1 /* 2 * linux/net/sunrpc/svc_xprt.c 3 * 4 * Author: Tom Tucker <tom@opengridcomputing.com> 5 */ 6 7 #include <linux/sched.h> 8 #include <linux/errno.h> 9 #include <linux/freezer.h> 10 #include <linux/kthread.h> 11 #include <linux/slab.h> 12 #include <net/sock.h> 13 #include <linux/sunrpc/stats.h> 14 #include <linux/sunrpc/svc_xprt.h> 15 #include <linux/sunrpc/svcsock.h> 16 #include <linux/sunrpc/xprt.h> 17 #include <linux/module.h> 18 19 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 20 21 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt); 22 static int svc_deferred_recv(struct svc_rqst *rqstp); 23 static struct cache_deferred_req *svc_defer(struct cache_req *req); 24 static void svc_age_temp_xprts(unsigned long closure); 25 static void svc_delete_xprt(struct svc_xprt *xprt); 26 27 /* apparently the "standard" is that clients close 28 * idle connections after 5 minutes, servers after 29 * 6 minutes 30 * http://www.connectathon.org/talks96/nfstcp.pdf 31 */ 32 static int svc_conn_age_period = 6*60; 33 34 /* List of registered transport classes */ 35 static DEFINE_SPINLOCK(svc_xprt_class_lock); 36 static LIST_HEAD(svc_xprt_class_list); 37 38 /* SMP locking strategy: 39 * 40 * svc_pool->sp_lock protects most of the fields of that pool. 41 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt. 42 * when both need to be taken (rare), svc_serv->sv_lock is first. 43 * BKL protects svc_serv->sv_nrthread. 44 * svc_sock->sk_lock protects the svc_sock->sk_deferred list 45 * and the ->sk_info_authunix cache. 46 * 47 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being 48 * enqueued multiply. During normal transport processing this bit 49 * is set by svc_xprt_enqueue and cleared by svc_xprt_received. 50 * Providers should not manipulate this bit directly. 51 * 52 * Some flags can be set to certain values at any time 53 * providing that certain rules are followed: 54 * 55 * XPT_CONN, XPT_DATA: 56 * - Can be set or cleared at any time. 57 * - After a set, svc_xprt_enqueue must be called to enqueue 58 * the transport for processing. 59 * - After a clear, the transport must be read/accepted. 60 * If this succeeds, it must be set again. 61 * XPT_CLOSE: 62 * - Can set at any time. It is never cleared. 63 * XPT_DEAD: 64 * - Can only be set while XPT_BUSY is held which ensures 65 * that no other thread will be using the transport or will 66 * try to set XPT_DEAD. 67 */ 68 69 int svc_reg_xprt_class(struct svc_xprt_class *xcl) 70 { 71 struct svc_xprt_class *cl; 72 int res = -EEXIST; 73 74 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name); 75 76 INIT_LIST_HEAD(&xcl->xcl_list); 77 spin_lock(&svc_xprt_class_lock); 78 /* Make sure there isn't already a class with the same name */ 79 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) { 80 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0) 81 goto out; 82 } 83 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list); 84 res = 0; 85 out: 86 spin_unlock(&svc_xprt_class_lock); 87 return res; 88 } 89 EXPORT_SYMBOL_GPL(svc_reg_xprt_class); 90 91 void svc_unreg_xprt_class(struct svc_xprt_class *xcl) 92 { 93 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name); 94 spin_lock(&svc_xprt_class_lock); 95 list_del_init(&xcl->xcl_list); 96 spin_unlock(&svc_xprt_class_lock); 97 } 98 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class); 99 100 /* 101 * Format the transport list for printing 102 */ 103 int svc_print_xprts(char *buf, int maxlen) 104 { 105 struct svc_xprt_class *xcl; 106 char tmpstr[80]; 107 int len = 0; 108 buf[0] = '\0'; 109 110 spin_lock(&svc_xprt_class_lock); 111 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 112 int slen; 113 114 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload); 115 slen = strlen(tmpstr); 116 if (len + slen > maxlen) 117 break; 118 len += slen; 119 strcat(buf, tmpstr); 120 } 121 spin_unlock(&svc_xprt_class_lock); 122 123 return len; 124 } 125 126 static void svc_xprt_free(struct kref *kref) 127 { 128 struct svc_xprt *xprt = 129 container_of(kref, struct svc_xprt, xpt_ref); 130 struct module *owner = xprt->xpt_class->xcl_owner; 131 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)) 132 svcauth_unix_info_release(xprt); 133 put_net(xprt->xpt_net); 134 /* See comment on corresponding get in xs_setup_bc_tcp(): */ 135 if (xprt->xpt_bc_xprt) 136 xprt_put(xprt->xpt_bc_xprt); 137 xprt->xpt_ops->xpo_free(xprt); 138 module_put(owner); 139 } 140 141 void svc_xprt_put(struct svc_xprt *xprt) 142 { 143 kref_put(&xprt->xpt_ref, svc_xprt_free); 144 } 145 EXPORT_SYMBOL_GPL(svc_xprt_put); 146 147 /* 148 * Called by transport drivers to initialize the transport independent 149 * portion of the transport instance. 150 */ 151 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl, 152 struct svc_xprt *xprt, struct svc_serv *serv) 153 { 154 memset(xprt, 0, sizeof(*xprt)); 155 xprt->xpt_class = xcl; 156 xprt->xpt_ops = xcl->xcl_ops; 157 kref_init(&xprt->xpt_ref); 158 xprt->xpt_server = serv; 159 INIT_LIST_HEAD(&xprt->xpt_list); 160 INIT_LIST_HEAD(&xprt->xpt_ready); 161 INIT_LIST_HEAD(&xprt->xpt_deferred); 162 INIT_LIST_HEAD(&xprt->xpt_users); 163 mutex_init(&xprt->xpt_mutex); 164 spin_lock_init(&xprt->xpt_lock); 165 set_bit(XPT_BUSY, &xprt->xpt_flags); 166 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending"); 167 xprt->xpt_net = get_net(net); 168 } 169 EXPORT_SYMBOL_GPL(svc_xprt_init); 170 171 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl, 172 struct svc_serv *serv, 173 struct net *net, 174 const int family, 175 const unsigned short port, 176 int flags) 177 { 178 struct sockaddr_in sin = { 179 .sin_family = AF_INET, 180 .sin_addr.s_addr = htonl(INADDR_ANY), 181 .sin_port = htons(port), 182 }; 183 #if IS_ENABLED(CONFIG_IPV6) 184 struct sockaddr_in6 sin6 = { 185 .sin6_family = AF_INET6, 186 .sin6_addr = IN6ADDR_ANY_INIT, 187 .sin6_port = htons(port), 188 }; 189 #endif 190 struct sockaddr *sap; 191 size_t len; 192 193 switch (family) { 194 case PF_INET: 195 sap = (struct sockaddr *)&sin; 196 len = sizeof(sin); 197 break; 198 #if IS_ENABLED(CONFIG_IPV6) 199 case PF_INET6: 200 sap = (struct sockaddr *)&sin6; 201 len = sizeof(sin6); 202 break; 203 #endif 204 default: 205 return ERR_PTR(-EAFNOSUPPORT); 206 } 207 208 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags); 209 } 210 211 /* 212 * svc_xprt_received conditionally queues the transport for processing 213 * by another thread. The caller must hold the XPT_BUSY bit and must 214 * not thereafter touch transport data. 215 * 216 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or 217 * insufficient) data. 218 */ 219 static void svc_xprt_received(struct svc_xprt *xprt) 220 { 221 BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags)); 222 /* As soon as we clear busy, the xprt could be closed and 223 * 'put', so we need a reference to call svc_xprt_enqueue with: 224 */ 225 svc_xprt_get(xprt); 226 clear_bit(XPT_BUSY, &xprt->xpt_flags); 227 svc_xprt_enqueue(xprt); 228 svc_xprt_put(xprt); 229 } 230 231 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new) 232 { 233 clear_bit(XPT_TEMP, &new->xpt_flags); 234 spin_lock_bh(&serv->sv_lock); 235 list_add(&new->xpt_list, &serv->sv_permsocks); 236 spin_unlock_bh(&serv->sv_lock); 237 svc_xprt_received(new); 238 } 239 240 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name, 241 struct net *net, const int family, 242 const unsigned short port, int flags) 243 { 244 struct svc_xprt_class *xcl; 245 246 dprintk("svc: creating transport %s[%d]\n", xprt_name, port); 247 spin_lock(&svc_xprt_class_lock); 248 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 249 struct svc_xprt *newxprt; 250 unsigned short newport; 251 252 if (strcmp(xprt_name, xcl->xcl_name)) 253 continue; 254 255 if (!try_module_get(xcl->xcl_owner)) 256 goto err; 257 258 spin_unlock(&svc_xprt_class_lock); 259 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags); 260 if (IS_ERR(newxprt)) { 261 module_put(xcl->xcl_owner); 262 return PTR_ERR(newxprt); 263 } 264 svc_add_new_perm_xprt(serv, newxprt); 265 newport = svc_xprt_local_port(newxprt); 266 return newport; 267 } 268 err: 269 spin_unlock(&svc_xprt_class_lock); 270 dprintk("svc: transport %s not found\n", xprt_name); 271 272 /* This errno is exposed to user space. Provide a reasonable 273 * perror msg for a bad transport. */ 274 return -EPROTONOSUPPORT; 275 } 276 EXPORT_SYMBOL_GPL(svc_create_xprt); 277 278 /* 279 * Copy the local and remote xprt addresses to the rqstp structure 280 */ 281 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt) 282 { 283 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen); 284 rqstp->rq_addrlen = xprt->xpt_remotelen; 285 286 /* 287 * Destination address in request is needed for binding the 288 * source address in RPC replies/callbacks later. 289 */ 290 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen); 291 rqstp->rq_daddrlen = xprt->xpt_locallen; 292 } 293 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs); 294 295 /** 296 * svc_print_addr - Format rq_addr field for printing 297 * @rqstp: svc_rqst struct containing address to print 298 * @buf: target buffer for formatted address 299 * @len: length of target buffer 300 * 301 */ 302 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len) 303 { 304 return __svc_print_addr(svc_addr(rqstp), buf, len); 305 } 306 EXPORT_SYMBOL_GPL(svc_print_addr); 307 308 /* 309 * Queue up an idle server thread. Must have pool->sp_lock held. 310 * Note: this is really a stack rather than a queue, so that we only 311 * use as many different threads as we need, and the rest don't pollute 312 * the cache. 313 */ 314 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp) 315 { 316 list_add(&rqstp->rq_list, &pool->sp_threads); 317 } 318 319 /* 320 * Dequeue an nfsd thread. Must have pool->sp_lock held. 321 */ 322 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp) 323 { 324 list_del(&rqstp->rq_list); 325 } 326 327 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt) 328 { 329 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE))) 330 return true; 331 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED))) 332 return xprt->xpt_ops->xpo_has_wspace(xprt); 333 return false; 334 } 335 336 /* 337 * Queue up a transport with data pending. If there are idle nfsd 338 * processes, wake 'em up. 339 * 340 */ 341 void svc_xprt_enqueue(struct svc_xprt *xprt) 342 { 343 struct svc_pool *pool; 344 struct svc_rqst *rqstp; 345 int cpu; 346 347 if (!svc_xprt_has_something_to_do(xprt)) 348 return; 349 350 cpu = get_cpu(); 351 pool = svc_pool_for_cpu(xprt->xpt_server, cpu); 352 put_cpu(); 353 354 spin_lock_bh(&pool->sp_lock); 355 356 if (!list_empty(&pool->sp_threads) && 357 !list_empty(&pool->sp_sockets)) 358 printk(KERN_ERR 359 "svc_xprt_enqueue: " 360 "threads and transports both waiting??\n"); 361 362 pool->sp_stats.packets++; 363 364 /* Mark transport as busy. It will remain in this state until 365 * the provider calls svc_xprt_received. We update XPT_BUSY 366 * atomically because it also guards against trying to enqueue 367 * the transport twice. 368 */ 369 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) { 370 /* Don't enqueue transport while already enqueued */ 371 dprintk("svc: transport %p busy, not enqueued\n", xprt); 372 goto out_unlock; 373 } 374 375 if (!list_empty(&pool->sp_threads)) { 376 rqstp = list_entry(pool->sp_threads.next, 377 struct svc_rqst, 378 rq_list); 379 dprintk("svc: transport %p served by daemon %p\n", 380 xprt, rqstp); 381 svc_thread_dequeue(pool, rqstp); 382 if (rqstp->rq_xprt) 383 printk(KERN_ERR 384 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n", 385 rqstp, rqstp->rq_xprt); 386 rqstp->rq_xprt = xprt; 387 svc_xprt_get(xprt); 388 pool->sp_stats.threads_woken++; 389 wake_up(&rqstp->rq_wait); 390 } else { 391 dprintk("svc: transport %p put into queue\n", xprt); 392 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets); 393 pool->sp_stats.sockets_queued++; 394 } 395 396 out_unlock: 397 spin_unlock_bh(&pool->sp_lock); 398 } 399 EXPORT_SYMBOL_GPL(svc_xprt_enqueue); 400 401 /* 402 * Dequeue the first transport. Must be called with the pool->sp_lock held. 403 */ 404 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool) 405 { 406 struct svc_xprt *xprt; 407 408 if (list_empty(&pool->sp_sockets)) 409 return NULL; 410 411 xprt = list_entry(pool->sp_sockets.next, 412 struct svc_xprt, xpt_ready); 413 list_del_init(&xprt->xpt_ready); 414 415 dprintk("svc: transport %p dequeued, inuse=%d\n", 416 xprt, atomic_read(&xprt->xpt_ref.refcount)); 417 418 return xprt; 419 } 420 421 /** 422 * svc_reserve - change the space reserved for the reply to a request. 423 * @rqstp: The request in question 424 * @space: new max space to reserve 425 * 426 * Each request reserves some space on the output queue of the transport 427 * to make sure the reply fits. This function reduces that reserved 428 * space to be the amount of space used already, plus @space. 429 * 430 */ 431 void svc_reserve(struct svc_rqst *rqstp, int space) 432 { 433 space += rqstp->rq_res.head[0].iov_len; 434 435 if (space < rqstp->rq_reserved) { 436 struct svc_xprt *xprt = rqstp->rq_xprt; 437 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved); 438 rqstp->rq_reserved = space; 439 440 svc_xprt_enqueue(xprt); 441 } 442 } 443 EXPORT_SYMBOL_GPL(svc_reserve); 444 445 static void svc_xprt_release(struct svc_rqst *rqstp) 446 { 447 struct svc_xprt *xprt = rqstp->rq_xprt; 448 449 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp); 450 451 kfree(rqstp->rq_deferred); 452 rqstp->rq_deferred = NULL; 453 454 svc_free_res_pages(rqstp); 455 rqstp->rq_res.page_len = 0; 456 rqstp->rq_res.page_base = 0; 457 458 /* Reset response buffer and release 459 * the reservation. 460 * But first, check that enough space was reserved 461 * for the reply, otherwise we have a bug! 462 */ 463 if ((rqstp->rq_res.len) > rqstp->rq_reserved) 464 printk(KERN_ERR "RPC request reserved %d but used %d\n", 465 rqstp->rq_reserved, 466 rqstp->rq_res.len); 467 468 rqstp->rq_res.head[0].iov_len = 0; 469 svc_reserve(rqstp, 0); 470 rqstp->rq_xprt = NULL; 471 472 svc_xprt_put(xprt); 473 } 474 475 /* 476 * External function to wake up a server waiting for data 477 * This really only makes sense for services like lockd 478 * which have exactly one thread anyway. 479 */ 480 void svc_wake_up(struct svc_serv *serv) 481 { 482 struct svc_rqst *rqstp; 483 unsigned int i; 484 struct svc_pool *pool; 485 486 for (i = 0; i < serv->sv_nrpools; i++) { 487 pool = &serv->sv_pools[i]; 488 489 spin_lock_bh(&pool->sp_lock); 490 if (!list_empty(&pool->sp_threads)) { 491 rqstp = list_entry(pool->sp_threads.next, 492 struct svc_rqst, 493 rq_list); 494 dprintk("svc: daemon %p woken up.\n", rqstp); 495 /* 496 svc_thread_dequeue(pool, rqstp); 497 rqstp->rq_xprt = NULL; 498 */ 499 wake_up(&rqstp->rq_wait); 500 } 501 spin_unlock_bh(&pool->sp_lock); 502 } 503 } 504 EXPORT_SYMBOL_GPL(svc_wake_up); 505 506 int svc_port_is_privileged(struct sockaddr *sin) 507 { 508 switch (sin->sa_family) { 509 case AF_INET: 510 return ntohs(((struct sockaddr_in *)sin)->sin_port) 511 < PROT_SOCK; 512 case AF_INET6: 513 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port) 514 < PROT_SOCK; 515 default: 516 return 0; 517 } 518 } 519 520 /* 521 * Make sure that we don't have too many active connections. If we have, 522 * something must be dropped. It's not clear what will happen if we allow 523 * "too many" connections, but when dealing with network-facing software, 524 * we have to code defensively. Here we do that by imposing hard limits. 525 * 526 * There's no point in trying to do random drop here for DoS 527 * prevention. The NFS clients does 1 reconnect in 15 seconds. An 528 * attacker can easily beat that. 529 * 530 * The only somewhat efficient mechanism would be if drop old 531 * connections from the same IP first. But right now we don't even 532 * record the client IP in svc_sock. 533 * 534 * single-threaded services that expect a lot of clients will probably 535 * need to set sv_maxconn to override the default value which is based 536 * on the number of threads 537 */ 538 static void svc_check_conn_limits(struct svc_serv *serv) 539 { 540 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn : 541 (serv->sv_nrthreads+3) * 20; 542 543 if (serv->sv_tmpcnt > limit) { 544 struct svc_xprt *xprt = NULL; 545 spin_lock_bh(&serv->sv_lock); 546 if (!list_empty(&serv->sv_tempsocks)) { 547 /* Try to help the admin */ 548 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n", 549 serv->sv_name, serv->sv_maxconn ? 550 "max number of connections" : 551 "number of threads"); 552 /* 553 * Always select the oldest connection. It's not fair, 554 * but so is life 555 */ 556 xprt = list_entry(serv->sv_tempsocks.prev, 557 struct svc_xprt, 558 xpt_list); 559 set_bit(XPT_CLOSE, &xprt->xpt_flags); 560 svc_xprt_get(xprt); 561 } 562 spin_unlock_bh(&serv->sv_lock); 563 564 if (xprt) { 565 svc_xprt_enqueue(xprt); 566 svc_xprt_put(xprt); 567 } 568 } 569 } 570 571 int svc_alloc_arg(struct svc_rqst *rqstp) 572 { 573 struct svc_serv *serv = rqstp->rq_server; 574 struct xdr_buf *arg; 575 int pages; 576 int i; 577 578 /* now allocate needed pages. If we get a failure, sleep briefly */ 579 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE; 580 BUG_ON(pages >= RPCSVC_MAXPAGES); 581 for (i = 0; i < pages ; i++) 582 while (rqstp->rq_pages[i] == NULL) { 583 struct page *p = alloc_page(GFP_KERNEL); 584 if (!p) { 585 set_current_state(TASK_INTERRUPTIBLE); 586 if (signalled() || kthread_should_stop()) { 587 set_current_state(TASK_RUNNING); 588 return -EINTR; 589 } 590 schedule_timeout(msecs_to_jiffies(500)); 591 } 592 rqstp->rq_pages[i] = p; 593 } 594 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */ 595 596 /* Make arg->head point to first page and arg->pages point to rest */ 597 arg = &rqstp->rq_arg; 598 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]); 599 arg->head[0].iov_len = PAGE_SIZE; 600 arg->pages = rqstp->rq_pages + 1; 601 arg->page_base = 0; 602 /* save at least one page for response */ 603 arg->page_len = (pages-2)*PAGE_SIZE; 604 arg->len = (pages-1)*PAGE_SIZE; 605 arg->tail[0].iov_len = 0; 606 return 0; 607 } 608 609 struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout) 610 { 611 struct svc_xprt *xprt; 612 struct svc_pool *pool = rqstp->rq_pool; 613 DECLARE_WAITQUEUE(wait, current); 614 long time_left; 615 616 /* Normally we will wait up to 5 seconds for any required 617 * cache information to be provided. 618 */ 619 rqstp->rq_chandle.thread_wait = 5*HZ; 620 621 spin_lock_bh(&pool->sp_lock); 622 xprt = svc_xprt_dequeue(pool); 623 if (xprt) { 624 rqstp->rq_xprt = xprt; 625 svc_xprt_get(xprt); 626 627 /* As there is a shortage of threads and this request 628 * had to be queued, don't allow the thread to wait so 629 * long for cache updates. 630 */ 631 rqstp->rq_chandle.thread_wait = 1*HZ; 632 } else { 633 /* No data pending. Go to sleep */ 634 svc_thread_enqueue(pool, rqstp); 635 636 /* 637 * We have to be able to interrupt this wait 638 * to bring down the daemons ... 639 */ 640 set_current_state(TASK_INTERRUPTIBLE); 641 642 /* 643 * checking kthread_should_stop() here allows us to avoid 644 * locking and signalling when stopping kthreads that call 645 * svc_recv. If the thread has already been woken up, then 646 * we can exit here without sleeping. If not, then it 647 * it'll be woken up quickly during the schedule_timeout 648 */ 649 if (kthread_should_stop()) { 650 set_current_state(TASK_RUNNING); 651 spin_unlock_bh(&pool->sp_lock); 652 return ERR_PTR(-EINTR); 653 } 654 655 add_wait_queue(&rqstp->rq_wait, &wait); 656 spin_unlock_bh(&pool->sp_lock); 657 658 time_left = schedule_timeout(timeout); 659 660 try_to_freeze(); 661 662 spin_lock_bh(&pool->sp_lock); 663 remove_wait_queue(&rqstp->rq_wait, &wait); 664 if (!time_left) 665 pool->sp_stats.threads_timedout++; 666 667 xprt = rqstp->rq_xprt; 668 if (!xprt) { 669 svc_thread_dequeue(pool, rqstp); 670 spin_unlock_bh(&pool->sp_lock); 671 dprintk("svc: server %p, no data yet\n", rqstp); 672 if (signalled() || kthread_should_stop()) 673 return ERR_PTR(-EINTR); 674 else 675 return ERR_PTR(-EAGAIN); 676 } 677 } 678 spin_unlock_bh(&pool->sp_lock); 679 return xprt; 680 } 681 682 void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt) 683 { 684 spin_lock_bh(&serv->sv_lock); 685 set_bit(XPT_TEMP, &newxpt->xpt_flags); 686 list_add(&newxpt->xpt_list, &serv->sv_tempsocks); 687 serv->sv_tmpcnt++; 688 if (serv->sv_temptimer.function == NULL) { 689 /* setup timer to age temp transports */ 690 setup_timer(&serv->sv_temptimer, svc_age_temp_xprts, 691 (unsigned long)serv); 692 mod_timer(&serv->sv_temptimer, 693 jiffies + svc_conn_age_period * HZ); 694 } 695 spin_unlock_bh(&serv->sv_lock); 696 svc_xprt_received(newxpt); 697 } 698 699 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt) 700 { 701 struct svc_serv *serv = rqstp->rq_server; 702 int len = 0; 703 704 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) { 705 dprintk("svc_recv: found XPT_CLOSE\n"); 706 svc_delete_xprt(xprt); 707 /* Leave XPT_BUSY set on the dead xprt: */ 708 return 0; 709 } 710 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) { 711 struct svc_xprt *newxpt; 712 /* 713 * We know this module_get will succeed because the 714 * listener holds a reference too 715 */ 716 __module_get(xprt->xpt_class->xcl_owner); 717 svc_check_conn_limits(xprt->xpt_server); 718 newxpt = xprt->xpt_ops->xpo_accept(xprt); 719 if (newxpt) 720 svc_add_new_temp_xprt(serv, newxpt); 721 } else if (xprt->xpt_ops->xpo_has_wspace(xprt)) { 722 /* XPT_DATA|XPT_DEFERRED case: */ 723 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n", 724 rqstp, rqstp->rq_pool->sp_id, xprt, 725 atomic_read(&xprt->xpt_ref.refcount)); 726 rqstp->rq_deferred = svc_deferred_dequeue(xprt); 727 if (rqstp->rq_deferred) 728 len = svc_deferred_recv(rqstp); 729 else 730 len = xprt->xpt_ops->xpo_recvfrom(rqstp); 731 dprintk("svc: got len=%d\n", len); 732 rqstp->rq_reserved = serv->sv_max_mesg; 733 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); 734 } 735 /* clear XPT_BUSY: */ 736 svc_xprt_received(xprt); 737 return len; 738 } 739 740 /* 741 * Receive the next request on any transport. This code is carefully 742 * organised not to touch any cachelines in the shared svc_serv 743 * structure, only cachelines in the local svc_pool. 744 */ 745 int svc_recv(struct svc_rqst *rqstp, long timeout) 746 { 747 struct svc_xprt *xprt = NULL; 748 struct svc_serv *serv = rqstp->rq_server; 749 int len, err; 750 751 dprintk("svc: server %p waiting for data (to = %ld)\n", 752 rqstp, timeout); 753 754 if (rqstp->rq_xprt) 755 printk(KERN_ERR 756 "svc_recv: service %p, transport not NULL!\n", 757 rqstp); 758 if (waitqueue_active(&rqstp->rq_wait)) 759 printk(KERN_ERR 760 "svc_recv: service %p, wait queue active!\n", 761 rqstp); 762 763 err = svc_alloc_arg(rqstp); 764 if (err) 765 return err; 766 767 try_to_freeze(); 768 cond_resched(); 769 if (signalled() || kthread_should_stop()) 770 return -EINTR; 771 772 xprt = svc_get_next_xprt(rqstp, timeout); 773 if (IS_ERR(xprt)) 774 return PTR_ERR(xprt); 775 776 len = svc_handle_xprt(rqstp, xprt); 777 778 /* No data, incomplete (TCP) read, or accept() */ 779 if (len <= 0) 780 goto out; 781 782 clear_bit(XPT_OLD, &xprt->xpt_flags); 783 784 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp)); 785 rqstp->rq_chandle.defer = svc_defer; 786 787 if (serv->sv_stats) 788 serv->sv_stats->netcnt++; 789 return len; 790 out: 791 rqstp->rq_res.len = 0; 792 svc_xprt_release(rqstp); 793 return -EAGAIN; 794 } 795 EXPORT_SYMBOL_GPL(svc_recv); 796 797 /* 798 * Drop request 799 */ 800 void svc_drop(struct svc_rqst *rqstp) 801 { 802 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt); 803 svc_xprt_release(rqstp); 804 } 805 EXPORT_SYMBOL_GPL(svc_drop); 806 807 /* 808 * Return reply to client. 809 */ 810 int svc_send(struct svc_rqst *rqstp) 811 { 812 struct svc_xprt *xprt; 813 int len; 814 struct xdr_buf *xb; 815 816 xprt = rqstp->rq_xprt; 817 if (!xprt) 818 return -EFAULT; 819 820 /* release the receive skb before sending the reply */ 821 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp); 822 823 /* calculate over-all length */ 824 xb = &rqstp->rq_res; 825 xb->len = xb->head[0].iov_len + 826 xb->page_len + 827 xb->tail[0].iov_len; 828 829 /* Grab mutex to serialize outgoing data. */ 830 mutex_lock(&xprt->xpt_mutex); 831 if (test_bit(XPT_DEAD, &xprt->xpt_flags) 832 || test_bit(XPT_CLOSE, &xprt->xpt_flags)) 833 len = -ENOTCONN; 834 else 835 len = xprt->xpt_ops->xpo_sendto(rqstp); 836 mutex_unlock(&xprt->xpt_mutex); 837 rpc_wake_up(&xprt->xpt_bc_pending); 838 svc_xprt_release(rqstp); 839 840 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN) 841 return 0; 842 return len; 843 } 844 845 /* 846 * Timer function to close old temporary transports, using 847 * a mark-and-sweep algorithm. 848 */ 849 static void svc_age_temp_xprts(unsigned long closure) 850 { 851 struct svc_serv *serv = (struct svc_serv *)closure; 852 struct svc_xprt *xprt; 853 struct list_head *le, *next; 854 LIST_HEAD(to_be_aged); 855 856 dprintk("svc_age_temp_xprts\n"); 857 858 if (!spin_trylock_bh(&serv->sv_lock)) { 859 /* busy, try again 1 sec later */ 860 dprintk("svc_age_temp_xprts: busy\n"); 861 mod_timer(&serv->sv_temptimer, jiffies + HZ); 862 return; 863 } 864 865 list_for_each_safe(le, next, &serv->sv_tempsocks) { 866 xprt = list_entry(le, struct svc_xprt, xpt_list); 867 868 /* First time through, just mark it OLD. Second time 869 * through, close it. */ 870 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags)) 871 continue; 872 if (atomic_read(&xprt->xpt_ref.refcount) > 1 || 873 test_bit(XPT_BUSY, &xprt->xpt_flags)) 874 continue; 875 svc_xprt_get(xprt); 876 list_move(le, &to_be_aged); 877 set_bit(XPT_CLOSE, &xprt->xpt_flags); 878 set_bit(XPT_DETACHED, &xprt->xpt_flags); 879 } 880 spin_unlock_bh(&serv->sv_lock); 881 882 while (!list_empty(&to_be_aged)) { 883 le = to_be_aged.next; 884 /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */ 885 list_del_init(le); 886 xprt = list_entry(le, struct svc_xprt, xpt_list); 887 888 dprintk("queuing xprt %p for closing\n", xprt); 889 890 /* a thread will dequeue and close it soon */ 891 svc_xprt_enqueue(xprt); 892 svc_xprt_put(xprt); 893 } 894 895 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ); 896 } 897 898 static void call_xpt_users(struct svc_xprt *xprt) 899 { 900 struct svc_xpt_user *u; 901 902 spin_lock(&xprt->xpt_lock); 903 while (!list_empty(&xprt->xpt_users)) { 904 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list); 905 list_del(&u->list); 906 u->callback(u); 907 } 908 spin_unlock(&xprt->xpt_lock); 909 } 910 911 /* 912 * Remove a dead transport 913 */ 914 static void svc_delete_xprt(struct svc_xprt *xprt) 915 { 916 struct svc_serv *serv = xprt->xpt_server; 917 struct svc_deferred_req *dr; 918 919 /* Only do this once */ 920 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) 921 BUG(); 922 923 dprintk("svc: svc_delete_xprt(%p)\n", xprt); 924 xprt->xpt_ops->xpo_detach(xprt); 925 926 spin_lock_bh(&serv->sv_lock); 927 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags)) 928 list_del_init(&xprt->xpt_list); 929 BUG_ON(!list_empty(&xprt->xpt_ready)); 930 if (test_bit(XPT_TEMP, &xprt->xpt_flags)) 931 serv->sv_tmpcnt--; 932 spin_unlock_bh(&serv->sv_lock); 933 934 while ((dr = svc_deferred_dequeue(xprt)) != NULL) 935 kfree(dr); 936 937 call_xpt_users(xprt); 938 svc_xprt_put(xprt); 939 } 940 941 void svc_close_xprt(struct svc_xprt *xprt) 942 { 943 set_bit(XPT_CLOSE, &xprt->xpt_flags); 944 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 945 /* someone else will have to effect the close */ 946 return; 947 /* 948 * We expect svc_close_xprt() to work even when no threads are 949 * running (e.g., while configuring the server before starting 950 * any threads), so if the transport isn't busy, we delete 951 * it ourself: 952 */ 953 svc_delete_xprt(xprt); 954 } 955 EXPORT_SYMBOL_GPL(svc_close_xprt); 956 957 static void svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net) 958 { 959 struct svc_xprt *xprt; 960 961 spin_lock(&serv->sv_lock); 962 list_for_each_entry(xprt, xprt_list, xpt_list) { 963 if (xprt->xpt_net != net) 964 continue; 965 set_bit(XPT_CLOSE, &xprt->xpt_flags); 966 set_bit(XPT_BUSY, &xprt->xpt_flags); 967 } 968 spin_unlock(&serv->sv_lock); 969 } 970 971 static void svc_clear_pools(struct svc_serv *serv, struct net *net) 972 { 973 struct svc_pool *pool; 974 struct svc_xprt *xprt; 975 struct svc_xprt *tmp; 976 int i; 977 978 for (i = 0; i < serv->sv_nrpools; i++) { 979 pool = &serv->sv_pools[i]; 980 981 spin_lock_bh(&pool->sp_lock); 982 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) { 983 if (xprt->xpt_net != net) 984 continue; 985 list_del_init(&xprt->xpt_ready); 986 } 987 spin_unlock_bh(&pool->sp_lock); 988 } 989 } 990 991 static void svc_clear_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net) 992 { 993 struct svc_xprt *xprt; 994 struct svc_xprt *tmp; 995 LIST_HEAD(victims); 996 997 spin_lock(&serv->sv_lock); 998 list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) { 999 if (xprt->xpt_net != net) 1000 continue; 1001 list_move(&xprt->xpt_list, &victims); 1002 } 1003 spin_unlock(&serv->sv_lock); 1004 1005 list_for_each_entry_safe(xprt, tmp, &victims, xpt_list) 1006 svc_delete_xprt(xprt); 1007 } 1008 1009 void svc_close_net(struct svc_serv *serv, struct net *net) 1010 { 1011 svc_close_list(serv, &serv->sv_tempsocks, net); 1012 svc_close_list(serv, &serv->sv_permsocks, net); 1013 1014 svc_clear_pools(serv, net); 1015 /* 1016 * At this point the sp_sockets lists will stay empty, since 1017 * svc_xprt_enqueue will not add new entries without taking the 1018 * sp_lock and checking XPT_BUSY. 1019 */ 1020 svc_clear_list(serv, &serv->sv_tempsocks, net); 1021 svc_clear_list(serv, &serv->sv_permsocks, net); 1022 } 1023 1024 /* 1025 * Handle defer and revisit of requests 1026 */ 1027 1028 static void svc_revisit(struct cache_deferred_req *dreq, int too_many) 1029 { 1030 struct svc_deferred_req *dr = 1031 container_of(dreq, struct svc_deferred_req, handle); 1032 struct svc_xprt *xprt = dr->xprt; 1033 1034 spin_lock(&xprt->xpt_lock); 1035 set_bit(XPT_DEFERRED, &xprt->xpt_flags); 1036 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) { 1037 spin_unlock(&xprt->xpt_lock); 1038 dprintk("revisit canceled\n"); 1039 svc_xprt_put(xprt); 1040 kfree(dr); 1041 return; 1042 } 1043 dprintk("revisit queued\n"); 1044 dr->xprt = NULL; 1045 list_add(&dr->handle.recent, &xprt->xpt_deferred); 1046 spin_unlock(&xprt->xpt_lock); 1047 svc_xprt_enqueue(xprt); 1048 svc_xprt_put(xprt); 1049 } 1050 1051 /* 1052 * Save the request off for later processing. The request buffer looks 1053 * like this: 1054 * 1055 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail> 1056 * 1057 * This code can only handle requests that consist of an xprt-header 1058 * and rpc-header. 1059 */ 1060 static struct cache_deferred_req *svc_defer(struct cache_req *req) 1061 { 1062 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle); 1063 struct svc_deferred_req *dr; 1064 1065 if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral) 1066 return NULL; /* if more than a page, give up FIXME */ 1067 if (rqstp->rq_deferred) { 1068 dr = rqstp->rq_deferred; 1069 rqstp->rq_deferred = NULL; 1070 } else { 1071 size_t skip; 1072 size_t size; 1073 /* FIXME maybe discard if size too large */ 1074 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len; 1075 dr = kmalloc(size, GFP_KERNEL); 1076 if (dr == NULL) 1077 return NULL; 1078 1079 dr->handle.owner = rqstp->rq_server; 1080 dr->prot = rqstp->rq_prot; 1081 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen); 1082 dr->addrlen = rqstp->rq_addrlen; 1083 dr->daddr = rqstp->rq_daddr; 1084 dr->argslen = rqstp->rq_arg.len >> 2; 1085 dr->xprt_hlen = rqstp->rq_xprt_hlen; 1086 1087 /* back up head to the start of the buffer and copy */ 1088 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; 1089 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip, 1090 dr->argslen << 2); 1091 } 1092 svc_xprt_get(rqstp->rq_xprt); 1093 dr->xprt = rqstp->rq_xprt; 1094 rqstp->rq_dropme = true; 1095 1096 dr->handle.revisit = svc_revisit; 1097 return &dr->handle; 1098 } 1099 1100 /* 1101 * recv data from a deferred request into an active one 1102 */ 1103 static int svc_deferred_recv(struct svc_rqst *rqstp) 1104 { 1105 struct svc_deferred_req *dr = rqstp->rq_deferred; 1106 1107 /* setup iov_base past transport header */ 1108 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2); 1109 /* The iov_len does not include the transport header bytes */ 1110 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen; 1111 rqstp->rq_arg.page_len = 0; 1112 /* The rq_arg.len includes the transport header bytes */ 1113 rqstp->rq_arg.len = dr->argslen<<2; 1114 rqstp->rq_prot = dr->prot; 1115 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen); 1116 rqstp->rq_addrlen = dr->addrlen; 1117 /* Save off transport header len in case we get deferred again */ 1118 rqstp->rq_xprt_hlen = dr->xprt_hlen; 1119 rqstp->rq_daddr = dr->daddr; 1120 rqstp->rq_respages = rqstp->rq_pages; 1121 return (dr->argslen<<2) - dr->xprt_hlen; 1122 } 1123 1124 1125 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt) 1126 { 1127 struct svc_deferred_req *dr = NULL; 1128 1129 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags)) 1130 return NULL; 1131 spin_lock(&xprt->xpt_lock); 1132 if (!list_empty(&xprt->xpt_deferred)) { 1133 dr = list_entry(xprt->xpt_deferred.next, 1134 struct svc_deferred_req, 1135 handle.recent); 1136 list_del_init(&dr->handle.recent); 1137 } else 1138 clear_bit(XPT_DEFERRED, &xprt->xpt_flags); 1139 spin_unlock(&xprt->xpt_lock); 1140 return dr; 1141 } 1142 1143 /** 1144 * svc_find_xprt - find an RPC transport instance 1145 * @serv: pointer to svc_serv to search 1146 * @xcl_name: C string containing transport's class name 1147 * @net: owner net pointer 1148 * @af: Address family of transport's local address 1149 * @port: transport's IP port number 1150 * 1151 * Return the transport instance pointer for the endpoint accepting 1152 * connections/peer traffic from the specified transport class, 1153 * address family and port. 1154 * 1155 * Specifying 0 for the address family or port is effectively a 1156 * wild-card, and will result in matching the first transport in the 1157 * service's list that has a matching class name. 1158 */ 1159 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name, 1160 struct net *net, const sa_family_t af, 1161 const unsigned short port) 1162 { 1163 struct svc_xprt *xprt; 1164 struct svc_xprt *found = NULL; 1165 1166 /* Sanity check the args */ 1167 if (serv == NULL || xcl_name == NULL) 1168 return found; 1169 1170 spin_lock_bh(&serv->sv_lock); 1171 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1172 if (xprt->xpt_net != net) 1173 continue; 1174 if (strcmp(xprt->xpt_class->xcl_name, xcl_name)) 1175 continue; 1176 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family) 1177 continue; 1178 if (port != 0 && port != svc_xprt_local_port(xprt)) 1179 continue; 1180 found = xprt; 1181 svc_xprt_get(xprt); 1182 break; 1183 } 1184 spin_unlock_bh(&serv->sv_lock); 1185 return found; 1186 } 1187 EXPORT_SYMBOL_GPL(svc_find_xprt); 1188 1189 static int svc_one_xprt_name(const struct svc_xprt *xprt, 1190 char *pos, int remaining) 1191 { 1192 int len; 1193 1194 len = snprintf(pos, remaining, "%s %u\n", 1195 xprt->xpt_class->xcl_name, 1196 svc_xprt_local_port(xprt)); 1197 if (len >= remaining) 1198 return -ENAMETOOLONG; 1199 return len; 1200 } 1201 1202 /** 1203 * svc_xprt_names - format a buffer with a list of transport names 1204 * @serv: pointer to an RPC service 1205 * @buf: pointer to a buffer to be filled in 1206 * @buflen: length of buffer to be filled in 1207 * 1208 * Fills in @buf with a string containing a list of transport names, 1209 * each name terminated with '\n'. 1210 * 1211 * Returns positive length of the filled-in string on success; otherwise 1212 * a negative errno value is returned if an error occurs. 1213 */ 1214 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen) 1215 { 1216 struct svc_xprt *xprt; 1217 int len, totlen; 1218 char *pos; 1219 1220 /* Sanity check args */ 1221 if (!serv) 1222 return 0; 1223 1224 spin_lock_bh(&serv->sv_lock); 1225 1226 pos = buf; 1227 totlen = 0; 1228 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1229 len = svc_one_xprt_name(xprt, pos, buflen - totlen); 1230 if (len < 0) { 1231 *buf = '\0'; 1232 totlen = len; 1233 } 1234 if (len <= 0) 1235 break; 1236 1237 pos += len; 1238 totlen += len; 1239 } 1240 1241 spin_unlock_bh(&serv->sv_lock); 1242 return totlen; 1243 } 1244 EXPORT_SYMBOL_GPL(svc_xprt_names); 1245 1246 1247 /*----------------------------------------------------------------------------*/ 1248 1249 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos) 1250 { 1251 unsigned int pidx = (unsigned int)*pos; 1252 struct svc_serv *serv = m->private; 1253 1254 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx); 1255 1256 if (!pidx) 1257 return SEQ_START_TOKEN; 1258 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]); 1259 } 1260 1261 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos) 1262 { 1263 struct svc_pool *pool = p; 1264 struct svc_serv *serv = m->private; 1265 1266 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos); 1267 1268 if (p == SEQ_START_TOKEN) { 1269 pool = &serv->sv_pools[0]; 1270 } else { 1271 unsigned int pidx = (pool - &serv->sv_pools[0]); 1272 if (pidx < serv->sv_nrpools-1) 1273 pool = &serv->sv_pools[pidx+1]; 1274 else 1275 pool = NULL; 1276 } 1277 ++*pos; 1278 return pool; 1279 } 1280 1281 static void svc_pool_stats_stop(struct seq_file *m, void *p) 1282 { 1283 } 1284 1285 static int svc_pool_stats_show(struct seq_file *m, void *p) 1286 { 1287 struct svc_pool *pool = p; 1288 1289 if (p == SEQ_START_TOKEN) { 1290 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n"); 1291 return 0; 1292 } 1293 1294 seq_printf(m, "%u %lu %lu %lu %lu\n", 1295 pool->sp_id, 1296 pool->sp_stats.packets, 1297 pool->sp_stats.sockets_queued, 1298 pool->sp_stats.threads_woken, 1299 pool->sp_stats.threads_timedout); 1300 1301 return 0; 1302 } 1303 1304 static const struct seq_operations svc_pool_stats_seq_ops = { 1305 .start = svc_pool_stats_start, 1306 .next = svc_pool_stats_next, 1307 .stop = svc_pool_stats_stop, 1308 .show = svc_pool_stats_show, 1309 }; 1310 1311 int svc_pool_stats_open(struct svc_serv *serv, struct file *file) 1312 { 1313 int err; 1314 1315 err = seq_open(file, &svc_pool_stats_seq_ops); 1316 if (!err) 1317 ((struct seq_file *) file->private_data)->private = serv; 1318 return err; 1319 } 1320 EXPORT_SYMBOL(svc_pool_stats_open); 1321 1322 /*----------------------------------------------------------------------------*/ 1323