_stats->nettcpcnt++;
1026 
1027 	return len;
1028 
1029  err_delete:
1030 	svc_delete_socket(svsk);
1031 	return -EAGAIN;
1032 
1033  error:
1034 	if (len == -EAGAIN) {
1035 		dprintk("RPC: TCP recvfrom got EAGAIN\n");
1036 		svc_sock_received(svsk);
1037 	} else {
1038 		printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1039 					svsk->sk_server->sv_name, -len);
1040 		svc_sock_received(svsk);
1041 	}
1042 
1043 	return len;
1044 }
1045 
1046 /*
1047  * Send out data on TCP socket.
1048  */
1049 static int
1050 svc_tcp_sendto(struct svc_rqst *rqstp)
1051 {
1052 	struct xdr_buf	*xbufp = &rqstp->rq_res;
1053 	int sent;
1054 	u32 reclen;
1055 
1056 	/* Set up the first element of the reply kvec.
1057 	 * Any other kvecs that may be in use have been taken
1058 	 * care of by the server implementation itself.
1059 	 */
1060 	reclen = htonl(0x80000000|((xbufp->len ) - 4));
1061 	memcpy(xbufp->head[0].iov_base, &reclen, 4);
1062 
1063 	if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags))
1064 		return -ENOTCONN;
1065 
1066 	sent = svc_sendto(rqstp, &rqstp->rq_res);
1067 	if (sent != xbufp->len) {
1068 		printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1069 		       rqstp->rq_sock->sk_server->sv_name,
1070 		       (sent<0)?"got error":"sent only",
1071 		       sent, xbufp->len);
1072 		svc_delete_socket(rqstp->rq_sock);
1073 		sent = -EAGAIN;
1074 	}
1075 	return sent;
1076 }
1077 
1078 static void
1079 svc_tcp_init(struct svc_sock *svsk)
1080 {
1081 	struct sock	*sk = svsk->sk_sk;
1082 	struct tcp_sock *tp = tcp_sk(sk);
1083 
1084 	svsk->sk_recvfrom = svc_tcp_recvfrom;
1085 	svsk->sk_sendto = svc_tcp_sendto;
1086 
1087 	if (sk->sk_state == TCP_LISTEN) {
1088 		dprintk("setting up TCP socket for listening\n");
1089 		sk->sk_data_ready = svc_tcp_listen_data_ready;
1090 		set_bit(SK_CONN, &svsk->sk_flags);
1091 	} else {
1092 		dprintk("setting up TCP socket for reading\n");
1093 		sk->sk_state_change = svc_tcp_state_change;
1094 		sk->sk_data_ready = svc_tcp_data_ready;
1095 		sk->sk_write_space = svc_write_space;
1096 
1097 		svsk->sk_reclen = 0;
1098 		svsk->sk_tcplen = 0;
1099 
1100 		tp->nonagle = 1;        /* disable Nagle's algorithm */
1101 
1102 		/* initialise setting must have enough space to
1103 		 * receive and respond to one request.
1104 		 * svc_tcp_recvfrom will re-adjust if necessary
1105 		 */
1106 		svc_sock_setbufsize(svsk->sk_sock,
1107 				    3 * svsk->sk_server->sv_bufsz,
1108 				    3 * svsk->sk_server->sv_bufsz);
1109 
1110 		set_bit(SK_CHNGBUF, &svsk->sk_flags);
1111 		set_bit(SK_DATA, &svsk->sk_flags);
1112 		if (sk->sk_state != TCP_ESTABLISHED)
1113 			set_bit(SK_CLOSE, &svsk->sk_flags);
1114 	}
1115 }
1116 
1117 void
1118 svc_sock_update_bufs(struct svc_serv *serv)
1119 {
1120 	/*
1121 	 * The number of server threads has changed. Update
1122 	 * rcvbuf and sndbuf accordingly on all sockets
1123 	 */
1124 	struct list_head *le;
1125 
1126 	spin_lock_bh(&serv->sv_lock);
1127 	list_for_each(le, &serv->sv_permsocks) {
1128 		struct svc_sock *svsk =
1129 			list_entry(le, struct svc_sock, sk_list);
1130 		set_bit(SK_CHNGBUF, &svsk->sk_flags);
1131 	}
1132 	list_for_each(le, &serv->sv_tempsocks) {
1133 		struct svc_sock *svsk =
1134 			list_entry(le, struct svc_sock, sk_list);
1135 		set_bit(SK_CHNGBUF, &svsk->sk_flags);
1136 	}
1137 	spin_unlock_bh(&serv->sv_lock);
1138 }
1139 
1140 /*
1141  * Receive the next request on any socket.
1142  */
1143 int
1144 svc_recv(struct svc_serv *serv, struct svc_rqst *rqstp, long timeout)
1145 {
1146 	struct svc_sock		*svsk =NULL;
1147 	int			len;
1148 	int 			pages;
1149 	struct xdr_buf		*arg;
1150 	DECLARE_WAITQUEUE(wait, current);
1151 
1152 	dprintk("svc: server %p waiting for data (to = %ld)\n",
1153 		rqstp, timeout);
1154 
1155 	if (rqstp->rq_sock)
1156 		printk(KERN_ERR
1157 			"svc_recv: service %p, socket not NULL!\n",
1158 			 rqstp);
1159 	if (waitqueue_active(&rqstp->rq_wait))
1160 		printk(KERN_ERR
1161 			"svc_recv: service %p, wait queue active!\n",
1162 			 rqstp);
1163 
1164 	/* Initialize the buffers */
1165 	/* first reclaim pages that were moved to response list */
1166 	svc_pushback_allpages(rqstp);
1167 
1168 	/* now allocate needed pages.  If we get a failure, sleep briefly */
1169 	pages = 2 + (serv->sv_bufsz + PAGE_SIZE -1) / PAGE_SIZE;
1170 	while (rqstp->rq_arghi < pages) {
1171 		struct page *p = alloc_page(GFP_KERNEL);
1172 		if (!p) {
1173 			set_current_state(TASK_UNINTERRUPTIBLE);
1174 			schedule_timeout(HZ/2);
1175 			continue;
1176 		}
1177 		rqstp->rq_argpages[rqstp->rq_arghi++] = p;
1178 	}
1179 
1180 	/* Make arg->head point to first page and arg->pages point to rest */
1181 	arg = &rqstp->rq_arg;
1182 	arg->head[0].iov_base = page_address(rqstp->rq_argpages[0]);
1183 	arg->head[0].iov_len = PAGE_SIZE;
1184 	rqstp->rq_argused = 1;
1185 	arg->pages = rqstp->rq_argpages + 1;
1186 	arg->page_base = 0;
1187 	/* save at least one page for response */
1188 	arg->page_len = (pages-2)*PAGE_SIZE;
1189 	arg->len = (pages-1)*PAGE_SIZE;
1190 	arg->tail[0].iov_len = 0;
1191 
1192 	try_to_freeze();
1193 	if (signalled())
1194 		return -EINTR;
1195 
1196 	spin_lock_bh(&serv->sv_lock);
1197 	if (!list_empty(&serv->sv_tempsocks)) {
1198 		svsk = list_entry(serv->sv_tempsocks.next,
1199 				  struct svc_sock, sk_list);
1200 		/* apparently the "standard" is that clients close
1201 		 * idle connections after 5 minutes, servers after
1202 		 * 6 minutes
1203 		 *   http://www.connectathon.org/talks96/nfstcp.pdf
1204 		 */
1205 		if (get_seconds() - svsk->sk_lastrecv < 6*60
1206 		    || test_bit(SK_BUSY, &svsk->sk_flags))
1207 			svsk = NULL;
1208 	}
1209 	if (svsk) {
1210 		set_bit(SK_BUSY, &svsk->sk_flags);
1211 		set_bit(SK_CLOSE, &svsk->sk_flags);
1212 		rqstp->rq_sock = svsk;
1213 		svsk->sk_inuse++;
1214 	} else if ((svsk = svc_sock_dequeue(serv)) != NULL) {
1215 		rqstp->rq_sock = svsk;
1216 		svsk->sk_inuse++;
1217 		rqstp->rq_reserved = serv->sv_bufsz;
1218 		svsk->sk_reserved += rqstp->rq_reserved;
1219 	} else {
1220 		/* No data pending. Go to sleep */
1221 		svc_serv_enqueue(serv, rqstp);
1222 
1223 		/*
1224 		 * We have to be able to interrupt this wait
1225 		 * to bring down the daemons ...
1226 		 */
1227 		set_current_state(TASK_INTERRUPTIBLE);
1228 		add_wait_queue(&rqstp->rq_wait, &wait);
1229 		spin_unlock_bh(&serv->sv_lock);
1230 
1231 		schedule_timeout(timeout);
1232 
1233 		try_to_freeze();
1234 
1235 		spin_lock_bh(&serv->sv_lock);
1236 		remove_wait_queue(&rqstp->rq_wait, &wait);
1237 
1238 		if (!(svsk = rqstp->rq_sock)) {
1239 			svc_serv_dequeue(serv, rqstp);
1240 			spin_unlock_bh(&serv->sv_lock);
1241 			dprintk("svc: server %p, no data yet\n", rqstp);
1242 			return signalled()? -EINTR : -EAGAIN;
1243 		}
1244 	}
1245 	spin_unlock_bh(&serv->sv_lock);
1246 
1247 	dprintk("svc: server %p, socket %p, inuse=%d\n",
1248 		 rqstp, svsk, svsk->sk_inuse);
1249 	len = svsk->sk_recvfrom(rqstp);
1250 	dprintk("svc: got len=%d\n", len);
1251 
1252 	/* No data, incomplete (TCP) read, or accept() */
1253 	if (len == 0 || len == -EAGAIN) {
1254 		rqstp->rq_res.len = 0;
1255 		svc_sock_release(rqstp);
1256 		return -EAGAIN;
1257 	}
1258 	svsk->sk_lastrecv = get_seconds();
1259 	if (test_bit(SK_TEMP, &svsk->sk_flags)) {
1260 		/* push active sockets to end of list */
1261 		spin_lock_bh(&serv->sv_lock);
1262 		if (!list_empty(&svsk->sk_list))
1263 			list_move_tail(&svsk->sk_list, &serv->sv_tempsocks);
1264 		spin_unlock_bh(&serv->sv_lock);
1265 	}
1266 
1267 	rqstp->rq_secure  = ntohs(rqstp->rq_addr.sin_port) < 1024;
1268 	rqstp->rq_chandle.defer = svc_defer;
1269 
1270 	if (serv->sv_stats)
1271 		serv->sv_stats->netcnt++;
1272 	return len;
1273 }
1274 
1275 /*
1276  * Drop request
1277  */
1278 void
1279 svc_drop(struct svc_rqst *rqstp)
1280 {
1281 	dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
1282 	svc_sock_release(rqstp);
1283 }
1284 
1285 /*
1286  * Return reply to client.
1287  */
1288 int
1289 svc_send(struct svc_rqst *rqstp)
1290 {
1291 	struct svc_sock	*svsk;
1292 	int		len;
1293 	struct xdr_buf	*xb;
1294 
1295 	if ((svsk = rqstp->rq_sock) == NULL) {
1296 		printk(KERN_WARNING "NULL socket pointer in %s:%d\n",
1297 				__FILE__, __LINE__);
1298 		return -EFAULT;
1299 	}
1300 
1301 	/* release the receive skb before sending the reply */
1302 	svc_release_skb(rqstp);
1303 
1304 	/* calculate over-all length */
1305 	xb = & rqstp->rq_res;
1306 	xb->len = xb->head[0].iov_len +
1307 		xb->page_len +
1308 		xb->tail[0].iov_len;
1309 
1310 	/* Grab svsk->sk_sem to serialize outgoing data. */
1311 	down(&svsk->sk_sem);
1312 	if (test_bit(SK_DEAD, &svsk->sk_flags))
1313 		len = -ENOTCONN;
1314 	else
1315 		len = svsk->sk_sendto(rqstp);
1316 	up(&svsk->sk_sem);
1317 	svc_sock_release(rqstp);
1318 
1319 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
1320 		return 0;
1321 	return len;
1322 }
1323 
1324 /*
1325  * Initialize socket for RPC use and create svc_sock struct
1326  * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1327  */
1328 static struct svc_sock *
1329 svc_setup_socket(struct svc_serv *serv, struct socket *sock,
1330 					int *errp, int pmap_register)
1331 {
1332 	struct svc_sock	*svsk;
1333 	struct sock	*inet;
1334 
1335 	dprintk("svc: svc_setup_socket %p\n", sock);
1336 	if (!(svsk = kmalloc(sizeof(*svsk), GFP_KERNEL))) {
1337 		*errp = -ENOMEM;
1338 		return NULL;
1339 	}
1340 	memset(svsk, 0, sizeof(*svsk));
1341 
1342 	inet = sock->sk;
1343 
1344 	/* Register socket with portmapper */
1345 	if (*errp >= 0 && pmap_register)
1346 		*errp = svc_register(serv, inet->sk_protocol,
1347 				     ntohs(inet_sk(inet)->sport));
1348 
1349 	if (*errp < 0) {
1350 		kfree(svsk);
1351 		return NULL;
1352 	}
1353 
1354 	set_bit(SK_BUSY, &svsk->sk_flags);
1355 	inet->sk_user_data = svsk;
1356 	svsk->sk_sock = sock;
1357 	svsk->sk_sk = inet;
1358 	svsk->sk_ostate = inet->sk_state_change;
1359 	svsk->sk_odata = inet->sk_data_ready;
1360 	svsk->sk_owspace = inet->sk_write_space;
1361 	svsk->sk_server = serv;
1362 	svsk->sk_lastrecv = get_seconds();
1363 	INIT_LIST_HEAD(&svsk->sk_deferred);
1364 	INIT_LIST_HEAD(&svsk->sk_ready);
1365 	sema_init(&svsk->sk_sem, 1);
1366 
1367 	/* Initialize the socket */
1368 	if (sock->type == SOCK_DGRAM)
1369 		svc_udp_init(svsk);
1370 	else
1371 		svc_tcp_init(svsk);
1372 
1373 	spin_lock_bh(&serv->sv_lock);
1374 	if (!pmap_register) {
1375 		set_bit(SK_TEMP, &svsk->sk_flags);
1376 		list_add(&svsk->sk_list, &serv->sv_tempsocks);
1377 		serv->sv_tmpcnt++;
1378 	} else {
1379 		clear_bit(SK_TEMP, &svsk->sk_flags);
1380 		list_add(&svsk->sk_list, &serv->sv_permsocks);
1381 	}
1382 	spin_unlock_bh(&serv->sv_lock);
1383 
1384 	dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1385 				svsk, svsk->sk_sk);
1386 
1387 	clear_bit(SK_BUSY, &svsk->sk_flags);
1388 	svc_sock_enqueue(svsk);
1389 	return svsk;
1390 }
1391 
1392 /*
1393  * Create socket for RPC service.
1394  */
1395 static int
1396 svc_create_socket(struct svc_serv *serv, int protocol, struct sockaddr_in *sin)
1397 {
1398 	struct svc_sock	*svsk;
1399 	struct socket	*sock;
1400 	int		error;
1401 	int		type;
1402 
1403 	dprintk("svc: svc_create_socket(%s, %d, %u.%u.%u.%u:%d)\n",
1404 				serv->sv_program->pg_name, protocol,
1405 				NIPQUAD(sin->sin_addr.s_addr),
1406 				ntohs(sin->sin_port));
1407 
1408 	if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1409 		printk(KERN_WARNING "svc: only UDP and TCP "
1410 				"sockets supported\n");
1411 		return -EINVAL;
1412 	}
1413 	type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1414 
1415 	if ((error = sock_create_kern(PF_INET, type, protocol, &sock)) < 0)
1416 		return error;
1417 
1418 	if (sin != NULL) {
1419 		if (type == SOCK_STREAM)
1420 			sock->sk->sk_reuse = 1; /* allow address reuse */
1421 		error = sock->ops->bind(sock, (struct sockaddr *) sin,
1422 						sizeof(*sin));
1423 		if (error < 0)
1424 			goto bummer;
1425 	}
1426 
1427 	if (protocol == IPPROTO_TCP) {
1428 		if ((error = sock->ops->listen(sock, 64)) < 0)
1429 			goto bummer;
1430 	}
1431 
1432 	if ((svsk = svc_setup_socket(serv, sock, &error, 1)) != NULL)
1433 		return 0;
1434 
1435 bummer:
1436 	dprintk("svc: svc_create_socket error = %d\n", -error);
1437 	sock_release(sock);
1438 	return error;
1439 }
1440 
1441 /*
1442  * Remove a dead socket
1443  */
1444 void
1445 svc_delete_socket(struct svc_sock *svsk)
1446 {
1447 	struct svc_serv	*serv;
1448 	struct sock	*sk;
1449 
1450 	dprintk("svc: svc_delete_socket(%p)\n", svsk);
1451 
1452 	serv = svsk->sk_server;
1453 	sk = svsk->sk_sk;
1454 
1455 	sk->sk_state_change = svsk->sk_ostate;
1456 	sk->sk_data_ready = svsk->sk_odata;
1457 	sk->sk_write_space = svsk->sk_owspace;
1458 
1459 	spin_lock_bh(&serv->sv_lock);
1460 
1461 	list_del_init(&svsk->sk_list);
1462 	list_del_init(&svsk->sk_ready);
1463 	if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags))
1464 		if (test_bit(SK_TEMP, &svsk->sk_flags))
1465 			serv->sv_tmpcnt--;
1466 
1467 	if (!svsk->sk_inuse) {
1468 		spin_unlock_bh(&serv->sv_lock);
1469 		sock_release(svsk->sk_sock);
1470 		kfree(svsk);
1471 	} else {
1472 		spin_unlock_bh(&serv->sv_lock);
1473 		dprintk(KERN_NOTICE "svc: server socket destroy delayed\n");
1474 		/* svsk->sk_server = NULL; */
1475 	}
1476 }
1477 
1478 /*
1479  * Make a socket for nfsd and lockd
1480  */
1481 int
1482 svc_makesock(struct svc_serv *serv, int protocol, unsigned short port)
1483 {
1484 	struct sockaddr_in	sin;
1485 
1486 	dprintk("svc: creating socket proto = %d\n", protocol);
1487 	sin.sin_family      = AF_INET;
1488 	sin.sin_addr.s_addr = INADDR_ANY;
1489 	sin.sin_port        = htons(port);
1490 	return svc_create_socket(serv, protocol, &sin);
1491 }
1492 
1493 /*
1494  * Handle defer and revisit of requests
1495  */
1496 
1497 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1498 {
1499 	struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
1500 	struct svc_serv *serv = dreq->owner;
1501 	struct svc_sock *svsk;
1502 
1503 	if (too_many) {
1504 		svc_sock_put(dr->svsk);
1505 		kfree(dr);
1506 		return;
1507 	}
1508 	dprintk("revisit queued\n");
1509 	svsk = dr->svsk;
1510 	dr->svsk = NULL;
1511 	spin_lock_bh(&serv->sv_lock);
1512 	list_add(&dr->handle.recent, &svsk->sk_deferred);
1513 	spin_unlock_bh(&serv->sv_lock);
1514 	set_bit(SK_DEFERRED, &svsk->sk_flags);
1515 	svc_sock_enqueue(svsk);
1516 	svc_sock_put(svsk);
1517 }
1518 
1519 static struct cache_deferred_req *
1520 svc_defer(struct cache_req *req)
1521 {
1522 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1523 	int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
1524 	struct svc_deferred_req *dr;
1525 
1526 	if (rqstp->rq_arg.page_len)
1527 		return NULL; /* if more than a page, give up FIXME */
1528 	if (rqstp->rq_deferred) {
1529 		dr = rqstp->rq_deferred;
1530 		rqstp->rq_deferred = NULL;
1531 	} else {
1532 		int skip  = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1533 		/* FIXME maybe discard if size too large */
1534 		dr = kmalloc(size, GFP_KERNEL);
1535 		if (dr == NULL)
1536 			return NULL;
1537 
1538 		dr->handle.owner = rqstp->rq_server;
1539 		dr->prot = rqstp->rq_prot;
1540 		dr->addr = rqstp->rq_addr;
1541 		dr->argslen = rqstp->rq_arg.len >> 2;
1542 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
1543 	}
1544 	spin_lock_bh(&rqstp->rq_server->sv_lock);
1545 	rqstp->rq_sock->sk_inuse++;
1546 	dr->svsk = rqstp->rq_sock;
1547 	spin_unlock_bh(&rqstp->rq_server->sv_lock);
1548 
1549 	dr->handle.revisit = svc_revisit;
1550 	return &dr->handle;
1551 }
1552 
1553 /*
1554  * recv data from a deferred request into an active one
1555  */
1556 static int svc_deferred_recv(struct svc_rqst *rqstp)
1557 {
1558 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1559 
1560 	rqstp->rq_arg.head[0].iov_base = dr->args;
1561 	rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
1562 	rqstp->rq_arg.page_len = 0;
1563 	rqstp->rq_arg.len = dr->argslen<<2;
1564 	rqstp->rq_prot        = dr->prot;
1565 	rqstp->rq_addr        = dr->addr;
1566 	return dr->argslen<<2;
1567 }
1568 
1569 
1570 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk)
1571 {
1572 	struct svc_deferred_req *dr = NULL;
1573 	struct svc_serv	*serv = svsk->sk_server;
1574 
1575 	if (!test_bit(SK_DEFERRED, &svsk->sk_flags))
1576 		return NULL;
1577 	spin_lock_bh(&serv->sv_lock);
1578 	clear_bit(SK_DEFERRED, &svsk->sk_flags);
1579 	if (!list_empty(&svsk->sk_deferred)) {
1580 		dr = list_entry(svsk->sk_deferred.next,
1581 				struct svc_deferred_req,
1582 				handle.recent);
1583 		list_del_init(&dr->handle.recent);
1584 		set_bit(SK_DEFERRED, &svsk->sk_flags);
1585 	}
1586 	spin_unlock_bh(&serv->sv_lock);
1587 	return dr;
1588 }
1589