xref: /linux/net/sunrpc/svc_xprt.c (revision da1d9caf95def6f0320819cf941c9fd1069ba9e1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/svc_xprt.c
4  *
5  * Author: Tom Tucker <tom@opengridcomputing.com>
6  */
7 
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/errno.h>
11 #include <linux/freezer.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <net/sock.h>
15 #include <linux/sunrpc/addr.h>
16 #include <linux/sunrpc/stats.h>
17 #include <linux/sunrpc/svc_xprt.h>
18 #include <linux/sunrpc/svcsock.h>
19 #include <linux/sunrpc/xprt.h>
20 #include <linux/module.h>
21 #include <linux/netdevice.h>
22 #include <trace/events/sunrpc.h>
23 
24 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
25 
26 static unsigned int svc_rpc_per_connection_limit __read_mostly;
27 module_param(svc_rpc_per_connection_limit, uint, 0644);
28 
29 
30 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
31 static int svc_deferred_recv(struct svc_rqst *rqstp);
32 static struct cache_deferred_req *svc_defer(struct cache_req *req);
33 static void svc_age_temp_xprts(struct timer_list *t);
34 static void svc_delete_xprt(struct svc_xprt *xprt);
35 
36 /* apparently the "standard" is that clients close
37  * idle connections after 5 minutes, servers after
38  * 6 minutes
39  *   http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
40  */
41 static int svc_conn_age_period = 6*60;
42 
43 /* List of registered transport classes */
44 static DEFINE_SPINLOCK(svc_xprt_class_lock);
45 static LIST_HEAD(svc_xprt_class_list);
46 
47 /* SMP locking strategy:
48  *
49  *	svc_pool->sp_lock protects most of the fields of that pool.
50  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
51  *	when both need to be taken (rare), svc_serv->sv_lock is first.
52  *	The "service mutex" protects svc_serv->sv_nrthread.
53  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
54  *             and the ->sk_info_authunix cache.
55  *
56  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
57  *	enqueued multiply. During normal transport processing this bit
58  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
59  *	Providers should not manipulate this bit directly.
60  *
61  *	Some flags can be set to certain values at any time
62  *	providing that certain rules are followed:
63  *
64  *	XPT_CONN, XPT_DATA:
65  *		- Can be set or cleared at any time.
66  *		- After a set, svc_xprt_enqueue must be called to enqueue
67  *		  the transport for processing.
68  *		- After a clear, the transport must be read/accepted.
69  *		  If this succeeds, it must be set again.
70  *	XPT_CLOSE:
71  *		- Can set at any time. It is never cleared.
72  *      XPT_DEAD:
73  *		- Can only be set while XPT_BUSY is held which ensures
74  *		  that no other thread will be using the transport or will
75  *		  try to set XPT_DEAD.
76  */
77 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
78 {
79 	struct svc_xprt_class *cl;
80 	int res = -EEXIST;
81 
82 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
83 
84 	INIT_LIST_HEAD(&xcl->xcl_list);
85 	spin_lock(&svc_xprt_class_lock);
86 	/* Make sure there isn't already a class with the same name */
87 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
88 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
89 			goto out;
90 	}
91 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
92 	res = 0;
93 out:
94 	spin_unlock(&svc_xprt_class_lock);
95 	return res;
96 }
97 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
98 
99 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
100 {
101 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
102 	spin_lock(&svc_xprt_class_lock);
103 	list_del_init(&xcl->xcl_list);
104 	spin_unlock(&svc_xprt_class_lock);
105 }
106 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
107 
108 /**
109  * svc_print_xprts - Format the transport list for printing
110  * @buf: target buffer for formatted address
111  * @maxlen: length of target buffer
112  *
113  * Fills in @buf with a string containing a list of transport names, each name
114  * terminated with '\n'. If the buffer is too small, some entries may be
115  * missing, but it is guaranteed that all lines in the output buffer are
116  * complete.
117  *
118  * Returns positive length of the filled-in string.
119  */
120 int svc_print_xprts(char *buf, int maxlen)
121 {
122 	struct svc_xprt_class *xcl;
123 	char tmpstr[80];
124 	int len = 0;
125 	buf[0] = '\0';
126 
127 	spin_lock(&svc_xprt_class_lock);
128 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
129 		int slen;
130 
131 		slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
132 				xcl->xcl_name, xcl->xcl_max_payload);
133 		if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
134 			break;
135 		len += slen;
136 		strcat(buf, tmpstr);
137 	}
138 	spin_unlock(&svc_xprt_class_lock);
139 
140 	return len;
141 }
142 
143 /**
144  * svc_xprt_deferred_close - Close a transport
145  * @xprt: transport instance
146  *
147  * Used in contexts that need to defer the work of shutting down
148  * the transport to an nfsd thread.
149  */
150 void svc_xprt_deferred_close(struct svc_xprt *xprt)
151 {
152 	if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags))
153 		svc_xprt_enqueue(xprt);
154 }
155 EXPORT_SYMBOL_GPL(svc_xprt_deferred_close);
156 
157 static void svc_xprt_free(struct kref *kref)
158 {
159 	struct svc_xprt *xprt =
160 		container_of(kref, struct svc_xprt, xpt_ref);
161 	struct module *owner = xprt->xpt_class->xcl_owner;
162 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
163 		svcauth_unix_info_release(xprt);
164 	put_cred(xprt->xpt_cred);
165 	put_net_track(xprt->xpt_net, &xprt->ns_tracker);
166 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
167 	if (xprt->xpt_bc_xprt)
168 		xprt_put(xprt->xpt_bc_xprt);
169 	if (xprt->xpt_bc_xps)
170 		xprt_switch_put(xprt->xpt_bc_xps);
171 	trace_svc_xprt_free(xprt);
172 	xprt->xpt_ops->xpo_free(xprt);
173 	module_put(owner);
174 }
175 
176 void svc_xprt_put(struct svc_xprt *xprt)
177 {
178 	kref_put(&xprt->xpt_ref, svc_xprt_free);
179 }
180 EXPORT_SYMBOL_GPL(svc_xprt_put);
181 
182 /*
183  * Called by transport drivers to initialize the transport independent
184  * portion of the transport instance.
185  */
186 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
187 		   struct svc_xprt *xprt, struct svc_serv *serv)
188 {
189 	memset(xprt, 0, sizeof(*xprt));
190 	xprt->xpt_class = xcl;
191 	xprt->xpt_ops = xcl->xcl_ops;
192 	kref_init(&xprt->xpt_ref);
193 	xprt->xpt_server = serv;
194 	INIT_LIST_HEAD(&xprt->xpt_list);
195 	INIT_LIST_HEAD(&xprt->xpt_ready);
196 	INIT_LIST_HEAD(&xprt->xpt_deferred);
197 	INIT_LIST_HEAD(&xprt->xpt_users);
198 	mutex_init(&xprt->xpt_mutex);
199 	spin_lock_init(&xprt->xpt_lock);
200 	set_bit(XPT_BUSY, &xprt->xpt_flags);
201 	xprt->xpt_net = get_net_track(net, &xprt->ns_tracker, GFP_ATOMIC);
202 	strcpy(xprt->xpt_remotebuf, "uninitialized");
203 }
204 EXPORT_SYMBOL_GPL(svc_xprt_init);
205 
206 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
207 					 struct svc_serv *serv,
208 					 struct net *net,
209 					 const int family,
210 					 const unsigned short port,
211 					 int flags)
212 {
213 	struct sockaddr_in sin = {
214 		.sin_family		= AF_INET,
215 		.sin_addr.s_addr	= htonl(INADDR_ANY),
216 		.sin_port		= htons(port),
217 	};
218 #if IS_ENABLED(CONFIG_IPV6)
219 	struct sockaddr_in6 sin6 = {
220 		.sin6_family		= AF_INET6,
221 		.sin6_addr		= IN6ADDR_ANY_INIT,
222 		.sin6_port		= htons(port),
223 	};
224 #endif
225 	struct svc_xprt *xprt;
226 	struct sockaddr *sap;
227 	size_t len;
228 
229 	switch (family) {
230 	case PF_INET:
231 		sap = (struct sockaddr *)&sin;
232 		len = sizeof(sin);
233 		break;
234 #if IS_ENABLED(CONFIG_IPV6)
235 	case PF_INET6:
236 		sap = (struct sockaddr *)&sin6;
237 		len = sizeof(sin6);
238 		break;
239 #endif
240 	default:
241 		return ERR_PTR(-EAFNOSUPPORT);
242 	}
243 
244 	xprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
245 	if (IS_ERR(xprt))
246 		trace_svc_xprt_create_err(serv->sv_program->pg_name,
247 					  xcl->xcl_name, sap, len, xprt);
248 	return xprt;
249 }
250 
251 /**
252  * svc_xprt_received - start next receiver thread
253  * @xprt: controlling transport
254  *
255  * The caller must hold the XPT_BUSY bit and must
256  * not thereafter touch transport data.
257  *
258  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
259  * insufficient) data.
260  */
261 void svc_xprt_received(struct svc_xprt *xprt)
262 {
263 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
264 		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
265 		return;
266 	}
267 
268 	/* As soon as we clear busy, the xprt could be closed and
269 	 * 'put', so we need a reference to call svc_xprt_enqueue with:
270 	 */
271 	svc_xprt_get(xprt);
272 	smp_mb__before_atomic();
273 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
274 	svc_xprt_enqueue(xprt);
275 	svc_xprt_put(xprt);
276 }
277 EXPORT_SYMBOL_GPL(svc_xprt_received);
278 
279 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
280 {
281 	clear_bit(XPT_TEMP, &new->xpt_flags);
282 	spin_lock_bh(&serv->sv_lock);
283 	list_add(&new->xpt_list, &serv->sv_permsocks);
284 	spin_unlock_bh(&serv->sv_lock);
285 	svc_xprt_received(new);
286 }
287 
288 static int _svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
289 			    struct net *net, const int family,
290 			    const unsigned short port, int flags,
291 			    const struct cred *cred)
292 {
293 	struct svc_xprt_class *xcl;
294 
295 	spin_lock(&svc_xprt_class_lock);
296 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
297 		struct svc_xprt *newxprt;
298 		unsigned short newport;
299 
300 		if (strcmp(xprt_name, xcl->xcl_name))
301 			continue;
302 
303 		if (!try_module_get(xcl->xcl_owner))
304 			goto err;
305 
306 		spin_unlock(&svc_xprt_class_lock);
307 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
308 		if (IS_ERR(newxprt)) {
309 			module_put(xcl->xcl_owner);
310 			return PTR_ERR(newxprt);
311 		}
312 		newxprt->xpt_cred = get_cred(cred);
313 		svc_add_new_perm_xprt(serv, newxprt);
314 		newport = svc_xprt_local_port(newxprt);
315 		return newport;
316 	}
317  err:
318 	spin_unlock(&svc_xprt_class_lock);
319 	/* This errno is exposed to user space.  Provide a reasonable
320 	 * perror msg for a bad transport. */
321 	return -EPROTONOSUPPORT;
322 }
323 
324 /**
325  * svc_xprt_create - Add a new listener to @serv
326  * @serv: target RPC service
327  * @xprt_name: transport class name
328  * @net: network namespace
329  * @family: network address family
330  * @port: listener port
331  * @flags: SVC_SOCK flags
332  * @cred: credential to bind to this transport
333  *
334  * Return values:
335  *   %0: New listener added successfully
336  *   %-EPROTONOSUPPORT: Requested transport type not supported
337  */
338 int svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
339 		    struct net *net, const int family,
340 		    const unsigned short port, int flags,
341 		    const struct cred *cred)
342 {
343 	int err;
344 
345 	err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
346 	if (err == -EPROTONOSUPPORT) {
347 		request_module("svc%s", xprt_name);
348 		err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
349 	}
350 	return err;
351 }
352 EXPORT_SYMBOL_GPL(svc_xprt_create);
353 
354 /*
355  * Copy the local and remote xprt addresses to the rqstp structure
356  */
357 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
358 {
359 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
360 	rqstp->rq_addrlen = xprt->xpt_remotelen;
361 
362 	/*
363 	 * Destination address in request is needed for binding the
364 	 * source address in RPC replies/callbacks later.
365 	 */
366 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
367 	rqstp->rq_daddrlen = xprt->xpt_locallen;
368 }
369 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
370 
371 /**
372  * svc_print_addr - Format rq_addr field for printing
373  * @rqstp: svc_rqst struct containing address to print
374  * @buf: target buffer for formatted address
375  * @len: length of target buffer
376  *
377  */
378 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
379 {
380 	return __svc_print_addr(svc_addr(rqstp), buf, len);
381 }
382 EXPORT_SYMBOL_GPL(svc_print_addr);
383 
384 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
385 {
386 	unsigned int limit = svc_rpc_per_connection_limit;
387 	int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
388 
389 	return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
390 }
391 
392 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
393 {
394 	if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
395 		if (!svc_xprt_slots_in_range(xprt))
396 			return false;
397 		atomic_inc(&xprt->xpt_nr_rqsts);
398 		set_bit(RQ_DATA, &rqstp->rq_flags);
399 	}
400 	return true;
401 }
402 
403 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
404 {
405 	struct svc_xprt	*xprt = rqstp->rq_xprt;
406 	if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
407 		atomic_dec(&xprt->xpt_nr_rqsts);
408 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
409 		svc_xprt_enqueue(xprt);
410 	}
411 }
412 
413 static bool svc_xprt_ready(struct svc_xprt *xprt)
414 {
415 	unsigned long xpt_flags;
416 
417 	/*
418 	 * If another cpu has recently updated xpt_flags,
419 	 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
420 	 * know about it; otherwise it's possible that both that cpu and
421 	 * this one could call svc_xprt_enqueue() without either
422 	 * svc_xprt_enqueue() recognizing that the conditions below
423 	 * are satisfied, and we could stall indefinitely:
424 	 */
425 	smp_rmb();
426 	xpt_flags = READ_ONCE(xprt->xpt_flags);
427 
428 	if (xpt_flags & BIT(XPT_BUSY))
429 		return false;
430 	if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE)))
431 		return true;
432 	if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
433 		if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
434 		    svc_xprt_slots_in_range(xprt))
435 			return true;
436 		trace_svc_xprt_no_write_space(xprt);
437 		return false;
438 	}
439 	return false;
440 }
441 
442 /**
443  * svc_xprt_enqueue - Queue a transport on an idle nfsd thread
444  * @xprt: transport with data pending
445  *
446  */
447 void svc_xprt_enqueue(struct svc_xprt *xprt)
448 {
449 	struct svc_pool *pool;
450 	struct svc_rqst	*rqstp = NULL;
451 
452 	if (!svc_xprt_ready(xprt))
453 		return;
454 
455 	/* Mark transport as busy. It will remain in this state until
456 	 * the provider calls svc_xprt_received. We update XPT_BUSY
457 	 * atomically because it also guards against trying to enqueue
458 	 * the transport twice.
459 	 */
460 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
461 		return;
462 
463 	pool = svc_pool_for_cpu(xprt->xpt_server);
464 
465 	atomic_long_inc(&pool->sp_stats.packets);
466 
467 	spin_lock_bh(&pool->sp_lock);
468 	list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
469 	pool->sp_stats.sockets_queued++;
470 	spin_unlock_bh(&pool->sp_lock);
471 
472 	/* find a thread for this xprt */
473 	rcu_read_lock();
474 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
475 		if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
476 			continue;
477 		atomic_long_inc(&pool->sp_stats.threads_woken);
478 		rqstp->rq_qtime = ktime_get();
479 		wake_up_process(rqstp->rq_task);
480 		goto out_unlock;
481 	}
482 	set_bit(SP_CONGESTED, &pool->sp_flags);
483 	rqstp = NULL;
484 out_unlock:
485 	rcu_read_unlock();
486 	trace_svc_xprt_enqueue(xprt, rqstp);
487 }
488 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
489 
490 /*
491  * Dequeue the first transport, if there is one.
492  */
493 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
494 {
495 	struct svc_xprt	*xprt = NULL;
496 
497 	if (list_empty(&pool->sp_sockets))
498 		goto out;
499 
500 	spin_lock_bh(&pool->sp_lock);
501 	if (likely(!list_empty(&pool->sp_sockets))) {
502 		xprt = list_first_entry(&pool->sp_sockets,
503 					struct svc_xprt, xpt_ready);
504 		list_del_init(&xprt->xpt_ready);
505 		svc_xprt_get(xprt);
506 	}
507 	spin_unlock_bh(&pool->sp_lock);
508 out:
509 	return xprt;
510 }
511 
512 /**
513  * svc_reserve - change the space reserved for the reply to a request.
514  * @rqstp:  The request in question
515  * @space: new max space to reserve
516  *
517  * Each request reserves some space on the output queue of the transport
518  * to make sure the reply fits.  This function reduces that reserved
519  * space to be the amount of space used already, plus @space.
520  *
521  */
522 void svc_reserve(struct svc_rqst *rqstp, int space)
523 {
524 	struct svc_xprt *xprt = rqstp->rq_xprt;
525 
526 	space += rqstp->rq_res.head[0].iov_len;
527 
528 	if (xprt && space < rqstp->rq_reserved) {
529 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
530 		rqstp->rq_reserved = space;
531 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
532 		svc_xprt_enqueue(xprt);
533 	}
534 }
535 EXPORT_SYMBOL_GPL(svc_reserve);
536 
537 static void svc_xprt_release(struct svc_rqst *rqstp)
538 {
539 	struct svc_xprt	*xprt = rqstp->rq_xprt;
540 
541 	xprt->xpt_ops->xpo_release_rqst(rqstp);
542 
543 	kfree(rqstp->rq_deferred);
544 	rqstp->rq_deferred = NULL;
545 
546 	pagevec_release(&rqstp->rq_pvec);
547 	svc_free_res_pages(rqstp);
548 	rqstp->rq_res.page_len = 0;
549 	rqstp->rq_res.page_base = 0;
550 
551 	/* Reset response buffer and release
552 	 * the reservation.
553 	 * But first, check that enough space was reserved
554 	 * for the reply, otherwise we have a bug!
555 	 */
556 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
557 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
558 		       rqstp->rq_reserved,
559 		       rqstp->rq_res.len);
560 
561 	rqstp->rq_res.head[0].iov_len = 0;
562 	svc_reserve(rqstp, 0);
563 	svc_xprt_release_slot(rqstp);
564 	rqstp->rq_xprt = NULL;
565 	svc_xprt_put(xprt);
566 }
567 
568 /*
569  * Some svc_serv's will have occasional work to do, even when a xprt is not
570  * waiting to be serviced. This function is there to "kick" a task in one of
571  * those services so that it can wake up and do that work. Note that we only
572  * bother with pool 0 as we don't need to wake up more than one thread for
573  * this purpose.
574  */
575 void svc_wake_up(struct svc_serv *serv)
576 {
577 	struct svc_rqst	*rqstp;
578 	struct svc_pool *pool;
579 
580 	pool = &serv->sv_pools[0];
581 
582 	rcu_read_lock();
583 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
584 		/* skip any that aren't queued */
585 		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
586 			continue;
587 		rcu_read_unlock();
588 		wake_up_process(rqstp->rq_task);
589 		trace_svc_wake_up(rqstp->rq_task->pid);
590 		return;
591 	}
592 	rcu_read_unlock();
593 
594 	/* No free entries available */
595 	set_bit(SP_TASK_PENDING, &pool->sp_flags);
596 	smp_wmb();
597 	trace_svc_wake_up(0);
598 }
599 EXPORT_SYMBOL_GPL(svc_wake_up);
600 
601 int svc_port_is_privileged(struct sockaddr *sin)
602 {
603 	switch (sin->sa_family) {
604 	case AF_INET:
605 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
606 			< PROT_SOCK;
607 	case AF_INET6:
608 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
609 			< PROT_SOCK;
610 	default:
611 		return 0;
612 	}
613 }
614 
615 /*
616  * Make sure that we don't have too many active connections. If we have,
617  * something must be dropped. It's not clear what will happen if we allow
618  * "too many" connections, but when dealing with network-facing software,
619  * we have to code defensively. Here we do that by imposing hard limits.
620  *
621  * There's no point in trying to do random drop here for DoS
622  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
623  * attacker can easily beat that.
624  *
625  * The only somewhat efficient mechanism would be if drop old
626  * connections from the same IP first. But right now we don't even
627  * record the client IP in svc_sock.
628  *
629  * single-threaded services that expect a lot of clients will probably
630  * need to set sv_maxconn to override the default value which is based
631  * on the number of threads
632  */
633 static void svc_check_conn_limits(struct svc_serv *serv)
634 {
635 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
636 				(serv->sv_nrthreads+3) * 20;
637 
638 	if (serv->sv_tmpcnt > limit) {
639 		struct svc_xprt *xprt = NULL;
640 		spin_lock_bh(&serv->sv_lock);
641 		if (!list_empty(&serv->sv_tempsocks)) {
642 			/* Try to help the admin */
643 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
644 					       serv->sv_name, serv->sv_maxconn ?
645 					       "max number of connections" :
646 					       "number of threads");
647 			/*
648 			 * Always select the oldest connection. It's not fair,
649 			 * but so is life
650 			 */
651 			xprt = list_entry(serv->sv_tempsocks.prev,
652 					  struct svc_xprt,
653 					  xpt_list);
654 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
655 			svc_xprt_get(xprt);
656 		}
657 		spin_unlock_bh(&serv->sv_lock);
658 
659 		if (xprt) {
660 			svc_xprt_enqueue(xprt);
661 			svc_xprt_put(xprt);
662 		}
663 	}
664 }
665 
666 static int svc_alloc_arg(struct svc_rqst *rqstp)
667 {
668 	struct svc_serv *serv = rqstp->rq_server;
669 	struct xdr_buf *arg = &rqstp->rq_arg;
670 	unsigned long pages, filled, ret;
671 
672 	pagevec_init(&rqstp->rq_pvec);
673 
674 	pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
675 	if (pages > RPCSVC_MAXPAGES) {
676 		pr_warn_once("svc: warning: pages=%lu > RPCSVC_MAXPAGES=%lu\n",
677 			     pages, RPCSVC_MAXPAGES);
678 		/* use as many pages as possible */
679 		pages = RPCSVC_MAXPAGES;
680 	}
681 
682 	for (filled = 0; filled < pages; filled = ret) {
683 		ret = alloc_pages_bulk_array(GFP_KERNEL, pages,
684 					     rqstp->rq_pages);
685 		if (ret > filled)
686 			/* Made progress, don't sleep yet */
687 			continue;
688 
689 		set_current_state(TASK_INTERRUPTIBLE);
690 		if (signalled() || kthread_should_stop()) {
691 			set_current_state(TASK_RUNNING);
692 			return -EINTR;
693 		}
694 		trace_svc_alloc_arg_err(pages);
695 		memalloc_retry_wait(GFP_KERNEL);
696 	}
697 	rqstp->rq_page_end = &rqstp->rq_pages[pages];
698 	rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */
699 
700 	/* Make arg->head point to first page and arg->pages point to rest */
701 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
702 	arg->head[0].iov_len = PAGE_SIZE;
703 	arg->pages = rqstp->rq_pages + 1;
704 	arg->page_base = 0;
705 	/* save at least one page for response */
706 	arg->page_len = (pages-2)*PAGE_SIZE;
707 	arg->len = (pages-1)*PAGE_SIZE;
708 	arg->tail[0].iov_len = 0;
709 	return 0;
710 }
711 
712 static bool
713 rqst_should_sleep(struct svc_rqst *rqstp)
714 {
715 	struct svc_pool		*pool = rqstp->rq_pool;
716 
717 	/* did someone call svc_wake_up? */
718 	if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
719 		return false;
720 
721 	/* was a socket queued? */
722 	if (!list_empty(&pool->sp_sockets))
723 		return false;
724 
725 	/* are we shutting down? */
726 	if (signalled() || kthread_should_stop())
727 		return false;
728 
729 	/* are we freezing? */
730 	if (freezing(current))
731 		return false;
732 
733 	return true;
734 }
735 
736 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
737 {
738 	struct svc_pool		*pool = rqstp->rq_pool;
739 	long			time_left = 0;
740 
741 	/* rq_xprt should be clear on entry */
742 	WARN_ON_ONCE(rqstp->rq_xprt);
743 
744 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
745 	if (rqstp->rq_xprt)
746 		goto out_found;
747 
748 	/*
749 	 * We have to be able to interrupt this wait
750 	 * to bring down the daemons ...
751 	 */
752 	set_current_state(TASK_INTERRUPTIBLE);
753 	smp_mb__before_atomic();
754 	clear_bit(SP_CONGESTED, &pool->sp_flags);
755 	clear_bit(RQ_BUSY, &rqstp->rq_flags);
756 	smp_mb__after_atomic();
757 
758 	if (likely(rqst_should_sleep(rqstp)))
759 		time_left = schedule_timeout(timeout);
760 	else
761 		__set_current_state(TASK_RUNNING);
762 
763 	try_to_freeze();
764 
765 	set_bit(RQ_BUSY, &rqstp->rq_flags);
766 	smp_mb__after_atomic();
767 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
768 	if (rqstp->rq_xprt)
769 		goto out_found;
770 
771 	if (!time_left)
772 		atomic_long_inc(&pool->sp_stats.threads_timedout);
773 
774 	if (signalled() || kthread_should_stop())
775 		return ERR_PTR(-EINTR);
776 	return ERR_PTR(-EAGAIN);
777 out_found:
778 	/* Normally we will wait up to 5 seconds for any required
779 	 * cache information to be provided.
780 	 */
781 	if (!test_bit(SP_CONGESTED, &pool->sp_flags))
782 		rqstp->rq_chandle.thread_wait = 5*HZ;
783 	else
784 		rqstp->rq_chandle.thread_wait = 1*HZ;
785 	trace_svc_xprt_dequeue(rqstp);
786 	return rqstp->rq_xprt;
787 }
788 
789 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
790 {
791 	spin_lock_bh(&serv->sv_lock);
792 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
793 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
794 	serv->sv_tmpcnt++;
795 	if (serv->sv_temptimer.function == NULL) {
796 		/* setup timer to age temp transports */
797 		serv->sv_temptimer.function = svc_age_temp_xprts;
798 		mod_timer(&serv->sv_temptimer,
799 			  jiffies + svc_conn_age_period * HZ);
800 	}
801 	spin_unlock_bh(&serv->sv_lock);
802 	svc_xprt_received(newxpt);
803 }
804 
805 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
806 {
807 	struct svc_serv *serv = rqstp->rq_server;
808 	int len = 0;
809 
810 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
811 		if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
812 			xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
813 		svc_delete_xprt(xprt);
814 		/* Leave XPT_BUSY set on the dead xprt: */
815 		goto out;
816 	}
817 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
818 		struct svc_xprt *newxpt;
819 		/*
820 		 * We know this module_get will succeed because the
821 		 * listener holds a reference too
822 		 */
823 		__module_get(xprt->xpt_class->xcl_owner);
824 		svc_check_conn_limits(xprt->xpt_server);
825 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
826 		if (newxpt) {
827 			newxpt->xpt_cred = get_cred(xprt->xpt_cred);
828 			svc_add_new_temp_xprt(serv, newxpt);
829 			trace_svc_xprt_accept(newxpt, serv->sv_name);
830 		} else {
831 			module_put(xprt->xpt_class->xcl_owner);
832 		}
833 		svc_xprt_received(xprt);
834 	} else if (svc_xprt_reserve_slot(rqstp, xprt)) {
835 		/* XPT_DATA|XPT_DEFERRED case: */
836 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
837 			rqstp, rqstp->rq_pool->sp_id, xprt,
838 			kref_read(&xprt->xpt_ref));
839 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
840 		if (rqstp->rq_deferred)
841 			len = svc_deferred_recv(rqstp);
842 		else
843 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
844 		rqstp->rq_stime = ktime_get();
845 		rqstp->rq_reserved = serv->sv_max_mesg;
846 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
847 	} else
848 		svc_xprt_received(xprt);
849 
850 out:
851 	return len;
852 }
853 
854 /*
855  * Receive the next request on any transport.  This code is carefully
856  * organised not to touch any cachelines in the shared svc_serv
857  * structure, only cachelines in the local svc_pool.
858  */
859 int svc_recv(struct svc_rqst *rqstp, long timeout)
860 {
861 	struct svc_xprt		*xprt = NULL;
862 	struct svc_serv		*serv = rqstp->rq_server;
863 	int			len, err;
864 
865 	err = svc_alloc_arg(rqstp);
866 	if (err)
867 		goto out;
868 
869 	try_to_freeze();
870 	cond_resched();
871 	err = -EINTR;
872 	if (signalled() || kthread_should_stop())
873 		goto out;
874 
875 	xprt = svc_get_next_xprt(rqstp, timeout);
876 	if (IS_ERR(xprt)) {
877 		err = PTR_ERR(xprt);
878 		goto out;
879 	}
880 
881 	len = svc_handle_xprt(rqstp, xprt);
882 
883 	/* No data, incomplete (TCP) read, or accept() */
884 	err = -EAGAIN;
885 	if (len <= 0)
886 		goto out_release;
887 	trace_svc_xdr_recvfrom(&rqstp->rq_arg);
888 
889 	clear_bit(XPT_OLD, &xprt->xpt_flags);
890 
891 	xprt->xpt_ops->xpo_secure_port(rqstp);
892 	rqstp->rq_chandle.defer = svc_defer;
893 	rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
894 
895 	if (serv->sv_stats)
896 		serv->sv_stats->netcnt++;
897 	return len;
898 out_release:
899 	rqstp->rq_res.len = 0;
900 	svc_xprt_release(rqstp);
901 out:
902 	return err;
903 }
904 EXPORT_SYMBOL_GPL(svc_recv);
905 
906 /*
907  * Drop request
908  */
909 void svc_drop(struct svc_rqst *rqstp)
910 {
911 	trace_svc_drop(rqstp);
912 	svc_xprt_release(rqstp);
913 }
914 EXPORT_SYMBOL_GPL(svc_drop);
915 
916 /*
917  * Return reply to client.
918  */
919 int svc_send(struct svc_rqst *rqstp)
920 {
921 	struct svc_xprt	*xprt;
922 	int		len = -EFAULT;
923 	struct xdr_buf	*xb;
924 
925 	xprt = rqstp->rq_xprt;
926 	if (!xprt)
927 		goto out;
928 
929 	/* calculate over-all length */
930 	xb = &rqstp->rq_res;
931 	xb->len = xb->head[0].iov_len +
932 		xb->page_len +
933 		xb->tail[0].iov_len;
934 	trace_svc_xdr_sendto(rqstp->rq_xid, xb);
935 	trace_svc_stats_latency(rqstp);
936 
937 	len = xprt->xpt_ops->xpo_sendto(rqstp);
938 
939 	trace_svc_send(rqstp, len);
940 	svc_xprt_release(rqstp);
941 
942 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
943 		len = 0;
944 out:
945 	return len;
946 }
947 
948 /*
949  * Timer function to close old temporary transports, using
950  * a mark-and-sweep algorithm.
951  */
952 static void svc_age_temp_xprts(struct timer_list *t)
953 {
954 	struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
955 	struct svc_xprt *xprt;
956 	struct list_head *le, *next;
957 
958 	dprintk("svc_age_temp_xprts\n");
959 
960 	if (!spin_trylock_bh(&serv->sv_lock)) {
961 		/* busy, try again 1 sec later */
962 		dprintk("svc_age_temp_xprts: busy\n");
963 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
964 		return;
965 	}
966 
967 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
968 		xprt = list_entry(le, struct svc_xprt, xpt_list);
969 
970 		/* First time through, just mark it OLD. Second time
971 		 * through, close it. */
972 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
973 			continue;
974 		if (kref_read(&xprt->xpt_ref) > 1 ||
975 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
976 			continue;
977 		list_del_init(le);
978 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
979 		dprintk("queuing xprt %p for closing\n", xprt);
980 
981 		/* a thread will dequeue and close it soon */
982 		svc_xprt_enqueue(xprt);
983 	}
984 	spin_unlock_bh(&serv->sv_lock);
985 
986 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
987 }
988 
989 /* Close temporary transports whose xpt_local matches server_addr immediately
990  * instead of waiting for them to be picked up by the timer.
991  *
992  * This is meant to be called from a notifier_block that runs when an ip
993  * address is deleted.
994  */
995 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
996 {
997 	struct svc_xprt *xprt;
998 	struct list_head *le, *next;
999 	LIST_HEAD(to_be_closed);
1000 
1001 	spin_lock_bh(&serv->sv_lock);
1002 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
1003 		xprt = list_entry(le, struct svc_xprt, xpt_list);
1004 		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
1005 				&xprt->xpt_local)) {
1006 			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
1007 			list_move(le, &to_be_closed);
1008 		}
1009 	}
1010 	spin_unlock_bh(&serv->sv_lock);
1011 
1012 	while (!list_empty(&to_be_closed)) {
1013 		le = to_be_closed.next;
1014 		list_del_init(le);
1015 		xprt = list_entry(le, struct svc_xprt, xpt_list);
1016 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1017 		set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
1018 		dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
1019 				xprt);
1020 		svc_xprt_enqueue(xprt);
1021 	}
1022 }
1023 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1024 
1025 static void call_xpt_users(struct svc_xprt *xprt)
1026 {
1027 	struct svc_xpt_user *u;
1028 
1029 	spin_lock(&xprt->xpt_lock);
1030 	while (!list_empty(&xprt->xpt_users)) {
1031 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1032 		list_del_init(&u->list);
1033 		u->callback(u);
1034 	}
1035 	spin_unlock(&xprt->xpt_lock);
1036 }
1037 
1038 /*
1039  * Remove a dead transport
1040  */
1041 static void svc_delete_xprt(struct svc_xprt *xprt)
1042 {
1043 	struct svc_serv	*serv = xprt->xpt_server;
1044 	struct svc_deferred_req *dr;
1045 
1046 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1047 		return;
1048 
1049 	trace_svc_xprt_detach(xprt);
1050 	xprt->xpt_ops->xpo_detach(xprt);
1051 	if (xprt->xpt_bc_xprt)
1052 		xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt);
1053 
1054 	spin_lock_bh(&serv->sv_lock);
1055 	list_del_init(&xprt->xpt_list);
1056 	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1057 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1058 		serv->sv_tmpcnt--;
1059 	spin_unlock_bh(&serv->sv_lock);
1060 
1061 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1062 		kfree(dr);
1063 
1064 	call_xpt_users(xprt);
1065 	svc_xprt_put(xprt);
1066 }
1067 
1068 /**
1069  * svc_xprt_close - Close a client connection
1070  * @xprt: transport to disconnect
1071  *
1072  */
1073 void svc_xprt_close(struct svc_xprt *xprt)
1074 {
1075 	trace_svc_xprt_close(xprt);
1076 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1077 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1078 		/* someone else will have to effect the close */
1079 		return;
1080 	/*
1081 	 * We expect svc_close_xprt() to work even when no threads are
1082 	 * running (e.g., while configuring the server before starting
1083 	 * any threads), so if the transport isn't busy, we delete
1084 	 * it ourself:
1085 	 */
1086 	svc_delete_xprt(xprt);
1087 }
1088 EXPORT_SYMBOL_GPL(svc_xprt_close);
1089 
1090 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1091 {
1092 	struct svc_xprt *xprt;
1093 	int ret = 0;
1094 
1095 	spin_lock_bh(&serv->sv_lock);
1096 	list_for_each_entry(xprt, xprt_list, xpt_list) {
1097 		if (xprt->xpt_net != net)
1098 			continue;
1099 		ret++;
1100 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1101 		svc_xprt_enqueue(xprt);
1102 	}
1103 	spin_unlock_bh(&serv->sv_lock);
1104 	return ret;
1105 }
1106 
1107 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1108 {
1109 	struct svc_pool *pool;
1110 	struct svc_xprt *xprt;
1111 	struct svc_xprt *tmp;
1112 	int i;
1113 
1114 	for (i = 0; i < serv->sv_nrpools; i++) {
1115 		pool = &serv->sv_pools[i];
1116 
1117 		spin_lock_bh(&pool->sp_lock);
1118 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1119 			if (xprt->xpt_net != net)
1120 				continue;
1121 			list_del_init(&xprt->xpt_ready);
1122 			spin_unlock_bh(&pool->sp_lock);
1123 			return xprt;
1124 		}
1125 		spin_unlock_bh(&pool->sp_lock);
1126 	}
1127 	return NULL;
1128 }
1129 
1130 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1131 {
1132 	struct svc_xprt *xprt;
1133 
1134 	while ((xprt = svc_dequeue_net(serv, net))) {
1135 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1136 		svc_delete_xprt(xprt);
1137 	}
1138 }
1139 
1140 /**
1141  * svc_xprt_destroy_all - Destroy transports associated with @serv
1142  * @serv: RPC service to be shut down
1143  * @net: target network namespace
1144  *
1145  * Server threads may still be running (especially in the case where the
1146  * service is still running in other network namespaces).
1147  *
1148  * So we shut down sockets the same way we would on a running server, by
1149  * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1150  * the close.  In the case there are no such other threads,
1151  * threads running, svc_clean_up_xprts() does a simple version of a
1152  * server's main event loop, and in the case where there are other
1153  * threads, we may need to wait a little while and then check again to
1154  * see if they're done.
1155  */
1156 void svc_xprt_destroy_all(struct svc_serv *serv, struct net *net)
1157 {
1158 	int delay = 0;
1159 
1160 	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1161 	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1162 
1163 		svc_clean_up_xprts(serv, net);
1164 		msleep(delay++);
1165 	}
1166 }
1167 EXPORT_SYMBOL_GPL(svc_xprt_destroy_all);
1168 
1169 /*
1170  * Handle defer and revisit of requests
1171  */
1172 
1173 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1174 {
1175 	struct svc_deferred_req *dr =
1176 		container_of(dreq, struct svc_deferred_req, handle);
1177 	struct svc_xprt *xprt = dr->xprt;
1178 
1179 	spin_lock(&xprt->xpt_lock);
1180 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1181 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1182 		spin_unlock(&xprt->xpt_lock);
1183 		trace_svc_defer_drop(dr);
1184 		svc_xprt_put(xprt);
1185 		kfree(dr);
1186 		return;
1187 	}
1188 	dr->xprt = NULL;
1189 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1190 	spin_unlock(&xprt->xpt_lock);
1191 	trace_svc_defer_queue(dr);
1192 	svc_xprt_enqueue(xprt);
1193 	svc_xprt_put(xprt);
1194 }
1195 
1196 /*
1197  * Save the request off for later processing. The request buffer looks
1198  * like this:
1199  *
1200  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1201  *
1202  * This code can only handle requests that consist of an xprt-header
1203  * and rpc-header.
1204  */
1205 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1206 {
1207 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1208 	struct svc_deferred_req *dr;
1209 
1210 	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1211 		return NULL; /* if more than a page, give up FIXME */
1212 	if (rqstp->rq_deferred) {
1213 		dr = rqstp->rq_deferred;
1214 		rqstp->rq_deferred = NULL;
1215 	} else {
1216 		size_t skip;
1217 		size_t size;
1218 		/* FIXME maybe discard if size too large */
1219 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1220 		dr = kmalloc(size, GFP_KERNEL);
1221 		if (dr == NULL)
1222 			return NULL;
1223 
1224 		dr->handle.owner = rqstp->rq_server;
1225 		dr->prot = rqstp->rq_prot;
1226 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1227 		dr->addrlen = rqstp->rq_addrlen;
1228 		dr->daddr = rqstp->rq_daddr;
1229 		dr->argslen = rqstp->rq_arg.len >> 2;
1230 		dr->xprt_ctxt = rqstp->rq_xprt_ctxt;
1231 		rqstp->rq_xprt_ctxt = NULL;
1232 
1233 		/* back up head to the start of the buffer and copy */
1234 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1235 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1236 		       dr->argslen << 2);
1237 	}
1238 	trace_svc_defer(rqstp);
1239 	svc_xprt_get(rqstp->rq_xprt);
1240 	dr->xprt = rqstp->rq_xprt;
1241 	__set_bit(RQ_DROPME, &rqstp->rq_flags);
1242 
1243 	dr->handle.revisit = svc_revisit;
1244 	return &dr->handle;
1245 }
1246 
1247 /*
1248  * recv data from a deferred request into an active one
1249  */
1250 static noinline int svc_deferred_recv(struct svc_rqst *rqstp)
1251 {
1252 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1253 
1254 	trace_svc_defer_recv(dr);
1255 
1256 	/* setup iov_base past transport header */
1257 	rqstp->rq_arg.head[0].iov_base = dr->args;
1258 	/* The iov_len does not include the transport header bytes */
1259 	rqstp->rq_arg.head[0].iov_len = dr->argslen << 2;
1260 	rqstp->rq_arg.page_len = 0;
1261 	/* The rq_arg.len includes the transport header bytes */
1262 	rqstp->rq_arg.len     = dr->argslen << 2;
1263 	rqstp->rq_prot        = dr->prot;
1264 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1265 	rqstp->rq_addrlen     = dr->addrlen;
1266 	/* Save off transport header len in case we get deferred again */
1267 	rqstp->rq_daddr       = dr->daddr;
1268 	rqstp->rq_respages    = rqstp->rq_pages;
1269 	rqstp->rq_xprt_ctxt   = dr->xprt_ctxt;
1270 	svc_xprt_received(rqstp->rq_xprt);
1271 	return dr->argslen << 2;
1272 }
1273 
1274 
1275 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1276 {
1277 	struct svc_deferred_req *dr = NULL;
1278 
1279 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1280 		return NULL;
1281 	spin_lock(&xprt->xpt_lock);
1282 	if (!list_empty(&xprt->xpt_deferred)) {
1283 		dr = list_entry(xprt->xpt_deferred.next,
1284 				struct svc_deferred_req,
1285 				handle.recent);
1286 		list_del_init(&dr->handle.recent);
1287 	} else
1288 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1289 	spin_unlock(&xprt->xpt_lock);
1290 	return dr;
1291 }
1292 
1293 /**
1294  * svc_find_xprt - find an RPC transport instance
1295  * @serv: pointer to svc_serv to search
1296  * @xcl_name: C string containing transport's class name
1297  * @net: owner net pointer
1298  * @af: Address family of transport's local address
1299  * @port: transport's IP port number
1300  *
1301  * Return the transport instance pointer for the endpoint accepting
1302  * connections/peer traffic from the specified transport class,
1303  * address family and port.
1304  *
1305  * Specifying 0 for the address family or port is effectively a
1306  * wild-card, and will result in matching the first transport in the
1307  * service's list that has a matching class name.
1308  */
1309 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1310 			       struct net *net, const sa_family_t af,
1311 			       const unsigned short port)
1312 {
1313 	struct svc_xprt *xprt;
1314 	struct svc_xprt *found = NULL;
1315 
1316 	/* Sanity check the args */
1317 	if (serv == NULL || xcl_name == NULL)
1318 		return found;
1319 
1320 	spin_lock_bh(&serv->sv_lock);
1321 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1322 		if (xprt->xpt_net != net)
1323 			continue;
1324 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1325 			continue;
1326 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1327 			continue;
1328 		if (port != 0 && port != svc_xprt_local_port(xprt))
1329 			continue;
1330 		found = xprt;
1331 		svc_xprt_get(xprt);
1332 		break;
1333 	}
1334 	spin_unlock_bh(&serv->sv_lock);
1335 	return found;
1336 }
1337 EXPORT_SYMBOL_GPL(svc_find_xprt);
1338 
1339 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1340 			     char *pos, int remaining)
1341 {
1342 	int len;
1343 
1344 	len = snprintf(pos, remaining, "%s %u\n",
1345 			xprt->xpt_class->xcl_name,
1346 			svc_xprt_local_port(xprt));
1347 	if (len >= remaining)
1348 		return -ENAMETOOLONG;
1349 	return len;
1350 }
1351 
1352 /**
1353  * svc_xprt_names - format a buffer with a list of transport names
1354  * @serv: pointer to an RPC service
1355  * @buf: pointer to a buffer to be filled in
1356  * @buflen: length of buffer to be filled in
1357  *
1358  * Fills in @buf with a string containing a list of transport names,
1359  * each name terminated with '\n'.
1360  *
1361  * Returns positive length of the filled-in string on success; otherwise
1362  * a negative errno value is returned if an error occurs.
1363  */
1364 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1365 {
1366 	struct svc_xprt *xprt;
1367 	int len, totlen;
1368 	char *pos;
1369 
1370 	/* Sanity check args */
1371 	if (!serv)
1372 		return 0;
1373 
1374 	spin_lock_bh(&serv->sv_lock);
1375 
1376 	pos = buf;
1377 	totlen = 0;
1378 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1379 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1380 		if (len < 0) {
1381 			*buf = '\0';
1382 			totlen = len;
1383 		}
1384 		if (len <= 0)
1385 			break;
1386 
1387 		pos += len;
1388 		totlen += len;
1389 	}
1390 
1391 	spin_unlock_bh(&serv->sv_lock);
1392 	return totlen;
1393 }
1394 EXPORT_SYMBOL_GPL(svc_xprt_names);
1395 
1396 
1397 /*----------------------------------------------------------------------------*/
1398 
1399 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1400 {
1401 	unsigned int pidx = (unsigned int)*pos;
1402 	struct svc_serv *serv = m->private;
1403 
1404 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1405 
1406 	if (!pidx)
1407 		return SEQ_START_TOKEN;
1408 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1409 }
1410 
1411 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1412 {
1413 	struct svc_pool *pool = p;
1414 	struct svc_serv *serv = m->private;
1415 
1416 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1417 
1418 	if (p == SEQ_START_TOKEN) {
1419 		pool = &serv->sv_pools[0];
1420 	} else {
1421 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1422 		if (pidx < serv->sv_nrpools-1)
1423 			pool = &serv->sv_pools[pidx+1];
1424 		else
1425 			pool = NULL;
1426 	}
1427 	++*pos;
1428 	return pool;
1429 }
1430 
1431 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1432 {
1433 }
1434 
1435 static int svc_pool_stats_show(struct seq_file *m, void *p)
1436 {
1437 	struct svc_pool *pool = p;
1438 
1439 	if (p == SEQ_START_TOKEN) {
1440 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1441 		return 0;
1442 	}
1443 
1444 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1445 		pool->sp_id,
1446 		(unsigned long)atomic_long_read(&pool->sp_stats.packets),
1447 		pool->sp_stats.sockets_queued,
1448 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1449 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1450 
1451 	return 0;
1452 }
1453 
1454 static const struct seq_operations svc_pool_stats_seq_ops = {
1455 	.start	= svc_pool_stats_start,
1456 	.next	= svc_pool_stats_next,
1457 	.stop	= svc_pool_stats_stop,
1458 	.show	= svc_pool_stats_show,
1459 };
1460 
1461 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1462 {
1463 	int err;
1464 
1465 	err = seq_open(file, &svc_pool_stats_seq_ops);
1466 	if (!err)
1467 		((struct seq_file *) file->private_data)->private = serv;
1468 	return err;
1469 }
1470 EXPORT_SYMBOL(svc_pool_stats_open);
1471 
1472 /*----------------------------------------------------------------------------*/
1473