xref: /linux/net/sunrpc/svc_xprt.c (revision 883b4aee4dec64bc807a7dda4651c6a5efe9a74d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/svc_xprt.c
4  *
5  * Author: Tom Tucker <tom@opengridcomputing.com>
6  */
7 
8 #include <linux/sched.h>
9 #include <linux/errno.h>
10 #include <linux/freezer.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <net/sock.h>
14 #include <linux/sunrpc/addr.h>
15 #include <linux/sunrpc/stats.h>
16 #include <linux/sunrpc/svc_xprt.h>
17 #include <linux/sunrpc/svcsock.h>
18 #include <linux/sunrpc/xprt.h>
19 #include <linux/module.h>
20 #include <linux/netdevice.h>
21 #include <trace/events/sunrpc.h>
22 
23 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
24 
25 static unsigned int svc_rpc_per_connection_limit __read_mostly;
26 module_param(svc_rpc_per_connection_limit, uint, 0644);
27 
28 
29 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
30 static int svc_deferred_recv(struct svc_rqst *rqstp);
31 static struct cache_deferred_req *svc_defer(struct cache_req *req);
32 static void svc_age_temp_xprts(struct timer_list *t);
33 static void svc_delete_xprt(struct svc_xprt *xprt);
34 
35 /* apparently the "standard" is that clients close
36  * idle connections after 5 minutes, servers after
37  * 6 minutes
38  *   http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
39  */
40 static int svc_conn_age_period = 6*60;
41 
42 /* List of registered transport classes */
43 static DEFINE_SPINLOCK(svc_xprt_class_lock);
44 static LIST_HEAD(svc_xprt_class_list);
45 
46 /* SMP locking strategy:
47  *
48  *	svc_pool->sp_lock protects most of the fields of that pool.
49  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
50  *	when both need to be taken (rare), svc_serv->sv_lock is first.
51  *	The "service mutex" protects svc_serv->sv_nrthread.
52  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
53  *             and the ->sk_info_authunix cache.
54  *
55  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
56  *	enqueued multiply. During normal transport processing this bit
57  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
58  *	Providers should not manipulate this bit directly.
59  *
60  *	Some flags can be set to certain values at any time
61  *	providing that certain rules are followed:
62  *
63  *	XPT_CONN, XPT_DATA:
64  *		- Can be set or cleared at any time.
65  *		- After a set, svc_xprt_enqueue must be called to enqueue
66  *		  the transport for processing.
67  *		- After a clear, the transport must be read/accepted.
68  *		  If this succeeds, it must be set again.
69  *	XPT_CLOSE:
70  *		- Can set at any time. It is never cleared.
71  *      XPT_DEAD:
72  *		- Can only be set while XPT_BUSY is held which ensures
73  *		  that no other thread will be using the transport or will
74  *		  try to set XPT_DEAD.
75  */
76 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
77 {
78 	struct svc_xprt_class *cl;
79 	int res = -EEXIST;
80 
81 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
82 
83 	INIT_LIST_HEAD(&xcl->xcl_list);
84 	spin_lock(&svc_xprt_class_lock);
85 	/* Make sure there isn't already a class with the same name */
86 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
87 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
88 			goto out;
89 	}
90 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
91 	res = 0;
92 out:
93 	spin_unlock(&svc_xprt_class_lock);
94 	return res;
95 }
96 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
97 
98 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
99 {
100 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
101 	spin_lock(&svc_xprt_class_lock);
102 	list_del_init(&xcl->xcl_list);
103 	spin_unlock(&svc_xprt_class_lock);
104 }
105 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
106 
107 /**
108  * svc_print_xprts - Format the transport list for printing
109  * @buf: target buffer for formatted address
110  * @maxlen: length of target buffer
111  *
112  * Fills in @buf with a string containing a list of transport names, each name
113  * terminated with '\n'. If the buffer is too small, some entries may be
114  * missing, but it is guaranteed that all lines in the output buffer are
115  * complete.
116  *
117  * Returns positive length of the filled-in string.
118  */
119 int svc_print_xprts(char *buf, int maxlen)
120 {
121 	struct svc_xprt_class *xcl;
122 	char tmpstr[80];
123 	int len = 0;
124 	buf[0] = '\0';
125 
126 	spin_lock(&svc_xprt_class_lock);
127 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
128 		int slen;
129 
130 		slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
131 				xcl->xcl_name, xcl->xcl_max_payload);
132 		if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
133 			break;
134 		len += slen;
135 		strcat(buf, tmpstr);
136 	}
137 	spin_unlock(&svc_xprt_class_lock);
138 
139 	return len;
140 }
141 
142 /**
143  * svc_xprt_deferred_close - Close a transport
144  * @xprt: transport instance
145  *
146  * Used in contexts that need to defer the work of shutting down
147  * the transport to an nfsd thread.
148  */
149 void svc_xprt_deferred_close(struct svc_xprt *xprt)
150 {
151 	if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags))
152 		svc_xprt_enqueue(xprt);
153 }
154 EXPORT_SYMBOL_GPL(svc_xprt_deferred_close);
155 
156 static void svc_xprt_free(struct kref *kref)
157 {
158 	struct svc_xprt *xprt =
159 		container_of(kref, struct svc_xprt, xpt_ref);
160 	struct module *owner = xprt->xpt_class->xcl_owner;
161 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
162 		svcauth_unix_info_release(xprt);
163 	put_cred(xprt->xpt_cred);
164 	put_net(xprt->xpt_net);
165 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
166 	if (xprt->xpt_bc_xprt)
167 		xprt_put(xprt->xpt_bc_xprt);
168 	if (xprt->xpt_bc_xps)
169 		xprt_switch_put(xprt->xpt_bc_xps);
170 	trace_svc_xprt_free(xprt);
171 	xprt->xpt_ops->xpo_free(xprt);
172 	module_put(owner);
173 }
174 
175 void svc_xprt_put(struct svc_xprt *xprt)
176 {
177 	kref_put(&xprt->xpt_ref, svc_xprt_free);
178 }
179 EXPORT_SYMBOL_GPL(svc_xprt_put);
180 
181 /*
182  * Called by transport drivers to initialize the transport independent
183  * portion of the transport instance.
184  */
185 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
186 		   struct svc_xprt *xprt, struct svc_serv *serv)
187 {
188 	memset(xprt, 0, sizeof(*xprt));
189 	xprt->xpt_class = xcl;
190 	xprt->xpt_ops = xcl->xcl_ops;
191 	kref_init(&xprt->xpt_ref);
192 	xprt->xpt_server = serv;
193 	INIT_LIST_HEAD(&xprt->xpt_list);
194 	INIT_LIST_HEAD(&xprt->xpt_ready);
195 	INIT_LIST_HEAD(&xprt->xpt_deferred);
196 	INIT_LIST_HEAD(&xprt->xpt_users);
197 	mutex_init(&xprt->xpt_mutex);
198 	spin_lock_init(&xprt->xpt_lock);
199 	set_bit(XPT_BUSY, &xprt->xpt_flags);
200 	xprt->xpt_net = get_net(net);
201 	strcpy(xprt->xpt_remotebuf, "uninitialized");
202 }
203 EXPORT_SYMBOL_GPL(svc_xprt_init);
204 
205 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
206 					 struct svc_serv *serv,
207 					 struct net *net,
208 					 const int family,
209 					 const unsigned short port,
210 					 int flags)
211 {
212 	struct sockaddr_in sin = {
213 		.sin_family		= AF_INET,
214 		.sin_addr.s_addr	= htonl(INADDR_ANY),
215 		.sin_port		= htons(port),
216 	};
217 #if IS_ENABLED(CONFIG_IPV6)
218 	struct sockaddr_in6 sin6 = {
219 		.sin6_family		= AF_INET6,
220 		.sin6_addr		= IN6ADDR_ANY_INIT,
221 		.sin6_port		= htons(port),
222 	};
223 #endif
224 	struct svc_xprt *xprt;
225 	struct sockaddr *sap;
226 	size_t len;
227 
228 	switch (family) {
229 	case PF_INET:
230 		sap = (struct sockaddr *)&sin;
231 		len = sizeof(sin);
232 		break;
233 #if IS_ENABLED(CONFIG_IPV6)
234 	case PF_INET6:
235 		sap = (struct sockaddr *)&sin6;
236 		len = sizeof(sin6);
237 		break;
238 #endif
239 	default:
240 		return ERR_PTR(-EAFNOSUPPORT);
241 	}
242 
243 	xprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
244 	if (IS_ERR(xprt))
245 		trace_svc_xprt_create_err(serv->sv_program->pg_name,
246 					  xcl->xcl_name, sap, xprt);
247 	return xprt;
248 }
249 
250 /**
251  * svc_xprt_received - start next receiver thread
252  * @xprt: controlling transport
253  *
254  * The caller must hold the XPT_BUSY bit and must
255  * not thereafter touch transport data.
256  *
257  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
258  * insufficient) data.
259  */
260 void svc_xprt_received(struct svc_xprt *xprt)
261 {
262 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
263 		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
264 		return;
265 	}
266 
267 	trace_svc_xprt_received(xprt);
268 
269 	/* As soon as we clear busy, the xprt could be closed and
270 	 * 'put', so we need a reference to call svc_enqueue_xprt with:
271 	 */
272 	svc_xprt_get(xprt);
273 	smp_mb__before_atomic();
274 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
275 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
276 	svc_xprt_put(xprt);
277 }
278 EXPORT_SYMBOL_GPL(svc_xprt_received);
279 
280 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
281 {
282 	clear_bit(XPT_TEMP, &new->xpt_flags);
283 	spin_lock_bh(&serv->sv_lock);
284 	list_add(&new->xpt_list, &serv->sv_permsocks);
285 	spin_unlock_bh(&serv->sv_lock);
286 	svc_xprt_received(new);
287 }
288 
289 static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
290 			    struct net *net, const int family,
291 			    const unsigned short port, int flags,
292 			    const struct cred *cred)
293 {
294 	struct svc_xprt_class *xcl;
295 
296 	spin_lock(&svc_xprt_class_lock);
297 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
298 		struct svc_xprt *newxprt;
299 		unsigned short newport;
300 
301 		if (strcmp(xprt_name, xcl->xcl_name))
302 			continue;
303 
304 		if (!try_module_get(xcl->xcl_owner))
305 			goto err;
306 
307 		spin_unlock(&svc_xprt_class_lock);
308 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
309 		if (IS_ERR(newxprt)) {
310 			module_put(xcl->xcl_owner);
311 			return PTR_ERR(newxprt);
312 		}
313 		newxprt->xpt_cred = get_cred(cred);
314 		svc_add_new_perm_xprt(serv, newxprt);
315 		newport = svc_xprt_local_port(newxprt);
316 		return newport;
317 	}
318  err:
319 	spin_unlock(&svc_xprt_class_lock);
320 	/* This errno is exposed to user space.  Provide a reasonable
321 	 * perror msg for a bad transport. */
322 	return -EPROTONOSUPPORT;
323 }
324 
325 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
326 		    struct net *net, const int family,
327 		    const unsigned short port, int flags,
328 		    const struct cred *cred)
329 {
330 	int err;
331 
332 	err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred);
333 	if (err == -EPROTONOSUPPORT) {
334 		request_module("svc%s", xprt_name);
335 		err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred);
336 	}
337 	return err;
338 }
339 EXPORT_SYMBOL_GPL(svc_create_xprt);
340 
341 /*
342  * Copy the local and remote xprt addresses to the rqstp structure
343  */
344 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
345 {
346 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
347 	rqstp->rq_addrlen = xprt->xpt_remotelen;
348 
349 	/*
350 	 * Destination address in request is needed for binding the
351 	 * source address in RPC replies/callbacks later.
352 	 */
353 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
354 	rqstp->rq_daddrlen = xprt->xpt_locallen;
355 }
356 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
357 
358 /**
359  * svc_print_addr - Format rq_addr field for printing
360  * @rqstp: svc_rqst struct containing address to print
361  * @buf: target buffer for formatted address
362  * @len: length of target buffer
363  *
364  */
365 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
366 {
367 	return __svc_print_addr(svc_addr(rqstp), buf, len);
368 }
369 EXPORT_SYMBOL_GPL(svc_print_addr);
370 
371 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
372 {
373 	unsigned int limit = svc_rpc_per_connection_limit;
374 	int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
375 
376 	return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
377 }
378 
379 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
380 {
381 	if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
382 		if (!svc_xprt_slots_in_range(xprt))
383 			return false;
384 		atomic_inc(&xprt->xpt_nr_rqsts);
385 		set_bit(RQ_DATA, &rqstp->rq_flags);
386 	}
387 	return true;
388 }
389 
390 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
391 {
392 	struct svc_xprt	*xprt = rqstp->rq_xprt;
393 	if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
394 		atomic_dec(&xprt->xpt_nr_rqsts);
395 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
396 		svc_xprt_enqueue(xprt);
397 	}
398 }
399 
400 static bool svc_xprt_ready(struct svc_xprt *xprt)
401 {
402 	unsigned long xpt_flags;
403 
404 	/*
405 	 * If another cpu has recently updated xpt_flags,
406 	 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
407 	 * know about it; otherwise it's possible that both that cpu and
408 	 * this one could call svc_xprt_enqueue() without either
409 	 * svc_xprt_enqueue() recognizing that the conditions below
410 	 * are satisfied, and we could stall indefinitely:
411 	 */
412 	smp_rmb();
413 	xpt_flags = READ_ONCE(xprt->xpt_flags);
414 
415 	if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE)))
416 		return true;
417 	if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
418 		if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
419 		    svc_xprt_slots_in_range(xprt))
420 			return true;
421 		trace_svc_xprt_no_write_space(xprt);
422 		return false;
423 	}
424 	return false;
425 }
426 
427 void svc_xprt_do_enqueue(struct svc_xprt *xprt)
428 {
429 	struct svc_pool *pool;
430 	struct svc_rqst	*rqstp = NULL;
431 	int cpu;
432 
433 	if (!svc_xprt_ready(xprt))
434 		return;
435 
436 	/* Mark transport as busy. It will remain in this state until
437 	 * the provider calls svc_xprt_received. We update XPT_BUSY
438 	 * atomically because it also guards against trying to enqueue
439 	 * the transport twice.
440 	 */
441 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
442 		return;
443 
444 	cpu = get_cpu();
445 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
446 
447 	atomic_long_inc(&pool->sp_stats.packets);
448 
449 	spin_lock_bh(&pool->sp_lock);
450 	list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
451 	pool->sp_stats.sockets_queued++;
452 	spin_unlock_bh(&pool->sp_lock);
453 
454 	/* find a thread for this xprt */
455 	rcu_read_lock();
456 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
457 		if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
458 			continue;
459 		atomic_long_inc(&pool->sp_stats.threads_woken);
460 		rqstp->rq_qtime = ktime_get();
461 		wake_up_process(rqstp->rq_task);
462 		goto out_unlock;
463 	}
464 	set_bit(SP_CONGESTED, &pool->sp_flags);
465 	rqstp = NULL;
466 out_unlock:
467 	rcu_read_unlock();
468 	put_cpu();
469 	trace_svc_xprt_do_enqueue(xprt, rqstp);
470 }
471 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
472 
473 /*
474  * Queue up a transport with data pending. If there are idle nfsd
475  * processes, wake 'em up.
476  *
477  */
478 void svc_xprt_enqueue(struct svc_xprt *xprt)
479 {
480 	if (test_bit(XPT_BUSY, &xprt->xpt_flags))
481 		return;
482 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
483 }
484 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
485 
486 /*
487  * Dequeue the first transport, if there is one.
488  */
489 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
490 {
491 	struct svc_xprt	*xprt = NULL;
492 
493 	if (list_empty(&pool->sp_sockets))
494 		goto out;
495 
496 	spin_lock_bh(&pool->sp_lock);
497 	if (likely(!list_empty(&pool->sp_sockets))) {
498 		xprt = list_first_entry(&pool->sp_sockets,
499 					struct svc_xprt, xpt_ready);
500 		list_del_init(&xprt->xpt_ready);
501 		svc_xprt_get(xprt);
502 	}
503 	spin_unlock_bh(&pool->sp_lock);
504 out:
505 	return xprt;
506 }
507 
508 /**
509  * svc_reserve - change the space reserved for the reply to a request.
510  * @rqstp:  The request in question
511  * @space: new max space to reserve
512  *
513  * Each request reserves some space on the output queue of the transport
514  * to make sure the reply fits.  This function reduces that reserved
515  * space to be the amount of space used already, plus @space.
516  *
517  */
518 void svc_reserve(struct svc_rqst *rqstp, int space)
519 {
520 	struct svc_xprt *xprt = rqstp->rq_xprt;
521 
522 	space += rqstp->rq_res.head[0].iov_len;
523 
524 	if (xprt && space < rqstp->rq_reserved) {
525 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
526 		rqstp->rq_reserved = space;
527 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
528 		svc_xprt_enqueue(xprt);
529 	}
530 }
531 EXPORT_SYMBOL_GPL(svc_reserve);
532 
533 static void svc_xprt_release(struct svc_rqst *rqstp)
534 {
535 	struct svc_xprt	*xprt = rqstp->rq_xprt;
536 
537 	xprt->xpt_ops->xpo_release_rqst(rqstp);
538 
539 	kfree(rqstp->rq_deferred);
540 	rqstp->rq_deferred = NULL;
541 
542 	pagevec_release(&rqstp->rq_pvec);
543 	svc_free_res_pages(rqstp);
544 	rqstp->rq_res.page_len = 0;
545 	rqstp->rq_res.page_base = 0;
546 
547 	/* Reset response buffer and release
548 	 * the reservation.
549 	 * But first, check that enough space was reserved
550 	 * for the reply, otherwise we have a bug!
551 	 */
552 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
553 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
554 		       rqstp->rq_reserved,
555 		       rqstp->rq_res.len);
556 
557 	rqstp->rq_res.head[0].iov_len = 0;
558 	svc_reserve(rqstp, 0);
559 	svc_xprt_release_slot(rqstp);
560 	rqstp->rq_xprt = NULL;
561 	svc_xprt_put(xprt);
562 }
563 
564 /*
565  * Some svc_serv's will have occasional work to do, even when a xprt is not
566  * waiting to be serviced. This function is there to "kick" a task in one of
567  * those services so that it can wake up and do that work. Note that we only
568  * bother with pool 0 as we don't need to wake up more than one thread for
569  * this purpose.
570  */
571 void svc_wake_up(struct svc_serv *serv)
572 {
573 	struct svc_rqst	*rqstp;
574 	struct svc_pool *pool;
575 
576 	pool = &serv->sv_pools[0];
577 
578 	rcu_read_lock();
579 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
580 		/* skip any that aren't queued */
581 		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
582 			continue;
583 		rcu_read_unlock();
584 		wake_up_process(rqstp->rq_task);
585 		trace_svc_wake_up(rqstp->rq_task->pid);
586 		return;
587 	}
588 	rcu_read_unlock();
589 
590 	/* No free entries available */
591 	set_bit(SP_TASK_PENDING, &pool->sp_flags);
592 	smp_wmb();
593 	trace_svc_wake_up(0);
594 }
595 EXPORT_SYMBOL_GPL(svc_wake_up);
596 
597 int svc_port_is_privileged(struct sockaddr *sin)
598 {
599 	switch (sin->sa_family) {
600 	case AF_INET:
601 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
602 			< PROT_SOCK;
603 	case AF_INET6:
604 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
605 			< PROT_SOCK;
606 	default:
607 		return 0;
608 	}
609 }
610 
611 /*
612  * Make sure that we don't have too many active connections. If we have,
613  * something must be dropped. It's not clear what will happen if we allow
614  * "too many" connections, but when dealing with network-facing software,
615  * we have to code defensively. Here we do that by imposing hard limits.
616  *
617  * There's no point in trying to do random drop here for DoS
618  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
619  * attacker can easily beat that.
620  *
621  * The only somewhat efficient mechanism would be if drop old
622  * connections from the same IP first. But right now we don't even
623  * record the client IP in svc_sock.
624  *
625  * single-threaded services that expect a lot of clients will probably
626  * need to set sv_maxconn to override the default value which is based
627  * on the number of threads
628  */
629 static void svc_check_conn_limits(struct svc_serv *serv)
630 {
631 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
632 				(serv->sv_nrthreads+3) * 20;
633 
634 	if (serv->sv_tmpcnt > limit) {
635 		struct svc_xprt *xprt = NULL;
636 		spin_lock_bh(&serv->sv_lock);
637 		if (!list_empty(&serv->sv_tempsocks)) {
638 			/* Try to help the admin */
639 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
640 					       serv->sv_name, serv->sv_maxconn ?
641 					       "max number of connections" :
642 					       "number of threads");
643 			/*
644 			 * Always select the oldest connection. It's not fair,
645 			 * but so is life
646 			 */
647 			xprt = list_entry(serv->sv_tempsocks.prev,
648 					  struct svc_xprt,
649 					  xpt_list);
650 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
651 			svc_xprt_get(xprt);
652 		}
653 		spin_unlock_bh(&serv->sv_lock);
654 
655 		if (xprt) {
656 			svc_xprt_enqueue(xprt);
657 			svc_xprt_put(xprt);
658 		}
659 	}
660 }
661 
662 static int svc_alloc_arg(struct svc_rqst *rqstp)
663 {
664 	struct svc_serv *serv = rqstp->rq_server;
665 	struct xdr_buf *arg = &rqstp->rq_arg;
666 	unsigned long pages, filled;
667 
668 	pagevec_init(&rqstp->rq_pvec);
669 
670 	pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
671 	if (pages > RPCSVC_MAXPAGES) {
672 		pr_warn_once("svc: warning: pages=%lu > RPCSVC_MAXPAGES=%lu\n",
673 			     pages, RPCSVC_MAXPAGES);
674 		/* use as many pages as possible */
675 		pages = RPCSVC_MAXPAGES;
676 	}
677 
678 	for (;;) {
679 		filled = alloc_pages_bulk_array(GFP_KERNEL, pages,
680 						rqstp->rq_pages);
681 		if (filled == pages)
682 			break;
683 
684 		set_current_state(TASK_INTERRUPTIBLE);
685 		if (signalled() || kthread_should_stop()) {
686 			set_current_state(TASK_RUNNING);
687 			return -EINTR;
688 		}
689 		schedule_timeout(msecs_to_jiffies(500));
690 	}
691 	rqstp->rq_page_end = &rqstp->rq_pages[pages];
692 	rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */
693 
694 	/* Make arg->head point to first page and arg->pages point to rest */
695 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
696 	arg->head[0].iov_len = PAGE_SIZE;
697 	arg->pages = rqstp->rq_pages + 1;
698 	arg->page_base = 0;
699 	/* save at least one page for response */
700 	arg->page_len = (pages-2)*PAGE_SIZE;
701 	arg->len = (pages-1)*PAGE_SIZE;
702 	arg->tail[0].iov_len = 0;
703 	return 0;
704 }
705 
706 static bool
707 rqst_should_sleep(struct svc_rqst *rqstp)
708 {
709 	struct svc_pool		*pool = rqstp->rq_pool;
710 
711 	/* did someone call svc_wake_up? */
712 	if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
713 		return false;
714 
715 	/* was a socket queued? */
716 	if (!list_empty(&pool->sp_sockets))
717 		return false;
718 
719 	/* are we shutting down? */
720 	if (signalled() || kthread_should_stop())
721 		return false;
722 
723 	/* are we freezing? */
724 	if (freezing(current))
725 		return false;
726 
727 	return true;
728 }
729 
730 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
731 {
732 	struct svc_pool		*pool = rqstp->rq_pool;
733 	long			time_left = 0;
734 
735 	/* rq_xprt should be clear on entry */
736 	WARN_ON_ONCE(rqstp->rq_xprt);
737 
738 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
739 	if (rqstp->rq_xprt)
740 		goto out_found;
741 
742 	/*
743 	 * We have to be able to interrupt this wait
744 	 * to bring down the daemons ...
745 	 */
746 	set_current_state(TASK_INTERRUPTIBLE);
747 	smp_mb__before_atomic();
748 	clear_bit(SP_CONGESTED, &pool->sp_flags);
749 	clear_bit(RQ_BUSY, &rqstp->rq_flags);
750 	smp_mb__after_atomic();
751 
752 	if (likely(rqst_should_sleep(rqstp)))
753 		time_left = schedule_timeout(timeout);
754 	else
755 		__set_current_state(TASK_RUNNING);
756 
757 	try_to_freeze();
758 
759 	set_bit(RQ_BUSY, &rqstp->rq_flags);
760 	smp_mb__after_atomic();
761 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
762 	if (rqstp->rq_xprt)
763 		goto out_found;
764 
765 	if (!time_left)
766 		atomic_long_inc(&pool->sp_stats.threads_timedout);
767 
768 	if (signalled() || kthread_should_stop())
769 		return ERR_PTR(-EINTR);
770 	return ERR_PTR(-EAGAIN);
771 out_found:
772 	/* Normally we will wait up to 5 seconds for any required
773 	 * cache information to be provided.
774 	 */
775 	if (!test_bit(SP_CONGESTED, &pool->sp_flags))
776 		rqstp->rq_chandle.thread_wait = 5*HZ;
777 	else
778 		rqstp->rq_chandle.thread_wait = 1*HZ;
779 	trace_svc_xprt_dequeue(rqstp);
780 	return rqstp->rq_xprt;
781 }
782 
783 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
784 {
785 	spin_lock_bh(&serv->sv_lock);
786 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
787 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
788 	serv->sv_tmpcnt++;
789 	if (serv->sv_temptimer.function == NULL) {
790 		/* setup timer to age temp transports */
791 		serv->sv_temptimer.function = svc_age_temp_xprts;
792 		mod_timer(&serv->sv_temptimer,
793 			  jiffies + svc_conn_age_period * HZ);
794 	}
795 	spin_unlock_bh(&serv->sv_lock);
796 	svc_xprt_received(newxpt);
797 }
798 
799 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
800 {
801 	struct svc_serv *serv = rqstp->rq_server;
802 	int len = 0;
803 
804 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
805 		if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
806 			xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
807 		svc_delete_xprt(xprt);
808 		/* Leave XPT_BUSY set on the dead xprt: */
809 		goto out;
810 	}
811 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
812 		struct svc_xprt *newxpt;
813 		/*
814 		 * We know this module_get will succeed because the
815 		 * listener holds a reference too
816 		 */
817 		__module_get(xprt->xpt_class->xcl_owner);
818 		svc_check_conn_limits(xprt->xpt_server);
819 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
820 		if (newxpt) {
821 			newxpt->xpt_cred = get_cred(xprt->xpt_cred);
822 			svc_add_new_temp_xprt(serv, newxpt);
823 			trace_svc_xprt_accept(newxpt, serv->sv_name);
824 		} else {
825 			module_put(xprt->xpt_class->xcl_owner);
826 		}
827 		svc_xprt_received(xprt);
828 	} else if (svc_xprt_reserve_slot(rqstp, xprt)) {
829 		/* XPT_DATA|XPT_DEFERRED case: */
830 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
831 			rqstp, rqstp->rq_pool->sp_id, xprt,
832 			kref_read(&xprt->xpt_ref));
833 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
834 		if (rqstp->rq_deferred)
835 			len = svc_deferred_recv(rqstp);
836 		else
837 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
838 		rqstp->rq_stime = ktime_get();
839 		rqstp->rq_reserved = serv->sv_max_mesg;
840 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
841 	}
842 out:
843 	trace_svc_handle_xprt(xprt, len);
844 	return len;
845 }
846 
847 /*
848  * Receive the next request on any transport.  This code is carefully
849  * organised not to touch any cachelines in the shared svc_serv
850  * structure, only cachelines in the local svc_pool.
851  */
852 int svc_recv(struct svc_rqst *rqstp, long timeout)
853 {
854 	struct svc_xprt		*xprt = NULL;
855 	struct svc_serv		*serv = rqstp->rq_server;
856 	int			len, err;
857 
858 	err = svc_alloc_arg(rqstp);
859 	if (err)
860 		goto out;
861 
862 	try_to_freeze();
863 	cond_resched();
864 	err = -EINTR;
865 	if (signalled() || kthread_should_stop())
866 		goto out;
867 
868 	xprt = svc_get_next_xprt(rqstp, timeout);
869 	if (IS_ERR(xprt)) {
870 		err = PTR_ERR(xprt);
871 		goto out;
872 	}
873 
874 	len = svc_handle_xprt(rqstp, xprt);
875 
876 	/* No data, incomplete (TCP) read, or accept() */
877 	err = -EAGAIN;
878 	if (len <= 0)
879 		goto out_release;
880 	trace_svc_xdr_recvfrom(&rqstp->rq_arg);
881 
882 	clear_bit(XPT_OLD, &xprt->xpt_flags);
883 
884 	xprt->xpt_ops->xpo_secure_port(rqstp);
885 	rqstp->rq_chandle.defer = svc_defer;
886 	rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
887 
888 	if (serv->sv_stats)
889 		serv->sv_stats->netcnt++;
890 	return len;
891 out_release:
892 	rqstp->rq_res.len = 0;
893 	svc_xprt_release(rqstp);
894 out:
895 	return err;
896 }
897 EXPORT_SYMBOL_GPL(svc_recv);
898 
899 /*
900  * Drop request
901  */
902 void svc_drop(struct svc_rqst *rqstp)
903 {
904 	trace_svc_drop(rqstp);
905 	svc_xprt_release(rqstp);
906 }
907 EXPORT_SYMBOL_GPL(svc_drop);
908 
909 /*
910  * Return reply to client.
911  */
912 int svc_send(struct svc_rqst *rqstp)
913 {
914 	struct svc_xprt	*xprt;
915 	int		len = -EFAULT;
916 	struct xdr_buf	*xb;
917 
918 	xprt = rqstp->rq_xprt;
919 	if (!xprt)
920 		goto out;
921 
922 	/* calculate over-all length */
923 	xb = &rqstp->rq_res;
924 	xb->len = xb->head[0].iov_len +
925 		xb->page_len +
926 		xb->tail[0].iov_len;
927 	trace_svc_xdr_sendto(rqstp->rq_xid, xb);
928 	trace_svc_stats_latency(rqstp);
929 
930 	len = xprt->xpt_ops->xpo_sendto(rqstp);
931 
932 	trace_svc_send(rqstp, len);
933 	svc_xprt_release(rqstp);
934 
935 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
936 		len = 0;
937 out:
938 	return len;
939 }
940 
941 /*
942  * Timer function to close old temporary transports, using
943  * a mark-and-sweep algorithm.
944  */
945 static void svc_age_temp_xprts(struct timer_list *t)
946 {
947 	struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
948 	struct svc_xprt *xprt;
949 	struct list_head *le, *next;
950 
951 	dprintk("svc_age_temp_xprts\n");
952 
953 	if (!spin_trylock_bh(&serv->sv_lock)) {
954 		/* busy, try again 1 sec later */
955 		dprintk("svc_age_temp_xprts: busy\n");
956 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
957 		return;
958 	}
959 
960 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
961 		xprt = list_entry(le, struct svc_xprt, xpt_list);
962 
963 		/* First time through, just mark it OLD. Second time
964 		 * through, close it. */
965 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
966 			continue;
967 		if (kref_read(&xprt->xpt_ref) > 1 ||
968 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
969 			continue;
970 		list_del_init(le);
971 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
972 		dprintk("queuing xprt %p for closing\n", xprt);
973 
974 		/* a thread will dequeue and close it soon */
975 		svc_xprt_enqueue(xprt);
976 	}
977 	spin_unlock_bh(&serv->sv_lock);
978 
979 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
980 }
981 
982 /* Close temporary transports whose xpt_local matches server_addr immediately
983  * instead of waiting for them to be picked up by the timer.
984  *
985  * This is meant to be called from a notifier_block that runs when an ip
986  * address is deleted.
987  */
988 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
989 {
990 	struct svc_xprt *xprt;
991 	struct list_head *le, *next;
992 	LIST_HEAD(to_be_closed);
993 
994 	spin_lock_bh(&serv->sv_lock);
995 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
996 		xprt = list_entry(le, struct svc_xprt, xpt_list);
997 		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
998 				&xprt->xpt_local)) {
999 			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
1000 			list_move(le, &to_be_closed);
1001 		}
1002 	}
1003 	spin_unlock_bh(&serv->sv_lock);
1004 
1005 	while (!list_empty(&to_be_closed)) {
1006 		le = to_be_closed.next;
1007 		list_del_init(le);
1008 		xprt = list_entry(le, struct svc_xprt, xpt_list);
1009 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1010 		set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
1011 		dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
1012 				xprt);
1013 		svc_xprt_enqueue(xprt);
1014 	}
1015 }
1016 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1017 
1018 static void call_xpt_users(struct svc_xprt *xprt)
1019 {
1020 	struct svc_xpt_user *u;
1021 
1022 	spin_lock(&xprt->xpt_lock);
1023 	while (!list_empty(&xprt->xpt_users)) {
1024 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1025 		list_del_init(&u->list);
1026 		u->callback(u);
1027 	}
1028 	spin_unlock(&xprt->xpt_lock);
1029 }
1030 
1031 /*
1032  * Remove a dead transport
1033  */
1034 static void svc_delete_xprt(struct svc_xprt *xprt)
1035 {
1036 	struct svc_serv	*serv = xprt->xpt_server;
1037 	struct svc_deferred_req *dr;
1038 
1039 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1040 		return;
1041 
1042 	trace_svc_xprt_detach(xprt);
1043 	xprt->xpt_ops->xpo_detach(xprt);
1044 	if (xprt->xpt_bc_xprt)
1045 		xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt);
1046 
1047 	spin_lock_bh(&serv->sv_lock);
1048 	list_del_init(&xprt->xpt_list);
1049 	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1050 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1051 		serv->sv_tmpcnt--;
1052 	spin_unlock_bh(&serv->sv_lock);
1053 
1054 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1055 		kfree(dr);
1056 
1057 	call_xpt_users(xprt);
1058 	svc_xprt_put(xprt);
1059 }
1060 
1061 void svc_close_xprt(struct svc_xprt *xprt)
1062 {
1063 	trace_svc_xprt_close(xprt);
1064 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1065 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1066 		/* someone else will have to effect the close */
1067 		return;
1068 	/*
1069 	 * We expect svc_close_xprt() to work even when no threads are
1070 	 * running (e.g., while configuring the server before starting
1071 	 * any threads), so if the transport isn't busy, we delete
1072 	 * it ourself:
1073 	 */
1074 	svc_delete_xprt(xprt);
1075 }
1076 EXPORT_SYMBOL_GPL(svc_close_xprt);
1077 
1078 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1079 {
1080 	struct svc_xprt *xprt;
1081 	int ret = 0;
1082 
1083 	spin_lock_bh(&serv->sv_lock);
1084 	list_for_each_entry(xprt, xprt_list, xpt_list) {
1085 		if (xprt->xpt_net != net)
1086 			continue;
1087 		ret++;
1088 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1089 		svc_xprt_enqueue(xprt);
1090 	}
1091 	spin_unlock_bh(&serv->sv_lock);
1092 	return ret;
1093 }
1094 
1095 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1096 {
1097 	struct svc_pool *pool;
1098 	struct svc_xprt *xprt;
1099 	struct svc_xprt *tmp;
1100 	int i;
1101 
1102 	for (i = 0; i < serv->sv_nrpools; i++) {
1103 		pool = &serv->sv_pools[i];
1104 
1105 		spin_lock_bh(&pool->sp_lock);
1106 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1107 			if (xprt->xpt_net != net)
1108 				continue;
1109 			list_del_init(&xprt->xpt_ready);
1110 			spin_unlock_bh(&pool->sp_lock);
1111 			return xprt;
1112 		}
1113 		spin_unlock_bh(&pool->sp_lock);
1114 	}
1115 	return NULL;
1116 }
1117 
1118 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1119 {
1120 	struct svc_xprt *xprt;
1121 
1122 	while ((xprt = svc_dequeue_net(serv, net))) {
1123 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1124 		svc_delete_xprt(xprt);
1125 	}
1126 }
1127 
1128 /*
1129  * Server threads may still be running (especially in the case where the
1130  * service is still running in other network namespaces).
1131  *
1132  * So we shut down sockets the same way we would on a running server, by
1133  * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1134  * the close.  In the case there are no such other threads,
1135  * threads running, svc_clean_up_xprts() does a simple version of a
1136  * server's main event loop, and in the case where there are other
1137  * threads, we may need to wait a little while and then check again to
1138  * see if they're done.
1139  */
1140 void svc_close_net(struct svc_serv *serv, struct net *net)
1141 {
1142 	int delay = 0;
1143 
1144 	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1145 	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1146 
1147 		svc_clean_up_xprts(serv, net);
1148 		msleep(delay++);
1149 	}
1150 }
1151 
1152 /*
1153  * Handle defer and revisit of requests
1154  */
1155 
1156 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1157 {
1158 	struct svc_deferred_req *dr =
1159 		container_of(dreq, struct svc_deferred_req, handle);
1160 	struct svc_xprt *xprt = dr->xprt;
1161 
1162 	spin_lock(&xprt->xpt_lock);
1163 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1164 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1165 		spin_unlock(&xprt->xpt_lock);
1166 		trace_svc_defer_drop(dr);
1167 		svc_xprt_put(xprt);
1168 		kfree(dr);
1169 		return;
1170 	}
1171 	dr->xprt = NULL;
1172 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1173 	spin_unlock(&xprt->xpt_lock);
1174 	trace_svc_defer_queue(dr);
1175 	svc_xprt_enqueue(xprt);
1176 	svc_xprt_put(xprt);
1177 }
1178 
1179 /*
1180  * Save the request off for later processing. The request buffer looks
1181  * like this:
1182  *
1183  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1184  *
1185  * This code can only handle requests that consist of an xprt-header
1186  * and rpc-header.
1187  */
1188 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1189 {
1190 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1191 	struct svc_deferred_req *dr;
1192 
1193 	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1194 		return NULL; /* if more than a page, give up FIXME */
1195 	if (rqstp->rq_deferred) {
1196 		dr = rqstp->rq_deferred;
1197 		rqstp->rq_deferred = NULL;
1198 	} else {
1199 		size_t skip;
1200 		size_t size;
1201 		/* FIXME maybe discard if size too large */
1202 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1203 		dr = kmalloc(size, GFP_KERNEL);
1204 		if (dr == NULL)
1205 			return NULL;
1206 
1207 		dr->handle.owner = rqstp->rq_server;
1208 		dr->prot = rqstp->rq_prot;
1209 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1210 		dr->addrlen = rqstp->rq_addrlen;
1211 		dr->daddr = rqstp->rq_daddr;
1212 		dr->argslen = rqstp->rq_arg.len >> 2;
1213 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1214 
1215 		/* back up head to the start of the buffer and copy */
1216 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1217 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1218 		       dr->argslen << 2);
1219 	}
1220 	trace_svc_defer(rqstp);
1221 	svc_xprt_get(rqstp->rq_xprt);
1222 	dr->xprt = rqstp->rq_xprt;
1223 	set_bit(RQ_DROPME, &rqstp->rq_flags);
1224 
1225 	dr->handle.revisit = svc_revisit;
1226 	return &dr->handle;
1227 }
1228 
1229 /*
1230  * recv data from a deferred request into an active one
1231  */
1232 static noinline int svc_deferred_recv(struct svc_rqst *rqstp)
1233 {
1234 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1235 
1236 	trace_svc_defer_recv(dr);
1237 
1238 	/* setup iov_base past transport header */
1239 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1240 	/* The iov_len does not include the transport header bytes */
1241 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1242 	rqstp->rq_arg.page_len = 0;
1243 	/* The rq_arg.len includes the transport header bytes */
1244 	rqstp->rq_arg.len     = dr->argslen<<2;
1245 	rqstp->rq_prot        = dr->prot;
1246 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1247 	rqstp->rq_addrlen     = dr->addrlen;
1248 	/* Save off transport header len in case we get deferred again */
1249 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1250 	rqstp->rq_daddr       = dr->daddr;
1251 	rqstp->rq_respages    = rqstp->rq_pages;
1252 	svc_xprt_received(rqstp->rq_xprt);
1253 	return (dr->argslen<<2) - dr->xprt_hlen;
1254 }
1255 
1256 
1257 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1258 {
1259 	struct svc_deferred_req *dr = NULL;
1260 
1261 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1262 		return NULL;
1263 	spin_lock(&xprt->xpt_lock);
1264 	if (!list_empty(&xprt->xpt_deferred)) {
1265 		dr = list_entry(xprt->xpt_deferred.next,
1266 				struct svc_deferred_req,
1267 				handle.recent);
1268 		list_del_init(&dr->handle.recent);
1269 	} else
1270 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1271 	spin_unlock(&xprt->xpt_lock);
1272 	return dr;
1273 }
1274 
1275 /**
1276  * svc_find_xprt - find an RPC transport instance
1277  * @serv: pointer to svc_serv to search
1278  * @xcl_name: C string containing transport's class name
1279  * @net: owner net pointer
1280  * @af: Address family of transport's local address
1281  * @port: transport's IP port number
1282  *
1283  * Return the transport instance pointer for the endpoint accepting
1284  * connections/peer traffic from the specified transport class,
1285  * address family and port.
1286  *
1287  * Specifying 0 for the address family or port is effectively a
1288  * wild-card, and will result in matching the first transport in the
1289  * service's list that has a matching class name.
1290  */
1291 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1292 			       struct net *net, const sa_family_t af,
1293 			       const unsigned short port)
1294 {
1295 	struct svc_xprt *xprt;
1296 	struct svc_xprt *found = NULL;
1297 
1298 	/* Sanity check the args */
1299 	if (serv == NULL || xcl_name == NULL)
1300 		return found;
1301 
1302 	spin_lock_bh(&serv->sv_lock);
1303 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1304 		if (xprt->xpt_net != net)
1305 			continue;
1306 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1307 			continue;
1308 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1309 			continue;
1310 		if (port != 0 && port != svc_xprt_local_port(xprt))
1311 			continue;
1312 		found = xprt;
1313 		svc_xprt_get(xprt);
1314 		break;
1315 	}
1316 	spin_unlock_bh(&serv->sv_lock);
1317 	return found;
1318 }
1319 EXPORT_SYMBOL_GPL(svc_find_xprt);
1320 
1321 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1322 			     char *pos, int remaining)
1323 {
1324 	int len;
1325 
1326 	len = snprintf(pos, remaining, "%s %u\n",
1327 			xprt->xpt_class->xcl_name,
1328 			svc_xprt_local_port(xprt));
1329 	if (len >= remaining)
1330 		return -ENAMETOOLONG;
1331 	return len;
1332 }
1333 
1334 /**
1335  * svc_xprt_names - format a buffer with a list of transport names
1336  * @serv: pointer to an RPC service
1337  * @buf: pointer to a buffer to be filled in
1338  * @buflen: length of buffer to be filled in
1339  *
1340  * Fills in @buf with a string containing a list of transport names,
1341  * each name terminated with '\n'.
1342  *
1343  * Returns positive length of the filled-in string on success; otherwise
1344  * a negative errno value is returned if an error occurs.
1345  */
1346 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1347 {
1348 	struct svc_xprt *xprt;
1349 	int len, totlen;
1350 	char *pos;
1351 
1352 	/* Sanity check args */
1353 	if (!serv)
1354 		return 0;
1355 
1356 	spin_lock_bh(&serv->sv_lock);
1357 
1358 	pos = buf;
1359 	totlen = 0;
1360 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1361 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1362 		if (len < 0) {
1363 			*buf = '\0';
1364 			totlen = len;
1365 		}
1366 		if (len <= 0)
1367 			break;
1368 
1369 		pos += len;
1370 		totlen += len;
1371 	}
1372 
1373 	spin_unlock_bh(&serv->sv_lock);
1374 	return totlen;
1375 }
1376 EXPORT_SYMBOL_GPL(svc_xprt_names);
1377 
1378 
1379 /*----------------------------------------------------------------------------*/
1380 
1381 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1382 {
1383 	unsigned int pidx = (unsigned int)*pos;
1384 	struct svc_serv *serv = m->private;
1385 
1386 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1387 
1388 	if (!pidx)
1389 		return SEQ_START_TOKEN;
1390 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1391 }
1392 
1393 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1394 {
1395 	struct svc_pool *pool = p;
1396 	struct svc_serv *serv = m->private;
1397 
1398 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1399 
1400 	if (p == SEQ_START_TOKEN) {
1401 		pool = &serv->sv_pools[0];
1402 	} else {
1403 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1404 		if (pidx < serv->sv_nrpools-1)
1405 			pool = &serv->sv_pools[pidx+1];
1406 		else
1407 			pool = NULL;
1408 	}
1409 	++*pos;
1410 	return pool;
1411 }
1412 
1413 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1414 {
1415 }
1416 
1417 static int svc_pool_stats_show(struct seq_file *m, void *p)
1418 {
1419 	struct svc_pool *pool = p;
1420 
1421 	if (p == SEQ_START_TOKEN) {
1422 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1423 		return 0;
1424 	}
1425 
1426 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1427 		pool->sp_id,
1428 		(unsigned long)atomic_long_read(&pool->sp_stats.packets),
1429 		pool->sp_stats.sockets_queued,
1430 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1431 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1432 
1433 	return 0;
1434 }
1435 
1436 static const struct seq_operations svc_pool_stats_seq_ops = {
1437 	.start	= svc_pool_stats_start,
1438 	.next	= svc_pool_stats_next,
1439 	.stop	= svc_pool_stats_stop,
1440 	.show	= svc_pool_stats_show,
1441 };
1442 
1443 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1444 {
1445 	int err;
1446 
1447 	err = seq_open(file, &svc_pool_stats_seq_ops);
1448 	if (!err)
1449 		((struct seq_file *) file->private_data)->private = serv;
1450 	return err;
1451 }
1452 EXPORT_SYMBOL(svc_pool_stats_open);
1453 
1454 /*----------------------------------------------------------------------------*/
1455