xref: /linux/net/sunrpc/svc_xprt.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /*
2  * linux/net/sunrpc/svc_xprt.c
3  *
4  * Author: Tom Tucker <tom@opengridcomputing.com>
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/addr.h>
14 #include <linux/sunrpc/stats.h>
15 #include <linux/sunrpc/svc_xprt.h>
16 #include <linux/sunrpc/svcsock.h>
17 #include <linux/sunrpc/xprt.h>
18 #include <linux/module.h>
19 #include <linux/netdevice.h>
20 #include <trace/events/sunrpc.h>
21 
22 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
23 
24 static unsigned int svc_rpc_per_connection_limit __read_mostly;
25 module_param(svc_rpc_per_connection_limit, uint, 0644);
26 
27 
28 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
29 static int svc_deferred_recv(struct svc_rqst *rqstp);
30 static struct cache_deferred_req *svc_defer(struct cache_req *req);
31 static void svc_age_temp_xprts(struct timer_list *t);
32 static void svc_delete_xprt(struct svc_xprt *xprt);
33 
34 /* apparently the "standard" is that clients close
35  * idle connections after 5 minutes, servers after
36  * 6 minutes
37  *   http://www.connectathon.org/talks96/nfstcp.pdf
38  */
39 static int svc_conn_age_period = 6*60;
40 
41 /* List of registered transport classes */
42 static DEFINE_SPINLOCK(svc_xprt_class_lock);
43 static LIST_HEAD(svc_xprt_class_list);
44 
45 /* SMP locking strategy:
46  *
47  *	svc_pool->sp_lock protects most of the fields of that pool.
48  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
49  *	when both need to be taken (rare), svc_serv->sv_lock is first.
50  *	The "service mutex" protects svc_serv->sv_nrthread.
51  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
52  *             and the ->sk_info_authunix cache.
53  *
54  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
55  *	enqueued multiply. During normal transport processing this bit
56  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
57  *	Providers should not manipulate this bit directly.
58  *
59  *	Some flags can be set to certain values at any time
60  *	providing that certain rules are followed:
61  *
62  *	XPT_CONN, XPT_DATA:
63  *		- Can be set or cleared at any time.
64  *		- After a set, svc_xprt_enqueue must be called to enqueue
65  *		  the transport for processing.
66  *		- After a clear, the transport must be read/accepted.
67  *		  If this succeeds, it must be set again.
68  *	XPT_CLOSE:
69  *		- Can set at any time. It is never cleared.
70  *      XPT_DEAD:
71  *		- Can only be set while XPT_BUSY is held which ensures
72  *		  that no other thread will be using the transport or will
73  *		  try to set XPT_DEAD.
74  */
75 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
76 {
77 	struct svc_xprt_class *cl;
78 	int res = -EEXIST;
79 
80 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
81 
82 	INIT_LIST_HEAD(&xcl->xcl_list);
83 	spin_lock(&svc_xprt_class_lock);
84 	/* Make sure there isn't already a class with the same name */
85 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
86 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
87 			goto out;
88 	}
89 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
90 	res = 0;
91 out:
92 	spin_unlock(&svc_xprt_class_lock);
93 	return res;
94 }
95 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
96 
97 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
98 {
99 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
100 	spin_lock(&svc_xprt_class_lock);
101 	list_del_init(&xcl->xcl_list);
102 	spin_unlock(&svc_xprt_class_lock);
103 }
104 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
105 
106 /*
107  * Format the transport list for printing
108  */
109 int svc_print_xprts(char *buf, int maxlen)
110 {
111 	struct svc_xprt_class *xcl;
112 	char tmpstr[80];
113 	int len = 0;
114 	buf[0] = '\0';
115 
116 	spin_lock(&svc_xprt_class_lock);
117 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
118 		int slen;
119 
120 		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
121 		slen = strlen(tmpstr);
122 		if (len + slen > maxlen)
123 			break;
124 		len += slen;
125 		strcat(buf, tmpstr);
126 	}
127 	spin_unlock(&svc_xprt_class_lock);
128 
129 	return len;
130 }
131 
132 static void svc_xprt_free(struct kref *kref)
133 {
134 	struct svc_xprt *xprt =
135 		container_of(kref, struct svc_xprt, xpt_ref);
136 	struct module *owner = xprt->xpt_class->xcl_owner;
137 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
138 		svcauth_unix_info_release(xprt);
139 	put_net(xprt->xpt_net);
140 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
141 	if (xprt->xpt_bc_xprt)
142 		xprt_put(xprt->xpt_bc_xprt);
143 	if (xprt->xpt_bc_xps)
144 		xprt_switch_put(xprt->xpt_bc_xps);
145 	xprt->xpt_ops->xpo_free(xprt);
146 	module_put(owner);
147 }
148 
149 void svc_xprt_put(struct svc_xprt *xprt)
150 {
151 	kref_put(&xprt->xpt_ref, svc_xprt_free);
152 }
153 EXPORT_SYMBOL_GPL(svc_xprt_put);
154 
155 /*
156  * Called by transport drivers to initialize the transport independent
157  * portion of the transport instance.
158  */
159 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
160 		   struct svc_xprt *xprt, struct svc_serv *serv)
161 {
162 	memset(xprt, 0, sizeof(*xprt));
163 	xprt->xpt_class = xcl;
164 	xprt->xpt_ops = xcl->xcl_ops;
165 	kref_init(&xprt->xpt_ref);
166 	xprt->xpt_server = serv;
167 	INIT_LIST_HEAD(&xprt->xpt_list);
168 	INIT_LIST_HEAD(&xprt->xpt_ready);
169 	INIT_LIST_HEAD(&xprt->xpt_deferred);
170 	INIT_LIST_HEAD(&xprt->xpt_users);
171 	mutex_init(&xprt->xpt_mutex);
172 	spin_lock_init(&xprt->xpt_lock);
173 	set_bit(XPT_BUSY, &xprt->xpt_flags);
174 	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
175 	xprt->xpt_net = get_net(net);
176 }
177 EXPORT_SYMBOL_GPL(svc_xprt_init);
178 
179 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
180 					 struct svc_serv *serv,
181 					 struct net *net,
182 					 const int family,
183 					 const unsigned short port,
184 					 int flags)
185 {
186 	struct sockaddr_in sin = {
187 		.sin_family		= AF_INET,
188 		.sin_addr.s_addr	= htonl(INADDR_ANY),
189 		.sin_port		= htons(port),
190 	};
191 #if IS_ENABLED(CONFIG_IPV6)
192 	struct sockaddr_in6 sin6 = {
193 		.sin6_family		= AF_INET6,
194 		.sin6_addr		= IN6ADDR_ANY_INIT,
195 		.sin6_port		= htons(port),
196 	};
197 #endif
198 	struct sockaddr *sap;
199 	size_t len;
200 
201 	switch (family) {
202 	case PF_INET:
203 		sap = (struct sockaddr *)&sin;
204 		len = sizeof(sin);
205 		break;
206 #if IS_ENABLED(CONFIG_IPV6)
207 	case PF_INET6:
208 		sap = (struct sockaddr *)&sin6;
209 		len = sizeof(sin6);
210 		break;
211 #endif
212 	default:
213 		return ERR_PTR(-EAFNOSUPPORT);
214 	}
215 
216 	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
217 }
218 
219 /*
220  * svc_xprt_received conditionally queues the transport for processing
221  * by another thread. The caller must hold the XPT_BUSY bit and must
222  * not thereafter touch transport data.
223  *
224  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
225  * insufficient) data.
226  */
227 static void svc_xprt_received(struct svc_xprt *xprt)
228 {
229 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
230 		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
231 		return;
232 	}
233 
234 	/* As soon as we clear busy, the xprt could be closed and
235 	 * 'put', so we need a reference to call svc_enqueue_xprt with:
236 	 */
237 	svc_xprt_get(xprt);
238 	smp_mb__before_atomic();
239 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
240 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
241 	svc_xprt_put(xprt);
242 }
243 
244 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
245 {
246 	clear_bit(XPT_TEMP, &new->xpt_flags);
247 	spin_lock_bh(&serv->sv_lock);
248 	list_add(&new->xpt_list, &serv->sv_permsocks);
249 	spin_unlock_bh(&serv->sv_lock);
250 	svc_xprt_received(new);
251 }
252 
253 static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
254 			    struct net *net, const int family,
255 			    const unsigned short port, int flags)
256 {
257 	struct svc_xprt_class *xcl;
258 
259 	spin_lock(&svc_xprt_class_lock);
260 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
261 		struct svc_xprt *newxprt;
262 		unsigned short newport;
263 
264 		if (strcmp(xprt_name, xcl->xcl_name))
265 			continue;
266 
267 		if (!try_module_get(xcl->xcl_owner))
268 			goto err;
269 
270 		spin_unlock(&svc_xprt_class_lock);
271 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
272 		if (IS_ERR(newxprt)) {
273 			module_put(xcl->xcl_owner);
274 			return PTR_ERR(newxprt);
275 		}
276 		svc_add_new_perm_xprt(serv, newxprt);
277 		newport = svc_xprt_local_port(newxprt);
278 		return newport;
279 	}
280  err:
281 	spin_unlock(&svc_xprt_class_lock);
282 	/* This errno is exposed to user space.  Provide a reasonable
283 	 * perror msg for a bad transport. */
284 	return -EPROTONOSUPPORT;
285 }
286 
287 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
288 		    struct net *net, const int family,
289 		    const unsigned short port, int flags)
290 {
291 	int err;
292 
293 	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
294 	err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
295 	if (err == -EPROTONOSUPPORT) {
296 		request_module("svc%s", xprt_name);
297 		err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
298 	}
299 	if (err)
300 		dprintk("svc: transport %s not found, err %d\n",
301 			xprt_name, err);
302 	return err;
303 }
304 EXPORT_SYMBOL_GPL(svc_create_xprt);
305 
306 /*
307  * Copy the local and remote xprt addresses to the rqstp structure
308  */
309 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
310 {
311 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
312 	rqstp->rq_addrlen = xprt->xpt_remotelen;
313 
314 	/*
315 	 * Destination address in request is needed for binding the
316 	 * source address in RPC replies/callbacks later.
317 	 */
318 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
319 	rqstp->rq_daddrlen = xprt->xpt_locallen;
320 }
321 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
322 
323 /**
324  * svc_print_addr - Format rq_addr field for printing
325  * @rqstp: svc_rqst struct containing address to print
326  * @buf: target buffer for formatted address
327  * @len: length of target buffer
328  *
329  */
330 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
331 {
332 	return __svc_print_addr(svc_addr(rqstp), buf, len);
333 }
334 EXPORT_SYMBOL_GPL(svc_print_addr);
335 
336 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
337 {
338 	unsigned int limit = svc_rpc_per_connection_limit;
339 	int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
340 
341 	return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
342 }
343 
344 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
345 {
346 	if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
347 		if (!svc_xprt_slots_in_range(xprt))
348 			return false;
349 		atomic_inc(&xprt->xpt_nr_rqsts);
350 		set_bit(RQ_DATA, &rqstp->rq_flags);
351 	}
352 	return true;
353 }
354 
355 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
356 {
357 	struct svc_xprt	*xprt = rqstp->rq_xprt;
358 	if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
359 		atomic_dec(&xprt->xpt_nr_rqsts);
360 		svc_xprt_enqueue(xprt);
361 	}
362 }
363 
364 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
365 {
366 	if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
367 		return true;
368 	if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED))) {
369 		if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
370 		    svc_xprt_slots_in_range(xprt))
371 			return true;
372 		trace_svc_xprt_no_write_space(xprt);
373 		return false;
374 	}
375 	return false;
376 }
377 
378 void svc_xprt_do_enqueue(struct svc_xprt *xprt)
379 {
380 	struct svc_pool *pool;
381 	struct svc_rqst	*rqstp = NULL;
382 	int cpu;
383 
384 	if (!svc_xprt_has_something_to_do(xprt))
385 		goto out;
386 
387 	/* Mark transport as busy. It will remain in this state until
388 	 * the provider calls svc_xprt_received. We update XPT_BUSY
389 	 * atomically because it also guards against trying to enqueue
390 	 * the transport twice.
391 	 */
392 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
393 		/* Don't enqueue transport while already enqueued */
394 		dprintk("svc: transport %p busy, not enqueued\n", xprt);
395 		goto out;
396 	}
397 
398 	cpu = get_cpu();
399 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
400 
401 	atomic_long_inc(&pool->sp_stats.packets);
402 
403 	dprintk("svc: transport %p put into queue\n", xprt);
404 	spin_lock_bh(&pool->sp_lock);
405 	list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
406 	pool->sp_stats.sockets_queued++;
407 	spin_unlock_bh(&pool->sp_lock);
408 
409 	/* find a thread for this xprt */
410 	rcu_read_lock();
411 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
412 		if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
413 			continue;
414 		atomic_long_inc(&pool->sp_stats.threads_woken);
415 		wake_up_process(rqstp->rq_task);
416 		goto out_unlock;
417 	}
418 	set_bit(SP_CONGESTED, &pool->sp_flags);
419 	rqstp = NULL;
420 out_unlock:
421 	rcu_read_unlock();
422 	put_cpu();
423 out:
424 	trace_svc_xprt_do_enqueue(xprt, rqstp);
425 }
426 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
427 
428 /*
429  * Queue up a transport with data pending. If there are idle nfsd
430  * processes, wake 'em up.
431  *
432  */
433 void svc_xprt_enqueue(struct svc_xprt *xprt)
434 {
435 	if (test_bit(XPT_BUSY, &xprt->xpt_flags))
436 		return;
437 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
438 }
439 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
440 
441 /*
442  * Dequeue the first transport, if there is one.
443  */
444 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
445 {
446 	struct svc_xprt	*xprt = NULL;
447 
448 	if (list_empty(&pool->sp_sockets))
449 		goto out;
450 
451 	spin_lock_bh(&pool->sp_lock);
452 	if (likely(!list_empty(&pool->sp_sockets))) {
453 		xprt = list_first_entry(&pool->sp_sockets,
454 					struct svc_xprt, xpt_ready);
455 		list_del_init(&xprt->xpt_ready);
456 		svc_xprt_get(xprt);
457 
458 		dprintk("svc: transport %p dequeued, inuse=%d\n",
459 			xprt, kref_read(&xprt->xpt_ref));
460 	}
461 	spin_unlock_bh(&pool->sp_lock);
462 out:
463 	trace_svc_xprt_dequeue(xprt);
464 	return xprt;
465 }
466 
467 /**
468  * svc_reserve - change the space reserved for the reply to a request.
469  * @rqstp:  The request in question
470  * @space: new max space to reserve
471  *
472  * Each request reserves some space on the output queue of the transport
473  * to make sure the reply fits.  This function reduces that reserved
474  * space to be the amount of space used already, plus @space.
475  *
476  */
477 void svc_reserve(struct svc_rqst *rqstp, int space)
478 {
479 	space += rqstp->rq_res.head[0].iov_len;
480 
481 	if (space < rqstp->rq_reserved) {
482 		struct svc_xprt *xprt = rqstp->rq_xprt;
483 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
484 		rqstp->rq_reserved = space;
485 
486 		svc_xprt_enqueue(xprt);
487 	}
488 }
489 EXPORT_SYMBOL_GPL(svc_reserve);
490 
491 static void svc_xprt_release(struct svc_rqst *rqstp)
492 {
493 	struct svc_xprt	*xprt = rqstp->rq_xprt;
494 
495 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
496 
497 	kfree(rqstp->rq_deferred);
498 	rqstp->rq_deferred = NULL;
499 
500 	svc_free_res_pages(rqstp);
501 	rqstp->rq_res.page_len = 0;
502 	rqstp->rq_res.page_base = 0;
503 
504 	/* Reset response buffer and release
505 	 * the reservation.
506 	 * But first, check that enough space was reserved
507 	 * for the reply, otherwise we have a bug!
508 	 */
509 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
510 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
511 		       rqstp->rq_reserved,
512 		       rqstp->rq_res.len);
513 
514 	rqstp->rq_res.head[0].iov_len = 0;
515 	svc_reserve(rqstp, 0);
516 	svc_xprt_release_slot(rqstp);
517 	rqstp->rq_xprt = NULL;
518 	svc_xprt_put(xprt);
519 }
520 
521 /*
522  * Some svc_serv's will have occasional work to do, even when a xprt is not
523  * waiting to be serviced. This function is there to "kick" a task in one of
524  * those services so that it can wake up and do that work. Note that we only
525  * bother with pool 0 as we don't need to wake up more than one thread for
526  * this purpose.
527  */
528 void svc_wake_up(struct svc_serv *serv)
529 {
530 	struct svc_rqst	*rqstp;
531 	struct svc_pool *pool;
532 
533 	pool = &serv->sv_pools[0];
534 
535 	rcu_read_lock();
536 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
537 		/* skip any that aren't queued */
538 		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
539 			continue;
540 		rcu_read_unlock();
541 		dprintk("svc: daemon %p woken up.\n", rqstp);
542 		wake_up_process(rqstp->rq_task);
543 		trace_svc_wake_up(rqstp->rq_task->pid);
544 		return;
545 	}
546 	rcu_read_unlock();
547 
548 	/* No free entries available */
549 	set_bit(SP_TASK_PENDING, &pool->sp_flags);
550 	smp_wmb();
551 	trace_svc_wake_up(0);
552 }
553 EXPORT_SYMBOL_GPL(svc_wake_up);
554 
555 int svc_port_is_privileged(struct sockaddr *sin)
556 {
557 	switch (sin->sa_family) {
558 	case AF_INET:
559 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
560 			< PROT_SOCK;
561 	case AF_INET6:
562 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
563 			< PROT_SOCK;
564 	default:
565 		return 0;
566 	}
567 }
568 
569 /*
570  * Make sure that we don't have too many active connections. If we have,
571  * something must be dropped. It's not clear what will happen if we allow
572  * "too many" connections, but when dealing with network-facing software,
573  * we have to code defensively. Here we do that by imposing hard limits.
574  *
575  * There's no point in trying to do random drop here for DoS
576  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
577  * attacker can easily beat that.
578  *
579  * The only somewhat efficient mechanism would be if drop old
580  * connections from the same IP first. But right now we don't even
581  * record the client IP in svc_sock.
582  *
583  * single-threaded services that expect a lot of clients will probably
584  * need to set sv_maxconn to override the default value which is based
585  * on the number of threads
586  */
587 static void svc_check_conn_limits(struct svc_serv *serv)
588 {
589 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
590 				(serv->sv_nrthreads+3) * 20;
591 
592 	if (serv->sv_tmpcnt > limit) {
593 		struct svc_xprt *xprt = NULL;
594 		spin_lock_bh(&serv->sv_lock);
595 		if (!list_empty(&serv->sv_tempsocks)) {
596 			/* Try to help the admin */
597 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
598 					       serv->sv_name, serv->sv_maxconn ?
599 					       "max number of connections" :
600 					       "number of threads");
601 			/*
602 			 * Always select the oldest connection. It's not fair,
603 			 * but so is life
604 			 */
605 			xprt = list_entry(serv->sv_tempsocks.prev,
606 					  struct svc_xprt,
607 					  xpt_list);
608 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
609 			svc_xprt_get(xprt);
610 		}
611 		spin_unlock_bh(&serv->sv_lock);
612 
613 		if (xprt) {
614 			svc_xprt_enqueue(xprt);
615 			svc_xprt_put(xprt);
616 		}
617 	}
618 }
619 
620 static int svc_alloc_arg(struct svc_rqst *rqstp)
621 {
622 	struct svc_serv *serv = rqstp->rq_server;
623 	struct xdr_buf *arg;
624 	int pages;
625 	int i;
626 
627 	/* now allocate needed pages.  If we get a failure, sleep briefly */
628 	pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
629 	if (pages > RPCSVC_MAXPAGES) {
630 		pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n",
631 			     pages, RPCSVC_MAXPAGES);
632 		/* use as many pages as possible */
633 		pages = RPCSVC_MAXPAGES;
634 	}
635 	for (i = 0; i < pages ; i++)
636 		while (rqstp->rq_pages[i] == NULL) {
637 			struct page *p = alloc_page(GFP_KERNEL);
638 			if (!p) {
639 				set_current_state(TASK_INTERRUPTIBLE);
640 				if (signalled() || kthread_should_stop()) {
641 					set_current_state(TASK_RUNNING);
642 					return -EINTR;
643 				}
644 				schedule_timeout(msecs_to_jiffies(500));
645 			}
646 			rqstp->rq_pages[i] = p;
647 		}
648 	rqstp->rq_page_end = &rqstp->rq_pages[i];
649 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
650 
651 	/* Make arg->head point to first page and arg->pages point to rest */
652 	arg = &rqstp->rq_arg;
653 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
654 	arg->head[0].iov_len = PAGE_SIZE;
655 	arg->pages = rqstp->rq_pages + 1;
656 	arg->page_base = 0;
657 	/* save at least one page for response */
658 	arg->page_len = (pages-2)*PAGE_SIZE;
659 	arg->len = (pages-1)*PAGE_SIZE;
660 	arg->tail[0].iov_len = 0;
661 	return 0;
662 }
663 
664 static bool
665 rqst_should_sleep(struct svc_rqst *rqstp)
666 {
667 	struct svc_pool		*pool = rqstp->rq_pool;
668 
669 	/* did someone call svc_wake_up? */
670 	if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
671 		return false;
672 
673 	/* was a socket queued? */
674 	if (!list_empty(&pool->sp_sockets))
675 		return false;
676 
677 	/* are we shutting down? */
678 	if (signalled() || kthread_should_stop())
679 		return false;
680 
681 	/* are we freezing? */
682 	if (freezing(current))
683 		return false;
684 
685 	return true;
686 }
687 
688 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
689 {
690 	struct svc_pool		*pool = rqstp->rq_pool;
691 	long			time_left = 0;
692 
693 	/* rq_xprt should be clear on entry */
694 	WARN_ON_ONCE(rqstp->rq_xprt);
695 
696 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
697 	if (rqstp->rq_xprt)
698 		goto out_found;
699 
700 	/*
701 	 * We have to be able to interrupt this wait
702 	 * to bring down the daemons ...
703 	 */
704 	set_current_state(TASK_INTERRUPTIBLE);
705 	smp_mb__before_atomic();
706 	clear_bit(SP_CONGESTED, &pool->sp_flags);
707 	clear_bit(RQ_BUSY, &rqstp->rq_flags);
708 	smp_mb__after_atomic();
709 
710 	if (likely(rqst_should_sleep(rqstp)))
711 		time_left = schedule_timeout(timeout);
712 	else
713 		__set_current_state(TASK_RUNNING);
714 
715 	try_to_freeze();
716 
717 	set_bit(RQ_BUSY, &rqstp->rq_flags);
718 	smp_mb__after_atomic();
719 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
720 	if (rqstp->rq_xprt)
721 		goto out_found;
722 
723 	if (!time_left)
724 		atomic_long_inc(&pool->sp_stats.threads_timedout);
725 
726 	if (signalled() || kthread_should_stop())
727 		return ERR_PTR(-EINTR);
728 	return ERR_PTR(-EAGAIN);
729 out_found:
730 	/* Normally we will wait up to 5 seconds for any required
731 	 * cache information to be provided.
732 	 */
733 	if (!test_bit(SP_CONGESTED, &pool->sp_flags))
734 		rqstp->rq_chandle.thread_wait = 5*HZ;
735 	else
736 		rqstp->rq_chandle.thread_wait = 1*HZ;
737 	return rqstp->rq_xprt;
738 }
739 
740 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
741 {
742 	spin_lock_bh(&serv->sv_lock);
743 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
744 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
745 	serv->sv_tmpcnt++;
746 	if (serv->sv_temptimer.function == NULL) {
747 		/* setup timer to age temp transports */
748 		serv->sv_temptimer.function = svc_age_temp_xprts;
749 		mod_timer(&serv->sv_temptimer,
750 			  jiffies + svc_conn_age_period * HZ);
751 	}
752 	spin_unlock_bh(&serv->sv_lock);
753 	svc_xprt_received(newxpt);
754 }
755 
756 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
757 {
758 	struct svc_serv *serv = rqstp->rq_server;
759 	int len = 0;
760 
761 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
762 		dprintk("svc_recv: found XPT_CLOSE\n");
763 		if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
764 			xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
765 		svc_delete_xprt(xprt);
766 		/* Leave XPT_BUSY set on the dead xprt: */
767 		goto out;
768 	}
769 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
770 		struct svc_xprt *newxpt;
771 		/*
772 		 * We know this module_get will succeed because the
773 		 * listener holds a reference too
774 		 */
775 		__module_get(xprt->xpt_class->xcl_owner);
776 		svc_check_conn_limits(xprt->xpt_server);
777 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
778 		if (newxpt)
779 			svc_add_new_temp_xprt(serv, newxpt);
780 		else
781 			module_put(xprt->xpt_class->xcl_owner);
782 	} else if (svc_xprt_reserve_slot(rqstp, xprt)) {
783 		/* XPT_DATA|XPT_DEFERRED case: */
784 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
785 			rqstp, rqstp->rq_pool->sp_id, xprt,
786 			kref_read(&xprt->xpt_ref));
787 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
788 		if (rqstp->rq_deferred)
789 			len = svc_deferred_recv(rqstp);
790 		else
791 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
792 		dprintk("svc: got len=%d\n", len);
793 		rqstp->rq_reserved = serv->sv_max_mesg;
794 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
795 	}
796 	/* clear XPT_BUSY: */
797 	svc_xprt_received(xprt);
798 out:
799 	trace_svc_handle_xprt(xprt, len);
800 	return len;
801 }
802 
803 /*
804  * Receive the next request on any transport.  This code is carefully
805  * organised not to touch any cachelines in the shared svc_serv
806  * structure, only cachelines in the local svc_pool.
807  */
808 int svc_recv(struct svc_rqst *rqstp, long timeout)
809 {
810 	struct svc_xprt		*xprt = NULL;
811 	struct svc_serv		*serv = rqstp->rq_server;
812 	int			len, err;
813 
814 	dprintk("svc: server %p waiting for data (to = %ld)\n",
815 		rqstp, timeout);
816 
817 	if (rqstp->rq_xprt)
818 		printk(KERN_ERR
819 			"svc_recv: service %p, transport not NULL!\n",
820 			 rqstp);
821 
822 	err = svc_alloc_arg(rqstp);
823 	if (err)
824 		goto out;
825 
826 	try_to_freeze();
827 	cond_resched();
828 	err = -EINTR;
829 	if (signalled() || kthread_should_stop())
830 		goto out;
831 
832 	xprt = svc_get_next_xprt(rqstp, timeout);
833 	if (IS_ERR(xprt)) {
834 		err = PTR_ERR(xprt);
835 		goto out;
836 	}
837 
838 	len = svc_handle_xprt(rqstp, xprt);
839 
840 	/* No data, incomplete (TCP) read, or accept() */
841 	err = -EAGAIN;
842 	if (len <= 0)
843 		goto out_release;
844 
845 	clear_bit(XPT_OLD, &xprt->xpt_flags);
846 
847 	if (xprt->xpt_ops->xpo_secure_port(rqstp))
848 		set_bit(RQ_SECURE, &rqstp->rq_flags);
849 	else
850 		clear_bit(RQ_SECURE, &rqstp->rq_flags);
851 	rqstp->rq_chandle.defer = svc_defer;
852 	rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
853 
854 	if (serv->sv_stats)
855 		serv->sv_stats->netcnt++;
856 	trace_svc_recv(rqstp, len);
857 	return len;
858 out_release:
859 	rqstp->rq_res.len = 0;
860 	svc_xprt_release(rqstp);
861 out:
862 	trace_svc_recv(rqstp, err);
863 	return err;
864 }
865 EXPORT_SYMBOL_GPL(svc_recv);
866 
867 /*
868  * Drop request
869  */
870 void svc_drop(struct svc_rqst *rqstp)
871 {
872 	trace_svc_drop(rqstp);
873 	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
874 	svc_xprt_release(rqstp);
875 }
876 EXPORT_SYMBOL_GPL(svc_drop);
877 
878 /*
879  * Return reply to client.
880  */
881 int svc_send(struct svc_rqst *rqstp)
882 {
883 	struct svc_xprt	*xprt;
884 	int		len = -EFAULT;
885 	struct xdr_buf	*xb;
886 
887 	xprt = rqstp->rq_xprt;
888 	if (!xprt)
889 		goto out;
890 
891 	/* release the receive skb before sending the reply */
892 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
893 
894 	/* calculate over-all length */
895 	xb = &rqstp->rq_res;
896 	xb->len = xb->head[0].iov_len +
897 		xb->page_len +
898 		xb->tail[0].iov_len;
899 
900 	/* Grab mutex to serialize outgoing data. */
901 	mutex_lock(&xprt->xpt_mutex);
902 	if (test_bit(XPT_DEAD, &xprt->xpt_flags)
903 			|| test_bit(XPT_CLOSE, &xprt->xpt_flags))
904 		len = -ENOTCONN;
905 	else
906 		len = xprt->xpt_ops->xpo_sendto(rqstp);
907 	mutex_unlock(&xprt->xpt_mutex);
908 	rpc_wake_up(&xprt->xpt_bc_pending);
909 	svc_xprt_release(rqstp);
910 
911 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
912 		len = 0;
913 out:
914 	trace_svc_send(rqstp, len);
915 	return len;
916 }
917 
918 /*
919  * Timer function to close old temporary transports, using
920  * a mark-and-sweep algorithm.
921  */
922 static void svc_age_temp_xprts(struct timer_list *t)
923 {
924 	struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
925 	struct svc_xprt *xprt;
926 	struct list_head *le, *next;
927 
928 	dprintk("svc_age_temp_xprts\n");
929 
930 	if (!spin_trylock_bh(&serv->sv_lock)) {
931 		/* busy, try again 1 sec later */
932 		dprintk("svc_age_temp_xprts: busy\n");
933 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
934 		return;
935 	}
936 
937 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
938 		xprt = list_entry(le, struct svc_xprt, xpt_list);
939 
940 		/* First time through, just mark it OLD. Second time
941 		 * through, close it. */
942 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
943 			continue;
944 		if (kref_read(&xprt->xpt_ref) > 1 ||
945 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
946 			continue;
947 		list_del_init(le);
948 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
949 		dprintk("queuing xprt %p for closing\n", xprt);
950 
951 		/* a thread will dequeue and close it soon */
952 		svc_xprt_enqueue(xprt);
953 	}
954 	spin_unlock_bh(&serv->sv_lock);
955 
956 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
957 }
958 
959 /* Close temporary transports whose xpt_local matches server_addr immediately
960  * instead of waiting for them to be picked up by the timer.
961  *
962  * This is meant to be called from a notifier_block that runs when an ip
963  * address is deleted.
964  */
965 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
966 {
967 	struct svc_xprt *xprt;
968 	struct list_head *le, *next;
969 	LIST_HEAD(to_be_closed);
970 
971 	spin_lock_bh(&serv->sv_lock);
972 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
973 		xprt = list_entry(le, struct svc_xprt, xpt_list);
974 		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
975 				&xprt->xpt_local)) {
976 			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
977 			list_move(le, &to_be_closed);
978 		}
979 	}
980 	spin_unlock_bh(&serv->sv_lock);
981 
982 	while (!list_empty(&to_be_closed)) {
983 		le = to_be_closed.next;
984 		list_del_init(le);
985 		xprt = list_entry(le, struct svc_xprt, xpt_list);
986 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
987 		set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
988 		dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
989 				xprt);
990 		svc_xprt_enqueue(xprt);
991 	}
992 }
993 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
994 
995 static void call_xpt_users(struct svc_xprt *xprt)
996 {
997 	struct svc_xpt_user *u;
998 
999 	spin_lock(&xprt->xpt_lock);
1000 	while (!list_empty(&xprt->xpt_users)) {
1001 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1002 		list_del(&u->list);
1003 		u->callback(u);
1004 	}
1005 	spin_unlock(&xprt->xpt_lock);
1006 }
1007 
1008 /*
1009  * Remove a dead transport
1010  */
1011 static void svc_delete_xprt(struct svc_xprt *xprt)
1012 {
1013 	struct svc_serv	*serv = xprt->xpt_server;
1014 	struct svc_deferred_req *dr;
1015 
1016 	/* Only do this once */
1017 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1018 		BUG();
1019 
1020 	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1021 	xprt->xpt_ops->xpo_detach(xprt);
1022 
1023 	spin_lock_bh(&serv->sv_lock);
1024 	list_del_init(&xprt->xpt_list);
1025 	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1026 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1027 		serv->sv_tmpcnt--;
1028 	spin_unlock_bh(&serv->sv_lock);
1029 
1030 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1031 		kfree(dr);
1032 
1033 	call_xpt_users(xprt);
1034 	svc_xprt_put(xprt);
1035 }
1036 
1037 void svc_close_xprt(struct svc_xprt *xprt)
1038 {
1039 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1040 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1041 		/* someone else will have to effect the close */
1042 		return;
1043 	/*
1044 	 * We expect svc_close_xprt() to work even when no threads are
1045 	 * running (e.g., while configuring the server before starting
1046 	 * any threads), so if the transport isn't busy, we delete
1047 	 * it ourself:
1048 	 */
1049 	svc_delete_xprt(xprt);
1050 }
1051 EXPORT_SYMBOL_GPL(svc_close_xprt);
1052 
1053 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1054 {
1055 	struct svc_xprt *xprt;
1056 	int ret = 0;
1057 
1058 	spin_lock(&serv->sv_lock);
1059 	list_for_each_entry(xprt, xprt_list, xpt_list) {
1060 		if (xprt->xpt_net != net)
1061 			continue;
1062 		ret++;
1063 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1064 		svc_xprt_enqueue(xprt);
1065 	}
1066 	spin_unlock(&serv->sv_lock);
1067 	return ret;
1068 }
1069 
1070 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1071 {
1072 	struct svc_pool *pool;
1073 	struct svc_xprt *xprt;
1074 	struct svc_xprt *tmp;
1075 	int i;
1076 
1077 	for (i = 0; i < serv->sv_nrpools; i++) {
1078 		pool = &serv->sv_pools[i];
1079 
1080 		spin_lock_bh(&pool->sp_lock);
1081 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1082 			if (xprt->xpt_net != net)
1083 				continue;
1084 			list_del_init(&xprt->xpt_ready);
1085 			spin_unlock_bh(&pool->sp_lock);
1086 			return xprt;
1087 		}
1088 		spin_unlock_bh(&pool->sp_lock);
1089 	}
1090 	return NULL;
1091 }
1092 
1093 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1094 {
1095 	struct svc_xprt *xprt;
1096 
1097 	while ((xprt = svc_dequeue_net(serv, net))) {
1098 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1099 		svc_delete_xprt(xprt);
1100 	}
1101 }
1102 
1103 /*
1104  * Server threads may still be running (especially in the case where the
1105  * service is still running in other network namespaces).
1106  *
1107  * So we shut down sockets the same way we would on a running server, by
1108  * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1109  * the close.  In the case there are no such other threads,
1110  * threads running, svc_clean_up_xprts() does a simple version of a
1111  * server's main event loop, and in the case where there are other
1112  * threads, we may need to wait a little while and then check again to
1113  * see if they're done.
1114  */
1115 void svc_close_net(struct svc_serv *serv, struct net *net)
1116 {
1117 	int delay = 0;
1118 
1119 	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1120 	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1121 
1122 		svc_clean_up_xprts(serv, net);
1123 		msleep(delay++);
1124 	}
1125 }
1126 
1127 /*
1128  * Handle defer and revisit of requests
1129  */
1130 
1131 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1132 {
1133 	struct svc_deferred_req *dr =
1134 		container_of(dreq, struct svc_deferred_req, handle);
1135 	struct svc_xprt *xprt = dr->xprt;
1136 
1137 	spin_lock(&xprt->xpt_lock);
1138 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1139 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1140 		spin_unlock(&xprt->xpt_lock);
1141 		dprintk("revisit canceled\n");
1142 		svc_xprt_put(xprt);
1143 		trace_svc_drop_deferred(dr);
1144 		kfree(dr);
1145 		return;
1146 	}
1147 	dprintk("revisit queued\n");
1148 	dr->xprt = NULL;
1149 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1150 	spin_unlock(&xprt->xpt_lock);
1151 	svc_xprt_enqueue(xprt);
1152 	svc_xprt_put(xprt);
1153 }
1154 
1155 /*
1156  * Save the request off for later processing. The request buffer looks
1157  * like this:
1158  *
1159  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1160  *
1161  * This code can only handle requests that consist of an xprt-header
1162  * and rpc-header.
1163  */
1164 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1165 {
1166 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1167 	struct svc_deferred_req *dr;
1168 
1169 	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1170 		return NULL; /* if more than a page, give up FIXME */
1171 	if (rqstp->rq_deferred) {
1172 		dr = rqstp->rq_deferred;
1173 		rqstp->rq_deferred = NULL;
1174 	} else {
1175 		size_t skip;
1176 		size_t size;
1177 		/* FIXME maybe discard if size too large */
1178 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1179 		dr = kmalloc(size, GFP_KERNEL);
1180 		if (dr == NULL)
1181 			return NULL;
1182 
1183 		dr->handle.owner = rqstp->rq_server;
1184 		dr->prot = rqstp->rq_prot;
1185 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1186 		dr->addrlen = rqstp->rq_addrlen;
1187 		dr->daddr = rqstp->rq_daddr;
1188 		dr->argslen = rqstp->rq_arg.len >> 2;
1189 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1190 
1191 		/* back up head to the start of the buffer and copy */
1192 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1193 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1194 		       dr->argslen << 2);
1195 	}
1196 	svc_xprt_get(rqstp->rq_xprt);
1197 	dr->xprt = rqstp->rq_xprt;
1198 	set_bit(RQ_DROPME, &rqstp->rq_flags);
1199 
1200 	dr->handle.revisit = svc_revisit;
1201 	trace_svc_defer(rqstp);
1202 	return &dr->handle;
1203 }
1204 
1205 /*
1206  * recv data from a deferred request into an active one
1207  */
1208 static int svc_deferred_recv(struct svc_rqst *rqstp)
1209 {
1210 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1211 
1212 	/* setup iov_base past transport header */
1213 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1214 	/* The iov_len does not include the transport header bytes */
1215 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1216 	rqstp->rq_arg.page_len = 0;
1217 	/* The rq_arg.len includes the transport header bytes */
1218 	rqstp->rq_arg.len     = dr->argslen<<2;
1219 	rqstp->rq_prot        = dr->prot;
1220 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1221 	rqstp->rq_addrlen     = dr->addrlen;
1222 	/* Save off transport header len in case we get deferred again */
1223 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1224 	rqstp->rq_daddr       = dr->daddr;
1225 	rqstp->rq_respages    = rqstp->rq_pages;
1226 	return (dr->argslen<<2) - dr->xprt_hlen;
1227 }
1228 
1229 
1230 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1231 {
1232 	struct svc_deferred_req *dr = NULL;
1233 
1234 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1235 		return NULL;
1236 	spin_lock(&xprt->xpt_lock);
1237 	if (!list_empty(&xprt->xpt_deferred)) {
1238 		dr = list_entry(xprt->xpt_deferred.next,
1239 				struct svc_deferred_req,
1240 				handle.recent);
1241 		list_del_init(&dr->handle.recent);
1242 		trace_svc_revisit_deferred(dr);
1243 	} else
1244 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1245 	spin_unlock(&xprt->xpt_lock);
1246 	return dr;
1247 }
1248 
1249 /**
1250  * svc_find_xprt - find an RPC transport instance
1251  * @serv: pointer to svc_serv to search
1252  * @xcl_name: C string containing transport's class name
1253  * @net: owner net pointer
1254  * @af: Address family of transport's local address
1255  * @port: transport's IP port number
1256  *
1257  * Return the transport instance pointer for the endpoint accepting
1258  * connections/peer traffic from the specified transport class,
1259  * address family and port.
1260  *
1261  * Specifying 0 for the address family or port is effectively a
1262  * wild-card, and will result in matching the first transport in the
1263  * service's list that has a matching class name.
1264  */
1265 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1266 			       struct net *net, const sa_family_t af,
1267 			       const unsigned short port)
1268 {
1269 	struct svc_xprt *xprt;
1270 	struct svc_xprt *found = NULL;
1271 
1272 	/* Sanity check the args */
1273 	if (serv == NULL || xcl_name == NULL)
1274 		return found;
1275 
1276 	spin_lock_bh(&serv->sv_lock);
1277 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1278 		if (xprt->xpt_net != net)
1279 			continue;
1280 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1281 			continue;
1282 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1283 			continue;
1284 		if (port != 0 && port != svc_xprt_local_port(xprt))
1285 			continue;
1286 		found = xprt;
1287 		svc_xprt_get(xprt);
1288 		break;
1289 	}
1290 	spin_unlock_bh(&serv->sv_lock);
1291 	return found;
1292 }
1293 EXPORT_SYMBOL_GPL(svc_find_xprt);
1294 
1295 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1296 			     char *pos, int remaining)
1297 {
1298 	int len;
1299 
1300 	len = snprintf(pos, remaining, "%s %u\n",
1301 			xprt->xpt_class->xcl_name,
1302 			svc_xprt_local_port(xprt));
1303 	if (len >= remaining)
1304 		return -ENAMETOOLONG;
1305 	return len;
1306 }
1307 
1308 /**
1309  * svc_xprt_names - format a buffer with a list of transport names
1310  * @serv: pointer to an RPC service
1311  * @buf: pointer to a buffer to be filled in
1312  * @buflen: length of buffer to be filled in
1313  *
1314  * Fills in @buf with a string containing a list of transport names,
1315  * each name terminated with '\n'.
1316  *
1317  * Returns positive length of the filled-in string on success; otherwise
1318  * a negative errno value is returned if an error occurs.
1319  */
1320 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1321 {
1322 	struct svc_xprt *xprt;
1323 	int len, totlen;
1324 	char *pos;
1325 
1326 	/* Sanity check args */
1327 	if (!serv)
1328 		return 0;
1329 
1330 	spin_lock_bh(&serv->sv_lock);
1331 
1332 	pos = buf;
1333 	totlen = 0;
1334 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1335 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1336 		if (len < 0) {
1337 			*buf = '\0';
1338 			totlen = len;
1339 		}
1340 		if (len <= 0)
1341 			break;
1342 
1343 		pos += len;
1344 		totlen += len;
1345 	}
1346 
1347 	spin_unlock_bh(&serv->sv_lock);
1348 	return totlen;
1349 }
1350 EXPORT_SYMBOL_GPL(svc_xprt_names);
1351 
1352 
1353 /*----------------------------------------------------------------------------*/
1354 
1355 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1356 {
1357 	unsigned int pidx = (unsigned int)*pos;
1358 	struct svc_serv *serv = m->private;
1359 
1360 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1361 
1362 	if (!pidx)
1363 		return SEQ_START_TOKEN;
1364 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1365 }
1366 
1367 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1368 {
1369 	struct svc_pool *pool = p;
1370 	struct svc_serv *serv = m->private;
1371 
1372 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1373 
1374 	if (p == SEQ_START_TOKEN) {
1375 		pool = &serv->sv_pools[0];
1376 	} else {
1377 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1378 		if (pidx < serv->sv_nrpools-1)
1379 			pool = &serv->sv_pools[pidx+1];
1380 		else
1381 			pool = NULL;
1382 	}
1383 	++*pos;
1384 	return pool;
1385 }
1386 
1387 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1388 {
1389 }
1390 
1391 static int svc_pool_stats_show(struct seq_file *m, void *p)
1392 {
1393 	struct svc_pool *pool = p;
1394 
1395 	if (p == SEQ_START_TOKEN) {
1396 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1397 		return 0;
1398 	}
1399 
1400 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1401 		pool->sp_id,
1402 		(unsigned long)atomic_long_read(&pool->sp_stats.packets),
1403 		pool->sp_stats.sockets_queued,
1404 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1405 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1406 
1407 	return 0;
1408 }
1409 
1410 static const struct seq_operations svc_pool_stats_seq_ops = {
1411 	.start	= svc_pool_stats_start,
1412 	.next	= svc_pool_stats_next,
1413 	.stop	= svc_pool_stats_stop,
1414 	.show	= svc_pool_stats_show,
1415 };
1416 
1417 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1418 {
1419 	int err;
1420 
1421 	err = seq_open(file, &svc_pool_stats_seq_ops);
1422 	if (!err)
1423 		((struct seq_file *) file->private_data)->private = serv;
1424 	return err;
1425 }
1426 EXPORT_SYMBOL(svc_pool_stats_open);
1427 
1428 /*----------------------------------------------------------------------------*/
1429