xref: /linux/net/sunrpc/svc_xprt.c (revision 7a92fc8b4d20680e4c20289a670d8fca2d1f2c1b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/svc_xprt.c
4  *
5  * Author: Tom Tucker <tom@opengridcomputing.com>
6  */
7 
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/errno.h>
11 #include <linux/freezer.h>
12 #include <linux/slab.h>
13 #include <net/sock.h>
14 #include <linux/sunrpc/addr.h>
15 #include <linux/sunrpc/stats.h>
16 #include <linux/sunrpc/svc_xprt.h>
17 #include <linux/sunrpc/svcsock.h>
18 #include <linux/sunrpc/xprt.h>
19 #include <linux/sunrpc/bc_xprt.h>
20 #include <linux/module.h>
21 #include <linux/netdevice.h>
22 #include <trace/events/sunrpc.h>
23 
24 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
25 
26 static unsigned int svc_rpc_per_connection_limit __read_mostly;
27 module_param(svc_rpc_per_connection_limit, uint, 0644);
28 
29 
30 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
31 static int svc_deferred_recv(struct svc_rqst *rqstp);
32 static struct cache_deferred_req *svc_defer(struct cache_req *req);
33 static void svc_age_temp_xprts(struct timer_list *t);
34 static void svc_delete_xprt(struct svc_xprt *xprt);
35 
36 /* apparently the "standard" is that clients close
37  * idle connections after 5 minutes, servers after
38  * 6 minutes
39  *   http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
40  */
41 static int svc_conn_age_period = 6*60;
42 
43 /* List of registered transport classes */
44 static DEFINE_SPINLOCK(svc_xprt_class_lock);
45 static LIST_HEAD(svc_xprt_class_list);
46 
47 /* SMP locking strategy:
48  *
49  *	svc_pool->sp_lock protects most of the fields of that pool.
50  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
51  *	when both need to be taken (rare), svc_serv->sv_lock is first.
52  *	The "service mutex" protects svc_serv->sv_nrthread.
53  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
54  *             and the ->sk_info_authunix cache.
55  *
56  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
57  *	enqueued multiply. During normal transport processing this bit
58  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
59  *	Providers should not manipulate this bit directly.
60  *
61  *	Some flags can be set to certain values at any time
62  *	providing that certain rules are followed:
63  *
64  *	XPT_CONN, XPT_DATA:
65  *		- Can be set or cleared at any time.
66  *		- After a set, svc_xprt_enqueue must be called to enqueue
67  *		  the transport for processing.
68  *		- After a clear, the transport must be read/accepted.
69  *		  If this succeeds, it must be set again.
70  *	XPT_CLOSE:
71  *		- Can set at any time. It is never cleared.
72  *      XPT_DEAD:
73  *		- Can only be set while XPT_BUSY is held which ensures
74  *		  that no other thread will be using the transport or will
75  *		  try to set XPT_DEAD.
76  */
77 
78 /**
79  * svc_reg_xprt_class - Register a server-side RPC transport class
80  * @xcl: New transport class to be registered
81  *
82  * Returns zero on success; otherwise a negative errno is returned.
83  */
84 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
85 {
86 	struct svc_xprt_class *cl;
87 	int res = -EEXIST;
88 
89 	INIT_LIST_HEAD(&xcl->xcl_list);
90 	spin_lock(&svc_xprt_class_lock);
91 	/* Make sure there isn't already a class with the same name */
92 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
93 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
94 			goto out;
95 	}
96 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
97 	res = 0;
98 out:
99 	spin_unlock(&svc_xprt_class_lock);
100 	return res;
101 }
102 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
103 
104 /**
105  * svc_unreg_xprt_class - Unregister a server-side RPC transport class
106  * @xcl: Transport class to be unregistered
107  *
108  */
109 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
110 {
111 	spin_lock(&svc_xprt_class_lock);
112 	list_del_init(&xcl->xcl_list);
113 	spin_unlock(&svc_xprt_class_lock);
114 }
115 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
116 
117 /**
118  * svc_print_xprts - Format the transport list for printing
119  * @buf: target buffer for formatted address
120  * @maxlen: length of target buffer
121  *
122  * Fills in @buf with a string containing a list of transport names, each name
123  * terminated with '\n'. If the buffer is too small, some entries may be
124  * missing, but it is guaranteed that all lines in the output buffer are
125  * complete.
126  *
127  * Returns positive length of the filled-in string.
128  */
129 int svc_print_xprts(char *buf, int maxlen)
130 {
131 	struct svc_xprt_class *xcl;
132 	char tmpstr[80];
133 	int len = 0;
134 	buf[0] = '\0';
135 
136 	spin_lock(&svc_xprt_class_lock);
137 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
138 		int slen;
139 
140 		slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
141 				xcl->xcl_name, xcl->xcl_max_payload);
142 		if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
143 			break;
144 		len += slen;
145 		strcat(buf, tmpstr);
146 	}
147 	spin_unlock(&svc_xprt_class_lock);
148 
149 	return len;
150 }
151 
152 /**
153  * svc_xprt_deferred_close - Close a transport
154  * @xprt: transport instance
155  *
156  * Used in contexts that need to defer the work of shutting down
157  * the transport to an nfsd thread.
158  */
159 void svc_xprt_deferred_close(struct svc_xprt *xprt)
160 {
161 	if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags))
162 		svc_xprt_enqueue(xprt);
163 }
164 EXPORT_SYMBOL_GPL(svc_xprt_deferred_close);
165 
166 static void svc_xprt_free(struct kref *kref)
167 {
168 	struct svc_xprt *xprt =
169 		container_of(kref, struct svc_xprt, xpt_ref);
170 	struct module *owner = xprt->xpt_class->xcl_owner;
171 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
172 		svcauth_unix_info_release(xprt);
173 	put_cred(xprt->xpt_cred);
174 	put_net_track(xprt->xpt_net, &xprt->ns_tracker);
175 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
176 	if (xprt->xpt_bc_xprt)
177 		xprt_put(xprt->xpt_bc_xprt);
178 	if (xprt->xpt_bc_xps)
179 		xprt_switch_put(xprt->xpt_bc_xps);
180 	trace_svc_xprt_free(xprt);
181 	xprt->xpt_ops->xpo_free(xprt);
182 	module_put(owner);
183 }
184 
185 void svc_xprt_put(struct svc_xprt *xprt)
186 {
187 	kref_put(&xprt->xpt_ref, svc_xprt_free);
188 }
189 EXPORT_SYMBOL_GPL(svc_xprt_put);
190 
191 /*
192  * Called by transport drivers to initialize the transport independent
193  * portion of the transport instance.
194  */
195 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
196 		   struct svc_xprt *xprt, struct svc_serv *serv)
197 {
198 	memset(xprt, 0, sizeof(*xprt));
199 	xprt->xpt_class = xcl;
200 	xprt->xpt_ops = xcl->xcl_ops;
201 	kref_init(&xprt->xpt_ref);
202 	xprt->xpt_server = serv;
203 	INIT_LIST_HEAD(&xprt->xpt_list);
204 	INIT_LIST_HEAD(&xprt->xpt_deferred);
205 	INIT_LIST_HEAD(&xprt->xpt_users);
206 	mutex_init(&xprt->xpt_mutex);
207 	spin_lock_init(&xprt->xpt_lock);
208 	set_bit(XPT_BUSY, &xprt->xpt_flags);
209 	xprt->xpt_net = get_net_track(net, &xprt->ns_tracker, GFP_ATOMIC);
210 	strcpy(xprt->xpt_remotebuf, "uninitialized");
211 }
212 EXPORT_SYMBOL_GPL(svc_xprt_init);
213 
214 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
215 					 struct svc_serv *serv,
216 					 struct net *net,
217 					 const int family,
218 					 const unsigned short port,
219 					 int flags)
220 {
221 	struct sockaddr_in sin = {
222 		.sin_family		= AF_INET,
223 		.sin_addr.s_addr	= htonl(INADDR_ANY),
224 		.sin_port		= htons(port),
225 	};
226 #if IS_ENABLED(CONFIG_IPV6)
227 	struct sockaddr_in6 sin6 = {
228 		.sin6_family		= AF_INET6,
229 		.sin6_addr		= IN6ADDR_ANY_INIT,
230 		.sin6_port		= htons(port),
231 	};
232 #endif
233 	struct svc_xprt *xprt;
234 	struct sockaddr *sap;
235 	size_t len;
236 
237 	switch (family) {
238 	case PF_INET:
239 		sap = (struct sockaddr *)&sin;
240 		len = sizeof(sin);
241 		break;
242 #if IS_ENABLED(CONFIG_IPV6)
243 	case PF_INET6:
244 		sap = (struct sockaddr *)&sin6;
245 		len = sizeof(sin6);
246 		break;
247 #endif
248 	default:
249 		return ERR_PTR(-EAFNOSUPPORT);
250 	}
251 
252 	xprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
253 	if (IS_ERR(xprt))
254 		trace_svc_xprt_create_err(serv->sv_program->pg_name,
255 					  xcl->xcl_name, sap, len, xprt);
256 	return xprt;
257 }
258 
259 /**
260  * svc_xprt_received - start next receiver thread
261  * @xprt: controlling transport
262  *
263  * The caller must hold the XPT_BUSY bit and must
264  * not thereafter touch transport data.
265  *
266  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
267  * insufficient) data.
268  */
269 void svc_xprt_received(struct svc_xprt *xprt)
270 {
271 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
272 		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
273 		return;
274 	}
275 
276 	/* As soon as we clear busy, the xprt could be closed and
277 	 * 'put', so we need a reference to call svc_xprt_enqueue with:
278 	 */
279 	svc_xprt_get(xprt);
280 	smp_mb__before_atomic();
281 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
282 	svc_xprt_enqueue(xprt);
283 	svc_xprt_put(xprt);
284 }
285 EXPORT_SYMBOL_GPL(svc_xprt_received);
286 
287 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
288 {
289 	clear_bit(XPT_TEMP, &new->xpt_flags);
290 	spin_lock_bh(&serv->sv_lock);
291 	list_add(&new->xpt_list, &serv->sv_permsocks);
292 	spin_unlock_bh(&serv->sv_lock);
293 	svc_xprt_received(new);
294 }
295 
296 static int _svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
297 			    struct net *net, const int family,
298 			    const unsigned short port, int flags,
299 			    const struct cred *cred)
300 {
301 	struct svc_xprt_class *xcl;
302 
303 	spin_lock(&svc_xprt_class_lock);
304 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
305 		struct svc_xprt *newxprt;
306 		unsigned short newport;
307 
308 		if (strcmp(xprt_name, xcl->xcl_name))
309 			continue;
310 
311 		if (!try_module_get(xcl->xcl_owner))
312 			goto err;
313 
314 		spin_unlock(&svc_xprt_class_lock);
315 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
316 		if (IS_ERR(newxprt)) {
317 			module_put(xcl->xcl_owner);
318 			return PTR_ERR(newxprt);
319 		}
320 		newxprt->xpt_cred = get_cred(cred);
321 		svc_add_new_perm_xprt(serv, newxprt);
322 		newport = svc_xprt_local_port(newxprt);
323 		return newport;
324 	}
325  err:
326 	spin_unlock(&svc_xprt_class_lock);
327 	/* This errno is exposed to user space.  Provide a reasonable
328 	 * perror msg for a bad transport. */
329 	return -EPROTONOSUPPORT;
330 }
331 
332 /**
333  * svc_xprt_create - Add a new listener to @serv
334  * @serv: target RPC service
335  * @xprt_name: transport class name
336  * @net: network namespace
337  * @family: network address family
338  * @port: listener port
339  * @flags: SVC_SOCK flags
340  * @cred: credential to bind to this transport
341  *
342  * Return values:
343  *   %0: New listener added successfully
344  *   %-EPROTONOSUPPORT: Requested transport type not supported
345  */
346 int svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
347 		    struct net *net, const int family,
348 		    const unsigned short port, int flags,
349 		    const struct cred *cred)
350 {
351 	int err;
352 
353 	err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
354 	if (err == -EPROTONOSUPPORT) {
355 		request_module("svc%s", xprt_name);
356 		err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
357 	}
358 	return err;
359 }
360 EXPORT_SYMBOL_GPL(svc_xprt_create);
361 
362 /*
363  * Copy the local and remote xprt addresses to the rqstp structure
364  */
365 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
366 {
367 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
368 	rqstp->rq_addrlen = xprt->xpt_remotelen;
369 
370 	/*
371 	 * Destination address in request is needed for binding the
372 	 * source address in RPC replies/callbacks later.
373 	 */
374 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
375 	rqstp->rq_daddrlen = xprt->xpt_locallen;
376 }
377 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
378 
379 /**
380  * svc_print_addr - Format rq_addr field for printing
381  * @rqstp: svc_rqst struct containing address to print
382  * @buf: target buffer for formatted address
383  * @len: length of target buffer
384  *
385  */
386 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
387 {
388 	return __svc_print_addr(svc_addr(rqstp), buf, len);
389 }
390 EXPORT_SYMBOL_GPL(svc_print_addr);
391 
392 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
393 {
394 	unsigned int limit = svc_rpc_per_connection_limit;
395 	int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
396 
397 	return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
398 }
399 
400 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
401 {
402 	if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
403 		if (!svc_xprt_slots_in_range(xprt))
404 			return false;
405 		atomic_inc(&xprt->xpt_nr_rqsts);
406 		set_bit(RQ_DATA, &rqstp->rq_flags);
407 	}
408 	return true;
409 }
410 
411 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
412 {
413 	struct svc_xprt	*xprt = rqstp->rq_xprt;
414 	if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
415 		atomic_dec(&xprt->xpt_nr_rqsts);
416 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
417 		svc_xprt_enqueue(xprt);
418 	}
419 }
420 
421 static bool svc_xprt_ready(struct svc_xprt *xprt)
422 {
423 	unsigned long xpt_flags;
424 
425 	/*
426 	 * If another cpu has recently updated xpt_flags,
427 	 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
428 	 * know about it; otherwise it's possible that both that cpu and
429 	 * this one could call svc_xprt_enqueue() without either
430 	 * svc_xprt_enqueue() recognizing that the conditions below
431 	 * are satisfied, and we could stall indefinitely:
432 	 */
433 	smp_rmb();
434 	xpt_flags = READ_ONCE(xprt->xpt_flags);
435 
436 	trace_svc_xprt_enqueue(xprt, xpt_flags);
437 	if (xpt_flags & BIT(XPT_BUSY))
438 		return false;
439 	if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE) | BIT(XPT_HANDSHAKE)))
440 		return true;
441 	if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
442 		if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
443 		    svc_xprt_slots_in_range(xprt))
444 			return true;
445 		trace_svc_xprt_no_write_space(xprt);
446 		return false;
447 	}
448 	return false;
449 }
450 
451 /**
452  * svc_xprt_enqueue - Queue a transport on an idle nfsd thread
453  * @xprt: transport with data pending
454  *
455  */
456 void svc_xprt_enqueue(struct svc_xprt *xprt)
457 {
458 	struct svc_pool *pool;
459 
460 	if (!svc_xprt_ready(xprt))
461 		return;
462 
463 	/* Mark transport as busy. It will remain in this state until
464 	 * the provider calls svc_xprt_received. We update XPT_BUSY
465 	 * atomically because it also guards against trying to enqueue
466 	 * the transport twice.
467 	 */
468 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
469 		return;
470 
471 	pool = svc_pool_for_cpu(xprt->xpt_server);
472 
473 	percpu_counter_inc(&pool->sp_sockets_queued);
474 	lwq_enqueue(&xprt->xpt_ready, &pool->sp_xprts);
475 
476 	svc_pool_wake_idle_thread(pool);
477 }
478 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
479 
480 /*
481  * Dequeue the first transport, if there is one.
482  */
483 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
484 {
485 	struct svc_xprt	*xprt = NULL;
486 
487 	xprt = lwq_dequeue(&pool->sp_xprts, struct svc_xprt, xpt_ready);
488 	if (xprt)
489 		svc_xprt_get(xprt);
490 	return xprt;
491 }
492 
493 /**
494  * svc_reserve - change the space reserved for the reply to a request.
495  * @rqstp:  The request in question
496  * @space: new max space to reserve
497  *
498  * Each request reserves some space on the output queue of the transport
499  * to make sure the reply fits.  This function reduces that reserved
500  * space to be the amount of space used already, plus @space.
501  *
502  */
503 void svc_reserve(struct svc_rqst *rqstp, int space)
504 {
505 	struct svc_xprt *xprt = rqstp->rq_xprt;
506 
507 	space += rqstp->rq_res.head[0].iov_len;
508 
509 	if (xprt && space < rqstp->rq_reserved) {
510 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
511 		rqstp->rq_reserved = space;
512 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
513 		svc_xprt_enqueue(xprt);
514 	}
515 }
516 EXPORT_SYMBOL_GPL(svc_reserve);
517 
518 static void free_deferred(struct svc_xprt *xprt, struct svc_deferred_req *dr)
519 {
520 	if (!dr)
521 		return;
522 
523 	xprt->xpt_ops->xpo_release_ctxt(xprt, dr->xprt_ctxt);
524 	kfree(dr);
525 }
526 
527 static void svc_xprt_release(struct svc_rqst *rqstp)
528 {
529 	struct svc_xprt	*xprt = rqstp->rq_xprt;
530 
531 	xprt->xpt_ops->xpo_release_ctxt(xprt, rqstp->rq_xprt_ctxt);
532 	rqstp->rq_xprt_ctxt = NULL;
533 
534 	free_deferred(xprt, rqstp->rq_deferred);
535 	rqstp->rq_deferred = NULL;
536 
537 	svc_rqst_release_pages(rqstp);
538 	rqstp->rq_res.page_len = 0;
539 	rqstp->rq_res.page_base = 0;
540 
541 	/* Reset response buffer and release
542 	 * the reservation.
543 	 * But first, check that enough space was reserved
544 	 * for the reply, otherwise we have a bug!
545 	 */
546 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
547 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
548 		       rqstp->rq_reserved,
549 		       rqstp->rq_res.len);
550 
551 	rqstp->rq_res.head[0].iov_len = 0;
552 	svc_reserve(rqstp, 0);
553 	svc_xprt_release_slot(rqstp);
554 	rqstp->rq_xprt = NULL;
555 	svc_xprt_put(xprt);
556 }
557 
558 /**
559  * svc_wake_up - Wake up a service thread for non-transport work
560  * @serv: RPC service
561  *
562  * Some svc_serv's will have occasional work to do, even when a xprt is not
563  * waiting to be serviced. This function is there to "kick" a task in one of
564  * those services so that it can wake up and do that work. Note that we only
565  * bother with pool 0 as we don't need to wake up more than one thread for
566  * this purpose.
567  */
568 void svc_wake_up(struct svc_serv *serv)
569 {
570 	struct svc_pool *pool = &serv->sv_pools[0];
571 
572 	set_bit(SP_TASK_PENDING, &pool->sp_flags);
573 	svc_pool_wake_idle_thread(pool);
574 }
575 EXPORT_SYMBOL_GPL(svc_wake_up);
576 
577 int svc_port_is_privileged(struct sockaddr *sin)
578 {
579 	switch (sin->sa_family) {
580 	case AF_INET:
581 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
582 			< PROT_SOCK;
583 	case AF_INET6:
584 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
585 			< PROT_SOCK;
586 	default:
587 		return 0;
588 	}
589 }
590 
591 /*
592  * Make sure that we don't have too many active connections. If we have,
593  * something must be dropped. It's not clear what will happen if we allow
594  * "too many" connections, but when dealing with network-facing software,
595  * we have to code defensively. Here we do that by imposing hard limits.
596  *
597  * There's no point in trying to do random drop here for DoS
598  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
599  * attacker can easily beat that.
600  *
601  * The only somewhat efficient mechanism would be if drop old
602  * connections from the same IP first. But right now we don't even
603  * record the client IP in svc_sock.
604  *
605  * single-threaded services that expect a lot of clients will probably
606  * need to set sv_maxconn to override the default value which is based
607  * on the number of threads
608  */
609 static void svc_check_conn_limits(struct svc_serv *serv)
610 {
611 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
612 				(serv->sv_nrthreads+3) * 20;
613 
614 	if (serv->sv_tmpcnt > limit) {
615 		struct svc_xprt *xprt = NULL;
616 		spin_lock_bh(&serv->sv_lock);
617 		if (!list_empty(&serv->sv_tempsocks)) {
618 			/* Try to help the admin */
619 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
620 					       serv->sv_name, serv->sv_maxconn ?
621 					       "max number of connections" :
622 					       "number of threads");
623 			/*
624 			 * Always select the oldest connection. It's not fair,
625 			 * but so is life
626 			 */
627 			xprt = list_entry(serv->sv_tempsocks.prev,
628 					  struct svc_xprt,
629 					  xpt_list);
630 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
631 			svc_xprt_get(xprt);
632 		}
633 		spin_unlock_bh(&serv->sv_lock);
634 
635 		if (xprt) {
636 			svc_xprt_enqueue(xprt);
637 			svc_xprt_put(xprt);
638 		}
639 	}
640 }
641 
642 static bool svc_alloc_arg(struct svc_rqst *rqstp)
643 {
644 	struct svc_serv *serv = rqstp->rq_server;
645 	struct xdr_buf *arg = &rqstp->rq_arg;
646 	unsigned long pages, filled, ret;
647 
648 	pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
649 	if (pages > RPCSVC_MAXPAGES) {
650 		pr_warn_once("svc: warning: pages=%lu > RPCSVC_MAXPAGES=%lu\n",
651 			     pages, RPCSVC_MAXPAGES);
652 		/* use as many pages as possible */
653 		pages = RPCSVC_MAXPAGES;
654 	}
655 
656 	for (filled = 0; filled < pages; filled = ret) {
657 		ret = alloc_pages_bulk_array_node(GFP_KERNEL,
658 						  rqstp->rq_pool->sp_id,
659 						  pages, rqstp->rq_pages);
660 		if (ret > filled)
661 			/* Made progress, don't sleep yet */
662 			continue;
663 
664 		set_current_state(TASK_IDLE);
665 		if (svc_thread_should_stop(rqstp)) {
666 			set_current_state(TASK_RUNNING);
667 			return false;
668 		}
669 		trace_svc_alloc_arg_err(pages, ret);
670 		memalloc_retry_wait(GFP_KERNEL);
671 	}
672 	rqstp->rq_page_end = &rqstp->rq_pages[pages];
673 	rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */
674 
675 	/* Make arg->head point to first page and arg->pages point to rest */
676 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
677 	arg->head[0].iov_len = PAGE_SIZE;
678 	arg->pages = rqstp->rq_pages + 1;
679 	arg->page_base = 0;
680 	/* save at least one page for response */
681 	arg->page_len = (pages-2)*PAGE_SIZE;
682 	arg->len = (pages-1)*PAGE_SIZE;
683 	arg->tail[0].iov_len = 0;
684 
685 	rqstp->rq_xid = xdr_zero;
686 	return true;
687 }
688 
689 static bool
690 svc_thread_should_sleep(struct svc_rqst *rqstp)
691 {
692 	struct svc_pool		*pool = rqstp->rq_pool;
693 
694 	/* did someone call svc_wake_up? */
695 	if (test_bit(SP_TASK_PENDING, &pool->sp_flags))
696 		return false;
697 
698 	/* was a socket queued? */
699 	if (!lwq_empty(&pool->sp_xprts))
700 		return false;
701 
702 	/* are we shutting down? */
703 	if (svc_thread_should_stop(rqstp))
704 		return false;
705 
706 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
707 	if (svc_is_backchannel(rqstp)) {
708 		if (!lwq_empty(&rqstp->rq_server->sv_cb_list))
709 			return false;
710 	}
711 #endif
712 
713 	return true;
714 }
715 
716 static void svc_thread_wait_for_work(struct svc_rqst *rqstp)
717 {
718 	struct svc_pool *pool = rqstp->rq_pool;
719 
720 	if (svc_thread_should_sleep(rqstp)) {
721 		set_current_state(TASK_IDLE | TASK_FREEZABLE);
722 		llist_add(&rqstp->rq_idle, &pool->sp_idle_threads);
723 		if (likely(svc_thread_should_sleep(rqstp)))
724 			schedule();
725 
726 		while (!llist_del_first_this(&pool->sp_idle_threads,
727 					     &rqstp->rq_idle)) {
728 			/* Work just became available.  This thread can only
729 			 * handle it after removing rqstp from the idle
730 			 * list. If that attempt failed, some other thread
731 			 * must have queued itself after finding no
732 			 * work to do, so that thread has taken responsibly
733 			 * for this new work.  This thread can safely sleep
734 			 * until woken again.
735 			 */
736 			schedule();
737 			set_current_state(TASK_IDLE | TASK_FREEZABLE);
738 		}
739 		__set_current_state(TASK_RUNNING);
740 	} else {
741 		cond_resched();
742 	}
743 	try_to_freeze();
744 }
745 
746 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
747 {
748 	spin_lock_bh(&serv->sv_lock);
749 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
750 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
751 	serv->sv_tmpcnt++;
752 	if (serv->sv_temptimer.function == NULL) {
753 		/* setup timer to age temp transports */
754 		serv->sv_temptimer.function = svc_age_temp_xprts;
755 		mod_timer(&serv->sv_temptimer,
756 			  jiffies + svc_conn_age_period * HZ);
757 	}
758 	spin_unlock_bh(&serv->sv_lock);
759 	svc_xprt_received(newxpt);
760 }
761 
762 static void svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
763 {
764 	struct svc_serv *serv = rqstp->rq_server;
765 	int len = 0;
766 
767 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
768 		if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
769 			xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
770 		svc_delete_xprt(xprt);
771 		/* Leave XPT_BUSY set on the dead xprt: */
772 		goto out;
773 	}
774 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
775 		struct svc_xprt *newxpt;
776 		/*
777 		 * We know this module_get will succeed because the
778 		 * listener holds a reference too
779 		 */
780 		__module_get(xprt->xpt_class->xcl_owner);
781 		svc_check_conn_limits(xprt->xpt_server);
782 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
783 		if (newxpt) {
784 			newxpt->xpt_cred = get_cred(xprt->xpt_cred);
785 			svc_add_new_temp_xprt(serv, newxpt);
786 			trace_svc_xprt_accept(newxpt, serv->sv_name);
787 		} else {
788 			module_put(xprt->xpt_class->xcl_owner);
789 		}
790 		svc_xprt_received(xprt);
791 	} else if (test_bit(XPT_HANDSHAKE, &xprt->xpt_flags)) {
792 		xprt->xpt_ops->xpo_handshake(xprt);
793 		svc_xprt_received(xprt);
794 	} else if (svc_xprt_reserve_slot(rqstp, xprt)) {
795 		/* XPT_DATA|XPT_DEFERRED case: */
796 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
797 		if (rqstp->rq_deferred)
798 			len = svc_deferred_recv(rqstp);
799 		else
800 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
801 		rqstp->rq_reserved = serv->sv_max_mesg;
802 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
803 		if (len <= 0)
804 			goto out;
805 
806 		trace_svc_xdr_recvfrom(&rqstp->rq_arg);
807 
808 		clear_bit(XPT_OLD, &xprt->xpt_flags);
809 
810 		rqstp->rq_chandle.defer = svc_defer;
811 
812 		if (serv->sv_stats)
813 			serv->sv_stats->netcnt++;
814 		percpu_counter_inc(&rqstp->rq_pool->sp_messages_arrived);
815 		rqstp->rq_stime = ktime_get();
816 		svc_process(rqstp);
817 	} else
818 		svc_xprt_received(xprt);
819 
820 out:
821 	rqstp->rq_res.len = 0;
822 	svc_xprt_release(rqstp);
823 }
824 
825 static void svc_thread_wake_next(struct svc_rqst *rqstp)
826 {
827 	if (!svc_thread_should_sleep(rqstp))
828 		/* More work pending after I dequeued some,
829 		 * wake another worker
830 		 */
831 		svc_pool_wake_idle_thread(rqstp->rq_pool);
832 }
833 
834 /**
835  * svc_recv - Receive and process the next request on any transport
836  * @rqstp: an idle RPC service thread
837  *
838  * This code is carefully organised not to touch any cachelines in
839  * the shared svc_serv structure, only cachelines in the local
840  * svc_pool.
841  */
842 void svc_recv(struct svc_rqst *rqstp)
843 {
844 	struct svc_pool *pool = rqstp->rq_pool;
845 
846 	if (!svc_alloc_arg(rqstp))
847 		return;
848 
849 	svc_thread_wait_for_work(rqstp);
850 
851 	clear_bit(SP_TASK_PENDING, &pool->sp_flags);
852 
853 	if (svc_thread_should_stop(rqstp)) {
854 		svc_thread_wake_next(rqstp);
855 		return;
856 	}
857 
858 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
859 	if (rqstp->rq_xprt) {
860 		struct svc_xprt *xprt = rqstp->rq_xprt;
861 
862 		svc_thread_wake_next(rqstp);
863 		/* Normally we will wait up to 5 seconds for any required
864 		 * cache information to be provided.  When there are no
865 		 * idle threads, we reduce the wait time.
866 		 */
867 		if (pool->sp_idle_threads.first)
868 			rqstp->rq_chandle.thread_wait = 5 * HZ;
869 		else
870 			rqstp->rq_chandle.thread_wait = 1 * HZ;
871 
872 		trace_svc_xprt_dequeue(rqstp);
873 		svc_handle_xprt(rqstp, xprt);
874 	}
875 
876 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
877 	if (svc_is_backchannel(rqstp)) {
878 		struct svc_serv *serv = rqstp->rq_server;
879 		struct rpc_rqst *req;
880 
881 		req = lwq_dequeue(&serv->sv_cb_list,
882 				  struct rpc_rqst, rq_bc_list);
883 		if (req) {
884 			svc_thread_wake_next(rqstp);
885 			svc_process_bc(req, rqstp);
886 		}
887 	}
888 #endif
889 }
890 EXPORT_SYMBOL_GPL(svc_recv);
891 
892 /*
893  * Drop request
894  */
895 void svc_drop(struct svc_rqst *rqstp)
896 {
897 	trace_svc_drop(rqstp);
898 }
899 EXPORT_SYMBOL_GPL(svc_drop);
900 
901 /**
902  * svc_send - Return reply to client
903  * @rqstp: RPC transaction context
904  *
905  */
906 void svc_send(struct svc_rqst *rqstp)
907 {
908 	struct svc_xprt	*xprt;
909 	struct xdr_buf	*xb;
910 	int status;
911 
912 	xprt = rqstp->rq_xprt;
913 
914 	/* calculate over-all length */
915 	xb = &rqstp->rq_res;
916 	xb->len = xb->head[0].iov_len +
917 		xb->page_len +
918 		xb->tail[0].iov_len;
919 	trace_svc_xdr_sendto(rqstp->rq_xid, xb);
920 	trace_svc_stats_latency(rqstp);
921 
922 	status = xprt->xpt_ops->xpo_sendto(rqstp);
923 
924 	trace_svc_send(rqstp, status);
925 }
926 
927 /*
928  * Timer function to close old temporary transports, using
929  * a mark-and-sweep algorithm.
930  */
931 static void svc_age_temp_xprts(struct timer_list *t)
932 {
933 	struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
934 	struct svc_xprt *xprt;
935 	struct list_head *le, *next;
936 
937 	dprintk("svc_age_temp_xprts\n");
938 
939 	if (!spin_trylock_bh(&serv->sv_lock)) {
940 		/* busy, try again 1 sec later */
941 		dprintk("svc_age_temp_xprts: busy\n");
942 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
943 		return;
944 	}
945 
946 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
947 		xprt = list_entry(le, struct svc_xprt, xpt_list);
948 
949 		/* First time through, just mark it OLD. Second time
950 		 * through, close it. */
951 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
952 			continue;
953 		if (kref_read(&xprt->xpt_ref) > 1 ||
954 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
955 			continue;
956 		list_del_init(le);
957 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
958 		dprintk("queuing xprt %p for closing\n", xprt);
959 
960 		/* a thread will dequeue and close it soon */
961 		svc_xprt_enqueue(xprt);
962 	}
963 	spin_unlock_bh(&serv->sv_lock);
964 
965 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
966 }
967 
968 /* Close temporary transports whose xpt_local matches server_addr immediately
969  * instead of waiting for them to be picked up by the timer.
970  *
971  * This is meant to be called from a notifier_block that runs when an ip
972  * address is deleted.
973  */
974 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
975 {
976 	struct svc_xprt *xprt;
977 	struct list_head *le, *next;
978 	LIST_HEAD(to_be_closed);
979 
980 	spin_lock_bh(&serv->sv_lock);
981 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
982 		xprt = list_entry(le, struct svc_xprt, xpt_list);
983 		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
984 				&xprt->xpt_local)) {
985 			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
986 			list_move(le, &to_be_closed);
987 		}
988 	}
989 	spin_unlock_bh(&serv->sv_lock);
990 
991 	while (!list_empty(&to_be_closed)) {
992 		le = to_be_closed.next;
993 		list_del_init(le);
994 		xprt = list_entry(le, struct svc_xprt, xpt_list);
995 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
996 		set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
997 		dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
998 				xprt);
999 		svc_xprt_enqueue(xprt);
1000 	}
1001 }
1002 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1003 
1004 static void call_xpt_users(struct svc_xprt *xprt)
1005 {
1006 	struct svc_xpt_user *u;
1007 
1008 	spin_lock(&xprt->xpt_lock);
1009 	while (!list_empty(&xprt->xpt_users)) {
1010 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1011 		list_del_init(&u->list);
1012 		u->callback(u);
1013 	}
1014 	spin_unlock(&xprt->xpt_lock);
1015 }
1016 
1017 /*
1018  * Remove a dead transport
1019  */
1020 static void svc_delete_xprt(struct svc_xprt *xprt)
1021 {
1022 	struct svc_serv	*serv = xprt->xpt_server;
1023 	struct svc_deferred_req *dr;
1024 
1025 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1026 		return;
1027 
1028 	trace_svc_xprt_detach(xprt);
1029 	xprt->xpt_ops->xpo_detach(xprt);
1030 	if (xprt->xpt_bc_xprt)
1031 		xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt);
1032 
1033 	spin_lock_bh(&serv->sv_lock);
1034 	list_del_init(&xprt->xpt_list);
1035 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1036 		serv->sv_tmpcnt--;
1037 	spin_unlock_bh(&serv->sv_lock);
1038 
1039 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1040 		free_deferred(xprt, dr);
1041 
1042 	call_xpt_users(xprt);
1043 	svc_xprt_put(xprt);
1044 }
1045 
1046 /**
1047  * svc_xprt_close - Close a client connection
1048  * @xprt: transport to disconnect
1049  *
1050  */
1051 void svc_xprt_close(struct svc_xprt *xprt)
1052 {
1053 	trace_svc_xprt_close(xprt);
1054 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1055 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1056 		/* someone else will have to effect the close */
1057 		return;
1058 	/*
1059 	 * We expect svc_close_xprt() to work even when no threads are
1060 	 * running (e.g., while configuring the server before starting
1061 	 * any threads), so if the transport isn't busy, we delete
1062 	 * it ourself:
1063 	 */
1064 	svc_delete_xprt(xprt);
1065 }
1066 EXPORT_SYMBOL_GPL(svc_xprt_close);
1067 
1068 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1069 {
1070 	struct svc_xprt *xprt;
1071 	int ret = 0;
1072 
1073 	spin_lock_bh(&serv->sv_lock);
1074 	list_for_each_entry(xprt, xprt_list, xpt_list) {
1075 		if (xprt->xpt_net != net)
1076 			continue;
1077 		ret++;
1078 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1079 		svc_xprt_enqueue(xprt);
1080 	}
1081 	spin_unlock_bh(&serv->sv_lock);
1082 	return ret;
1083 }
1084 
1085 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1086 {
1087 	struct svc_xprt *xprt;
1088 	int i;
1089 
1090 	for (i = 0; i < serv->sv_nrpools; i++) {
1091 		struct svc_pool *pool = &serv->sv_pools[i];
1092 		struct llist_node *q, **t1, *t2;
1093 
1094 		q = lwq_dequeue_all(&pool->sp_xprts);
1095 		lwq_for_each_safe(xprt, t1, t2, &q, xpt_ready) {
1096 			if (xprt->xpt_net == net) {
1097 				set_bit(XPT_CLOSE, &xprt->xpt_flags);
1098 				svc_delete_xprt(xprt);
1099 				xprt = NULL;
1100 			}
1101 		}
1102 
1103 		if (q)
1104 			lwq_enqueue_batch(q, &pool->sp_xprts);
1105 	}
1106 }
1107 
1108 /**
1109  * svc_xprt_destroy_all - Destroy transports associated with @serv
1110  * @serv: RPC service to be shut down
1111  * @net: target network namespace
1112  *
1113  * Server threads may still be running (especially in the case where the
1114  * service is still running in other network namespaces).
1115  *
1116  * So we shut down sockets the same way we would on a running server, by
1117  * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1118  * the close.  In the case there are no such other threads,
1119  * threads running, svc_clean_up_xprts() does a simple version of a
1120  * server's main event loop, and in the case where there are other
1121  * threads, we may need to wait a little while and then check again to
1122  * see if they're done.
1123  */
1124 void svc_xprt_destroy_all(struct svc_serv *serv, struct net *net)
1125 {
1126 	int delay = 0;
1127 
1128 	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1129 	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1130 
1131 		svc_clean_up_xprts(serv, net);
1132 		msleep(delay++);
1133 	}
1134 }
1135 EXPORT_SYMBOL_GPL(svc_xprt_destroy_all);
1136 
1137 /*
1138  * Handle defer and revisit of requests
1139  */
1140 
1141 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1142 {
1143 	struct svc_deferred_req *dr =
1144 		container_of(dreq, struct svc_deferred_req, handle);
1145 	struct svc_xprt *xprt = dr->xprt;
1146 
1147 	spin_lock(&xprt->xpt_lock);
1148 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1149 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1150 		spin_unlock(&xprt->xpt_lock);
1151 		trace_svc_defer_drop(dr);
1152 		free_deferred(xprt, dr);
1153 		svc_xprt_put(xprt);
1154 		return;
1155 	}
1156 	dr->xprt = NULL;
1157 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1158 	spin_unlock(&xprt->xpt_lock);
1159 	trace_svc_defer_queue(dr);
1160 	svc_xprt_enqueue(xprt);
1161 	svc_xprt_put(xprt);
1162 }
1163 
1164 /*
1165  * Save the request off for later processing. The request buffer looks
1166  * like this:
1167  *
1168  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1169  *
1170  * This code can only handle requests that consist of an xprt-header
1171  * and rpc-header.
1172  */
1173 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1174 {
1175 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1176 	struct svc_deferred_req *dr;
1177 
1178 	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1179 		return NULL; /* if more than a page, give up FIXME */
1180 	if (rqstp->rq_deferred) {
1181 		dr = rqstp->rq_deferred;
1182 		rqstp->rq_deferred = NULL;
1183 	} else {
1184 		size_t skip;
1185 		size_t size;
1186 		/* FIXME maybe discard if size too large */
1187 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1188 		dr = kmalloc(size, GFP_KERNEL);
1189 		if (dr == NULL)
1190 			return NULL;
1191 
1192 		dr->handle.owner = rqstp->rq_server;
1193 		dr->prot = rqstp->rq_prot;
1194 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1195 		dr->addrlen = rqstp->rq_addrlen;
1196 		dr->daddr = rqstp->rq_daddr;
1197 		dr->argslen = rqstp->rq_arg.len >> 2;
1198 
1199 		/* back up head to the start of the buffer and copy */
1200 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1201 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1202 		       dr->argslen << 2);
1203 	}
1204 	dr->xprt_ctxt = rqstp->rq_xprt_ctxt;
1205 	rqstp->rq_xprt_ctxt = NULL;
1206 	trace_svc_defer(rqstp);
1207 	svc_xprt_get(rqstp->rq_xprt);
1208 	dr->xprt = rqstp->rq_xprt;
1209 	set_bit(RQ_DROPME, &rqstp->rq_flags);
1210 
1211 	dr->handle.revisit = svc_revisit;
1212 	return &dr->handle;
1213 }
1214 
1215 /*
1216  * recv data from a deferred request into an active one
1217  */
1218 static noinline int svc_deferred_recv(struct svc_rqst *rqstp)
1219 {
1220 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1221 
1222 	trace_svc_defer_recv(dr);
1223 
1224 	/* setup iov_base past transport header */
1225 	rqstp->rq_arg.head[0].iov_base = dr->args;
1226 	/* The iov_len does not include the transport header bytes */
1227 	rqstp->rq_arg.head[0].iov_len = dr->argslen << 2;
1228 	rqstp->rq_arg.page_len = 0;
1229 	/* The rq_arg.len includes the transport header bytes */
1230 	rqstp->rq_arg.len     = dr->argslen << 2;
1231 	rqstp->rq_prot        = dr->prot;
1232 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1233 	rqstp->rq_addrlen     = dr->addrlen;
1234 	/* Save off transport header len in case we get deferred again */
1235 	rqstp->rq_daddr       = dr->daddr;
1236 	rqstp->rq_respages    = rqstp->rq_pages;
1237 	rqstp->rq_xprt_ctxt   = dr->xprt_ctxt;
1238 
1239 	dr->xprt_ctxt = NULL;
1240 	svc_xprt_received(rqstp->rq_xprt);
1241 	return dr->argslen << 2;
1242 }
1243 
1244 
1245 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1246 {
1247 	struct svc_deferred_req *dr = NULL;
1248 
1249 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1250 		return NULL;
1251 	spin_lock(&xprt->xpt_lock);
1252 	if (!list_empty(&xprt->xpt_deferred)) {
1253 		dr = list_entry(xprt->xpt_deferred.next,
1254 				struct svc_deferred_req,
1255 				handle.recent);
1256 		list_del_init(&dr->handle.recent);
1257 	} else
1258 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1259 	spin_unlock(&xprt->xpt_lock);
1260 	return dr;
1261 }
1262 
1263 /**
1264  * svc_find_xprt - find an RPC transport instance
1265  * @serv: pointer to svc_serv to search
1266  * @xcl_name: C string containing transport's class name
1267  * @net: owner net pointer
1268  * @af: Address family of transport's local address
1269  * @port: transport's IP port number
1270  *
1271  * Return the transport instance pointer for the endpoint accepting
1272  * connections/peer traffic from the specified transport class,
1273  * address family and port.
1274  *
1275  * Specifying 0 for the address family or port is effectively a
1276  * wild-card, and will result in matching the first transport in the
1277  * service's list that has a matching class name.
1278  */
1279 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1280 			       struct net *net, const sa_family_t af,
1281 			       const unsigned short port)
1282 {
1283 	struct svc_xprt *xprt;
1284 	struct svc_xprt *found = NULL;
1285 
1286 	/* Sanity check the args */
1287 	if (serv == NULL || xcl_name == NULL)
1288 		return found;
1289 
1290 	spin_lock_bh(&serv->sv_lock);
1291 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1292 		if (xprt->xpt_net != net)
1293 			continue;
1294 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1295 			continue;
1296 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1297 			continue;
1298 		if (port != 0 && port != svc_xprt_local_port(xprt))
1299 			continue;
1300 		found = xprt;
1301 		svc_xprt_get(xprt);
1302 		break;
1303 	}
1304 	spin_unlock_bh(&serv->sv_lock);
1305 	return found;
1306 }
1307 EXPORT_SYMBOL_GPL(svc_find_xprt);
1308 
1309 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1310 			     char *pos, int remaining)
1311 {
1312 	int len;
1313 
1314 	len = snprintf(pos, remaining, "%s %u\n",
1315 			xprt->xpt_class->xcl_name,
1316 			svc_xprt_local_port(xprt));
1317 	if (len >= remaining)
1318 		return -ENAMETOOLONG;
1319 	return len;
1320 }
1321 
1322 /**
1323  * svc_xprt_names - format a buffer with a list of transport names
1324  * @serv: pointer to an RPC service
1325  * @buf: pointer to a buffer to be filled in
1326  * @buflen: length of buffer to be filled in
1327  *
1328  * Fills in @buf with a string containing a list of transport names,
1329  * each name terminated with '\n'.
1330  *
1331  * Returns positive length of the filled-in string on success; otherwise
1332  * a negative errno value is returned if an error occurs.
1333  */
1334 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1335 {
1336 	struct svc_xprt *xprt;
1337 	int len, totlen;
1338 	char *pos;
1339 
1340 	/* Sanity check args */
1341 	if (!serv)
1342 		return 0;
1343 
1344 	spin_lock_bh(&serv->sv_lock);
1345 
1346 	pos = buf;
1347 	totlen = 0;
1348 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1349 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1350 		if (len < 0) {
1351 			*buf = '\0';
1352 			totlen = len;
1353 		}
1354 		if (len <= 0)
1355 			break;
1356 
1357 		pos += len;
1358 		totlen += len;
1359 	}
1360 
1361 	spin_unlock_bh(&serv->sv_lock);
1362 	return totlen;
1363 }
1364 EXPORT_SYMBOL_GPL(svc_xprt_names);
1365 
1366 
1367 /*----------------------------------------------------------------------------*/
1368 
1369 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1370 {
1371 	unsigned int pidx = (unsigned int)*pos;
1372 	struct svc_serv *serv = m->private;
1373 
1374 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1375 
1376 	if (!pidx)
1377 		return SEQ_START_TOKEN;
1378 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1379 }
1380 
1381 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1382 {
1383 	struct svc_pool *pool = p;
1384 	struct svc_serv *serv = m->private;
1385 
1386 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1387 
1388 	if (p == SEQ_START_TOKEN) {
1389 		pool = &serv->sv_pools[0];
1390 	} else {
1391 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1392 		if (pidx < serv->sv_nrpools-1)
1393 			pool = &serv->sv_pools[pidx+1];
1394 		else
1395 			pool = NULL;
1396 	}
1397 	++*pos;
1398 	return pool;
1399 }
1400 
1401 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1402 {
1403 }
1404 
1405 static int svc_pool_stats_show(struct seq_file *m, void *p)
1406 {
1407 	struct svc_pool *pool = p;
1408 
1409 	if (p == SEQ_START_TOKEN) {
1410 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1411 		return 0;
1412 	}
1413 
1414 	seq_printf(m, "%u %llu %llu %llu 0\n",
1415 		   pool->sp_id,
1416 		   percpu_counter_sum_positive(&pool->sp_messages_arrived),
1417 		   percpu_counter_sum_positive(&pool->sp_sockets_queued),
1418 		   percpu_counter_sum_positive(&pool->sp_threads_woken));
1419 
1420 	return 0;
1421 }
1422 
1423 static const struct seq_operations svc_pool_stats_seq_ops = {
1424 	.start	= svc_pool_stats_start,
1425 	.next	= svc_pool_stats_next,
1426 	.stop	= svc_pool_stats_stop,
1427 	.show	= svc_pool_stats_show,
1428 };
1429 
1430 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1431 {
1432 	int err;
1433 
1434 	err = seq_open(file, &svc_pool_stats_seq_ops);
1435 	if (!err)
1436 		((struct seq_file *) file->private_data)->private = serv;
1437 	return err;
1438 }
1439 EXPORT_SYMBOL(svc_pool_stats_open);
1440 
1441 /*----------------------------------------------------------------------------*/
1442