xref: /linux/net/sunrpc/svc_xprt.c (revision dfc349402de8e95f6a42e8341e9ea193b718eee3)
1 /*
2  * linux/net/sunrpc/svc_xprt.c
3  *
4  * Author: Tom Tucker <tom@opengridcomputing.com>
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/smp_lock.h>
9 #include <linux/errno.h>
10 #include <linux/freezer.h>
11 #include <linux/kthread.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16 
17 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
18 
19 #define SVC_MAX_WAKING 5
20 
21 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
22 static int svc_deferred_recv(struct svc_rqst *rqstp);
23 static struct cache_deferred_req *svc_defer(struct cache_req *req);
24 static void svc_age_temp_xprts(unsigned long closure);
25 
26 /* apparently the "standard" is that clients close
27  * idle connections after 5 minutes, servers after
28  * 6 minutes
29  *   http://www.connectathon.org/talks96/nfstcp.pdf
30  */
31 static int svc_conn_age_period = 6*60;
32 
33 /* List of registered transport classes */
34 static DEFINE_SPINLOCK(svc_xprt_class_lock);
35 static LIST_HEAD(svc_xprt_class_list);
36 
37 /* SMP locking strategy:
38  *
39  *	svc_pool->sp_lock protects most of the fields of that pool.
40  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
41  *	when both need to be taken (rare), svc_serv->sv_lock is first.
42  *	BKL protects svc_serv->sv_nrthread.
43  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
44  *             and the ->sk_info_authunix cache.
45  *
46  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
47  *	enqueued multiply. During normal transport processing this bit
48  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
49  *	Providers should not manipulate this bit directly.
50  *
51  *	Some flags can be set to certain values at any time
52  *	providing that certain rules are followed:
53  *
54  *	XPT_CONN, XPT_DATA:
55  *		- Can be set or cleared at any time.
56  *		- After a set, svc_xprt_enqueue must be called to enqueue
57  *		  the transport for processing.
58  *		- After a clear, the transport must be read/accepted.
59  *		  If this succeeds, it must be set again.
60  *	XPT_CLOSE:
61  *		- Can set at any time. It is never cleared.
62  *      XPT_DEAD:
63  *		- Can only be set while XPT_BUSY is held which ensures
64  *		  that no other thread will be using the transport or will
65  *		  try to set XPT_DEAD.
66  */
67 
68 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
69 {
70 	struct svc_xprt_class *cl;
71 	int res = -EEXIST;
72 
73 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
74 
75 	INIT_LIST_HEAD(&xcl->xcl_list);
76 	spin_lock(&svc_xprt_class_lock);
77 	/* Make sure there isn't already a class with the same name */
78 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
79 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
80 			goto out;
81 	}
82 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
83 	res = 0;
84 out:
85 	spin_unlock(&svc_xprt_class_lock);
86 	return res;
87 }
88 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
89 
90 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
91 {
92 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
93 	spin_lock(&svc_xprt_class_lock);
94 	list_del_init(&xcl->xcl_list);
95 	spin_unlock(&svc_xprt_class_lock);
96 }
97 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
98 
99 /*
100  * Format the transport list for printing
101  */
102 int svc_print_xprts(char *buf, int maxlen)
103 {
104 	struct list_head *le;
105 	char tmpstr[80];
106 	int len = 0;
107 	buf[0] = '\0';
108 
109 	spin_lock(&svc_xprt_class_lock);
110 	list_for_each(le, &svc_xprt_class_list) {
111 		int slen;
112 		struct svc_xprt_class *xcl =
113 			list_entry(le, struct svc_xprt_class, xcl_list);
114 
115 		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
116 		slen = strlen(tmpstr);
117 		if (len + slen > maxlen)
118 			break;
119 		len += slen;
120 		strcat(buf, tmpstr);
121 	}
122 	spin_unlock(&svc_xprt_class_lock);
123 
124 	return len;
125 }
126 
127 static void svc_xprt_free(struct kref *kref)
128 {
129 	struct svc_xprt *xprt =
130 		container_of(kref, struct svc_xprt, xpt_ref);
131 	struct module *owner = xprt->xpt_class->xcl_owner;
132 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)
133 	    && xprt->xpt_auth_cache != NULL)
134 		svcauth_unix_info_release(xprt->xpt_auth_cache);
135 	xprt->xpt_ops->xpo_free(xprt);
136 	module_put(owner);
137 }
138 
139 void svc_xprt_put(struct svc_xprt *xprt)
140 {
141 	kref_put(&xprt->xpt_ref, svc_xprt_free);
142 }
143 EXPORT_SYMBOL_GPL(svc_xprt_put);
144 
145 /*
146  * Called by transport drivers to initialize the transport independent
147  * portion of the transport instance.
148  */
149 void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt,
150 		   struct svc_serv *serv)
151 {
152 	memset(xprt, 0, sizeof(*xprt));
153 	xprt->xpt_class = xcl;
154 	xprt->xpt_ops = xcl->xcl_ops;
155 	kref_init(&xprt->xpt_ref);
156 	xprt->xpt_server = serv;
157 	INIT_LIST_HEAD(&xprt->xpt_list);
158 	INIT_LIST_HEAD(&xprt->xpt_ready);
159 	INIT_LIST_HEAD(&xprt->xpt_deferred);
160 	mutex_init(&xprt->xpt_mutex);
161 	spin_lock_init(&xprt->xpt_lock);
162 	set_bit(XPT_BUSY, &xprt->xpt_flags);
163 	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
164 }
165 EXPORT_SYMBOL_GPL(svc_xprt_init);
166 
167 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
168 					 struct svc_serv *serv,
169 					 const int family,
170 					 const unsigned short port,
171 					 int flags)
172 {
173 	struct sockaddr_in sin = {
174 		.sin_family		= AF_INET,
175 		.sin_addr.s_addr	= htonl(INADDR_ANY),
176 		.sin_port		= htons(port),
177 	};
178 	struct sockaddr_in6 sin6 = {
179 		.sin6_family		= AF_INET6,
180 		.sin6_addr		= IN6ADDR_ANY_INIT,
181 		.sin6_port		= htons(port),
182 	};
183 	struct sockaddr *sap;
184 	size_t len;
185 
186 	switch (family) {
187 	case PF_INET:
188 		sap = (struct sockaddr *)&sin;
189 		len = sizeof(sin);
190 		break;
191 	case PF_INET6:
192 		sap = (struct sockaddr *)&sin6;
193 		len = sizeof(sin6);
194 		break;
195 	default:
196 		return ERR_PTR(-EAFNOSUPPORT);
197 	}
198 
199 	return xcl->xcl_ops->xpo_create(serv, sap, len, flags);
200 }
201 
202 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
203 		    const int family, const unsigned short port,
204 		    int flags)
205 {
206 	struct svc_xprt_class *xcl;
207 
208 	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
209 	spin_lock(&svc_xprt_class_lock);
210 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
211 		struct svc_xprt *newxprt;
212 
213 		if (strcmp(xprt_name, xcl->xcl_name))
214 			continue;
215 
216 		if (!try_module_get(xcl->xcl_owner))
217 			goto err;
218 
219 		spin_unlock(&svc_xprt_class_lock);
220 		newxprt = __svc_xpo_create(xcl, serv, family, port, flags);
221 		if (IS_ERR(newxprt)) {
222 			module_put(xcl->xcl_owner);
223 			return PTR_ERR(newxprt);
224 		}
225 
226 		clear_bit(XPT_TEMP, &newxprt->xpt_flags);
227 		spin_lock_bh(&serv->sv_lock);
228 		list_add(&newxprt->xpt_list, &serv->sv_permsocks);
229 		spin_unlock_bh(&serv->sv_lock);
230 		clear_bit(XPT_BUSY, &newxprt->xpt_flags);
231 		return svc_xprt_local_port(newxprt);
232 	}
233  err:
234 	spin_unlock(&svc_xprt_class_lock);
235 	dprintk("svc: transport %s not found\n", xprt_name);
236 	return -ENOENT;
237 }
238 EXPORT_SYMBOL_GPL(svc_create_xprt);
239 
240 /*
241  * Copy the local and remote xprt addresses to the rqstp structure
242  */
243 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
244 {
245 	struct sockaddr *sin;
246 
247 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
248 	rqstp->rq_addrlen = xprt->xpt_remotelen;
249 
250 	/*
251 	 * Destination address in request is needed for binding the
252 	 * source address in RPC replies/callbacks later.
253 	 */
254 	sin = (struct sockaddr *)&xprt->xpt_local;
255 	switch (sin->sa_family) {
256 	case AF_INET:
257 		rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
258 		break;
259 	case AF_INET6:
260 		rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
261 		break;
262 	}
263 }
264 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
265 
266 /**
267  * svc_print_addr - Format rq_addr field for printing
268  * @rqstp: svc_rqst struct containing address to print
269  * @buf: target buffer for formatted address
270  * @len: length of target buffer
271  *
272  */
273 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
274 {
275 	return __svc_print_addr(svc_addr(rqstp), buf, len);
276 }
277 EXPORT_SYMBOL_GPL(svc_print_addr);
278 
279 /*
280  * Queue up an idle server thread.  Must have pool->sp_lock held.
281  * Note: this is really a stack rather than a queue, so that we only
282  * use as many different threads as we need, and the rest don't pollute
283  * the cache.
284  */
285 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
286 {
287 	list_add(&rqstp->rq_list, &pool->sp_threads);
288 }
289 
290 /*
291  * Dequeue an nfsd thread.  Must have pool->sp_lock held.
292  */
293 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
294 {
295 	list_del(&rqstp->rq_list);
296 }
297 
298 /*
299  * Queue up a transport with data pending. If there are idle nfsd
300  * processes, wake 'em up.
301  *
302  */
303 void svc_xprt_enqueue(struct svc_xprt *xprt)
304 {
305 	struct svc_serv	*serv = xprt->xpt_server;
306 	struct svc_pool *pool;
307 	struct svc_rqst	*rqstp;
308 	int cpu;
309 	int thread_avail;
310 
311 	if (!(xprt->xpt_flags &
312 	      ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
313 		return;
314 
315 	cpu = get_cpu();
316 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
317 	put_cpu();
318 
319 	spin_lock_bh(&pool->sp_lock);
320 
321 	if (test_bit(XPT_DEAD, &xprt->xpt_flags)) {
322 		/* Don't enqueue dead transports */
323 		dprintk("svc: transport %p is dead, not enqueued\n", xprt);
324 		goto out_unlock;
325 	}
326 
327 	pool->sp_stats.packets++;
328 
329 	/* Mark transport as busy. It will remain in this state until
330 	 * the provider calls svc_xprt_received. We update XPT_BUSY
331 	 * atomically because it also guards against trying to enqueue
332 	 * the transport twice.
333 	 */
334 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
335 		/* Don't enqueue transport while already enqueued */
336 		dprintk("svc: transport %p busy, not enqueued\n", xprt);
337 		goto out_unlock;
338 	}
339 	BUG_ON(xprt->xpt_pool != NULL);
340 	xprt->xpt_pool = pool;
341 
342 	/* Handle pending connection */
343 	if (test_bit(XPT_CONN, &xprt->xpt_flags))
344 		goto process;
345 
346 	/* Handle close in-progress */
347 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
348 		goto process;
349 
350 	/* Check if we have space to reply to a request */
351 	if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
352 		/* Don't enqueue while not enough space for reply */
353 		dprintk("svc: no write space, transport %p  not enqueued\n",
354 			xprt);
355 		xprt->xpt_pool = NULL;
356 		clear_bit(XPT_BUSY, &xprt->xpt_flags);
357 		goto out_unlock;
358 	}
359 
360  process:
361 	/* Work out whether threads are available */
362 	thread_avail = !list_empty(&pool->sp_threads);	/* threads are asleep */
363 	if (pool->sp_nwaking >= SVC_MAX_WAKING) {
364 		/* too many threads are runnable and trying to wake up */
365 		thread_avail = 0;
366 		pool->sp_stats.overloads_avoided++;
367 	}
368 
369 	if (thread_avail) {
370 		rqstp = list_entry(pool->sp_threads.next,
371 				   struct svc_rqst,
372 				   rq_list);
373 		dprintk("svc: transport %p served by daemon %p\n",
374 			xprt, rqstp);
375 		svc_thread_dequeue(pool, rqstp);
376 		if (rqstp->rq_xprt)
377 			printk(KERN_ERR
378 				"svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
379 				rqstp, rqstp->rq_xprt);
380 		rqstp->rq_xprt = xprt;
381 		svc_xprt_get(xprt);
382 		rqstp->rq_reserved = serv->sv_max_mesg;
383 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
384 		rqstp->rq_waking = 1;
385 		pool->sp_nwaking++;
386 		pool->sp_stats.threads_woken++;
387 		BUG_ON(xprt->xpt_pool != pool);
388 		wake_up(&rqstp->rq_wait);
389 	} else {
390 		dprintk("svc: transport %p put into queue\n", xprt);
391 		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
392 		pool->sp_stats.sockets_queued++;
393 		BUG_ON(xprt->xpt_pool != pool);
394 	}
395 
396 out_unlock:
397 	spin_unlock_bh(&pool->sp_lock);
398 }
399 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
400 
401 /*
402  * Dequeue the first transport.  Must be called with the pool->sp_lock held.
403  */
404 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
405 {
406 	struct svc_xprt	*xprt;
407 
408 	if (list_empty(&pool->sp_sockets))
409 		return NULL;
410 
411 	xprt = list_entry(pool->sp_sockets.next,
412 			  struct svc_xprt, xpt_ready);
413 	list_del_init(&xprt->xpt_ready);
414 
415 	dprintk("svc: transport %p dequeued, inuse=%d\n",
416 		xprt, atomic_read(&xprt->xpt_ref.refcount));
417 
418 	return xprt;
419 }
420 
421 /*
422  * svc_xprt_received conditionally queues the transport for processing
423  * by another thread. The caller must hold the XPT_BUSY bit and must
424  * not thereafter touch transport data.
425  *
426  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
427  * insufficient) data.
428  */
429 void svc_xprt_received(struct svc_xprt *xprt)
430 {
431 	BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
432 	xprt->xpt_pool = NULL;
433 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
434 	svc_xprt_enqueue(xprt);
435 }
436 EXPORT_SYMBOL_GPL(svc_xprt_received);
437 
438 /**
439  * svc_reserve - change the space reserved for the reply to a request.
440  * @rqstp:  The request in question
441  * @space: new max space to reserve
442  *
443  * Each request reserves some space on the output queue of the transport
444  * to make sure the reply fits.  This function reduces that reserved
445  * space to be the amount of space used already, plus @space.
446  *
447  */
448 void svc_reserve(struct svc_rqst *rqstp, int space)
449 {
450 	space += rqstp->rq_res.head[0].iov_len;
451 
452 	if (space < rqstp->rq_reserved) {
453 		struct svc_xprt *xprt = rqstp->rq_xprt;
454 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
455 		rqstp->rq_reserved = space;
456 
457 		svc_xprt_enqueue(xprt);
458 	}
459 }
460 EXPORT_SYMBOL_GPL(svc_reserve);
461 
462 static void svc_xprt_release(struct svc_rqst *rqstp)
463 {
464 	struct svc_xprt	*xprt = rqstp->rq_xprt;
465 
466 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
467 
468 	kfree(rqstp->rq_deferred);
469 	rqstp->rq_deferred = NULL;
470 
471 	svc_free_res_pages(rqstp);
472 	rqstp->rq_res.page_len = 0;
473 	rqstp->rq_res.page_base = 0;
474 
475 	/* Reset response buffer and release
476 	 * the reservation.
477 	 * But first, check that enough space was reserved
478 	 * for the reply, otherwise we have a bug!
479 	 */
480 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
481 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
482 		       rqstp->rq_reserved,
483 		       rqstp->rq_res.len);
484 
485 	rqstp->rq_res.head[0].iov_len = 0;
486 	svc_reserve(rqstp, 0);
487 	rqstp->rq_xprt = NULL;
488 
489 	svc_xprt_put(xprt);
490 }
491 
492 /*
493  * External function to wake up a server waiting for data
494  * This really only makes sense for services like lockd
495  * which have exactly one thread anyway.
496  */
497 void svc_wake_up(struct svc_serv *serv)
498 {
499 	struct svc_rqst	*rqstp;
500 	unsigned int i;
501 	struct svc_pool *pool;
502 
503 	for (i = 0; i < serv->sv_nrpools; i++) {
504 		pool = &serv->sv_pools[i];
505 
506 		spin_lock_bh(&pool->sp_lock);
507 		if (!list_empty(&pool->sp_threads)) {
508 			rqstp = list_entry(pool->sp_threads.next,
509 					   struct svc_rqst,
510 					   rq_list);
511 			dprintk("svc: daemon %p woken up.\n", rqstp);
512 			/*
513 			svc_thread_dequeue(pool, rqstp);
514 			rqstp->rq_xprt = NULL;
515 			 */
516 			wake_up(&rqstp->rq_wait);
517 		}
518 		spin_unlock_bh(&pool->sp_lock);
519 	}
520 }
521 EXPORT_SYMBOL_GPL(svc_wake_up);
522 
523 int svc_port_is_privileged(struct sockaddr *sin)
524 {
525 	switch (sin->sa_family) {
526 	case AF_INET:
527 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
528 			< PROT_SOCK;
529 	case AF_INET6:
530 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
531 			< PROT_SOCK;
532 	default:
533 		return 0;
534 	}
535 }
536 
537 /*
538  * Make sure that we don't have too many active connections. If we have,
539  * something must be dropped. It's not clear what will happen if we allow
540  * "too many" connections, but when dealing with network-facing software,
541  * we have to code defensively. Here we do that by imposing hard limits.
542  *
543  * There's no point in trying to do random drop here for DoS
544  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
545  * attacker can easily beat that.
546  *
547  * The only somewhat efficient mechanism would be if drop old
548  * connections from the same IP first. But right now we don't even
549  * record the client IP in svc_sock.
550  *
551  * single-threaded services that expect a lot of clients will probably
552  * need to set sv_maxconn to override the default value which is based
553  * on the number of threads
554  */
555 static void svc_check_conn_limits(struct svc_serv *serv)
556 {
557 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
558 				(serv->sv_nrthreads+3) * 20;
559 
560 	if (serv->sv_tmpcnt > limit) {
561 		struct svc_xprt *xprt = NULL;
562 		spin_lock_bh(&serv->sv_lock);
563 		if (!list_empty(&serv->sv_tempsocks)) {
564 			if (net_ratelimit()) {
565 				/* Try to help the admin */
566 				printk(KERN_NOTICE "%s: too many open  "
567 				       "connections, consider increasing %s\n",
568 				       serv->sv_name, serv->sv_maxconn ?
569 				       "the max number of connections." :
570 				       "the number of threads.");
571 			}
572 			/*
573 			 * Always select the oldest connection. It's not fair,
574 			 * but so is life
575 			 */
576 			xprt = list_entry(serv->sv_tempsocks.prev,
577 					  struct svc_xprt,
578 					  xpt_list);
579 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
580 			svc_xprt_get(xprt);
581 		}
582 		spin_unlock_bh(&serv->sv_lock);
583 
584 		if (xprt) {
585 			svc_xprt_enqueue(xprt);
586 			svc_xprt_put(xprt);
587 		}
588 	}
589 }
590 
591 /*
592  * Receive the next request on any transport.  This code is carefully
593  * organised not to touch any cachelines in the shared svc_serv
594  * structure, only cachelines in the local svc_pool.
595  */
596 int svc_recv(struct svc_rqst *rqstp, long timeout)
597 {
598 	struct svc_xprt		*xprt = NULL;
599 	struct svc_serv		*serv = rqstp->rq_server;
600 	struct svc_pool		*pool = rqstp->rq_pool;
601 	int			len, i;
602 	int			pages;
603 	struct xdr_buf		*arg;
604 	DECLARE_WAITQUEUE(wait, current);
605 	long			time_left;
606 
607 	dprintk("svc: server %p waiting for data (to = %ld)\n",
608 		rqstp, timeout);
609 
610 	if (rqstp->rq_xprt)
611 		printk(KERN_ERR
612 			"svc_recv: service %p, transport not NULL!\n",
613 			 rqstp);
614 	if (waitqueue_active(&rqstp->rq_wait))
615 		printk(KERN_ERR
616 			"svc_recv: service %p, wait queue active!\n",
617 			 rqstp);
618 
619 	/* now allocate needed pages.  If we get a failure, sleep briefly */
620 	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
621 	for (i = 0; i < pages ; i++)
622 		while (rqstp->rq_pages[i] == NULL) {
623 			struct page *p = alloc_page(GFP_KERNEL);
624 			if (!p) {
625 				set_current_state(TASK_INTERRUPTIBLE);
626 				if (signalled() || kthread_should_stop()) {
627 					set_current_state(TASK_RUNNING);
628 					return -EINTR;
629 				}
630 				schedule_timeout(msecs_to_jiffies(500));
631 			}
632 			rqstp->rq_pages[i] = p;
633 		}
634 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
635 	BUG_ON(pages >= RPCSVC_MAXPAGES);
636 
637 	/* Make arg->head point to first page and arg->pages point to rest */
638 	arg = &rqstp->rq_arg;
639 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
640 	arg->head[0].iov_len = PAGE_SIZE;
641 	arg->pages = rqstp->rq_pages + 1;
642 	arg->page_base = 0;
643 	/* save at least one page for response */
644 	arg->page_len = (pages-2)*PAGE_SIZE;
645 	arg->len = (pages-1)*PAGE_SIZE;
646 	arg->tail[0].iov_len = 0;
647 
648 	try_to_freeze();
649 	cond_resched();
650 	if (signalled() || kthread_should_stop())
651 		return -EINTR;
652 
653 	spin_lock_bh(&pool->sp_lock);
654 	if (rqstp->rq_waking) {
655 		rqstp->rq_waking = 0;
656 		pool->sp_nwaking--;
657 		BUG_ON(pool->sp_nwaking < 0);
658 	}
659 	xprt = svc_xprt_dequeue(pool);
660 	if (xprt) {
661 		rqstp->rq_xprt = xprt;
662 		svc_xprt_get(xprt);
663 		rqstp->rq_reserved = serv->sv_max_mesg;
664 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
665 	} else {
666 		/* No data pending. Go to sleep */
667 		svc_thread_enqueue(pool, rqstp);
668 
669 		/*
670 		 * We have to be able to interrupt this wait
671 		 * to bring down the daemons ...
672 		 */
673 		set_current_state(TASK_INTERRUPTIBLE);
674 
675 		/*
676 		 * checking kthread_should_stop() here allows us to avoid
677 		 * locking and signalling when stopping kthreads that call
678 		 * svc_recv. If the thread has already been woken up, then
679 		 * we can exit here without sleeping. If not, then it
680 		 * it'll be woken up quickly during the schedule_timeout
681 		 */
682 		if (kthread_should_stop()) {
683 			set_current_state(TASK_RUNNING);
684 			spin_unlock_bh(&pool->sp_lock);
685 			return -EINTR;
686 		}
687 
688 		add_wait_queue(&rqstp->rq_wait, &wait);
689 		spin_unlock_bh(&pool->sp_lock);
690 
691 		time_left = schedule_timeout(timeout);
692 
693 		try_to_freeze();
694 
695 		spin_lock_bh(&pool->sp_lock);
696 		remove_wait_queue(&rqstp->rq_wait, &wait);
697 		if (!time_left)
698 			pool->sp_stats.threads_timedout++;
699 
700 		xprt = rqstp->rq_xprt;
701 		if (!xprt) {
702 			svc_thread_dequeue(pool, rqstp);
703 			spin_unlock_bh(&pool->sp_lock);
704 			dprintk("svc: server %p, no data yet\n", rqstp);
705 			if (signalled() || kthread_should_stop())
706 				return -EINTR;
707 			else
708 				return -EAGAIN;
709 		}
710 	}
711 	spin_unlock_bh(&pool->sp_lock);
712 
713 	len = 0;
714 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
715 		struct svc_xprt *newxpt;
716 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
717 		if (newxpt) {
718 			/*
719 			 * We know this module_get will succeed because the
720 			 * listener holds a reference too
721 			 */
722 			__module_get(newxpt->xpt_class->xcl_owner);
723 			svc_check_conn_limits(xprt->xpt_server);
724 			spin_lock_bh(&serv->sv_lock);
725 			set_bit(XPT_TEMP, &newxpt->xpt_flags);
726 			list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
727 			serv->sv_tmpcnt++;
728 			if (serv->sv_temptimer.function == NULL) {
729 				/* setup timer to age temp transports */
730 				setup_timer(&serv->sv_temptimer,
731 					    svc_age_temp_xprts,
732 					    (unsigned long)serv);
733 				mod_timer(&serv->sv_temptimer,
734 					  jiffies + svc_conn_age_period * HZ);
735 			}
736 			spin_unlock_bh(&serv->sv_lock);
737 			svc_xprt_received(newxpt);
738 		}
739 		svc_xprt_received(xprt);
740 	} else if (!test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
741 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
742 			rqstp, pool->sp_id, xprt,
743 			atomic_read(&xprt->xpt_ref.refcount));
744 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
745 		if (rqstp->rq_deferred) {
746 			svc_xprt_received(xprt);
747 			len = svc_deferred_recv(rqstp);
748 		} else
749 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
750 		dprintk("svc: got len=%d\n", len);
751 	}
752 
753 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
754 		dprintk("svc_recv: found XPT_CLOSE\n");
755 		svc_delete_xprt(xprt);
756 	}
757 
758 	/* No data, incomplete (TCP) read, or accept() */
759 	if (len == 0 || len == -EAGAIN) {
760 		rqstp->rq_res.len = 0;
761 		svc_xprt_release(rqstp);
762 		return -EAGAIN;
763 	}
764 	clear_bit(XPT_OLD, &xprt->xpt_flags);
765 
766 	rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
767 	rqstp->rq_chandle.defer = svc_defer;
768 
769 	if (serv->sv_stats)
770 		serv->sv_stats->netcnt++;
771 	return len;
772 }
773 EXPORT_SYMBOL_GPL(svc_recv);
774 
775 /*
776  * Drop request
777  */
778 void svc_drop(struct svc_rqst *rqstp)
779 {
780 	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
781 	svc_xprt_release(rqstp);
782 }
783 EXPORT_SYMBOL_GPL(svc_drop);
784 
785 /*
786  * Return reply to client.
787  */
788 int svc_send(struct svc_rqst *rqstp)
789 {
790 	struct svc_xprt	*xprt;
791 	int		len;
792 	struct xdr_buf	*xb;
793 
794 	xprt = rqstp->rq_xprt;
795 	if (!xprt)
796 		return -EFAULT;
797 
798 	/* release the receive skb before sending the reply */
799 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
800 
801 	/* calculate over-all length */
802 	xb = &rqstp->rq_res;
803 	xb->len = xb->head[0].iov_len +
804 		xb->page_len +
805 		xb->tail[0].iov_len;
806 
807 	/* Grab mutex to serialize outgoing data. */
808 	mutex_lock(&xprt->xpt_mutex);
809 	if (test_bit(XPT_DEAD, &xprt->xpt_flags))
810 		len = -ENOTCONN;
811 	else
812 		len = xprt->xpt_ops->xpo_sendto(rqstp);
813 	mutex_unlock(&xprt->xpt_mutex);
814 	rpc_wake_up(&xprt->xpt_bc_pending);
815 	svc_xprt_release(rqstp);
816 
817 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
818 		return 0;
819 	return len;
820 }
821 
822 /*
823  * Timer function to close old temporary transports, using
824  * a mark-and-sweep algorithm.
825  */
826 static void svc_age_temp_xprts(unsigned long closure)
827 {
828 	struct svc_serv *serv = (struct svc_serv *)closure;
829 	struct svc_xprt *xprt;
830 	struct list_head *le, *next;
831 	LIST_HEAD(to_be_aged);
832 
833 	dprintk("svc_age_temp_xprts\n");
834 
835 	if (!spin_trylock_bh(&serv->sv_lock)) {
836 		/* busy, try again 1 sec later */
837 		dprintk("svc_age_temp_xprts: busy\n");
838 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
839 		return;
840 	}
841 
842 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
843 		xprt = list_entry(le, struct svc_xprt, xpt_list);
844 
845 		/* First time through, just mark it OLD. Second time
846 		 * through, close it. */
847 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
848 			continue;
849 		if (atomic_read(&xprt->xpt_ref.refcount) > 1
850 		    || test_bit(XPT_BUSY, &xprt->xpt_flags))
851 			continue;
852 		svc_xprt_get(xprt);
853 		list_move(le, &to_be_aged);
854 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
855 		set_bit(XPT_DETACHED, &xprt->xpt_flags);
856 	}
857 	spin_unlock_bh(&serv->sv_lock);
858 
859 	while (!list_empty(&to_be_aged)) {
860 		le = to_be_aged.next;
861 		/* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
862 		list_del_init(le);
863 		xprt = list_entry(le, struct svc_xprt, xpt_list);
864 
865 		dprintk("queuing xprt %p for closing\n", xprt);
866 
867 		/* a thread will dequeue and close it soon */
868 		svc_xprt_enqueue(xprt);
869 		svc_xprt_put(xprt);
870 	}
871 
872 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
873 }
874 
875 /*
876  * Remove a dead transport
877  */
878 void svc_delete_xprt(struct svc_xprt *xprt)
879 {
880 	struct svc_serv	*serv = xprt->xpt_server;
881 	struct svc_deferred_req *dr;
882 
883 	/* Only do this once */
884 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
885 		return;
886 
887 	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
888 	xprt->xpt_ops->xpo_detach(xprt);
889 
890 	spin_lock_bh(&serv->sv_lock);
891 	if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
892 		list_del_init(&xprt->xpt_list);
893 	/*
894 	 * We used to delete the transport from whichever list
895 	 * it's sk_xprt.xpt_ready node was on, but we don't actually
896 	 * need to.  This is because the only time we're called
897 	 * while still attached to a queue, the queue itself
898 	 * is about to be destroyed (in svc_destroy).
899 	 */
900 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
901 		serv->sv_tmpcnt--;
902 
903 	for (dr = svc_deferred_dequeue(xprt); dr;
904 	     dr = svc_deferred_dequeue(xprt)) {
905 		svc_xprt_put(xprt);
906 		kfree(dr);
907 	}
908 
909 	svc_xprt_put(xprt);
910 	spin_unlock_bh(&serv->sv_lock);
911 }
912 
913 void svc_close_xprt(struct svc_xprt *xprt)
914 {
915 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
916 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
917 		/* someone else will have to effect the close */
918 		return;
919 
920 	svc_xprt_get(xprt);
921 	svc_delete_xprt(xprt);
922 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
923 	svc_xprt_put(xprt);
924 }
925 EXPORT_SYMBOL_GPL(svc_close_xprt);
926 
927 void svc_close_all(struct list_head *xprt_list)
928 {
929 	struct svc_xprt *xprt;
930 	struct svc_xprt *tmp;
931 
932 	list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
933 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
934 		if (test_bit(XPT_BUSY, &xprt->xpt_flags)) {
935 			/* Waiting to be processed, but no threads left,
936 			 * So just remove it from the waiting list
937 			 */
938 			list_del_init(&xprt->xpt_ready);
939 			clear_bit(XPT_BUSY, &xprt->xpt_flags);
940 		}
941 		svc_close_xprt(xprt);
942 	}
943 }
944 
945 /*
946  * Handle defer and revisit of requests
947  */
948 
949 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
950 {
951 	struct svc_deferred_req *dr =
952 		container_of(dreq, struct svc_deferred_req, handle);
953 	struct svc_xprt *xprt = dr->xprt;
954 
955 	spin_lock(&xprt->xpt_lock);
956 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
957 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
958 		spin_unlock(&xprt->xpt_lock);
959 		dprintk("revisit canceled\n");
960 		svc_xprt_put(xprt);
961 		kfree(dr);
962 		return;
963 	}
964 	dprintk("revisit queued\n");
965 	dr->xprt = NULL;
966 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
967 	spin_unlock(&xprt->xpt_lock);
968 	svc_xprt_enqueue(xprt);
969 	svc_xprt_put(xprt);
970 }
971 
972 /*
973  * Save the request off for later processing. The request buffer looks
974  * like this:
975  *
976  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
977  *
978  * This code can only handle requests that consist of an xprt-header
979  * and rpc-header.
980  */
981 static struct cache_deferred_req *svc_defer(struct cache_req *req)
982 {
983 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
984 	struct svc_deferred_req *dr;
985 
986 	if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
987 		return NULL; /* if more than a page, give up FIXME */
988 	if (rqstp->rq_deferred) {
989 		dr = rqstp->rq_deferred;
990 		rqstp->rq_deferred = NULL;
991 	} else {
992 		size_t skip;
993 		size_t size;
994 		/* FIXME maybe discard if size too large */
995 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
996 		dr = kmalloc(size, GFP_KERNEL);
997 		if (dr == NULL)
998 			return NULL;
999 
1000 		dr->handle.owner = rqstp->rq_server;
1001 		dr->prot = rqstp->rq_prot;
1002 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1003 		dr->addrlen = rqstp->rq_addrlen;
1004 		dr->daddr = rqstp->rq_daddr;
1005 		dr->argslen = rqstp->rq_arg.len >> 2;
1006 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1007 
1008 		/* back up head to the start of the buffer and copy */
1009 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1010 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1011 		       dr->argslen << 2);
1012 	}
1013 	svc_xprt_get(rqstp->rq_xprt);
1014 	dr->xprt = rqstp->rq_xprt;
1015 
1016 	dr->handle.revisit = svc_revisit;
1017 	return &dr->handle;
1018 }
1019 
1020 /*
1021  * recv data from a deferred request into an active one
1022  */
1023 static int svc_deferred_recv(struct svc_rqst *rqstp)
1024 {
1025 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1026 
1027 	/* setup iov_base past transport header */
1028 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1029 	/* The iov_len does not include the transport header bytes */
1030 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1031 	rqstp->rq_arg.page_len = 0;
1032 	/* The rq_arg.len includes the transport header bytes */
1033 	rqstp->rq_arg.len     = dr->argslen<<2;
1034 	rqstp->rq_prot        = dr->prot;
1035 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1036 	rqstp->rq_addrlen     = dr->addrlen;
1037 	/* Save off transport header len in case we get deferred again */
1038 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1039 	rqstp->rq_daddr       = dr->daddr;
1040 	rqstp->rq_respages    = rqstp->rq_pages;
1041 	return (dr->argslen<<2) - dr->xprt_hlen;
1042 }
1043 
1044 
1045 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1046 {
1047 	struct svc_deferred_req *dr = NULL;
1048 
1049 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1050 		return NULL;
1051 	spin_lock(&xprt->xpt_lock);
1052 	clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1053 	if (!list_empty(&xprt->xpt_deferred)) {
1054 		dr = list_entry(xprt->xpt_deferred.next,
1055 				struct svc_deferred_req,
1056 				handle.recent);
1057 		list_del_init(&dr->handle.recent);
1058 		set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1059 	}
1060 	spin_unlock(&xprt->xpt_lock);
1061 	return dr;
1062 }
1063 
1064 /**
1065  * svc_find_xprt - find an RPC transport instance
1066  * @serv: pointer to svc_serv to search
1067  * @xcl_name: C string containing transport's class name
1068  * @af: Address family of transport's local address
1069  * @port: transport's IP port number
1070  *
1071  * Return the transport instance pointer for the endpoint accepting
1072  * connections/peer traffic from the specified transport class,
1073  * address family and port.
1074  *
1075  * Specifying 0 for the address family or port is effectively a
1076  * wild-card, and will result in matching the first transport in the
1077  * service's list that has a matching class name.
1078  */
1079 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1080 			       const sa_family_t af, const unsigned short port)
1081 {
1082 	struct svc_xprt *xprt;
1083 	struct svc_xprt *found = NULL;
1084 
1085 	/* Sanity check the args */
1086 	if (serv == NULL || xcl_name == NULL)
1087 		return found;
1088 
1089 	spin_lock_bh(&serv->sv_lock);
1090 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1091 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1092 			continue;
1093 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1094 			continue;
1095 		if (port != 0 && port != svc_xprt_local_port(xprt))
1096 			continue;
1097 		found = xprt;
1098 		svc_xprt_get(xprt);
1099 		break;
1100 	}
1101 	spin_unlock_bh(&serv->sv_lock);
1102 	return found;
1103 }
1104 EXPORT_SYMBOL_GPL(svc_find_xprt);
1105 
1106 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1107 			     char *pos, int remaining)
1108 {
1109 	int len;
1110 
1111 	len = snprintf(pos, remaining, "%s %u\n",
1112 			xprt->xpt_class->xcl_name,
1113 			svc_xprt_local_port(xprt));
1114 	if (len >= remaining)
1115 		return -ENAMETOOLONG;
1116 	return len;
1117 }
1118 
1119 /**
1120  * svc_xprt_names - format a buffer with a list of transport names
1121  * @serv: pointer to an RPC service
1122  * @buf: pointer to a buffer to be filled in
1123  * @buflen: length of buffer to be filled in
1124  *
1125  * Fills in @buf with a string containing a list of transport names,
1126  * each name terminated with '\n'.
1127  *
1128  * Returns positive length of the filled-in string on success; otherwise
1129  * a negative errno value is returned if an error occurs.
1130  */
1131 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1132 {
1133 	struct svc_xprt *xprt;
1134 	int len, totlen;
1135 	char *pos;
1136 
1137 	/* Sanity check args */
1138 	if (!serv)
1139 		return 0;
1140 
1141 	spin_lock_bh(&serv->sv_lock);
1142 
1143 	pos = buf;
1144 	totlen = 0;
1145 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1146 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1147 		if (len < 0) {
1148 			*buf = '\0';
1149 			totlen = len;
1150 		}
1151 		if (len <= 0)
1152 			break;
1153 
1154 		pos += len;
1155 		totlen += len;
1156 	}
1157 
1158 	spin_unlock_bh(&serv->sv_lock);
1159 	return totlen;
1160 }
1161 EXPORT_SYMBOL_GPL(svc_xprt_names);
1162 
1163 
1164 /*----------------------------------------------------------------------------*/
1165 
1166 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1167 {
1168 	unsigned int pidx = (unsigned int)*pos;
1169 	struct svc_serv *serv = m->private;
1170 
1171 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1172 
1173 	if (!pidx)
1174 		return SEQ_START_TOKEN;
1175 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1176 }
1177 
1178 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1179 {
1180 	struct svc_pool *pool = p;
1181 	struct svc_serv *serv = m->private;
1182 
1183 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1184 
1185 	if (p == SEQ_START_TOKEN) {
1186 		pool = &serv->sv_pools[0];
1187 	} else {
1188 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1189 		if (pidx < serv->sv_nrpools-1)
1190 			pool = &serv->sv_pools[pidx+1];
1191 		else
1192 			pool = NULL;
1193 	}
1194 	++*pos;
1195 	return pool;
1196 }
1197 
1198 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1199 {
1200 }
1201 
1202 static int svc_pool_stats_show(struct seq_file *m, void *p)
1203 {
1204 	struct svc_pool *pool = p;
1205 
1206 	if (p == SEQ_START_TOKEN) {
1207 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken overloads-avoided threads-timedout\n");
1208 		return 0;
1209 	}
1210 
1211 	seq_printf(m, "%u %lu %lu %lu %lu %lu\n",
1212 		pool->sp_id,
1213 		pool->sp_stats.packets,
1214 		pool->sp_stats.sockets_queued,
1215 		pool->sp_stats.threads_woken,
1216 		pool->sp_stats.overloads_avoided,
1217 		pool->sp_stats.threads_timedout);
1218 
1219 	return 0;
1220 }
1221 
1222 static const struct seq_operations svc_pool_stats_seq_ops = {
1223 	.start	= svc_pool_stats_start,
1224 	.next	= svc_pool_stats_next,
1225 	.stop	= svc_pool_stats_stop,
1226 	.show	= svc_pool_stats_show,
1227 };
1228 
1229 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1230 {
1231 	int err;
1232 
1233 	err = seq_open(file, &svc_pool_stats_seq_ops);
1234 	if (!err)
1235 		((struct seq_file *) file->private_data)->private = serv;
1236 	return err;
1237 }
1238 EXPORT_SYMBOL(svc_pool_stats_open);
1239 
1240 /*----------------------------------------------------------------------------*/
1241