xref: /linux/net/sunrpc/svc_xprt.c (revision fce96cf0443083e37455eff8f78fd240c621dae3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/svc_xprt.c
4  *
5  * Author: Tom Tucker <tom@opengridcomputing.com>
6  */
7 
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/errno.h>
11 #include <linux/freezer.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <net/sock.h>
15 #include <linux/sunrpc/addr.h>
16 #include <linux/sunrpc/stats.h>
17 #include <linux/sunrpc/svc_xprt.h>
18 #include <linux/sunrpc/svcsock.h>
19 #include <linux/sunrpc/xprt.h>
20 #include <linux/module.h>
21 #include <linux/netdevice.h>
22 #include <trace/events/sunrpc.h>
23 
24 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
25 
26 static unsigned int svc_rpc_per_connection_limit __read_mostly;
27 module_param(svc_rpc_per_connection_limit, uint, 0644);
28 
29 
30 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
31 static int svc_deferred_recv(struct svc_rqst *rqstp);
32 static struct cache_deferred_req *svc_defer(struct cache_req *req);
33 static void svc_age_temp_xprts(struct timer_list *t);
34 static void svc_delete_xprt(struct svc_xprt *xprt);
35 
36 /* apparently the "standard" is that clients close
37  * idle connections after 5 minutes, servers after
38  * 6 minutes
39  *   http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
40  */
41 static int svc_conn_age_period = 6*60;
42 
43 /* List of registered transport classes */
44 static DEFINE_SPINLOCK(svc_xprt_class_lock);
45 static LIST_HEAD(svc_xprt_class_list);
46 
47 /* SMP locking strategy:
48  *
49  *	svc_pool->sp_lock protects most of the fields of that pool.
50  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
51  *	when both need to be taken (rare), svc_serv->sv_lock is first.
52  *	The "service mutex" protects svc_serv->sv_nrthread.
53  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
54  *             and the ->sk_info_authunix cache.
55  *
56  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
57  *	enqueued multiply. During normal transport processing this bit
58  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
59  *	Providers should not manipulate this bit directly.
60  *
61  *	Some flags can be set to certain values at any time
62  *	providing that certain rules are followed:
63  *
64  *	XPT_CONN, XPT_DATA:
65  *		- Can be set or cleared at any time.
66  *		- After a set, svc_xprt_enqueue must be called to enqueue
67  *		  the transport for processing.
68  *		- After a clear, the transport must be read/accepted.
69  *		  If this succeeds, it must be set again.
70  *	XPT_CLOSE:
71  *		- Can set at any time. It is never cleared.
72  *      XPT_DEAD:
73  *		- Can only be set while XPT_BUSY is held which ensures
74  *		  that no other thread will be using the transport or will
75  *		  try to set XPT_DEAD.
76  */
77 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
78 {
79 	struct svc_xprt_class *cl;
80 	int res = -EEXIST;
81 
82 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
83 
84 	INIT_LIST_HEAD(&xcl->xcl_list);
85 	spin_lock(&svc_xprt_class_lock);
86 	/* Make sure there isn't already a class with the same name */
87 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
88 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
89 			goto out;
90 	}
91 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
92 	res = 0;
93 out:
94 	spin_unlock(&svc_xprt_class_lock);
95 	return res;
96 }
97 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
98 
99 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
100 {
101 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
102 	spin_lock(&svc_xprt_class_lock);
103 	list_del_init(&xcl->xcl_list);
104 	spin_unlock(&svc_xprt_class_lock);
105 }
106 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
107 
108 /**
109  * svc_print_xprts - Format the transport list for printing
110  * @buf: target buffer for formatted address
111  * @maxlen: length of target buffer
112  *
113  * Fills in @buf with a string containing a list of transport names, each name
114  * terminated with '\n'. If the buffer is too small, some entries may be
115  * missing, but it is guaranteed that all lines in the output buffer are
116  * complete.
117  *
118  * Returns positive length of the filled-in string.
119  */
120 int svc_print_xprts(char *buf, int maxlen)
121 {
122 	struct svc_xprt_class *xcl;
123 	char tmpstr[80];
124 	int len = 0;
125 	buf[0] = '\0';
126 
127 	spin_lock(&svc_xprt_class_lock);
128 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
129 		int slen;
130 
131 		slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
132 				xcl->xcl_name, xcl->xcl_max_payload);
133 		if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
134 			break;
135 		len += slen;
136 		strcat(buf, tmpstr);
137 	}
138 	spin_unlock(&svc_xprt_class_lock);
139 
140 	return len;
141 }
142 
143 /**
144  * svc_xprt_deferred_close - Close a transport
145  * @xprt: transport instance
146  *
147  * Used in contexts that need to defer the work of shutting down
148  * the transport to an nfsd thread.
149  */
150 void svc_xprt_deferred_close(struct svc_xprt *xprt)
151 {
152 	if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags))
153 		svc_xprt_enqueue(xprt);
154 }
155 EXPORT_SYMBOL_GPL(svc_xprt_deferred_close);
156 
157 static void svc_xprt_free(struct kref *kref)
158 {
159 	struct svc_xprt *xprt =
160 		container_of(kref, struct svc_xprt, xpt_ref);
161 	struct module *owner = xprt->xpt_class->xcl_owner;
162 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
163 		svcauth_unix_info_release(xprt);
164 	put_cred(xprt->xpt_cred);
165 	put_net_track(xprt->xpt_net, &xprt->ns_tracker);
166 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
167 	if (xprt->xpt_bc_xprt)
168 		xprt_put(xprt->xpt_bc_xprt);
169 	if (xprt->xpt_bc_xps)
170 		xprt_switch_put(xprt->xpt_bc_xps);
171 	trace_svc_xprt_free(xprt);
172 	xprt->xpt_ops->xpo_free(xprt);
173 	module_put(owner);
174 }
175 
176 void svc_xprt_put(struct svc_xprt *xprt)
177 {
178 	kref_put(&xprt->xpt_ref, svc_xprt_free);
179 }
180 EXPORT_SYMBOL_GPL(svc_xprt_put);
181 
182 /*
183  * Called by transport drivers to initialize the transport independent
184  * portion of the transport instance.
185  */
186 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
187 		   struct svc_xprt *xprt, struct svc_serv *serv)
188 {
189 	memset(xprt, 0, sizeof(*xprt));
190 	xprt->xpt_class = xcl;
191 	xprt->xpt_ops = xcl->xcl_ops;
192 	kref_init(&xprt->xpt_ref);
193 	xprt->xpt_server = serv;
194 	INIT_LIST_HEAD(&xprt->xpt_list);
195 	INIT_LIST_HEAD(&xprt->xpt_ready);
196 	INIT_LIST_HEAD(&xprt->xpt_deferred);
197 	INIT_LIST_HEAD(&xprt->xpt_users);
198 	mutex_init(&xprt->xpt_mutex);
199 	spin_lock_init(&xprt->xpt_lock);
200 	set_bit(XPT_BUSY, &xprt->xpt_flags);
201 	xprt->xpt_net = get_net_track(net, &xprt->ns_tracker, GFP_ATOMIC);
202 	strcpy(xprt->xpt_remotebuf, "uninitialized");
203 }
204 EXPORT_SYMBOL_GPL(svc_xprt_init);
205 
206 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
207 					 struct svc_serv *serv,
208 					 struct net *net,
209 					 const int family,
210 					 const unsigned short port,
211 					 int flags)
212 {
213 	struct sockaddr_in sin = {
214 		.sin_family		= AF_INET,
215 		.sin_addr.s_addr	= htonl(INADDR_ANY),
216 		.sin_port		= htons(port),
217 	};
218 #if IS_ENABLED(CONFIG_IPV6)
219 	struct sockaddr_in6 sin6 = {
220 		.sin6_family		= AF_INET6,
221 		.sin6_addr		= IN6ADDR_ANY_INIT,
222 		.sin6_port		= htons(port),
223 	};
224 #endif
225 	struct svc_xprt *xprt;
226 	struct sockaddr *sap;
227 	size_t len;
228 
229 	switch (family) {
230 	case PF_INET:
231 		sap = (struct sockaddr *)&sin;
232 		len = sizeof(sin);
233 		break;
234 #if IS_ENABLED(CONFIG_IPV6)
235 	case PF_INET6:
236 		sap = (struct sockaddr *)&sin6;
237 		len = sizeof(sin6);
238 		break;
239 #endif
240 	default:
241 		return ERR_PTR(-EAFNOSUPPORT);
242 	}
243 
244 	xprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
245 	if (IS_ERR(xprt))
246 		trace_svc_xprt_create_err(serv->sv_program->pg_name,
247 					  xcl->xcl_name, sap, len, xprt);
248 	return xprt;
249 }
250 
251 /**
252  * svc_xprt_received - start next receiver thread
253  * @xprt: controlling transport
254  *
255  * The caller must hold the XPT_BUSY bit and must
256  * not thereafter touch transport data.
257  *
258  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
259  * insufficient) data.
260  */
261 void svc_xprt_received(struct svc_xprt *xprt)
262 {
263 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
264 		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
265 		return;
266 	}
267 
268 	/* As soon as we clear busy, the xprt could be closed and
269 	 * 'put', so we need a reference to call svc_xprt_enqueue with:
270 	 */
271 	svc_xprt_get(xprt);
272 	smp_mb__before_atomic();
273 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
274 	svc_xprt_enqueue(xprt);
275 	svc_xprt_put(xprt);
276 }
277 EXPORT_SYMBOL_GPL(svc_xprt_received);
278 
279 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
280 {
281 	clear_bit(XPT_TEMP, &new->xpt_flags);
282 	spin_lock_bh(&serv->sv_lock);
283 	list_add(&new->xpt_list, &serv->sv_permsocks);
284 	spin_unlock_bh(&serv->sv_lock);
285 	svc_xprt_received(new);
286 }
287 
288 static int _svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
289 			    struct net *net, const int family,
290 			    const unsigned short port, int flags,
291 			    const struct cred *cred)
292 {
293 	struct svc_xprt_class *xcl;
294 
295 	spin_lock(&svc_xprt_class_lock);
296 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
297 		struct svc_xprt *newxprt;
298 		unsigned short newport;
299 
300 		if (strcmp(xprt_name, xcl->xcl_name))
301 			continue;
302 
303 		if (!try_module_get(xcl->xcl_owner))
304 			goto err;
305 
306 		spin_unlock(&svc_xprt_class_lock);
307 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
308 		if (IS_ERR(newxprt)) {
309 			module_put(xcl->xcl_owner);
310 			return PTR_ERR(newxprt);
311 		}
312 		newxprt->xpt_cred = get_cred(cred);
313 		svc_add_new_perm_xprt(serv, newxprt);
314 		newport = svc_xprt_local_port(newxprt);
315 		return newport;
316 	}
317  err:
318 	spin_unlock(&svc_xprt_class_lock);
319 	/* This errno is exposed to user space.  Provide a reasonable
320 	 * perror msg for a bad transport. */
321 	return -EPROTONOSUPPORT;
322 }
323 
324 /**
325  * svc_xprt_create - Add a new listener to @serv
326  * @serv: target RPC service
327  * @xprt_name: transport class name
328  * @net: network namespace
329  * @family: network address family
330  * @port: listener port
331  * @flags: SVC_SOCK flags
332  * @cred: credential to bind to this transport
333  *
334  * Return values:
335  *   %0: New listener added successfully
336  *   %-EPROTONOSUPPORT: Requested transport type not supported
337  */
338 int svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
339 		    struct net *net, const int family,
340 		    const unsigned short port, int flags,
341 		    const struct cred *cred)
342 {
343 	int err;
344 
345 	err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
346 	if (err == -EPROTONOSUPPORT) {
347 		request_module("svc%s", xprt_name);
348 		err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
349 	}
350 	return err;
351 }
352 EXPORT_SYMBOL_GPL(svc_xprt_create);
353 
354 /*
355  * Copy the local and remote xprt addresses to the rqstp structure
356  */
357 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
358 {
359 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
360 	rqstp->rq_addrlen = xprt->xpt_remotelen;
361 
362 	/*
363 	 * Destination address in request is needed for binding the
364 	 * source address in RPC replies/callbacks later.
365 	 */
366 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
367 	rqstp->rq_daddrlen = xprt->xpt_locallen;
368 }
369 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
370 
371 /**
372  * svc_print_addr - Format rq_addr field for printing
373  * @rqstp: svc_rqst struct containing address to print
374  * @buf: target buffer for formatted address
375  * @len: length of target buffer
376  *
377  */
378 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
379 {
380 	return __svc_print_addr(svc_addr(rqstp), buf, len);
381 }
382 EXPORT_SYMBOL_GPL(svc_print_addr);
383 
384 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
385 {
386 	unsigned int limit = svc_rpc_per_connection_limit;
387 	int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
388 
389 	return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
390 }
391 
392 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
393 {
394 	if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
395 		if (!svc_xprt_slots_in_range(xprt))
396 			return false;
397 		atomic_inc(&xprt->xpt_nr_rqsts);
398 		set_bit(RQ_DATA, &rqstp->rq_flags);
399 	}
400 	return true;
401 }
402 
403 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
404 {
405 	struct svc_xprt	*xprt = rqstp->rq_xprt;
406 	if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
407 		atomic_dec(&xprt->xpt_nr_rqsts);
408 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
409 		svc_xprt_enqueue(xprt);
410 	}
411 }
412 
413 static bool svc_xprt_ready(struct svc_xprt *xprt)
414 {
415 	unsigned long xpt_flags;
416 
417 	/*
418 	 * If another cpu has recently updated xpt_flags,
419 	 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
420 	 * know about it; otherwise it's possible that both that cpu and
421 	 * this one could call svc_xprt_enqueue() without either
422 	 * svc_xprt_enqueue() recognizing that the conditions below
423 	 * are satisfied, and we could stall indefinitely:
424 	 */
425 	smp_rmb();
426 	xpt_flags = READ_ONCE(xprt->xpt_flags);
427 
428 	if (xpt_flags & BIT(XPT_BUSY))
429 		return false;
430 	if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE)))
431 		return true;
432 	if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
433 		if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
434 		    svc_xprt_slots_in_range(xprt))
435 			return true;
436 		trace_svc_xprt_no_write_space(xprt);
437 		return false;
438 	}
439 	return false;
440 }
441 
442 /**
443  * svc_xprt_enqueue - Queue a transport on an idle nfsd thread
444  * @xprt: transport with data pending
445  *
446  */
447 void svc_xprt_enqueue(struct svc_xprt *xprt)
448 {
449 	struct svc_pool *pool;
450 	struct svc_rqst	*rqstp = NULL;
451 	int cpu;
452 
453 	if (!svc_xprt_ready(xprt))
454 		return;
455 
456 	/* Mark transport as busy. It will remain in this state until
457 	 * the provider calls svc_xprt_received. We update XPT_BUSY
458 	 * atomically because it also guards against trying to enqueue
459 	 * the transport twice.
460 	 */
461 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
462 		return;
463 
464 	cpu = get_cpu();
465 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
466 
467 	atomic_long_inc(&pool->sp_stats.packets);
468 
469 	spin_lock_bh(&pool->sp_lock);
470 	list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
471 	pool->sp_stats.sockets_queued++;
472 	spin_unlock_bh(&pool->sp_lock);
473 
474 	/* find a thread for this xprt */
475 	rcu_read_lock();
476 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
477 		if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
478 			continue;
479 		atomic_long_inc(&pool->sp_stats.threads_woken);
480 		rqstp->rq_qtime = ktime_get();
481 		wake_up_process(rqstp->rq_task);
482 		goto out_unlock;
483 	}
484 	set_bit(SP_CONGESTED, &pool->sp_flags);
485 	rqstp = NULL;
486 out_unlock:
487 	rcu_read_unlock();
488 	put_cpu();
489 	trace_svc_xprt_enqueue(xprt, rqstp);
490 }
491 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
492 
493 /*
494  * Dequeue the first transport, if there is one.
495  */
496 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
497 {
498 	struct svc_xprt	*xprt = NULL;
499 
500 	if (list_empty(&pool->sp_sockets))
501 		goto out;
502 
503 	spin_lock_bh(&pool->sp_lock);
504 	if (likely(!list_empty(&pool->sp_sockets))) {
505 		xprt = list_first_entry(&pool->sp_sockets,
506 					struct svc_xprt, xpt_ready);
507 		list_del_init(&xprt->xpt_ready);
508 		svc_xprt_get(xprt);
509 	}
510 	spin_unlock_bh(&pool->sp_lock);
511 out:
512 	return xprt;
513 }
514 
515 /**
516  * svc_reserve - change the space reserved for the reply to a request.
517  * @rqstp:  The request in question
518  * @space: new max space to reserve
519  *
520  * Each request reserves some space on the output queue of the transport
521  * to make sure the reply fits.  This function reduces that reserved
522  * space to be the amount of space used already, plus @space.
523  *
524  */
525 void svc_reserve(struct svc_rqst *rqstp, int space)
526 {
527 	struct svc_xprt *xprt = rqstp->rq_xprt;
528 
529 	space += rqstp->rq_res.head[0].iov_len;
530 
531 	if (xprt && space < rqstp->rq_reserved) {
532 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
533 		rqstp->rq_reserved = space;
534 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
535 		svc_xprt_enqueue(xprt);
536 	}
537 }
538 EXPORT_SYMBOL_GPL(svc_reserve);
539 
540 static void svc_xprt_release(struct svc_rqst *rqstp)
541 {
542 	struct svc_xprt	*xprt = rqstp->rq_xprt;
543 
544 	xprt->xpt_ops->xpo_release_rqst(rqstp);
545 
546 	kfree(rqstp->rq_deferred);
547 	rqstp->rq_deferred = NULL;
548 
549 	pagevec_release(&rqstp->rq_pvec);
550 	svc_free_res_pages(rqstp);
551 	rqstp->rq_res.page_len = 0;
552 	rqstp->rq_res.page_base = 0;
553 
554 	/* Reset response buffer and release
555 	 * the reservation.
556 	 * But first, check that enough space was reserved
557 	 * for the reply, otherwise we have a bug!
558 	 */
559 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
560 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
561 		       rqstp->rq_reserved,
562 		       rqstp->rq_res.len);
563 
564 	rqstp->rq_res.head[0].iov_len = 0;
565 	svc_reserve(rqstp, 0);
566 	svc_xprt_release_slot(rqstp);
567 	rqstp->rq_xprt = NULL;
568 	svc_xprt_put(xprt);
569 }
570 
571 /*
572  * Some svc_serv's will have occasional work to do, even when a xprt is not
573  * waiting to be serviced. This function is there to "kick" a task in one of
574  * those services so that it can wake up and do that work. Note that we only
575  * bother with pool 0 as we don't need to wake up more than one thread for
576  * this purpose.
577  */
578 void svc_wake_up(struct svc_serv *serv)
579 {
580 	struct svc_rqst	*rqstp;
581 	struct svc_pool *pool;
582 
583 	pool = &serv->sv_pools[0];
584 
585 	rcu_read_lock();
586 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
587 		/* skip any that aren't queued */
588 		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
589 			continue;
590 		rcu_read_unlock();
591 		wake_up_process(rqstp->rq_task);
592 		trace_svc_wake_up(rqstp->rq_task->pid);
593 		return;
594 	}
595 	rcu_read_unlock();
596 
597 	/* No free entries available */
598 	set_bit(SP_TASK_PENDING, &pool->sp_flags);
599 	smp_wmb();
600 	trace_svc_wake_up(0);
601 }
602 EXPORT_SYMBOL_GPL(svc_wake_up);
603 
604 int svc_port_is_privileged(struct sockaddr *sin)
605 {
606 	switch (sin->sa_family) {
607 	case AF_INET:
608 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
609 			< PROT_SOCK;
610 	case AF_INET6:
611 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
612 			< PROT_SOCK;
613 	default:
614 		return 0;
615 	}
616 }
617 
618 /*
619  * Make sure that we don't have too many active connections. If we have,
620  * something must be dropped. It's not clear what will happen if we allow
621  * "too many" connections, but when dealing with network-facing software,
622  * we have to code defensively. Here we do that by imposing hard limits.
623  *
624  * There's no point in trying to do random drop here for DoS
625  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
626  * attacker can easily beat that.
627  *
628  * The only somewhat efficient mechanism would be if drop old
629  * connections from the same IP first. But right now we don't even
630  * record the client IP in svc_sock.
631  *
632  * single-threaded services that expect a lot of clients will probably
633  * need to set sv_maxconn to override the default value which is based
634  * on the number of threads
635  */
636 static void svc_check_conn_limits(struct svc_serv *serv)
637 {
638 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
639 				(serv->sv_nrthreads+3) * 20;
640 
641 	if (serv->sv_tmpcnt > limit) {
642 		struct svc_xprt *xprt = NULL;
643 		spin_lock_bh(&serv->sv_lock);
644 		if (!list_empty(&serv->sv_tempsocks)) {
645 			/* Try to help the admin */
646 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
647 					       serv->sv_name, serv->sv_maxconn ?
648 					       "max number of connections" :
649 					       "number of threads");
650 			/*
651 			 * Always select the oldest connection. It's not fair,
652 			 * but so is life
653 			 */
654 			xprt = list_entry(serv->sv_tempsocks.prev,
655 					  struct svc_xprt,
656 					  xpt_list);
657 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
658 			svc_xprt_get(xprt);
659 		}
660 		spin_unlock_bh(&serv->sv_lock);
661 
662 		if (xprt) {
663 			svc_xprt_enqueue(xprt);
664 			svc_xprt_put(xprt);
665 		}
666 	}
667 }
668 
669 static int svc_alloc_arg(struct svc_rqst *rqstp)
670 {
671 	struct svc_serv *serv = rqstp->rq_server;
672 	struct xdr_buf *arg = &rqstp->rq_arg;
673 	unsigned long pages, filled, ret;
674 
675 	pagevec_init(&rqstp->rq_pvec);
676 
677 	pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
678 	if (pages > RPCSVC_MAXPAGES) {
679 		pr_warn_once("svc: warning: pages=%lu > RPCSVC_MAXPAGES=%lu\n",
680 			     pages, RPCSVC_MAXPAGES);
681 		/* use as many pages as possible */
682 		pages = RPCSVC_MAXPAGES;
683 	}
684 
685 	for (filled = 0; filled < pages; filled = ret) {
686 		ret = alloc_pages_bulk_array(GFP_KERNEL, pages,
687 					     rqstp->rq_pages);
688 		if (ret > filled)
689 			/* Made progress, don't sleep yet */
690 			continue;
691 
692 		set_current_state(TASK_INTERRUPTIBLE);
693 		if (signalled() || kthread_should_stop()) {
694 			set_current_state(TASK_RUNNING);
695 			return -EINTR;
696 		}
697 		trace_svc_alloc_arg_err(pages);
698 		memalloc_retry_wait(GFP_KERNEL);
699 	}
700 	rqstp->rq_page_end = &rqstp->rq_pages[pages];
701 	rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */
702 
703 	/* Make arg->head point to first page and arg->pages point to rest */
704 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
705 	arg->head[0].iov_len = PAGE_SIZE;
706 	arg->pages = rqstp->rq_pages + 1;
707 	arg->page_base = 0;
708 	/* save at least one page for response */
709 	arg->page_len = (pages-2)*PAGE_SIZE;
710 	arg->len = (pages-1)*PAGE_SIZE;
711 	arg->tail[0].iov_len = 0;
712 	return 0;
713 }
714 
715 static bool
716 rqst_should_sleep(struct svc_rqst *rqstp)
717 {
718 	struct svc_pool		*pool = rqstp->rq_pool;
719 
720 	/* did someone call svc_wake_up? */
721 	if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
722 		return false;
723 
724 	/* was a socket queued? */
725 	if (!list_empty(&pool->sp_sockets))
726 		return false;
727 
728 	/* are we shutting down? */
729 	if (signalled() || kthread_should_stop())
730 		return false;
731 
732 	/* are we freezing? */
733 	if (freezing(current))
734 		return false;
735 
736 	return true;
737 }
738 
739 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
740 {
741 	struct svc_pool		*pool = rqstp->rq_pool;
742 	long			time_left = 0;
743 
744 	/* rq_xprt should be clear on entry */
745 	WARN_ON_ONCE(rqstp->rq_xprt);
746 
747 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
748 	if (rqstp->rq_xprt)
749 		goto out_found;
750 
751 	/*
752 	 * We have to be able to interrupt this wait
753 	 * to bring down the daemons ...
754 	 */
755 	set_current_state(TASK_INTERRUPTIBLE);
756 	smp_mb__before_atomic();
757 	clear_bit(SP_CONGESTED, &pool->sp_flags);
758 	clear_bit(RQ_BUSY, &rqstp->rq_flags);
759 	smp_mb__after_atomic();
760 
761 	if (likely(rqst_should_sleep(rqstp)))
762 		time_left = schedule_timeout(timeout);
763 	else
764 		__set_current_state(TASK_RUNNING);
765 
766 	try_to_freeze();
767 
768 	set_bit(RQ_BUSY, &rqstp->rq_flags);
769 	smp_mb__after_atomic();
770 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
771 	if (rqstp->rq_xprt)
772 		goto out_found;
773 
774 	if (!time_left)
775 		atomic_long_inc(&pool->sp_stats.threads_timedout);
776 
777 	if (signalled() || kthread_should_stop())
778 		return ERR_PTR(-EINTR);
779 	return ERR_PTR(-EAGAIN);
780 out_found:
781 	/* Normally we will wait up to 5 seconds for any required
782 	 * cache information to be provided.
783 	 */
784 	if (!test_bit(SP_CONGESTED, &pool->sp_flags))
785 		rqstp->rq_chandle.thread_wait = 5*HZ;
786 	else
787 		rqstp->rq_chandle.thread_wait = 1*HZ;
788 	trace_svc_xprt_dequeue(rqstp);
789 	return rqstp->rq_xprt;
790 }
791 
792 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
793 {
794 	spin_lock_bh(&serv->sv_lock);
795 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
796 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
797 	serv->sv_tmpcnt++;
798 	if (serv->sv_temptimer.function == NULL) {
799 		/* setup timer to age temp transports */
800 		serv->sv_temptimer.function = svc_age_temp_xprts;
801 		mod_timer(&serv->sv_temptimer,
802 			  jiffies + svc_conn_age_period * HZ);
803 	}
804 	spin_unlock_bh(&serv->sv_lock);
805 	svc_xprt_received(newxpt);
806 }
807 
808 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
809 {
810 	struct svc_serv *serv = rqstp->rq_server;
811 	int len = 0;
812 
813 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
814 		if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
815 			xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
816 		svc_delete_xprt(xprt);
817 		/* Leave XPT_BUSY set on the dead xprt: */
818 		goto out;
819 	}
820 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
821 		struct svc_xprt *newxpt;
822 		/*
823 		 * We know this module_get will succeed because the
824 		 * listener holds a reference too
825 		 */
826 		__module_get(xprt->xpt_class->xcl_owner);
827 		svc_check_conn_limits(xprt->xpt_server);
828 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
829 		if (newxpt) {
830 			newxpt->xpt_cred = get_cred(xprt->xpt_cred);
831 			svc_add_new_temp_xprt(serv, newxpt);
832 			trace_svc_xprt_accept(newxpt, serv->sv_name);
833 		} else {
834 			module_put(xprt->xpt_class->xcl_owner);
835 		}
836 		svc_xprt_received(xprt);
837 	} else if (svc_xprt_reserve_slot(rqstp, xprt)) {
838 		/* XPT_DATA|XPT_DEFERRED case: */
839 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
840 			rqstp, rqstp->rq_pool->sp_id, xprt,
841 			kref_read(&xprt->xpt_ref));
842 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
843 		if (rqstp->rq_deferred)
844 			len = svc_deferred_recv(rqstp);
845 		else
846 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
847 		rqstp->rq_stime = ktime_get();
848 		rqstp->rq_reserved = serv->sv_max_mesg;
849 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
850 	} else
851 		svc_xprt_received(xprt);
852 
853 out:
854 	return len;
855 }
856 
857 /*
858  * Receive the next request on any transport.  This code is carefully
859  * organised not to touch any cachelines in the shared svc_serv
860  * structure, only cachelines in the local svc_pool.
861  */
862 int svc_recv(struct svc_rqst *rqstp, long timeout)
863 {
864 	struct svc_xprt		*xprt = NULL;
865 	struct svc_serv		*serv = rqstp->rq_server;
866 	int			len, err;
867 
868 	err = svc_alloc_arg(rqstp);
869 	if (err)
870 		goto out;
871 
872 	try_to_freeze();
873 	cond_resched();
874 	err = -EINTR;
875 	if (signalled() || kthread_should_stop())
876 		goto out;
877 
878 	xprt = svc_get_next_xprt(rqstp, timeout);
879 	if (IS_ERR(xprt)) {
880 		err = PTR_ERR(xprt);
881 		goto out;
882 	}
883 
884 	len = svc_handle_xprt(rqstp, xprt);
885 
886 	/* No data, incomplete (TCP) read, or accept() */
887 	err = -EAGAIN;
888 	if (len <= 0)
889 		goto out_release;
890 	trace_svc_xdr_recvfrom(&rqstp->rq_arg);
891 
892 	clear_bit(XPT_OLD, &xprt->xpt_flags);
893 
894 	xprt->xpt_ops->xpo_secure_port(rqstp);
895 	rqstp->rq_chandle.defer = svc_defer;
896 	rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
897 
898 	if (serv->sv_stats)
899 		serv->sv_stats->netcnt++;
900 	return len;
901 out_release:
902 	rqstp->rq_res.len = 0;
903 	svc_xprt_release(rqstp);
904 out:
905 	return err;
906 }
907 EXPORT_SYMBOL_GPL(svc_recv);
908 
909 /*
910  * Drop request
911  */
912 void svc_drop(struct svc_rqst *rqstp)
913 {
914 	trace_svc_drop(rqstp);
915 	svc_xprt_release(rqstp);
916 }
917 EXPORT_SYMBOL_GPL(svc_drop);
918 
919 /*
920  * Return reply to client.
921  */
922 int svc_send(struct svc_rqst *rqstp)
923 {
924 	struct svc_xprt	*xprt;
925 	int		len = -EFAULT;
926 	struct xdr_buf	*xb;
927 
928 	xprt = rqstp->rq_xprt;
929 	if (!xprt)
930 		goto out;
931 
932 	/* calculate over-all length */
933 	xb = &rqstp->rq_res;
934 	xb->len = xb->head[0].iov_len +
935 		xb->page_len +
936 		xb->tail[0].iov_len;
937 	trace_svc_xdr_sendto(rqstp->rq_xid, xb);
938 	trace_svc_stats_latency(rqstp);
939 
940 	len = xprt->xpt_ops->xpo_sendto(rqstp);
941 
942 	trace_svc_send(rqstp, len);
943 	svc_xprt_release(rqstp);
944 
945 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
946 		len = 0;
947 out:
948 	return len;
949 }
950 
951 /*
952  * Timer function to close old temporary transports, using
953  * a mark-and-sweep algorithm.
954  */
955 static void svc_age_temp_xprts(struct timer_list *t)
956 {
957 	struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
958 	struct svc_xprt *xprt;
959 	struct list_head *le, *next;
960 
961 	dprintk("svc_age_temp_xprts\n");
962 
963 	if (!spin_trylock_bh(&serv->sv_lock)) {
964 		/* busy, try again 1 sec later */
965 		dprintk("svc_age_temp_xprts: busy\n");
966 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
967 		return;
968 	}
969 
970 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
971 		xprt = list_entry(le, struct svc_xprt, xpt_list);
972 
973 		/* First time through, just mark it OLD. Second time
974 		 * through, close it. */
975 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
976 			continue;
977 		if (kref_read(&xprt->xpt_ref) > 1 ||
978 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
979 			continue;
980 		list_del_init(le);
981 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
982 		dprintk("queuing xprt %p for closing\n", xprt);
983 
984 		/* a thread will dequeue and close it soon */
985 		svc_xprt_enqueue(xprt);
986 	}
987 	spin_unlock_bh(&serv->sv_lock);
988 
989 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
990 }
991 
992 /* Close temporary transports whose xpt_local matches server_addr immediately
993  * instead of waiting for them to be picked up by the timer.
994  *
995  * This is meant to be called from a notifier_block that runs when an ip
996  * address is deleted.
997  */
998 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
999 {
1000 	struct svc_xprt *xprt;
1001 	struct list_head *le, *next;
1002 	LIST_HEAD(to_be_closed);
1003 
1004 	spin_lock_bh(&serv->sv_lock);
1005 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
1006 		xprt = list_entry(le, struct svc_xprt, xpt_list);
1007 		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
1008 				&xprt->xpt_local)) {
1009 			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
1010 			list_move(le, &to_be_closed);
1011 		}
1012 	}
1013 	spin_unlock_bh(&serv->sv_lock);
1014 
1015 	while (!list_empty(&to_be_closed)) {
1016 		le = to_be_closed.next;
1017 		list_del_init(le);
1018 		xprt = list_entry(le, struct svc_xprt, xpt_list);
1019 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1020 		set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
1021 		dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
1022 				xprt);
1023 		svc_xprt_enqueue(xprt);
1024 	}
1025 }
1026 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1027 
1028 static void call_xpt_users(struct svc_xprt *xprt)
1029 {
1030 	struct svc_xpt_user *u;
1031 
1032 	spin_lock(&xprt->xpt_lock);
1033 	while (!list_empty(&xprt->xpt_users)) {
1034 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1035 		list_del_init(&u->list);
1036 		u->callback(u);
1037 	}
1038 	spin_unlock(&xprt->xpt_lock);
1039 }
1040 
1041 /*
1042  * Remove a dead transport
1043  */
1044 static void svc_delete_xprt(struct svc_xprt *xprt)
1045 {
1046 	struct svc_serv	*serv = xprt->xpt_server;
1047 	struct svc_deferred_req *dr;
1048 
1049 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1050 		return;
1051 
1052 	trace_svc_xprt_detach(xprt);
1053 	xprt->xpt_ops->xpo_detach(xprt);
1054 	if (xprt->xpt_bc_xprt)
1055 		xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt);
1056 
1057 	spin_lock_bh(&serv->sv_lock);
1058 	list_del_init(&xprt->xpt_list);
1059 	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1060 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1061 		serv->sv_tmpcnt--;
1062 	spin_unlock_bh(&serv->sv_lock);
1063 
1064 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1065 		kfree(dr);
1066 
1067 	call_xpt_users(xprt);
1068 	svc_xprt_put(xprt);
1069 }
1070 
1071 /**
1072  * svc_xprt_close - Close a client connection
1073  * @xprt: transport to disconnect
1074  *
1075  */
1076 void svc_xprt_close(struct svc_xprt *xprt)
1077 {
1078 	trace_svc_xprt_close(xprt);
1079 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1080 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1081 		/* someone else will have to effect the close */
1082 		return;
1083 	/*
1084 	 * We expect svc_close_xprt() to work even when no threads are
1085 	 * running (e.g., while configuring the server before starting
1086 	 * any threads), so if the transport isn't busy, we delete
1087 	 * it ourself:
1088 	 */
1089 	svc_delete_xprt(xprt);
1090 }
1091 EXPORT_SYMBOL_GPL(svc_xprt_close);
1092 
1093 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1094 {
1095 	struct svc_xprt *xprt;
1096 	int ret = 0;
1097 
1098 	spin_lock_bh(&serv->sv_lock);
1099 	list_for_each_entry(xprt, xprt_list, xpt_list) {
1100 		if (xprt->xpt_net != net)
1101 			continue;
1102 		ret++;
1103 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1104 		svc_xprt_enqueue(xprt);
1105 	}
1106 	spin_unlock_bh(&serv->sv_lock);
1107 	return ret;
1108 }
1109 
1110 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1111 {
1112 	struct svc_pool *pool;
1113 	struct svc_xprt *xprt;
1114 	struct svc_xprt *tmp;
1115 	int i;
1116 
1117 	for (i = 0; i < serv->sv_nrpools; i++) {
1118 		pool = &serv->sv_pools[i];
1119 
1120 		spin_lock_bh(&pool->sp_lock);
1121 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1122 			if (xprt->xpt_net != net)
1123 				continue;
1124 			list_del_init(&xprt->xpt_ready);
1125 			spin_unlock_bh(&pool->sp_lock);
1126 			return xprt;
1127 		}
1128 		spin_unlock_bh(&pool->sp_lock);
1129 	}
1130 	return NULL;
1131 }
1132 
1133 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1134 {
1135 	struct svc_xprt *xprt;
1136 
1137 	while ((xprt = svc_dequeue_net(serv, net))) {
1138 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1139 		svc_delete_xprt(xprt);
1140 	}
1141 }
1142 
1143 /**
1144  * svc_xprt_destroy_all - Destroy transports associated with @serv
1145  * @serv: RPC service to be shut down
1146  * @net: target network namespace
1147  *
1148  * Server threads may still be running (especially in the case where the
1149  * service is still running in other network namespaces).
1150  *
1151  * So we shut down sockets the same way we would on a running server, by
1152  * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1153  * the close.  In the case there are no such other threads,
1154  * threads running, svc_clean_up_xprts() does a simple version of a
1155  * server's main event loop, and in the case where there are other
1156  * threads, we may need to wait a little while and then check again to
1157  * see if they're done.
1158  */
1159 void svc_xprt_destroy_all(struct svc_serv *serv, struct net *net)
1160 {
1161 	int delay = 0;
1162 
1163 	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1164 	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1165 
1166 		svc_clean_up_xprts(serv, net);
1167 		msleep(delay++);
1168 	}
1169 }
1170 EXPORT_SYMBOL_GPL(svc_xprt_destroy_all);
1171 
1172 /*
1173  * Handle defer and revisit of requests
1174  */
1175 
1176 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1177 {
1178 	struct svc_deferred_req *dr =
1179 		container_of(dreq, struct svc_deferred_req, handle);
1180 	struct svc_xprt *xprt = dr->xprt;
1181 
1182 	spin_lock(&xprt->xpt_lock);
1183 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1184 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1185 		spin_unlock(&xprt->xpt_lock);
1186 		trace_svc_defer_drop(dr);
1187 		svc_xprt_put(xprt);
1188 		kfree(dr);
1189 		return;
1190 	}
1191 	dr->xprt = NULL;
1192 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1193 	spin_unlock(&xprt->xpt_lock);
1194 	trace_svc_defer_queue(dr);
1195 	svc_xprt_enqueue(xprt);
1196 	svc_xprt_put(xprt);
1197 }
1198 
1199 /*
1200  * Save the request off for later processing. The request buffer looks
1201  * like this:
1202  *
1203  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1204  *
1205  * This code can only handle requests that consist of an xprt-header
1206  * and rpc-header.
1207  */
1208 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1209 {
1210 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1211 	struct svc_deferred_req *dr;
1212 
1213 	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1214 		return NULL; /* if more than a page, give up FIXME */
1215 	if (rqstp->rq_deferred) {
1216 		dr = rqstp->rq_deferred;
1217 		rqstp->rq_deferred = NULL;
1218 	} else {
1219 		size_t skip;
1220 		size_t size;
1221 		/* FIXME maybe discard if size too large */
1222 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1223 		dr = kmalloc(size, GFP_KERNEL);
1224 		if (dr == NULL)
1225 			return NULL;
1226 
1227 		dr->handle.owner = rqstp->rq_server;
1228 		dr->prot = rqstp->rq_prot;
1229 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1230 		dr->addrlen = rqstp->rq_addrlen;
1231 		dr->daddr = rqstp->rq_daddr;
1232 		dr->argslen = rqstp->rq_arg.len >> 2;
1233 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1234 
1235 		/* back up head to the start of the buffer and copy */
1236 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1237 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1238 		       dr->argslen << 2);
1239 	}
1240 	trace_svc_defer(rqstp);
1241 	svc_xprt_get(rqstp->rq_xprt);
1242 	dr->xprt = rqstp->rq_xprt;
1243 	set_bit(RQ_DROPME, &rqstp->rq_flags);
1244 
1245 	dr->handle.revisit = svc_revisit;
1246 	return &dr->handle;
1247 }
1248 
1249 /*
1250  * recv data from a deferred request into an active one
1251  */
1252 static noinline int svc_deferred_recv(struct svc_rqst *rqstp)
1253 {
1254 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1255 
1256 	trace_svc_defer_recv(dr);
1257 
1258 	/* setup iov_base past transport header */
1259 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1260 	/* The iov_len does not include the transport header bytes */
1261 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1262 	rqstp->rq_arg.page_len = 0;
1263 	/* The rq_arg.len includes the transport header bytes */
1264 	rqstp->rq_arg.len     = dr->argslen<<2;
1265 	rqstp->rq_prot        = dr->prot;
1266 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1267 	rqstp->rq_addrlen     = dr->addrlen;
1268 	/* Save off transport header len in case we get deferred again */
1269 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1270 	rqstp->rq_daddr       = dr->daddr;
1271 	rqstp->rq_respages    = rqstp->rq_pages;
1272 	svc_xprt_received(rqstp->rq_xprt);
1273 	return (dr->argslen<<2) - dr->xprt_hlen;
1274 }
1275 
1276 
1277 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1278 {
1279 	struct svc_deferred_req *dr = NULL;
1280 
1281 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1282 		return NULL;
1283 	spin_lock(&xprt->xpt_lock);
1284 	if (!list_empty(&xprt->xpt_deferred)) {
1285 		dr = list_entry(xprt->xpt_deferred.next,
1286 				struct svc_deferred_req,
1287 				handle.recent);
1288 		list_del_init(&dr->handle.recent);
1289 	} else
1290 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1291 	spin_unlock(&xprt->xpt_lock);
1292 	return dr;
1293 }
1294 
1295 /**
1296  * svc_find_xprt - find an RPC transport instance
1297  * @serv: pointer to svc_serv to search
1298  * @xcl_name: C string containing transport's class name
1299  * @net: owner net pointer
1300  * @af: Address family of transport's local address
1301  * @port: transport's IP port number
1302  *
1303  * Return the transport instance pointer for the endpoint accepting
1304  * connections/peer traffic from the specified transport class,
1305  * address family and port.
1306  *
1307  * Specifying 0 for the address family or port is effectively a
1308  * wild-card, and will result in matching the first transport in the
1309  * service's list that has a matching class name.
1310  */
1311 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1312 			       struct net *net, const sa_family_t af,
1313 			       const unsigned short port)
1314 {
1315 	struct svc_xprt *xprt;
1316 	struct svc_xprt *found = NULL;
1317 
1318 	/* Sanity check the args */
1319 	if (serv == NULL || xcl_name == NULL)
1320 		return found;
1321 
1322 	spin_lock_bh(&serv->sv_lock);
1323 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1324 		if (xprt->xpt_net != net)
1325 			continue;
1326 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1327 			continue;
1328 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1329 			continue;
1330 		if (port != 0 && port != svc_xprt_local_port(xprt))
1331 			continue;
1332 		found = xprt;
1333 		svc_xprt_get(xprt);
1334 		break;
1335 	}
1336 	spin_unlock_bh(&serv->sv_lock);
1337 	return found;
1338 }
1339 EXPORT_SYMBOL_GPL(svc_find_xprt);
1340 
1341 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1342 			     char *pos, int remaining)
1343 {
1344 	int len;
1345 
1346 	len = snprintf(pos, remaining, "%s %u\n",
1347 			xprt->xpt_class->xcl_name,
1348 			svc_xprt_local_port(xprt));
1349 	if (len >= remaining)
1350 		return -ENAMETOOLONG;
1351 	return len;
1352 }
1353 
1354 /**
1355  * svc_xprt_names - format a buffer with a list of transport names
1356  * @serv: pointer to an RPC service
1357  * @buf: pointer to a buffer to be filled in
1358  * @buflen: length of buffer to be filled in
1359  *
1360  * Fills in @buf with a string containing a list of transport names,
1361  * each name terminated with '\n'.
1362  *
1363  * Returns positive length of the filled-in string on success; otherwise
1364  * a negative errno value is returned if an error occurs.
1365  */
1366 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1367 {
1368 	struct svc_xprt *xprt;
1369 	int len, totlen;
1370 	char *pos;
1371 
1372 	/* Sanity check args */
1373 	if (!serv)
1374 		return 0;
1375 
1376 	spin_lock_bh(&serv->sv_lock);
1377 
1378 	pos = buf;
1379 	totlen = 0;
1380 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1381 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1382 		if (len < 0) {
1383 			*buf = '\0';
1384 			totlen = len;
1385 		}
1386 		if (len <= 0)
1387 			break;
1388 
1389 		pos += len;
1390 		totlen += len;
1391 	}
1392 
1393 	spin_unlock_bh(&serv->sv_lock);
1394 	return totlen;
1395 }
1396 EXPORT_SYMBOL_GPL(svc_xprt_names);
1397 
1398 
1399 /*----------------------------------------------------------------------------*/
1400 
1401 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1402 {
1403 	unsigned int pidx = (unsigned int)*pos;
1404 	struct svc_serv *serv = m->private;
1405 
1406 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1407 
1408 	if (!pidx)
1409 		return SEQ_START_TOKEN;
1410 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1411 }
1412 
1413 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1414 {
1415 	struct svc_pool *pool = p;
1416 	struct svc_serv *serv = m->private;
1417 
1418 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1419 
1420 	if (p == SEQ_START_TOKEN) {
1421 		pool = &serv->sv_pools[0];
1422 	} else {
1423 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1424 		if (pidx < serv->sv_nrpools-1)
1425 			pool = &serv->sv_pools[pidx+1];
1426 		else
1427 			pool = NULL;
1428 	}
1429 	++*pos;
1430 	return pool;
1431 }
1432 
1433 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1434 {
1435 }
1436 
1437 static int svc_pool_stats_show(struct seq_file *m, void *p)
1438 {
1439 	struct svc_pool *pool = p;
1440 
1441 	if (p == SEQ_START_TOKEN) {
1442 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1443 		return 0;
1444 	}
1445 
1446 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1447 		pool->sp_id,
1448 		(unsigned long)atomic_long_read(&pool->sp_stats.packets),
1449 		pool->sp_stats.sockets_queued,
1450 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1451 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1452 
1453 	return 0;
1454 }
1455 
1456 static const struct seq_operations svc_pool_stats_seq_ops = {
1457 	.start	= svc_pool_stats_start,
1458 	.next	= svc_pool_stats_next,
1459 	.stop	= svc_pool_stats_stop,
1460 	.show	= svc_pool_stats_show,
1461 };
1462 
1463 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1464 {
1465 	int err;
1466 
1467 	err = seq_open(file, &svc_pool_stats_seq_ops);
1468 	if (!err)
1469 		((struct seq_file *) file->private_data)->private = serv;
1470 	return err;
1471 }
1472 EXPORT_SYMBOL(svc_pool_stats_open);
1473 
1474 /*----------------------------------------------------------------------------*/
1475