xref: /linux/net/sunrpc/svc_xprt.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /*
2  * linux/net/sunrpc/svc_xprt.c
3  *
4  * Author: Tom Tucker <tom@opengridcomputing.com>
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16 #include <linux/sunrpc/xprt.h>
17 #include <linux/module.h>
18 
19 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
20 
21 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
22 static int svc_deferred_recv(struct svc_rqst *rqstp);
23 static struct cache_deferred_req *svc_defer(struct cache_req *req);
24 static void svc_age_temp_xprts(unsigned long closure);
25 static void svc_delete_xprt(struct svc_xprt *xprt);
26 
27 /* apparently the "standard" is that clients close
28  * idle connections after 5 minutes, servers after
29  * 6 minutes
30  *   http://www.connectathon.org/talks96/nfstcp.pdf
31  */
32 static int svc_conn_age_period = 6*60;
33 
34 /* List of registered transport classes */
35 static DEFINE_SPINLOCK(svc_xprt_class_lock);
36 static LIST_HEAD(svc_xprt_class_list);
37 
38 /* SMP locking strategy:
39  *
40  *	svc_pool->sp_lock protects most of the fields of that pool.
41  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
42  *	when both need to be taken (rare), svc_serv->sv_lock is first.
43  *	BKL protects svc_serv->sv_nrthread.
44  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
45  *             and the ->sk_info_authunix cache.
46  *
47  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
48  *	enqueued multiply. During normal transport processing this bit
49  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
50  *	Providers should not manipulate this bit directly.
51  *
52  *	Some flags can be set to certain values at any time
53  *	providing that certain rules are followed:
54  *
55  *	XPT_CONN, XPT_DATA:
56  *		- Can be set or cleared at any time.
57  *		- After a set, svc_xprt_enqueue must be called to enqueue
58  *		  the transport for processing.
59  *		- After a clear, the transport must be read/accepted.
60  *		  If this succeeds, it must be set again.
61  *	XPT_CLOSE:
62  *		- Can set at any time. It is never cleared.
63  *      XPT_DEAD:
64  *		- Can only be set while XPT_BUSY is held which ensures
65  *		  that no other thread will be using the transport or will
66  *		  try to set XPT_DEAD.
67  */
68 
69 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
70 {
71 	struct svc_xprt_class *cl;
72 	int res = -EEXIST;
73 
74 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
75 
76 	INIT_LIST_HEAD(&xcl->xcl_list);
77 	spin_lock(&svc_xprt_class_lock);
78 	/* Make sure there isn't already a class with the same name */
79 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
80 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
81 			goto out;
82 	}
83 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
84 	res = 0;
85 out:
86 	spin_unlock(&svc_xprt_class_lock);
87 	return res;
88 }
89 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
90 
91 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
92 {
93 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
94 	spin_lock(&svc_xprt_class_lock);
95 	list_del_init(&xcl->xcl_list);
96 	spin_unlock(&svc_xprt_class_lock);
97 }
98 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
99 
100 /*
101  * Format the transport list for printing
102  */
103 int svc_print_xprts(char *buf, int maxlen)
104 {
105 	struct svc_xprt_class *xcl;
106 	char tmpstr[80];
107 	int len = 0;
108 	buf[0] = '\0';
109 
110 	spin_lock(&svc_xprt_class_lock);
111 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
112 		int slen;
113 
114 		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
115 		slen = strlen(tmpstr);
116 		if (len + slen > maxlen)
117 			break;
118 		len += slen;
119 		strcat(buf, tmpstr);
120 	}
121 	spin_unlock(&svc_xprt_class_lock);
122 
123 	return len;
124 }
125 
126 static void svc_xprt_free(struct kref *kref)
127 {
128 	struct svc_xprt *xprt =
129 		container_of(kref, struct svc_xprt, xpt_ref);
130 	struct module *owner = xprt->xpt_class->xcl_owner;
131 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
132 		svcauth_unix_info_release(xprt);
133 	put_net(xprt->xpt_net);
134 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
135 	if (xprt->xpt_bc_xprt)
136 		xprt_put(xprt->xpt_bc_xprt);
137 	xprt->xpt_ops->xpo_free(xprt);
138 	module_put(owner);
139 }
140 
141 void svc_xprt_put(struct svc_xprt *xprt)
142 {
143 	kref_put(&xprt->xpt_ref, svc_xprt_free);
144 }
145 EXPORT_SYMBOL_GPL(svc_xprt_put);
146 
147 /*
148  * Called by transport drivers to initialize the transport independent
149  * portion of the transport instance.
150  */
151 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
152 		   struct svc_xprt *xprt, struct svc_serv *serv)
153 {
154 	memset(xprt, 0, sizeof(*xprt));
155 	xprt->xpt_class = xcl;
156 	xprt->xpt_ops = xcl->xcl_ops;
157 	kref_init(&xprt->xpt_ref);
158 	xprt->xpt_server = serv;
159 	INIT_LIST_HEAD(&xprt->xpt_list);
160 	INIT_LIST_HEAD(&xprt->xpt_ready);
161 	INIT_LIST_HEAD(&xprt->xpt_deferred);
162 	INIT_LIST_HEAD(&xprt->xpt_users);
163 	mutex_init(&xprt->xpt_mutex);
164 	spin_lock_init(&xprt->xpt_lock);
165 	set_bit(XPT_BUSY, &xprt->xpt_flags);
166 	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
167 	xprt->xpt_net = get_net(net);
168 }
169 EXPORT_SYMBOL_GPL(svc_xprt_init);
170 
171 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
172 					 struct svc_serv *serv,
173 					 struct net *net,
174 					 const int family,
175 					 const unsigned short port,
176 					 int flags)
177 {
178 	struct sockaddr_in sin = {
179 		.sin_family		= AF_INET,
180 		.sin_addr.s_addr	= htonl(INADDR_ANY),
181 		.sin_port		= htons(port),
182 	};
183 #if IS_ENABLED(CONFIG_IPV6)
184 	struct sockaddr_in6 sin6 = {
185 		.sin6_family		= AF_INET6,
186 		.sin6_addr		= IN6ADDR_ANY_INIT,
187 		.sin6_port		= htons(port),
188 	};
189 #endif
190 	struct sockaddr *sap;
191 	size_t len;
192 
193 	switch (family) {
194 	case PF_INET:
195 		sap = (struct sockaddr *)&sin;
196 		len = sizeof(sin);
197 		break;
198 #if IS_ENABLED(CONFIG_IPV6)
199 	case PF_INET6:
200 		sap = (struct sockaddr *)&sin6;
201 		len = sizeof(sin6);
202 		break;
203 #endif
204 	default:
205 		return ERR_PTR(-EAFNOSUPPORT);
206 	}
207 
208 	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
209 }
210 
211 /*
212  * svc_xprt_received conditionally queues the transport for processing
213  * by another thread. The caller must hold the XPT_BUSY bit and must
214  * not thereafter touch transport data.
215  *
216  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
217  * insufficient) data.
218  */
219 static void svc_xprt_received(struct svc_xprt *xprt)
220 {
221 	BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
222 	/* As soon as we clear busy, the xprt could be closed and
223 	 * 'put', so we need a reference to call svc_xprt_enqueue with:
224 	 */
225 	svc_xprt_get(xprt);
226 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
227 	svc_xprt_enqueue(xprt);
228 	svc_xprt_put(xprt);
229 }
230 
231 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
232 {
233 	clear_bit(XPT_TEMP, &new->xpt_flags);
234 	spin_lock_bh(&serv->sv_lock);
235 	list_add(&new->xpt_list, &serv->sv_permsocks);
236 	spin_unlock_bh(&serv->sv_lock);
237 	svc_xprt_received(new);
238 }
239 
240 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
241 		    struct net *net, const int family,
242 		    const unsigned short port, int flags)
243 {
244 	struct svc_xprt_class *xcl;
245 
246 	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
247 	spin_lock(&svc_xprt_class_lock);
248 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
249 		struct svc_xprt *newxprt;
250 		unsigned short newport;
251 
252 		if (strcmp(xprt_name, xcl->xcl_name))
253 			continue;
254 
255 		if (!try_module_get(xcl->xcl_owner))
256 			goto err;
257 
258 		spin_unlock(&svc_xprt_class_lock);
259 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
260 		if (IS_ERR(newxprt)) {
261 			module_put(xcl->xcl_owner);
262 			return PTR_ERR(newxprt);
263 		}
264 		svc_add_new_perm_xprt(serv, newxprt);
265 		newport = svc_xprt_local_port(newxprt);
266 		return newport;
267 	}
268  err:
269 	spin_unlock(&svc_xprt_class_lock);
270 	dprintk("svc: transport %s not found\n", xprt_name);
271 
272 	/* This errno is exposed to user space.  Provide a reasonable
273 	 * perror msg for a bad transport. */
274 	return -EPROTONOSUPPORT;
275 }
276 EXPORT_SYMBOL_GPL(svc_create_xprt);
277 
278 /*
279  * Copy the local and remote xprt addresses to the rqstp structure
280  */
281 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
282 {
283 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
284 	rqstp->rq_addrlen = xprt->xpt_remotelen;
285 
286 	/*
287 	 * Destination address in request is needed for binding the
288 	 * source address in RPC replies/callbacks later.
289 	 */
290 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
291 	rqstp->rq_daddrlen = xprt->xpt_locallen;
292 }
293 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
294 
295 /**
296  * svc_print_addr - Format rq_addr field for printing
297  * @rqstp: svc_rqst struct containing address to print
298  * @buf: target buffer for formatted address
299  * @len: length of target buffer
300  *
301  */
302 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
303 {
304 	return __svc_print_addr(svc_addr(rqstp), buf, len);
305 }
306 EXPORT_SYMBOL_GPL(svc_print_addr);
307 
308 /*
309  * Queue up an idle server thread.  Must have pool->sp_lock held.
310  * Note: this is really a stack rather than a queue, so that we only
311  * use as many different threads as we need, and the rest don't pollute
312  * the cache.
313  */
314 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
315 {
316 	list_add(&rqstp->rq_list, &pool->sp_threads);
317 }
318 
319 /*
320  * Dequeue an nfsd thread.  Must have pool->sp_lock held.
321  */
322 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
323 {
324 	list_del(&rqstp->rq_list);
325 }
326 
327 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
328 {
329 	if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
330 		return true;
331 	if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
332 		return xprt->xpt_ops->xpo_has_wspace(xprt);
333 	return false;
334 }
335 
336 /*
337  * Queue up a transport with data pending. If there are idle nfsd
338  * processes, wake 'em up.
339  *
340  */
341 void svc_xprt_enqueue(struct svc_xprt *xprt)
342 {
343 	struct svc_pool *pool;
344 	struct svc_rqst	*rqstp;
345 	int cpu;
346 
347 	if (!svc_xprt_has_something_to_do(xprt))
348 		return;
349 
350 	cpu = get_cpu();
351 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
352 	put_cpu();
353 
354 	spin_lock_bh(&pool->sp_lock);
355 
356 	if (!list_empty(&pool->sp_threads) &&
357 	    !list_empty(&pool->sp_sockets))
358 		printk(KERN_ERR
359 		       "svc_xprt_enqueue: "
360 		       "threads and transports both waiting??\n");
361 
362 	pool->sp_stats.packets++;
363 
364 	/* Mark transport as busy. It will remain in this state until
365 	 * the provider calls svc_xprt_received. We update XPT_BUSY
366 	 * atomically because it also guards against trying to enqueue
367 	 * the transport twice.
368 	 */
369 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
370 		/* Don't enqueue transport while already enqueued */
371 		dprintk("svc: transport %p busy, not enqueued\n", xprt);
372 		goto out_unlock;
373 	}
374 
375 	if (!list_empty(&pool->sp_threads)) {
376 		rqstp = list_entry(pool->sp_threads.next,
377 				   struct svc_rqst,
378 				   rq_list);
379 		dprintk("svc: transport %p served by daemon %p\n",
380 			xprt, rqstp);
381 		svc_thread_dequeue(pool, rqstp);
382 		if (rqstp->rq_xprt)
383 			printk(KERN_ERR
384 				"svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
385 				rqstp, rqstp->rq_xprt);
386 		rqstp->rq_xprt = xprt;
387 		svc_xprt_get(xprt);
388 		pool->sp_stats.threads_woken++;
389 		wake_up(&rqstp->rq_wait);
390 	} else {
391 		dprintk("svc: transport %p put into queue\n", xprt);
392 		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
393 		pool->sp_stats.sockets_queued++;
394 	}
395 
396 out_unlock:
397 	spin_unlock_bh(&pool->sp_lock);
398 }
399 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
400 
401 /*
402  * Dequeue the first transport.  Must be called with the pool->sp_lock held.
403  */
404 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
405 {
406 	struct svc_xprt	*xprt;
407 
408 	if (list_empty(&pool->sp_sockets))
409 		return NULL;
410 
411 	xprt = list_entry(pool->sp_sockets.next,
412 			  struct svc_xprt, xpt_ready);
413 	list_del_init(&xprt->xpt_ready);
414 
415 	dprintk("svc: transport %p dequeued, inuse=%d\n",
416 		xprt, atomic_read(&xprt->xpt_ref.refcount));
417 
418 	return xprt;
419 }
420 
421 /**
422  * svc_reserve - change the space reserved for the reply to a request.
423  * @rqstp:  The request in question
424  * @space: new max space to reserve
425  *
426  * Each request reserves some space on the output queue of the transport
427  * to make sure the reply fits.  This function reduces that reserved
428  * space to be the amount of space used already, plus @space.
429  *
430  */
431 void svc_reserve(struct svc_rqst *rqstp, int space)
432 {
433 	space += rqstp->rq_res.head[0].iov_len;
434 
435 	if (space < rqstp->rq_reserved) {
436 		struct svc_xprt *xprt = rqstp->rq_xprt;
437 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
438 		rqstp->rq_reserved = space;
439 
440 		svc_xprt_enqueue(xprt);
441 	}
442 }
443 EXPORT_SYMBOL_GPL(svc_reserve);
444 
445 static void svc_xprt_release(struct svc_rqst *rqstp)
446 {
447 	struct svc_xprt	*xprt = rqstp->rq_xprt;
448 
449 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
450 
451 	kfree(rqstp->rq_deferred);
452 	rqstp->rq_deferred = NULL;
453 
454 	svc_free_res_pages(rqstp);
455 	rqstp->rq_res.page_len = 0;
456 	rqstp->rq_res.page_base = 0;
457 
458 	/* Reset response buffer and release
459 	 * the reservation.
460 	 * But first, check that enough space was reserved
461 	 * for the reply, otherwise we have a bug!
462 	 */
463 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
464 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
465 		       rqstp->rq_reserved,
466 		       rqstp->rq_res.len);
467 
468 	rqstp->rq_res.head[0].iov_len = 0;
469 	svc_reserve(rqstp, 0);
470 	rqstp->rq_xprt = NULL;
471 
472 	svc_xprt_put(xprt);
473 }
474 
475 /*
476  * External function to wake up a server waiting for data
477  * This really only makes sense for services like lockd
478  * which have exactly one thread anyway.
479  */
480 void svc_wake_up(struct svc_serv *serv)
481 {
482 	struct svc_rqst	*rqstp;
483 	unsigned int i;
484 	struct svc_pool *pool;
485 
486 	for (i = 0; i < serv->sv_nrpools; i++) {
487 		pool = &serv->sv_pools[i];
488 
489 		spin_lock_bh(&pool->sp_lock);
490 		if (!list_empty(&pool->sp_threads)) {
491 			rqstp = list_entry(pool->sp_threads.next,
492 					   struct svc_rqst,
493 					   rq_list);
494 			dprintk("svc: daemon %p woken up.\n", rqstp);
495 			/*
496 			svc_thread_dequeue(pool, rqstp);
497 			rqstp->rq_xprt = NULL;
498 			 */
499 			wake_up(&rqstp->rq_wait);
500 		}
501 		spin_unlock_bh(&pool->sp_lock);
502 	}
503 }
504 EXPORT_SYMBOL_GPL(svc_wake_up);
505 
506 int svc_port_is_privileged(struct sockaddr *sin)
507 {
508 	switch (sin->sa_family) {
509 	case AF_INET:
510 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
511 			< PROT_SOCK;
512 	case AF_INET6:
513 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
514 			< PROT_SOCK;
515 	default:
516 		return 0;
517 	}
518 }
519 
520 /*
521  * Make sure that we don't have too many active connections. If we have,
522  * something must be dropped. It's not clear what will happen if we allow
523  * "too many" connections, but when dealing with network-facing software,
524  * we have to code defensively. Here we do that by imposing hard limits.
525  *
526  * There's no point in trying to do random drop here for DoS
527  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
528  * attacker can easily beat that.
529  *
530  * The only somewhat efficient mechanism would be if drop old
531  * connections from the same IP first. But right now we don't even
532  * record the client IP in svc_sock.
533  *
534  * single-threaded services that expect a lot of clients will probably
535  * need to set sv_maxconn to override the default value which is based
536  * on the number of threads
537  */
538 static void svc_check_conn_limits(struct svc_serv *serv)
539 {
540 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
541 				(serv->sv_nrthreads+3) * 20;
542 
543 	if (serv->sv_tmpcnt > limit) {
544 		struct svc_xprt *xprt = NULL;
545 		spin_lock_bh(&serv->sv_lock);
546 		if (!list_empty(&serv->sv_tempsocks)) {
547 			/* Try to help the admin */
548 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
549 					       serv->sv_name, serv->sv_maxconn ?
550 					       "max number of connections" :
551 					       "number of threads");
552 			/*
553 			 * Always select the oldest connection. It's not fair,
554 			 * but so is life
555 			 */
556 			xprt = list_entry(serv->sv_tempsocks.prev,
557 					  struct svc_xprt,
558 					  xpt_list);
559 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
560 			svc_xprt_get(xprt);
561 		}
562 		spin_unlock_bh(&serv->sv_lock);
563 
564 		if (xprt) {
565 			svc_xprt_enqueue(xprt);
566 			svc_xprt_put(xprt);
567 		}
568 	}
569 }
570 
571 int svc_alloc_arg(struct svc_rqst *rqstp)
572 {
573 	struct svc_serv *serv = rqstp->rq_server;
574 	struct xdr_buf *arg;
575 	int pages;
576 	int i;
577 
578 	/* now allocate needed pages.  If we get a failure, sleep briefly */
579 	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
580 	BUG_ON(pages >= RPCSVC_MAXPAGES);
581 	for (i = 0; i < pages ; i++)
582 		while (rqstp->rq_pages[i] == NULL) {
583 			struct page *p = alloc_page(GFP_KERNEL);
584 			if (!p) {
585 				set_current_state(TASK_INTERRUPTIBLE);
586 				if (signalled() || kthread_should_stop()) {
587 					set_current_state(TASK_RUNNING);
588 					return -EINTR;
589 				}
590 				schedule_timeout(msecs_to_jiffies(500));
591 			}
592 			rqstp->rq_pages[i] = p;
593 		}
594 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
595 
596 	/* Make arg->head point to first page and arg->pages point to rest */
597 	arg = &rqstp->rq_arg;
598 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
599 	arg->head[0].iov_len = PAGE_SIZE;
600 	arg->pages = rqstp->rq_pages + 1;
601 	arg->page_base = 0;
602 	/* save at least one page for response */
603 	arg->page_len = (pages-2)*PAGE_SIZE;
604 	arg->len = (pages-1)*PAGE_SIZE;
605 	arg->tail[0].iov_len = 0;
606 	return 0;
607 }
608 
609 struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
610 {
611 	struct svc_xprt *xprt;
612 	struct svc_pool		*pool = rqstp->rq_pool;
613 	DECLARE_WAITQUEUE(wait, current);
614 	long			time_left;
615 
616 	/* Normally we will wait up to 5 seconds for any required
617 	 * cache information to be provided.
618 	 */
619 	rqstp->rq_chandle.thread_wait = 5*HZ;
620 
621 	spin_lock_bh(&pool->sp_lock);
622 	xprt = svc_xprt_dequeue(pool);
623 	if (xprt) {
624 		rqstp->rq_xprt = xprt;
625 		svc_xprt_get(xprt);
626 
627 		/* As there is a shortage of threads and this request
628 		 * had to be queued, don't allow the thread to wait so
629 		 * long for cache updates.
630 		 */
631 		rqstp->rq_chandle.thread_wait = 1*HZ;
632 	} else {
633 		/* No data pending. Go to sleep */
634 		svc_thread_enqueue(pool, rqstp);
635 
636 		/*
637 		 * We have to be able to interrupt this wait
638 		 * to bring down the daemons ...
639 		 */
640 		set_current_state(TASK_INTERRUPTIBLE);
641 
642 		/*
643 		 * checking kthread_should_stop() here allows us to avoid
644 		 * locking and signalling when stopping kthreads that call
645 		 * svc_recv. If the thread has already been woken up, then
646 		 * we can exit here without sleeping. If not, then it
647 		 * it'll be woken up quickly during the schedule_timeout
648 		 */
649 		if (kthread_should_stop()) {
650 			set_current_state(TASK_RUNNING);
651 			spin_unlock_bh(&pool->sp_lock);
652 			return ERR_PTR(-EINTR);
653 		}
654 
655 		add_wait_queue(&rqstp->rq_wait, &wait);
656 		spin_unlock_bh(&pool->sp_lock);
657 
658 		time_left = schedule_timeout(timeout);
659 
660 		try_to_freeze();
661 
662 		spin_lock_bh(&pool->sp_lock);
663 		remove_wait_queue(&rqstp->rq_wait, &wait);
664 		if (!time_left)
665 			pool->sp_stats.threads_timedout++;
666 
667 		xprt = rqstp->rq_xprt;
668 		if (!xprt) {
669 			svc_thread_dequeue(pool, rqstp);
670 			spin_unlock_bh(&pool->sp_lock);
671 			dprintk("svc: server %p, no data yet\n", rqstp);
672 			if (signalled() || kthread_should_stop())
673 				return ERR_PTR(-EINTR);
674 			else
675 				return ERR_PTR(-EAGAIN);
676 		}
677 	}
678 	spin_unlock_bh(&pool->sp_lock);
679 	return xprt;
680 }
681 
682 void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
683 {
684 	spin_lock_bh(&serv->sv_lock);
685 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
686 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
687 	serv->sv_tmpcnt++;
688 	if (serv->sv_temptimer.function == NULL) {
689 		/* setup timer to age temp transports */
690 		setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
691 			    (unsigned long)serv);
692 		mod_timer(&serv->sv_temptimer,
693 			  jiffies + svc_conn_age_period * HZ);
694 	}
695 	spin_unlock_bh(&serv->sv_lock);
696 	svc_xprt_received(newxpt);
697 }
698 
699 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
700 {
701 	struct svc_serv *serv = rqstp->rq_server;
702 	int len = 0;
703 
704 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
705 		dprintk("svc_recv: found XPT_CLOSE\n");
706 		svc_delete_xprt(xprt);
707 		/* Leave XPT_BUSY set on the dead xprt: */
708 		return 0;
709 	}
710 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
711 		struct svc_xprt *newxpt;
712 		/*
713 		 * We know this module_get will succeed because the
714 		 * listener holds a reference too
715 		 */
716 		__module_get(xprt->xpt_class->xcl_owner);
717 		svc_check_conn_limits(xprt->xpt_server);
718 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
719 		if (newxpt)
720 			svc_add_new_temp_xprt(serv, newxpt);
721 	} else if (xprt->xpt_ops->xpo_has_wspace(xprt)) {
722 		/* XPT_DATA|XPT_DEFERRED case: */
723 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
724 			rqstp, rqstp->rq_pool->sp_id, xprt,
725 			atomic_read(&xprt->xpt_ref.refcount));
726 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
727 		if (rqstp->rq_deferred)
728 			len = svc_deferred_recv(rqstp);
729 		else
730 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
731 		dprintk("svc: got len=%d\n", len);
732 		rqstp->rq_reserved = serv->sv_max_mesg;
733 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
734 	}
735 	/* clear XPT_BUSY: */
736 	svc_xprt_received(xprt);
737 	return len;
738 }
739 
740 /*
741  * Receive the next request on any transport.  This code is carefully
742  * organised not to touch any cachelines in the shared svc_serv
743  * structure, only cachelines in the local svc_pool.
744  */
745 int svc_recv(struct svc_rqst *rqstp, long timeout)
746 {
747 	struct svc_xprt		*xprt = NULL;
748 	struct svc_serv		*serv = rqstp->rq_server;
749 	int			len, err;
750 
751 	dprintk("svc: server %p waiting for data (to = %ld)\n",
752 		rqstp, timeout);
753 
754 	if (rqstp->rq_xprt)
755 		printk(KERN_ERR
756 			"svc_recv: service %p, transport not NULL!\n",
757 			 rqstp);
758 	if (waitqueue_active(&rqstp->rq_wait))
759 		printk(KERN_ERR
760 			"svc_recv: service %p, wait queue active!\n",
761 			 rqstp);
762 
763 	err = svc_alloc_arg(rqstp);
764 	if (err)
765 		return err;
766 
767 	try_to_freeze();
768 	cond_resched();
769 	if (signalled() || kthread_should_stop())
770 		return -EINTR;
771 
772 	xprt = svc_get_next_xprt(rqstp, timeout);
773 	if (IS_ERR(xprt))
774 		return PTR_ERR(xprt);
775 
776 	len = svc_handle_xprt(rqstp, xprt);
777 
778 	/* No data, incomplete (TCP) read, or accept() */
779 	if (len <= 0)
780 		goto out;
781 
782 	clear_bit(XPT_OLD, &xprt->xpt_flags);
783 
784 	rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
785 	rqstp->rq_chandle.defer = svc_defer;
786 
787 	if (serv->sv_stats)
788 		serv->sv_stats->netcnt++;
789 	return len;
790 out:
791 	rqstp->rq_res.len = 0;
792 	svc_xprt_release(rqstp);
793 	return -EAGAIN;
794 }
795 EXPORT_SYMBOL_GPL(svc_recv);
796 
797 /*
798  * Drop request
799  */
800 void svc_drop(struct svc_rqst *rqstp)
801 {
802 	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
803 	svc_xprt_release(rqstp);
804 }
805 EXPORT_SYMBOL_GPL(svc_drop);
806 
807 /*
808  * Return reply to client.
809  */
810 int svc_send(struct svc_rqst *rqstp)
811 {
812 	struct svc_xprt	*xprt;
813 	int		len;
814 	struct xdr_buf	*xb;
815 
816 	xprt = rqstp->rq_xprt;
817 	if (!xprt)
818 		return -EFAULT;
819 
820 	/* release the receive skb before sending the reply */
821 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
822 
823 	/* calculate over-all length */
824 	xb = &rqstp->rq_res;
825 	xb->len = xb->head[0].iov_len +
826 		xb->page_len +
827 		xb->tail[0].iov_len;
828 
829 	/* Grab mutex to serialize outgoing data. */
830 	mutex_lock(&xprt->xpt_mutex);
831 	if (test_bit(XPT_DEAD, &xprt->xpt_flags)
832 			|| test_bit(XPT_CLOSE, &xprt->xpt_flags))
833 		len = -ENOTCONN;
834 	else
835 		len = xprt->xpt_ops->xpo_sendto(rqstp);
836 	mutex_unlock(&xprt->xpt_mutex);
837 	rpc_wake_up(&xprt->xpt_bc_pending);
838 	svc_xprt_release(rqstp);
839 
840 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
841 		return 0;
842 	return len;
843 }
844 
845 /*
846  * Timer function to close old temporary transports, using
847  * a mark-and-sweep algorithm.
848  */
849 static void svc_age_temp_xprts(unsigned long closure)
850 {
851 	struct svc_serv *serv = (struct svc_serv *)closure;
852 	struct svc_xprt *xprt;
853 	struct list_head *le, *next;
854 	LIST_HEAD(to_be_aged);
855 
856 	dprintk("svc_age_temp_xprts\n");
857 
858 	if (!spin_trylock_bh(&serv->sv_lock)) {
859 		/* busy, try again 1 sec later */
860 		dprintk("svc_age_temp_xprts: busy\n");
861 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
862 		return;
863 	}
864 
865 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
866 		xprt = list_entry(le, struct svc_xprt, xpt_list);
867 
868 		/* First time through, just mark it OLD. Second time
869 		 * through, close it. */
870 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
871 			continue;
872 		if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
873 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
874 			continue;
875 		svc_xprt_get(xprt);
876 		list_move(le, &to_be_aged);
877 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
878 		set_bit(XPT_DETACHED, &xprt->xpt_flags);
879 	}
880 	spin_unlock_bh(&serv->sv_lock);
881 
882 	while (!list_empty(&to_be_aged)) {
883 		le = to_be_aged.next;
884 		/* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
885 		list_del_init(le);
886 		xprt = list_entry(le, struct svc_xprt, xpt_list);
887 
888 		dprintk("queuing xprt %p for closing\n", xprt);
889 
890 		/* a thread will dequeue and close it soon */
891 		svc_xprt_enqueue(xprt);
892 		svc_xprt_put(xprt);
893 	}
894 
895 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
896 }
897 
898 static void call_xpt_users(struct svc_xprt *xprt)
899 {
900 	struct svc_xpt_user *u;
901 
902 	spin_lock(&xprt->xpt_lock);
903 	while (!list_empty(&xprt->xpt_users)) {
904 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
905 		list_del(&u->list);
906 		u->callback(u);
907 	}
908 	spin_unlock(&xprt->xpt_lock);
909 }
910 
911 /*
912  * Remove a dead transport
913  */
914 static void svc_delete_xprt(struct svc_xprt *xprt)
915 {
916 	struct svc_serv	*serv = xprt->xpt_server;
917 	struct svc_deferred_req *dr;
918 
919 	/* Only do this once */
920 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
921 		BUG();
922 
923 	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
924 	xprt->xpt_ops->xpo_detach(xprt);
925 
926 	spin_lock_bh(&serv->sv_lock);
927 	if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
928 		list_del_init(&xprt->xpt_list);
929 	BUG_ON(!list_empty(&xprt->xpt_ready));
930 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
931 		serv->sv_tmpcnt--;
932 	spin_unlock_bh(&serv->sv_lock);
933 
934 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
935 		kfree(dr);
936 
937 	call_xpt_users(xprt);
938 	svc_xprt_put(xprt);
939 }
940 
941 void svc_close_xprt(struct svc_xprt *xprt)
942 {
943 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
944 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
945 		/* someone else will have to effect the close */
946 		return;
947 	/*
948 	 * We expect svc_close_xprt() to work even when no threads are
949 	 * running (e.g., while configuring the server before starting
950 	 * any threads), so if the transport isn't busy, we delete
951 	 * it ourself:
952 	 */
953 	svc_delete_xprt(xprt);
954 }
955 EXPORT_SYMBOL_GPL(svc_close_xprt);
956 
957 static void svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
958 {
959 	struct svc_xprt *xprt;
960 
961 	spin_lock(&serv->sv_lock);
962 	list_for_each_entry(xprt, xprt_list, xpt_list) {
963 		if (xprt->xpt_net != net)
964 			continue;
965 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
966 		set_bit(XPT_BUSY, &xprt->xpt_flags);
967 	}
968 	spin_unlock(&serv->sv_lock);
969 }
970 
971 static void svc_clear_pools(struct svc_serv *serv, struct net *net)
972 {
973 	struct svc_pool *pool;
974 	struct svc_xprt *xprt;
975 	struct svc_xprt *tmp;
976 	int i;
977 
978 	for (i = 0; i < serv->sv_nrpools; i++) {
979 		pool = &serv->sv_pools[i];
980 
981 		spin_lock_bh(&pool->sp_lock);
982 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
983 			if (xprt->xpt_net != net)
984 				continue;
985 			list_del_init(&xprt->xpt_ready);
986 		}
987 		spin_unlock_bh(&pool->sp_lock);
988 	}
989 }
990 
991 static void svc_clear_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
992 {
993 	struct svc_xprt *xprt;
994 	struct svc_xprt *tmp;
995 	LIST_HEAD(victims);
996 
997 	spin_lock(&serv->sv_lock);
998 	list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
999 		if (xprt->xpt_net != net)
1000 			continue;
1001 		list_move(&xprt->xpt_list, &victims);
1002 	}
1003 	spin_unlock(&serv->sv_lock);
1004 
1005 	list_for_each_entry_safe(xprt, tmp, &victims, xpt_list)
1006 		svc_delete_xprt(xprt);
1007 }
1008 
1009 void svc_close_net(struct svc_serv *serv, struct net *net)
1010 {
1011 	svc_close_list(serv, &serv->sv_tempsocks, net);
1012 	svc_close_list(serv, &serv->sv_permsocks, net);
1013 
1014 	svc_clear_pools(serv, net);
1015 	/*
1016 	 * At this point the sp_sockets lists will stay empty, since
1017 	 * svc_xprt_enqueue will not add new entries without taking the
1018 	 * sp_lock and checking XPT_BUSY.
1019 	 */
1020 	svc_clear_list(serv, &serv->sv_tempsocks, net);
1021 	svc_clear_list(serv, &serv->sv_permsocks, net);
1022 }
1023 
1024 /*
1025  * Handle defer and revisit of requests
1026  */
1027 
1028 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1029 {
1030 	struct svc_deferred_req *dr =
1031 		container_of(dreq, struct svc_deferred_req, handle);
1032 	struct svc_xprt *xprt = dr->xprt;
1033 
1034 	spin_lock(&xprt->xpt_lock);
1035 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1036 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1037 		spin_unlock(&xprt->xpt_lock);
1038 		dprintk("revisit canceled\n");
1039 		svc_xprt_put(xprt);
1040 		kfree(dr);
1041 		return;
1042 	}
1043 	dprintk("revisit queued\n");
1044 	dr->xprt = NULL;
1045 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1046 	spin_unlock(&xprt->xpt_lock);
1047 	svc_xprt_enqueue(xprt);
1048 	svc_xprt_put(xprt);
1049 }
1050 
1051 /*
1052  * Save the request off for later processing. The request buffer looks
1053  * like this:
1054  *
1055  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1056  *
1057  * This code can only handle requests that consist of an xprt-header
1058  * and rpc-header.
1059  */
1060 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1061 {
1062 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1063 	struct svc_deferred_req *dr;
1064 
1065 	if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
1066 		return NULL; /* if more than a page, give up FIXME */
1067 	if (rqstp->rq_deferred) {
1068 		dr = rqstp->rq_deferred;
1069 		rqstp->rq_deferred = NULL;
1070 	} else {
1071 		size_t skip;
1072 		size_t size;
1073 		/* FIXME maybe discard if size too large */
1074 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1075 		dr = kmalloc(size, GFP_KERNEL);
1076 		if (dr == NULL)
1077 			return NULL;
1078 
1079 		dr->handle.owner = rqstp->rq_server;
1080 		dr->prot = rqstp->rq_prot;
1081 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1082 		dr->addrlen = rqstp->rq_addrlen;
1083 		dr->daddr = rqstp->rq_daddr;
1084 		dr->argslen = rqstp->rq_arg.len >> 2;
1085 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1086 
1087 		/* back up head to the start of the buffer and copy */
1088 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1089 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1090 		       dr->argslen << 2);
1091 	}
1092 	svc_xprt_get(rqstp->rq_xprt);
1093 	dr->xprt = rqstp->rq_xprt;
1094 	rqstp->rq_dropme = true;
1095 
1096 	dr->handle.revisit = svc_revisit;
1097 	return &dr->handle;
1098 }
1099 
1100 /*
1101  * recv data from a deferred request into an active one
1102  */
1103 static int svc_deferred_recv(struct svc_rqst *rqstp)
1104 {
1105 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1106 
1107 	/* setup iov_base past transport header */
1108 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1109 	/* The iov_len does not include the transport header bytes */
1110 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1111 	rqstp->rq_arg.page_len = 0;
1112 	/* The rq_arg.len includes the transport header bytes */
1113 	rqstp->rq_arg.len     = dr->argslen<<2;
1114 	rqstp->rq_prot        = dr->prot;
1115 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1116 	rqstp->rq_addrlen     = dr->addrlen;
1117 	/* Save off transport header len in case we get deferred again */
1118 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1119 	rqstp->rq_daddr       = dr->daddr;
1120 	rqstp->rq_respages    = rqstp->rq_pages;
1121 	return (dr->argslen<<2) - dr->xprt_hlen;
1122 }
1123 
1124 
1125 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1126 {
1127 	struct svc_deferred_req *dr = NULL;
1128 
1129 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1130 		return NULL;
1131 	spin_lock(&xprt->xpt_lock);
1132 	if (!list_empty(&xprt->xpt_deferred)) {
1133 		dr = list_entry(xprt->xpt_deferred.next,
1134 				struct svc_deferred_req,
1135 				handle.recent);
1136 		list_del_init(&dr->handle.recent);
1137 	} else
1138 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1139 	spin_unlock(&xprt->xpt_lock);
1140 	return dr;
1141 }
1142 
1143 /**
1144  * svc_find_xprt - find an RPC transport instance
1145  * @serv: pointer to svc_serv to search
1146  * @xcl_name: C string containing transport's class name
1147  * @net: owner net pointer
1148  * @af: Address family of transport's local address
1149  * @port: transport's IP port number
1150  *
1151  * Return the transport instance pointer for the endpoint accepting
1152  * connections/peer traffic from the specified transport class,
1153  * address family and port.
1154  *
1155  * Specifying 0 for the address family or port is effectively a
1156  * wild-card, and will result in matching the first transport in the
1157  * service's list that has a matching class name.
1158  */
1159 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1160 			       struct net *net, const sa_family_t af,
1161 			       const unsigned short port)
1162 {
1163 	struct svc_xprt *xprt;
1164 	struct svc_xprt *found = NULL;
1165 
1166 	/* Sanity check the args */
1167 	if (serv == NULL || xcl_name == NULL)
1168 		return found;
1169 
1170 	spin_lock_bh(&serv->sv_lock);
1171 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1172 		if (xprt->xpt_net != net)
1173 			continue;
1174 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1175 			continue;
1176 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1177 			continue;
1178 		if (port != 0 && port != svc_xprt_local_port(xprt))
1179 			continue;
1180 		found = xprt;
1181 		svc_xprt_get(xprt);
1182 		break;
1183 	}
1184 	spin_unlock_bh(&serv->sv_lock);
1185 	return found;
1186 }
1187 EXPORT_SYMBOL_GPL(svc_find_xprt);
1188 
1189 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1190 			     char *pos, int remaining)
1191 {
1192 	int len;
1193 
1194 	len = snprintf(pos, remaining, "%s %u\n",
1195 			xprt->xpt_class->xcl_name,
1196 			svc_xprt_local_port(xprt));
1197 	if (len >= remaining)
1198 		return -ENAMETOOLONG;
1199 	return len;
1200 }
1201 
1202 /**
1203  * svc_xprt_names - format a buffer with a list of transport names
1204  * @serv: pointer to an RPC service
1205  * @buf: pointer to a buffer to be filled in
1206  * @buflen: length of buffer to be filled in
1207  *
1208  * Fills in @buf with a string containing a list of transport names,
1209  * each name terminated with '\n'.
1210  *
1211  * Returns positive length of the filled-in string on success; otherwise
1212  * a negative errno value is returned if an error occurs.
1213  */
1214 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1215 {
1216 	struct svc_xprt *xprt;
1217 	int len, totlen;
1218 	char *pos;
1219 
1220 	/* Sanity check args */
1221 	if (!serv)
1222 		return 0;
1223 
1224 	spin_lock_bh(&serv->sv_lock);
1225 
1226 	pos = buf;
1227 	totlen = 0;
1228 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1229 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1230 		if (len < 0) {
1231 			*buf = '\0';
1232 			totlen = len;
1233 		}
1234 		if (len <= 0)
1235 			break;
1236 
1237 		pos += len;
1238 		totlen += len;
1239 	}
1240 
1241 	spin_unlock_bh(&serv->sv_lock);
1242 	return totlen;
1243 }
1244 EXPORT_SYMBOL_GPL(svc_xprt_names);
1245 
1246 
1247 /*----------------------------------------------------------------------------*/
1248 
1249 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1250 {
1251 	unsigned int pidx = (unsigned int)*pos;
1252 	struct svc_serv *serv = m->private;
1253 
1254 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1255 
1256 	if (!pidx)
1257 		return SEQ_START_TOKEN;
1258 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1259 }
1260 
1261 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1262 {
1263 	struct svc_pool *pool = p;
1264 	struct svc_serv *serv = m->private;
1265 
1266 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1267 
1268 	if (p == SEQ_START_TOKEN) {
1269 		pool = &serv->sv_pools[0];
1270 	} else {
1271 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1272 		if (pidx < serv->sv_nrpools-1)
1273 			pool = &serv->sv_pools[pidx+1];
1274 		else
1275 			pool = NULL;
1276 	}
1277 	++*pos;
1278 	return pool;
1279 }
1280 
1281 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1282 {
1283 }
1284 
1285 static int svc_pool_stats_show(struct seq_file *m, void *p)
1286 {
1287 	struct svc_pool *pool = p;
1288 
1289 	if (p == SEQ_START_TOKEN) {
1290 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1291 		return 0;
1292 	}
1293 
1294 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1295 		pool->sp_id,
1296 		pool->sp_stats.packets,
1297 		pool->sp_stats.sockets_queued,
1298 		pool->sp_stats.threads_woken,
1299 		pool->sp_stats.threads_timedout);
1300 
1301 	return 0;
1302 }
1303 
1304 static const struct seq_operations svc_pool_stats_seq_ops = {
1305 	.start	= svc_pool_stats_start,
1306 	.next	= svc_pool_stats_next,
1307 	.stop	= svc_pool_stats_stop,
1308 	.show	= svc_pool_stats_show,
1309 };
1310 
1311 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1312 {
1313 	int err;
1314 
1315 	err = seq_open(file, &svc_pool_stats_seq_ops);
1316 	if (!err)
1317 		((struct seq_file *) file->private_data)->private = serv;
1318 	return err;
1319 }
1320 EXPORT_SYMBOL(svc_pool_stats_open);
1321 
1322 /*----------------------------------------------------------------------------*/
1323