xref: /linux/net/sunrpc/svc_xprt.c (revision d87c25e8f4051f813762da6a182c57f246b17441)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/svc_xprt.c
4  *
5  * Author: Tom Tucker <tom@opengridcomputing.com>
6  */
7 
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/errno.h>
11 #include <linux/freezer.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <net/sock.h>
15 #include <linux/sunrpc/addr.h>
16 #include <linux/sunrpc/stats.h>
17 #include <linux/sunrpc/svc_xprt.h>
18 #include <linux/sunrpc/svcsock.h>
19 #include <linux/sunrpc/xprt.h>
20 #include <linux/module.h>
21 #include <linux/netdevice.h>
22 #include <trace/events/sunrpc.h>
23 
24 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
25 
26 static unsigned int svc_rpc_per_connection_limit __read_mostly;
27 module_param(svc_rpc_per_connection_limit, uint, 0644);
28 
29 
30 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
31 static int svc_deferred_recv(struct svc_rqst *rqstp);
32 static struct cache_deferred_req *svc_defer(struct cache_req *req);
33 static void svc_age_temp_xprts(struct timer_list *t);
34 static void svc_delete_xprt(struct svc_xprt *xprt);
35 
36 /* apparently the "standard" is that clients close
37  * idle connections after 5 minutes, servers after
38  * 6 minutes
39  *   http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
40  */
41 static int svc_conn_age_period = 6*60;
42 
43 /* List of registered transport classes */
44 static DEFINE_SPINLOCK(svc_xprt_class_lock);
45 static LIST_HEAD(svc_xprt_class_list);
46 
47 /* SMP locking strategy:
48  *
49  *	svc_pool->sp_lock protects most of the fields of that pool.
50  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
51  *	when both need to be taken (rare), svc_serv->sv_lock is first.
52  *	The "service mutex" protects svc_serv->sv_nrthread.
53  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
54  *             and the ->sk_info_authunix cache.
55  *
56  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
57  *	enqueued multiply. During normal transport processing this bit
58  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
59  *	Providers should not manipulate this bit directly.
60  *
61  *	Some flags can be set to certain values at any time
62  *	providing that certain rules are followed:
63  *
64  *	XPT_CONN, XPT_DATA:
65  *		- Can be set or cleared at any time.
66  *		- After a set, svc_xprt_enqueue must be called to enqueue
67  *		  the transport for processing.
68  *		- After a clear, the transport must be read/accepted.
69  *		  If this succeeds, it must be set again.
70  *	XPT_CLOSE:
71  *		- Can set at any time. It is never cleared.
72  *      XPT_DEAD:
73  *		- Can only be set while XPT_BUSY is held which ensures
74  *		  that no other thread will be using the transport or will
75  *		  try to set XPT_DEAD.
76  */
77 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
78 {
79 	struct svc_xprt_class *cl;
80 	int res = -EEXIST;
81 
82 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
83 
84 	INIT_LIST_HEAD(&xcl->xcl_list);
85 	spin_lock(&svc_xprt_class_lock);
86 	/* Make sure there isn't already a class with the same name */
87 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
88 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
89 			goto out;
90 	}
91 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
92 	res = 0;
93 out:
94 	spin_unlock(&svc_xprt_class_lock);
95 	return res;
96 }
97 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
98 
99 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
100 {
101 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
102 	spin_lock(&svc_xprt_class_lock);
103 	list_del_init(&xcl->xcl_list);
104 	spin_unlock(&svc_xprt_class_lock);
105 }
106 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
107 
108 /**
109  * svc_print_xprts - Format the transport list for printing
110  * @buf: target buffer for formatted address
111  * @maxlen: length of target buffer
112  *
113  * Fills in @buf with a string containing a list of transport names, each name
114  * terminated with '\n'. If the buffer is too small, some entries may be
115  * missing, but it is guaranteed that all lines in the output buffer are
116  * complete.
117  *
118  * Returns positive length of the filled-in string.
119  */
120 int svc_print_xprts(char *buf, int maxlen)
121 {
122 	struct svc_xprt_class *xcl;
123 	char tmpstr[80];
124 	int len = 0;
125 	buf[0] = '\0';
126 
127 	spin_lock(&svc_xprt_class_lock);
128 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
129 		int slen;
130 
131 		slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
132 				xcl->xcl_name, xcl->xcl_max_payload);
133 		if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
134 			break;
135 		len += slen;
136 		strcat(buf, tmpstr);
137 	}
138 	spin_unlock(&svc_xprt_class_lock);
139 
140 	return len;
141 }
142 
143 /**
144  * svc_xprt_deferred_close - Close a transport
145  * @xprt: transport instance
146  *
147  * Used in contexts that need to defer the work of shutting down
148  * the transport to an nfsd thread.
149  */
150 void svc_xprt_deferred_close(struct svc_xprt *xprt)
151 {
152 	if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags))
153 		svc_xprt_enqueue(xprt);
154 }
155 EXPORT_SYMBOL_GPL(svc_xprt_deferred_close);
156 
157 static void svc_xprt_free(struct kref *kref)
158 {
159 	struct svc_xprt *xprt =
160 		container_of(kref, struct svc_xprt, xpt_ref);
161 	struct module *owner = xprt->xpt_class->xcl_owner;
162 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
163 		svcauth_unix_info_release(xprt);
164 	put_cred(xprt->xpt_cred);
165 	put_net(xprt->xpt_net);
166 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
167 	if (xprt->xpt_bc_xprt)
168 		xprt_put(xprt->xpt_bc_xprt);
169 	if (xprt->xpt_bc_xps)
170 		xprt_switch_put(xprt->xpt_bc_xps);
171 	trace_svc_xprt_free(xprt);
172 	xprt->xpt_ops->xpo_free(xprt);
173 	module_put(owner);
174 }
175 
176 void svc_xprt_put(struct svc_xprt *xprt)
177 {
178 	kref_put(&xprt->xpt_ref, svc_xprt_free);
179 }
180 EXPORT_SYMBOL_GPL(svc_xprt_put);
181 
182 /*
183  * Called by transport drivers to initialize the transport independent
184  * portion of the transport instance.
185  */
186 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
187 		   struct svc_xprt *xprt, struct svc_serv *serv)
188 {
189 	memset(xprt, 0, sizeof(*xprt));
190 	xprt->xpt_class = xcl;
191 	xprt->xpt_ops = xcl->xcl_ops;
192 	kref_init(&xprt->xpt_ref);
193 	xprt->xpt_server = serv;
194 	INIT_LIST_HEAD(&xprt->xpt_list);
195 	INIT_LIST_HEAD(&xprt->xpt_ready);
196 	INIT_LIST_HEAD(&xprt->xpt_deferred);
197 	INIT_LIST_HEAD(&xprt->xpt_users);
198 	mutex_init(&xprt->xpt_mutex);
199 	spin_lock_init(&xprt->xpt_lock);
200 	set_bit(XPT_BUSY, &xprt->xpt_flags);
201 	xprt->xpt_net = get_net(net);
202 	strcpy(xprt->xpt_remotebuf, "uninitialized");
203 }
204 EXPORT_SYMBOL_GPL(svc_xprt_init);
205 
206 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
207 					 struct svc_serv *serv,
208 					 struct net *net,
209 					 const int family,
210 					 const unsigned short port,
211 					 int flags)
212 {
213 	struct sockaddr_in sin = {
214 		.sin_family		= AF_INET,
215 		.sin_addr.s_addr	= htonl(INADDR_ANY),
216 		.sin_port		= htons(port),
217 	};
218 #if IS_ENABLED(CONFIG_IPV6)
219 	struct sockaddr_in6 sin6 = {
220 		.sin6_family		= AF_INET6,
221 		.sin6_addr		= IN6ADDR_ANY_INIT,
222 		.sin6_port		= htons(port),
223 	};
224 #endif
225 	struct svc_xprt *xprt;
226 	struct sockaddr *sap;
227 	size_t len;
228 
229 	switch (family) {
230 	case PF_INET:
231 		sap = (struct sockaddr *)&sin;
232 		len = sizeof(sin);
233 		break;
234 #if IS_ENABLED(CONFIG_IPV6)
235 	case PF_INET6:
236 		sap = (struct sockaddr *)&sin6;
237 		len = sizeof(sin6);
238 		break;
239 #endif
240 	default:
241 		return ERR_PTR(-EAFNOSUPPORT);
242 	}
243 
244 	xprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
245 	if (IS_ERR(xprt))
246 		trace_svc_xprt_create_err(serv->sv_program->pg_name,
247 					  xcl->xcl_name, sap, len, xprt);
248 	return xprt;
249 }
250 
251 /**
252  * svc_xprt_received - start next receiver thread
253  * @xprt: controlling transport
254  *
255  * The caller must hold the XPT_BUSY bit and must
256  * not thereafter touch transport data.
257  *
258  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
259  * insufficient) data.
260  */
261 void svc_xprt_received(struct svc_xprt *xprt)
262 {
263 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
264 		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
265 		return;
266 	}
267 
268 	/* As soon as we clear busy, the xprt could be closed and
269 	 * 'put', so we need a reference to call svc_enqueue_xprt with:
270 	 */
271 	svc_xprt_get(xprt);
272 	smp_mb__before_atomic();
273 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
274 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
275 	svc_xprt_put(xprt);
276 }
277 EXPORT_SYMBOL_GPL(svc_xprt_received);
278 
279 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
280 {
281 	clear_bit(XPT_TEMP, &new->xpt_flags);
282 	spin_lock_bh(&serv->sv_lock);
283 	list_add(&new->xpt_list, &serv->sv_permsocks);
284 	spin_unlock_bh(&serv->sv_lock);
285 	svc_xprt_received(new);
286 }
287 
288 static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
289 			    struct net *net, const int family,
290 			    const unsigned short port, int flags,
291 			    const struct cred *cred)
292 {
293 	struct svc_xprt_class *xcl;
294 
295 	spin_lock(&svc_xprt_class_lock);
296 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
297 		struct svc_xprt *newxprt;
298 		unsigned short newport;
299 
300 		if (strcmp(xprt_name, xcl->xcl_name))
301 			continue;
302 
303 		if (!try_module_get(xcl->xcl_owner))
304 			goto err;
305 
306 		spin_unlock(&svc_xprt_class_lock);
307 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
308 		if (IS_ERR(newxprt)) {
309 			module_put(xcl->xcl_owner);
310 			return PTR_ERR(newxprt);
311 		}
312 		newxprt->xpt_cred = get_cred(cred);
313 		svc_add_new_perm_xprt(serv, newxprt);
314 		newport = svc_xprt_local_port(newxprt);
315 		return newport;
316 	}
317  err:
318 	spin_unlock(&svc_xprt_class_lock);
319 	/* This errno is exposed to user space.  Provide a reasonable
320 	 * perror msg for a bad transport. */
321 	return -EPROTONOSUPPORT;
322 }
323 
324 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
325 		    struct net *net, const int family,
326 		    const unsigned short port, int flags,
327 		    const struct cred *cred)
328 {
329 	int err;
330 
331 	err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred);
332 	if (err == -EPROTONOSUPPORT) {
333 		request_module("svc%s", xprt_name);
334 		err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred);
335 	}
336 	return err;
337 }
338 EXPORT_SYMBOL_GPL(svc_create_xprt);
339 
340 /*
341  * Copy the local and remote xprt addresses to the rqstp structure
342  */
343 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
344 {
345 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
346 	rqstp->rq_addrlen = xprt->xpt_remotelen;
347 
348 	/*
349 	 * Destination address in request is needed for binding the
350 	 * source address in RPC replies/callbacks later.
351 	 */
352 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
353 	rqstp->rq_daddrlen = xprt->xpt_locallen;
354 }
355 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
356 
357 /**
358  * svc_print_addr - Format rq_addr field for printing
359  * @rqstp: svc_rqst struct containing address to print
360  * @buf: target buffer for formatted address
361  * @len: length of target buffer
362  *
363  */
364 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
365 {
366 	return __svc_print_addr(svc_addr(rqstp), buf, len);
367 }
368 EXPORT_SYMBOL_GPL(svc_print_addr);
369 
370 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
371 {
372 	unsigned int limit = svc_rpc_per_connection_limit;
373 	int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
374 
375 	return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
376 }
377 
378 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
379 {
380 	if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
381 		if (!svc_xprt_slots_in_range(xprt))
382 			return false;
383 		atomic_inc(&xprt->xpt_nr_rqsts);
384 		set_bit(RQ_DATA, &rqstp->rq_flags);
385 	}
386 	return true;
387 }
388 
389 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
390 {
391 	struct svc_xprt	*xprt = rqstp->rq_xprt;
392 	if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
393 		atomic_dec(&xprt->xpt_nr_rqsts);
394 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
395 		svc_xprt_enqueue(xprt);
396 	}
397 }
398 
399 static bool svc_xprt_ready(struct svc_xprt *xprt)
400 {
401 	unsigned long xpt_flags;
402 
403 	/*
404 	 * If another cpu has recently updated xpt_flags,
405 	 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
406 	 * know about it; otherwise it's possible that both that cpu and
407 	 * this one could call svc_xprt_enqueue() without either
408 	 * svc_xprt_enqueue() recognizing that the conditions below
409 	 * are satisfied, and we could stall indefinitely:
410 	 */
411 	smp_rmb();
412 	xpt_flags = READ_ONCE(xprt->xpt_flags);
413 
414 	if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE)))
415 		return true;
416 	if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
417 		if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
418 		    svc_xprt_slots_in_range(xprt))
419 			return true;
420 		trace_svc_xprt_no_write_space(xprt);
421 		return false;
422 	}
423 	return false;
424 }
425 
426 void svc_xprt_do_enqueue(struct svc_xprt *xprt)
427 {
428 	struct svc_pool *pool;
429 	struct svc_rqst	*rqstp = NULL;
430 	int cpu;
431 
432 	if (!svc_xprt_ready(xprt))
433 		return;
434 
435 	/* Mark transport as busy. It will remain in this state until
436 	 * the provider calls svc_xprt_received. We update XPT_BUSY
437 	 * atomically because it also guards against trying to enqueue
438 	 * the transport twice.
439 	 */
440 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
441 		return;
442 
443 	cpu = get_cpu();
444 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
445 
446 	atomic_long_inc(&pool->sp_stats.packets);
447 
448 	spin_lock_bh(&pool->sp_lock);
449 	list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
450 	pool->sp_stats.sockets_queued++;
451 	spin_unlock_bh(&pool->sp_lock);
452 
453 	/* find a thread for this xprt */
454 	rcu_read_lock();
455 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
456 		if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
457 			continue;
458 		atomic_long_inc(&pool->sp_stats.threads_woken);
459 		rqstp->rq_qtime = ktime_get();
460 		wake_up_process(rqstp->rq_task);
461 		goto out_unlock;
462 	}
463 	set_bit(SP_CONGESTED, &pool->sp_flags);
464 	rqstp = NULL;
465 out_unlock:
466 	rcu_read_unlock();
467 	put_cpu();
468 	trace_svc_xprt_enqueue(xprt, rqstp);
469 }
470 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
471 
472 /*
473  * Queue up a transport with data pending. If there are idle nfsd
474  * processes, wake 'em up.
475  *
476  */
477 void svc_xprt_enqueue(struct svc_xprt *xprt)
478 {
479 	if (test_bit(XPT_BUSY, &xprt->xpt_flags))
480 		return;
481 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
482 }
483 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
484 
485 /*
486  * Dequeue the first transport, if there is one.
487  */
488 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
489 {
490 	struct svc_xprt	*xprt = NULL;
491 
492 	if (list_empty(&pool->sp_sockets))
493 		goto out;
494 
495 	spin_lock_bh(&pool->sp_lock);
496 	if (likely(!list_empty(&pool->sp_sockets))) {
497 		xprt = list_first_entry(&pool->sp_sockets,
498 					struct svc_xprt, xpt_ready);
499 		list_del_init(&xprt->xpt_ready);
500 		svc_xprt_get(xprt);
501 	}
502 	spin_unlock_bh(&pool->sp_lock);
503 out:
504 	return xprt;
505 }
506 
507 /**
508  * svc_reserve - change the space reserved for the reply to a request.
509  * @rqstp:  The request in question
510  * @space: new max space to reserve
511  *
512  * Each request reserves some space on the output queue of the transport
513  * to make sure the reply fits.  This function reduces that reserved
514  * space to be the amount of space used already, plus @space.
515  *
516  */
517 void svc_reserve(struct svc_rqst *rqstp, int space)
518 {
519 	struct svc_xprt *xprt = rqstp->rq_xprt;
520 
521 	space += rqstp->rq_res.head[0].iov_len;
522 
523 	if (xprt && space < rqstp->rq_reserved) {
524 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
525 		rqstp->rq_reserved = space;
526 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
527 		svc_xprt_enqueue(xprt);
528 	}
529 }
530 EXPORT_SYMBOL_GPL(svc_reserve);
531 
532 static void svc_xprt_release(struct svc_rqst *rqstp)
533 {
534 	struct svc_xprt	*xprt = rqstp->rq_xprt;
535 
536 	xprt->xpt_ops->xpo_release_rqst(rqstp);
537 
538 	kfree(rqstp->rq_deferred);
539 	rqstp->rq_deferred = NULL;
540 
541 	pagevec_release(&rqstp->rq_pvec);
542 	svc_free_res_pages(rqstp);
543 	rqstp->rq_res.page_len = 0;
544 	rqstp->rq_res.page_base = 0;
545 
546 	/* Reset response buffer and release
547 	 * the reservation.
548 	 * But first, check that enough space was reserved
549 	 * for the reply, otherwise we have a bug!
550 	 */
551 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
552 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
553 		       rqstp->rq_reserved,
554 		       rqstp->rq_res.len);
555 
556 	rqstp->rq_res.head[0].iov_len = 0;
557 	svc_reserve(rqstp, 0);
558 	svc_xprt_release_slot(rqstp);
559 	rqstp->rq_xprt = NULL;
560 	svc_xprt_put(xprt);
561 }
562 
563 /*
564  * Some svc_serv's will have occasional work to do, even when a xprt is not
565  * waiting to be serviced. This function is there to "kick" a task in one of
566  * those services so that it can wake up and do that work. Note that we only
567  * bother with pool 0 as we don't need to wake up more than one thread for
568  * this purpose.
569  */
570 void svc_wake_up(struct svc_serv *serv)
571 {
572 	struct svc_rqst	*rqstp;
573 	struct svc_pool *pool;
574 
575 	pool = &serv->sv_pools[0];
576 
577 	rcu_read_lock();
578 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
579 		/* skip any that aren't queued */
580 		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
581 			continue;
582 		rcu_read_unlock();
583 		wake_up_process(rqstp->rq_task);
584 		trace_svc_wake_up(rqstp->rq_task->pid);
585 		return;
586 	}
587 	rcu_read_unlock();
588 
589 	/* No free entries available */
590 	set_bit(SP_TASK_PENDING, &pool->sp_flags);
591 	smp_wmb();
592 	trace_svc_wake_up(0);
593 }
594 EXPORT_SYMBOL_GPL(svc_wake_up);
595 
596 int svc_port_is_privileged(struct sockaddr *sin)
597 {
598 	switch (sin->sa_family) {
599 	case AF_INET:
600 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
601 			< PROT_SOCK;
602 	case AF_INET6:
603 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
604 			< PROT_SOCK;
605 	default:
606 		return 0;
607 	}
608 }
609 
610 /*
611  * Make sure that we don't have too many active connections. If we have,
612  * something must be dropped. It's not clear what will happen if we allow
613  * "too many" connections, but when dealing with network-facing software,
614  * we have to code defensively. Here we do that by imposing hard limits.
615  *
616  * There's no point in trying to do random drop here for DoS
617  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
618  * attacker can easily beat that.
619  *
620  * The only somewhat efficient mechanism would be if drop old
621  * connections from the same IP first. But right now we don't even
622  * record the client IP in svc_sock.
623  *
624  * single-threaded services that expect a lot of clients will probably
625  * need to set sv_maxconn to override the default value which is based
626  * on the number of threads
627  */
628 static void svc_check_conn_limits(struct svc_serv *serv)
629 {
630 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
631 				(serv->sv_nrthreads+3) * 20;
632 
633 	if (serv->sv_tmpcnt > limit) {
634 		struct svc_xprt *xprt = NULL;
635 		spin_lock_bh(&serv->sv_lock);
636 		if (!list_empty(&serv->sv_tempsocks)) {
637 			/* Try to help the admin */
638 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
639 					       serv->sv_name, serv->sv_maxconn ?
640 					       "max number of connections" :
641 					       "number of threads");
642 			/*
643 			 * Always select the oldest connection. It's not fair,
644 			 * but so is life
645 			 */
646 			xprt = list_entry(serv->sv_tempsocks.prev,
647 					  struct svc_xprt,
648 					  xpt_list);
649 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
650 			svc_xprt_get(xprt);
651 		}
652 		spin_unlock_bh(&serv->sv_lock);
653 
654 		if (xprt) {
655 			svc_xprt_enqueue(xprt);
656 			svc_xprt_put(xprt);
657 		}
658 	}
659 }
660 
661 static int svc_alloc_arg(struct svc_rqst *rqstp)
662 {
663 	struct svc_serv *serv = rqstp->rq_server;
664 	struct xdr_buf *arg = &rqstp->rq_arg;
665 	unsigned long pages, filled, ret;
666 
667 	pagevec_init(&rqstp->rq_pvec);
668 
669 	pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
670 	if (pages > RPCSVC_MAXPAGES) {
671 		pr_warn_once("svc: warning: pages=%lu > RPCSVC_MAXPAGES=%lu\n",
672 			     pages, RPCSVC_MAXPAGES);
673 		/* use as many pages as possible */
674 		pages = RPCSVC_MAXPAGES;
675 	}
676 
677 	for (filled = 0; filled < pages; filled = ret) {
678 		ret = alloc_pages_bulk_array(GFP_KERNEL, pages,
679 					     rqstp->rq_pages);
680 		if (ret > filled)
681 			/* Made progress, don't sleep yet */
682 			continue;
683 
684 		set_current_state(TASK_INTERRUPTIBLE);
685 		if (signalled() || kthread_should_stop()) {
686 			set_current_state(TASK_RUNNING);
687 			return -EINTR;
688 		}
689 		trace_svc_alloc_arg_err(pages);
690 		memalloc_retry_wait(GFP_KERNEL);
691 	}
692 	rqstp->rq_page_end = &rqstp->rq_pages[pages];
693 	rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */
694 
695 	/* Make arg->head point to first page and arg->pages point to rest */
696 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
697 	arg->head[0].iov_len = PAGE_SIZE;
698 	arg->pages = rqstp->rq_pages + 1;
699 	arg->page_base = 0;
700 	/* save at least one page for response */
701 	arg->page_len = (pages-2)*PAGE_SIZE;
702 	arg->len = (pages-1)*PAGE_SIZE;
703 	arg->tail[0].iov_len = 0;
704 	return 0;
705 }
706 
707 static bool
708 rqst_should_sleep(struct svc_rqst *rqstp)
709 {
710 	struct svc_pool		*pool = rqstp->rq_pool;
711 
712 	/* did someone call svc_wake_up? */
713 	if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
714 		return false;
715 
716 	/* was a socket queued? */
717 	if (!list_empty(&pool->sp_sockets))
718 		return false;
719 
720 	/* are we shutting down? */
721 	if (signalled() || kthread_should_stop())
722 		return false;
723 
724 	/* are we freezing? */
725 	if (freezing(current))
726 		return false;
727 
728 	return true;
729 }
730 
731 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
732 {
733 	struct svc_pool		*pool = rqstp->rq_pool;
734 	long			time_left = 0;
735 
736 	/* rq_xprt should be clear on entry */
737 	WARN_ON_ONCE(rqstp->rq_xprt);
738 
739 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
740 	if (rqstp->rq_xprt)
741 		goto out_found;
742 
743 	/*
744 	 * We have to be able to interrupt this wait
745 	 * to bring down the daemons ...
746 	 */
747 	set_current_state(TASK_INTERRUPTIBLE);
748 	smp_mb__before_atomic();
749 	clear_bit(SP_CONGESTED, &pool->sp_flags);
750 	clear_bit(RQ_BUSY, &rqstp->rq_flags);
751 	smp_mb__after_atomic();
752 
753 	if (likely(rqst_should_sleep(rqstp)))
754 		time_left = schedule_timeout(timeout);
755 	else
756 		__set_current_state(TASK_RUNNING);
757 
758 	try_to_freeze();
759 
760 	set_bit(RQ_BUSY, &rqstp->rq_flags);
761 	smp_mb__after_atomic();
762 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
763 	if (rqstp->rq_xprt)
764 		goto out_found;
765 
766 	if (!time_left)
767 		atomic_long_inc(&pool->sp_stats.threads_timedout);
768 
769 	if (signalled() || kthread_should_stop())
770 		return ERR_PTR(-EINTR);
771 	return ERR_PTR(-EAGAIN);
772 out_found:
773 	/* Normally we will wait up to 5 seconds for any required
774 	 * cache information to be provided.
775 	 */
776 	if (!test_bit(SP_CONGESTED, &pool->sp_flags))
777 		rqstp->rq_chandle.thread_wait = 5*HZ;
778 	else
779 		rqstp->rq_chandle.thread_wait = 1*HZ;
780 	trace_svc_xprt_dequeue(rqstp);
781 	return rqstp->rq_xprt;
782 }
783 
784 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
785 {
786 	spin_lock_bh(&serv->sv_lock);
787 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
788 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
789 	serv->sv_tmpcnt++;
790 	if (serv->sv_temptimer.function == NULL) {
791 		/* setup timer to age temp transports */
792 		serv->sv_temptimer.function = svc_age_temp_xprts;
793 		mod_timer(&serv->sv_temptimer,
794 			  jiffies + svc_conn_age_period * HZ);
795 	}
796 	spin_unlock_bh(&serv->sv_lock);
797 	svc_xprt_received(newxpt);
798 }
799 
800 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
801 {
802 	struct svc_serv *serv = rqstp->rq_server;
803 	int len = 0;
804 
805 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
806 		if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
807 			xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
808 		svc_delete_xprt(xprt);
809 		/* Leave XPT_BUSY set on the dead xprt: */
810 		goto out;
811 	}
812 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
813 		struct svc_xprt *newxpt;
814 		/*
815 		 * We know this module_get will succeed because the
816 		 * listener holds a reference too
817 		 */
818 		__module_get(xprt->xpt_class->xcl_owner);
819 		svc_check_conn_limits(xprt->xpt_server);
820 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
821 		if (newxpt) {
822 			newxpt->xpt_cred = get_cred(xprt->xpt_cred);
823 			svc_add_new_temp_xprt(serv, newxpt);
824 			trace_svc_xprt_accept(newxpt, serv->sv_name);
825 		} else {
826 			module_put(xprt->xpt_class->xcl_owner);
827 		}
828 		svc_xprt_received(xprt);
829 	} else if (svc_xprt_reserve_slot(rqstp, xprt)) {
830 		/* XPT_DATA|XPT_DEFERRED case: */
831 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
832 			rqstp, rqstp->rq_pool->sp_id, xprt,
833 			kref_read(&xprt->xpt_ref));
834 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
835 		if (rqstp->rq_deferred)
836 			len = svc_deferred_recv(rqstp);
837 		else
838 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
839 		rqstp->rq_stime = ktime_get();
840 		rqstp->rq_reserved = serv->sv_max_mesg;
841 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
842 	} else
843 		svc_xprt_received(xprt);
844 
845 out:
846 	return len;
847 }
848 
849 /*
850  * Receive the next request on any transport.  This code is carefully
851  * organised not to touch any cachelines in the shared svc_serv
852  * structure, only cachelines in the local svc_pool.
853  */
854 int svc_recv(struct svc_rqst *rqstp, long timeout)
855 {
856 	struct svc_xprt		*xprt = NULL;
857 	struct svc_serv		*serv = rqstp->rq_server;
858 	int			len, err;
859 
860 	err = svc_alloc_arg(rqstp);
861 	if (err)
862 		goto out;
863 
864 	try_to_freeze();
865 	cond_resched();
866 	err = -EINTR;
867 	if (signalled() || kthread_should_stop())
868 		goto out;
869 
870 	xprt = svc_get_next_xprt(rqstp, timeout);
871 	if (IS_ERR(xprt)) {
872 		err = PTR_ERR(xprt);
873 		goto out;
874 	}
875 
876 	len = svc_handle_xprt(rqstp, xprt);
877 
878 	/* No data, incomplete (TCP) read, or accept() */
879 	err = -EAGAIN;
880 	if (len <= 0)
881 		goto out_release;
882 	trace_svc_xdr_recvfrom(&rqstp->rq_arg);
883 
884 	clear_bit(XPT_OLD, &xprt->xpt_flags);
885 
886 	xprt->xpt_ops->xpo_secure_port(rqstp);
887 	rqstp->rq_chandle.defer = svc_defer;
888 	rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
889 
890 	if (serv->sv_stats)
891 		serv->sv_stats->netcnt++;
892 	return len;
893 out_release:
894 	rqstp->rq_res.len = 0;
895 	svc_xprt_release(rqstp);
896 out:
897 	return err;
898 }
899 EXPORT_SYMBOL_GPL(svc_recv);
900 
901 /*
902  * Drop request
903  */
904 void svc_drop(struct svc_rqst *rqstp)
905 {
906 	trace_svc_drop(rqstp);
907 	svc_xprt_release(rqstp);
908 }
909 EXPORT_SYMBOL_GPL(svc_drop);
910 
911 /*
912  * Return reply to client.
913  */
914 int svc_send(struct svc_rqst *rqstp)
915 {
916 	struct svc_xprt	*xprt;
917 	int		len = -EFAULT;
918 	struct xdr_buf	*xb;
919 
920 	xprt = rqstp->rq_xprt;
921 	if (!xprt)
922 		goto out;
923 
924 	/* calculate over-all length */
925 	xb = &rqstp->rq_res;
926 	xb->len = xb->head[0].iov_len +
927 		xb->page_len +
928 		xb->tail[0].iov_len;
929 	trace_svc_xdr_sendto(rqstp->rq_xid, xb);
930 	trace_svc_stats_latency(rqstp);
931 
932 	len = xprt->xpt_ops->xpo_sendto(rqstp);
933 
934 	trace_svc_send(rqstp, len);
935 	svc_xprt_release(rqstp);
936 
937 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
938 		len = 0;
939 out:
940 	return len;
941 }
942 
943 /*
944  * Timer function to close old temporary transports, using
945  * a mark-and-sweep algorithm.
946  */
947 static void svc_age_temp_xprts(struct timer_list *t)
948 {
949 	struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
950 	struct svc_xprt *xprt;
951 	struct list_head *le, *next;
952 
953 	dprintk("svc_age_temp_xprts\n");
954 
955 	if (!spin_trylock_bh(&serv->sv_lock)) {
956 		/* busy, try again 1 sec later */
957 		dprintk("svc_age_temp_xprts: busy\n");
958 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
959 		return;
960 	}
961 
962 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
963 		xprt = list_entry(le, struct svc_xprt, xpt_list);
964 
965 		/* First time through, just mark it OLD. Second time
966 		 * through, close it. */
967 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
968 			continue;
969 		if (kref_read(&xprt->xpt_ref) > 1 ||
970 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
971 			continue;
972 		list_del_init(le);
973 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
974 		dprintk("queuing xprt %p for closing\n", xprt);
975 
976 		/* a thread will dequeue and close it soon */
977 		svc_xprt_enqueue(xprt);
978 	}
979 	spin_unlock_bh(&serv->sv_lock);
980 
981 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
982 }
983 
984 /* Close temporary transports whose xpt_local matches server_addr immediately
985  * instead of waiting for them to be picked up by the timer.
986  *
987  * This is meant to be called from a notifier_block that runs when an ip
988  * address is deleted.
989  */
990 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
991 {
992 	struct svc_xprt *xprt;
993 	struct list_head *le, *next;
994 	LIST_HEAD(to_be_closed);
995 
996 	spin_lock_bh(&serv->sv_lock);
997 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
998 		xprt = list_entry(le, struct svc_xprt, xpt_list);
999 		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
1000 				&xprt->xpt_local)) {
1001 			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
1002 			list_move(le, &to_be_closed);
1003 		}
1004 	}
1005 	spin_unlock_bh(&serv->sv_lock);
1006 
1007 	while (!list_empty(&to_be_closed)) {
1008 		le = to_be_closed.next;
1009 		list_del_init(le);
1010 		xprt = list_entry(le, struct svc_xprt, xpt_list);
1011 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1012 		set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
1013 		dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
1014 				xprt);
1015 		svc_xprt_enqueue(xprt);
1016 	}
1017 }
1018 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1019 
1020 static void call_xpt_users(struct svc_xprt *xprt)
1021 {
1022 	struct svc_xpt_user *u;
1023 
1024 	spin_lock(&xprt->xpt_lock);
1025 	while (!list_empty(&xprt->xpt_users)) {
1026 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1027 		list_del_init(&u->list);
1028 		u->callback(u);
1029 	}
1030 	spin_unlock(&xprt->xpt_lock);
1031 }
1032 
1033 /*
1034  * Remove a dead transport
1035  */
1036 static void svc_delete_xprt(struct svc_xprt *xprt)
1037 {
1038 	struct svc_serv	*serv = xprt->xpt_server;
1039 	struct svc_deferred_req *dr;
1040 
1041 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1042 		return;
1043 
1044 	trace_svc_xprt_detach(xprt);
1045 	xprt->xpt_ops->xpo_detach(xprt);
1046 	if (xprt->xpt_bc_xprt)
1047 		xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt);
1048 
1049 	spin_lock_bh(&serv->sv_lock);
1050 	list_del_init(&xprt->xpt_list);
1051 	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1052 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1053 		serv->sv_tmpcnt--;
1054 	spin_unlock_bh(&serv->sv_lock);
1055 
1056 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1057 		kfree(dr);
1058 
1059 	call_xpt_users(xprt);
1060 	svc_xprt_put(xprt);
1061 }
1062 
1063 void svc_close_xprt(struct svc_xprt *xprt)
1064 {
1065 	trace_svc_xprt_close(xprt);
1066 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1067 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1068 		/* someone else will have to effect the close */
1069 		return;
1070 	/*
1071 	 * We expect svc_close_xprt() to work even when no threads are
1072 	 * running (e.g., while configuring the server before starting
1073 	 * any threads), so if the transport isn't busy, we delete
1074 	 * it ourself:
1075 	 */
1076 	svc_delete_xprt(xprt);
1077 }
1078 EXPORT_SYMBOL_GPL(svc_close_xprt);
1079 
1080 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1081 {
1082 	struct svc_xprt *xprt;
1083 	int ret = 0;
1084 
1085 	spin_lock_bh(&serv->sv_lock);
1086 	list_for_each_entry(xprt, xprt_list, xpt_list) {
1087 		if (xprt->xpt_net != net)
1088 			continue;
1089 		ret++;
1090 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1091 		svc_xprt_enqueue(xprt);
1092 	}
1093 	spin_unlock_bh(&serv->sv_lock);
1094 	return ret;
1095 }
1096 
1097 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1098 {
1099 	struct svc_pool *pool;
1100 	struct svc_xprt *xprt;
1101 	struct svc_xprt *tmp;
1102 	int i;
1103 
1104 	for (i = 0; i < serv->sv_nrpools; i++) {
1105 		pool = &serv->sv_pools[i];
1106 
1107 		spin_lock_bh(&pool->sp_lock);
1108 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1109 			if (xprt->xpt_net != net)
1110 				continue;
1111 			list_del_init(&xprt->xpt_ready);
1112 			spin_unlock_bh(&pool->sp_lock);
1113 			return xprt;
1114 		}
1115 		spin_unlock_bh(&pool->sp_lock);
1116 	}
1117 	return NULL;
1118 }
1119 
1120 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1121 {
1122 	struct svc_xprt *xprt;
1123 
1124 	while ((xprt = svc_dequeue_net(serv, net))) {
1125 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1126 		svc_delete_xprt(xprt);
1127 	}
1128 }
1129 
1130 /*
1131  * Server threads may still be running (especially in the case where the
1132  * service is still running in other network namespaces).
1133  *
1134  * So we shut down sockets the same way we would on a running server, by
1135  * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1136  * the close.  In the case there are no such other threads,
1137  * threads running, svc_clean_up_xprts() does a simple version of a
1138  * server's main event loop, and in the case where there are other
1139  * threads, we may need to wait a little while and then check again to
1140  * see if they're done.
1141  */
1142 void svc_close_net(struct svc_serv *serv, struct net *net)
1143 {
1144 	int delay = 0;
1145 
1146 	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1147 	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1148 
1149 		svc_clean_up_xprts(serv, net);
1150 		msleep(delay++);
1151 	}
1152 }
1153 
1154 /*
1155  * Handle defer and revisit of requests
1156  */
1157 
1158 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1159 {
1160 	struct svc_deferred_req *dr =
1161 		container_of(dreq, struct svc_deferred_req, handle);
1162 	struct svc_xprt *xprt = dr->xprt;
1163 
1164 	spin_lock(&xprt->xpt_lock);
1165 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1166 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1167 		spin_unlock(&xprt->xpt_lock);
1168 		trace_svc_defer_drop(dr);
1169 		svc_xprt_put(xprt);
1170 		kfree(dr);
1171 		return;
1172 	}
1173 	dr->xprt = NULL;
1174 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1175 	spin_unlock(&xprt->xpt_lock);
1176 	trace_svc_defer_queue(dr);
1177 	svc_xprt_enqueue(xprt);
1178 	svc_xprt_put(xprt);
1179 }
1180 
1181 /*
1182  * Save the request off for later processing. The request buffer looks
1183  * like this:
1184  *
1185  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1186  *
1187  * This code can only handle requests that consist of an xprt-header
1188  * and rpc-header.
1189  */
1190 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1191 {
1192 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1193 	struct svc_deferred_req *dr;
1194 
1195 	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1196 		return NULL; /* if more than a page, give up FIXME */
1197 	if (rqstp->rq_deferred) {
1198 		dr = rqstp->rq_deferred;
1199 		rqstp->rq_deferred = NULL;
1200 	} else {
1201 		size_t skip;
1202 		size_t size;
1203 		/* FIXME maybe discard if size too large */
1204 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1205 		dr = kmalloc(size, GFP_KERNEL);
1206 		if (dr == NULL)
1207 			return NULL;
1208 
1209 		dr->handle.owner = rqstp->rq_server;
1210 		dr->prot = rqstp->rq_prot;
1211 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1212 		dr->addrlen = rqstp->rq_addrlen;
1213 		dr->daddr = rqstp->rq_daddr;
1214 		dr->argslen = rqstp->rq_arg.len >> 2;
1215 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1216 
1217 		/* back up head to the start of the buffer and copy */
1218 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1219 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1220 		       dr->argslen << 2);
1221 	}
1222 	trace_svc_defer(rqstp);
1223 	svc_xprt_get(rqstp->rq_xprt);
1224 	dr->xprt = rqstp->rq_xprt;
1225 	set_bit(RQ_DROPME, &rqstp->rq_flags);
1226 
1227 	dr->handle.revisit = svc_revisit;
1228 	return &dr->handle;
1229 }
1230 
1231 /*
1232  * recv data from a deferred request into an active one
1233  */
1234 static noinline int svc_deferred_recv(struct svc_rqst *rqstp)
1235 {
1236 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1237 
1238 	trace_svc_defer_recv(dr);
1239 
1240 	/* setup iov_base past transport header */
1241 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1242 	/* The iov_len does not include the transport header bytes */
1243 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1244 	rqstp->rq_arg.page_len = 0;
1245 	/* The rq_arg.len includes the transport header bytes */
1246 	rqstp->rq_arg.len     = dr->argslen<<2;
1247 	rqstp->rq_prot        = dr->prot;
1248 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1249 	rqstp->rq_addrlen     = dr->addrlen;
1250 	/* Save off transport header len in case we get deferred again */
1251 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1252 	rqstp->rq_daddr       = dr->daddr;
1253 	rqstp->rq_respages    = rqstp->rq_pages;
1254 	svc_xprt_received(rqstp->rq_xprt);
1255 	return (dr->argslen<<2) - dr->xprt_hlen;
1256 }
1257 
1258 
1259 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1260 {
1261 	struct svc_deferred_req *dr = NULL;
1262 
1263 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1264 		return NULL;
1265 	spin_lock(&xprt->xpt_lock);
1266 	if (!list_empty(&xprt->xpt_deferred)) {
1267 		dr = list_entry(xprt->xpt_deferred.next,
1268 				struct svc_deferred_req,
1269 				handle.recent);
1270 		list_del_init(&dr->handle.recent);
1271 	} else
1272 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1273 	spin_unlock(&xprt->xpt_lock);
1274 	return dr;
1275 }
1276 
1277 /**
1278  * svc_find_xprt - find an RPC transport instance
1279  * @serv: pointer to svc_serv to search
1280  * @xcl_name: C string containing transport's class name
1281  * @net: owner net pointer
1282  * @af: Address family of transport's local address
1283  * @port: transport's IP port number
1284  *
1285  * Return the transport instance pointer for the endpoint accepting
1286  * connections/peer traffic from the specified transport class,
1287  * address family and port.
1288  *
1289  * Specifying 0 for the address family or port is effectively a
1290  * wild-card, and will result in matching the first transport in the
1291  * service's list that has a matching class name.
1292  */
1293 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1294 			       struct net *net, const sa_family_t af,
1295 			       const unsigned short port)
1296 {
1297 	struct svc_xprt *xprt;
1298 	struct svc_xprt *found = NULL;
1299 
1300 	/* Sanity check the args */
1301 	if (serv == NULL || xcl_name == NULL)
1302 		return found;
1303 
1304 	spin_lock_bh(&serv->sv_lock);
1305 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1306 		if (xprt->xpt_net != net)
1307 			continue;
1308 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1309 			continue;
1310 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1311 			continue;
1312 		if (port != 0 && port != svc_xprt_local_port(xprt))
1313 			continue;
1314 		found = xprt;
1315 		svc_xprt_get(xprt);
1316 		break;
1317 	}
1318 	spin_unlock_bh(&serv->sv_lock);
1319 	return found;
1320 }
1321 EXPORT_SYMBOL_GPL(svc_find_xprt);
1322 
1323 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1324 			     char *pos, int remaining)
1325 {
1326 	int len;
1327 
1328 	len = snprintf(pos, remaining, "%s %u\n",
1329 			xprt->xpt_class->xcl_name,
1330 			svc_xprt_local_port(xprt));
1331 	if (len >= remaining)
1332 		return -ENAMETOOLONG;
1333 	return len;
1334 }
1335 
1336 /**
1337  * svc_xprt_names - format a buffer with a list of transport names
1338  * @serv: pointer to an RPC service
1339  * @buf: pointer to a buffer to be filled in
1340  * @buflen: length of buffer to be filled in
1341  *
1342  * Fills in @buf with a string containing a list of transport names,
1343  * each name terminated with '\n'.
1344  *
1345  * Returns positive length of the filled-in string on success; otherwise
1346  * a negative errno value is returned if an error occurs.
1347  */
1348 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1349 {
1350 	struct svc_xprt *xprt;
1351 	int len, totlen;
1352 	char *pos;
1353 
1354 	/* Sanity check args */
1355 	if (!serv)
1356 		return 0;
1357 
1358 	spin_lock_bh(&serv->sv_lock);
1359 
1360 	pos = buf;
1361 	totlen = 0;
1362 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1363 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1364 		if (len < 0) {
1365 			*buf = '\0';
1366 			totlen = len;
1367 		}
1368 		if (len <= 0)
1369 			break;
1370 
1371 		pos += len;
1372 		totlen += len;
1373 	}
1374 
1375 	spin_unlock_bh(&serv->sv_lock);
1376 	return totlen;
1377 }
1378 EXPORT_SYMBOL_GPL(svc_xprt_names);
1379 
1380 
1381 /*----------------------------------------------------------------------------*/
1382 
1383 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1384 {
1385 	unsigned int pidx = (unsigned int)*pos;
1386 	struct svc_serv *serv = m->private;
1387 
1388 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1389 
1390 	if (!pidx)
1391 		return SEQ_START_TOKEN;
1392 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1393 }
1394 
1395 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1396 {
1397 	struct svc_pool *pool = p;
1398 	struct svc_serv *serv = m->private;
1399 
1400 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1401 
1402 	if (p == SEQ_START_TOKEN) {
1403 		pool = &serv->sv_pools[0];
1404 	} else {
1405 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1406 		if (pidx < serv->sv_nrpools-1)
1407 			pool = &serv->sv_pools[pidx+1];
1408 		else
1409 			pool = NULL;
1410 	}
1411 	++*pos;
1412 	return pool;
1413 }
1414 
1415 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1416 {
1417 }
1418 
1419 static int svc_pool_stats_show(struct seq_file *m, void *p)
1420 {
1421 	struct svc_pool *pool = p;
1422 
1423 	if (p == SEQ_START_TOKEN) {
1424 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1425 		return 0;
1426 	}
1427 
1428 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1429 		pool->sp_id,
1430 		(unsigned long)atomic_long_read(&pool->sp_stats.packets),
1431 		pool->sp_stats.sockets_queued,
1432 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1433 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1434 
1435 	return 0;
1436 }
1437 
1438 static const struct seq_operations svc_pool_stats_seq_ops = {
1439 	.start	= svc_pool_stats_start,
1440 	.next	= svc_pool_stats_next,
1441 	.stop	= svc_pool_stats_stop,
1442 	.show	= svc_pool_stats_show,
1443 };
1444 
1445 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1446 {
1447 	int err;
1448 
1449 	err = seq_open(file, &svc_pool_stats_seq_ops);
1450 	if (!err)
1451 		((struct seq_file *) file->private_data)->private = serv;
1452 	return err;
1453 }
1454 EXPORT_SYMBOL(svc_pool_stats_open);
1455 
1456 /*----------------------------------------------------------------------------*/
1457