xref: /linux/net/sunrpc/svc_xprt.c (revision 5e0266f0e5f57617472d5aac4013f58a3ef264ac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/svc_xprt.c
4  *
5  * Author: Tom Tucker <tom@opengridcomputing.com>
6  */
7 
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/errno.h>
11 #include <linux/freezer.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <net/sock.h>
15 #include <linux/sunrpc/addr.h>
16 #include <linux/sunrpc/stats.h>
17 #include <linux/sunrpc/svc_xprt.h>
18 #include <linux/sunrpc/svcsock.h>
19 #include <linux/sunrpc/xprt.h>
20 #include <linux/module.h>
21 #include <linux/netdevice.h>
22 #include <trace/events/sunrpc.h>
23 
24 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
25 
26 static unsigned int svc_rpc_per_connection_limit __read_mostly;
27 module_param(svc_rpc_per_connection_limit, uint, 0644);
28 
29 
30 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
31 static int svc_deferred_recv(struct svc_rqst *rqstp);
32 static struct cache_deferred_req *svc_defer(struct cache_req *req);
33 static void svc_age_temp_xprts(struct timer_list *t);
34 static void svc_delete_xprt(struct svc_xprt *xprt);
35 
36 /* apparently the "standard" is that clients close
37  * idle connections after 5 minutes, servers after
38  * 6 minutes
39  *   http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
40  */
41 static int svc_conn_age_period = 6*60;
42 
43 /* List of registered transport classes */
44 static DEFINE_SPINLOCK(svc_xprt_class_lock);
45 static LIST_HEAD(svc_xprt_class_list);
46 
47 /* SMP locking strategy:
48  *
49  *	svc_pool->sp_lock protects most of the fields of that pool.
50  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
51  *	when both need to be taken (rare), svc_serv->sv_lock is first.
52  *	The "service mutex" protects svc_serv->sv_nrthread.
53  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
54  *             and the ->sk_info_authunix cache.
55  *
56  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
57  *	enqueued multiply. During normal transport processing this bit
58  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
59  *	Providers should not manipulate this bit directly.
60  *
61  *	Some flags can be set to certain values at any time
62  *	providing that certain rules are followed:
63  *
64  *	XPT_CONN, XPT_DATA:
65  *		- Can be set or cleared at any time.
66  *		- After a set, svc_xprt_enqueue must be called to enqueue
67  *		  the transport for processing.
68  *		- After a clear, the transport must be read/accepted.
69  *		  If this succeeds, it must be set again.
70  *	XPT_CLOSE:
71  *		- Can set at any time. It is never cleared.
72  *      XPT_DEAD:
73  *		- Can only be set while XPT_BUSY is held which ensures
74  *		  that no other thread will be using the transport or will
75  *		  try to set XPT_DEAD.
76  */
77 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
78 {
79 	struct svc_xprt_class *cl;
80 	int res = -EEXIST;
81 
82 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
83 
84 	INIT_LIST_HEAD(&xcl->xcl_list);
85 	spin_lock(&svc_xprt_class_lock);
86 	/* Make sure there isn't already a class with the same name */
87 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
88 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
89 			goto out;
90 	}
91 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
92 	res = 0;
93 out:
94 	spin_unlock(&svc_xprt_class_lock);
95 	return res;
96 }
97 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
98 
99 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
100 {
101 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
102 	spin_lock(&svc_xprt_class_lock);
103 	list_del_init(&xcl->xcl_list);
104 	spin_unlock(&svc_xprt_class_lock);
105 }
106 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
107 
108 /**
109  * svc_print_xprts - Format the transport list for printing
110  * @buf: target buffer for formatted address
111  * @maxlen: length of target buffer
112  *
113  * Fills in @buf with a string containing a list of transport names, each name
114  * terminated with '\n'. If the buffer is too small, some entries may be
115  * missing, but it is guaranteed that all lines in the output buffer are
116  * complete.
117  *
118  * Returns positive length of the filled-in string.
119  */
120 int svc_print_xprts(char *buf, int maxlen)
121 {
122 	struct svc_xprt_class *xcl;
123 	char tmpstr[80];
124 	int len = 0;
125 	buf[0] = '\0';
126 
127 	spin_lock(&svc_xprt_class_lock);
128 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
129 		int slen;
130 
131 		slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
132 				xcl->xcl_name, xcl->xcl_max_payload);
133 		if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
134 			break;
135 		len += slen;
136 		strcat(buf, tmpstr);
137 	}
138 	spin_unlock(&svc_xprt_class_lock);
139 
140 	return len;
141 }
142 
143 /**
144  * svc_xprt_deferred_close - Close a transport
145  * @xprt: transport instance
146  *
147  * Used in contexts that need to defer the work of shutting down
148  * the transport to an nfsd thread.
149  */
150 void svc_xprt_deferred_close(struct svc_xprt *xprt)
151 {
152 	if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags))
153 		svc_xprt_enqueue(xprt);
154 }
155 EXPORT_SYMBOL_GPL(svc_xprt_deferred_close);
156 
157 static void svc_xprt_free(struct kref *kref)
158 {
159 	struct svc_xprt *xprt =
160 		container_of(kref, struct svc_xprt, xpt_ref);
161 	struct module *owner = xprt->xpt_class->xcl_owner;
162 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
163 		svcauth_unix_info_release(xprt);
164 	put_cred(xprt->xpt_cred);
165 	put_net_track(xprt->xpt_net, &xprt->ns_tracker);
166 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
167 	if (xprt->xpt_bc_xprt)
168 		xprt_put(xprt->xpt_bc_xprt);
169 	if (xprt->xpt_bc_xps)
170 		xprt_switch_put(xprt->xpt_bc_xps);
171 	trace_svc_xprt_free(xprt);
172 	xprt->xpt_ops->xpo_free(xprt);
173 	module_put(owner);
174 }
175 
176 void svc_xprt_put(struct svc_xprt *xprt)
177 {
178 	kref_put(&xprt->xpt_ref, svc_xprt_free);
179 }
180 EXPORT_SYMBOL_GPL(svc_xprt_put);
181 
182 /*
183  * Called by transport drivers to initialize the transport independent
184  * portion of the transport instance.
185  */
186 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
187 		   struct svc_xprt *xprt, struct svc_serv *serv)
188 {
189 	memset(xprt, 0, sizeof(*xprt));
190 	xprt->xpt_class = xcl;
191 	xprt->xpt_ops = xcl->xcl_ops;
192 	kref_init(&xprt->xpt_ref);
193 	xprt->xpt_server = serv;
194 	INIT_LIST_HEAD(&xprt->xpt_list);
195 	INIT_LIST_HEAD(&xprt->xpt_ready);
196 	INIT_LIST_HEAD(&xprt->xpt_deferred);
197 	INIT_LIST_HEAD(&xprt->xpt_users);
198 	mutex_init(&xprt->xpt_mutex);
199 	spin_lock_init(&xprt->xpt_lock);
200 	set_bit(XPT_BUSY, &xprt->xpt_flags);
201 	xprt->xpt_net = get_net_track(net, &xprt->ns_tracker, GFP_ATOMIC);
202 	strcpy(xprt->xpt_remotebuf, "uninitialized");
203 }
204 EXPORT_SYMBOL_GPL(svc_xprt_init);
205 
206 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
207 					 struct svc_serv *serv,
208 					 struct net *net,
209 					 const int family,
210 					 const unsigned short port,
211 					 int flags)
212 {
213 	struct sockaddr_in sin = {
214 		.sin_family		= AF_INET,
215 		.sin_addr.s_addr	= htonl(INADDR_ANY),
216 		.sin_port		= htons(port),
217 	};
218 #if IS_ENABLED(CONFIG_IPV6)
219 	struct sockaddr_in6 sin6 = {
220 		.sin6_family		= AF_INET6,
221 		.sin6_addr		= IN6ADDR_ANY_INIT,
222 		.sin6_port		= htons(port),
223 	};
224 #endif
225 	struct svc_xprt *xprt;
226 	struct sockaddr *sap;
227 	size_t len;
228 
229 	switch (family) {
230 	case PF_INET:
231 		sap = (struct sockaddr *)&sin;
232 		len = sizeof(sin);
233 		break;
234 #if IS_ENABLED(CONFIG_IPV6)
235 	case PF_INET6:
236 		sap = (struct sockaddr *)&sin6;
237 		len = sizeof(sin6);
238 		break;
239 #endif
240 	default:
241 		return ERR_PTR(-EAFNOSUPPORT);
242 	}
243 
244 	xprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
245 	if (IS_ERR(xprt))
246 		trace_svc_xprt_create_err(serv->sv_program->pg_name,
247 					  xcl->xcl_name, sap, len, xprt);
248 	return xprt;
249 }
250 
251 /**
252  * svc_xprt_received - start next receiver thread
253  * @xprt: controlling transport
254  *
255  * The caller must hold the XPT_BUSY bit and must
256  * not thereafter touch transport data.
257  *
258  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
259  * insufficient) data.
260  */
261 void svc_xprt_received(struct svc_xprt *xprt)
262 {
263 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
264 		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
265 		return;
266 	}
267 
268 	/* As soon as we clear busy, the xprt could be closed and
269 	 * 'put', so we need a reference to call svc_xprt_enqueue with:
270 	 */
271 	svc_xprt_get(xprt);
272 	smp_mb__before_atomic();
273 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
274 	svc_xprt_enqueue(xprt);
275 	svc_xprt_put(xprt);
276 }
277 EXPORT_SYMBOL_GPL(svc_xprt_received);
278 
279 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
280 {
281 	clear_bit(XPT_TEMP, &new->xpt_flags);
282 	spin_lock_bh(&serv->sv_lock);
283 	list_add(&new->xpt_list, &serv->sv_permsocks);
284 	spin_unlock_bh(&serv->sv_lock);
285 	svc_xprt_received(new);
286 }
287 
288 static int _svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
289 			    struct net *net, const int family,
290 			    const unsigned short port, int flags,
291 			    const struct cred *cred)
292 {
293 	struct svc_xprt_class *xcl;
294 
295 	spin_lock(&svc_xprt_class_lock);
296 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
297 		struct svc_xprt *newxprt;
298 		unsigned short newport;
299 
300 		if (strcmp(xprt_name, xcl->xcl_name))
301 			continue;
302 
303 		if (!try_module_get(xcl->xcl_owner))
304 			goto err;
305 
306 		spin_unlock(&svc_xprt_class_lock);
307 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
308 		if (IS_ERR(newxprt)) {
309 			module_put(xcl->xcl_owner);
310 			return PTR_ERR(newxprt);
311 		}
312 		newxprt->xpt_cred = get_cred(cred);
313 		svc_add_new_perm_xprt(serv, newxprt);
314 		newport = svc_xprt_local_port(newxprt);
315 		return newport;
316 	}
317  err:
318 	spin_unlock(&svc_xprt_class_lock);
319 	/* This errno is exposed to user space.  Provide a reasonable
320 	 * perror msg for a bad transport. */
321 	return -EPROTONOSUPPORT;
322 }
323 
324 /**
325  * svc_xprt_create - Add a new listener to @serv
326  * @serv: target RPC service
327  * @xprt_name: transport class name
328  * @net: network namespace
329  * @family: network address family
330  * @port: listener port
331  * @flags: SVC_SOCK flags
332  * @cred: credential to bind to this transport
333  *
334  * Return values:
335  *   %0: New listener added successfully
336  *   %-EPROTONOSUPPORT: Requested transport type not supported
337  */
338 int svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
339 		    struct net *net, const int family,
340 		    const unsigned short port, int flags,
341 		    const struct cred *cred)
342 {
343 	int err;
344 
345 	err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
346 	if (err == -EPROTONOSUPPORT) {
347 		request_module("svc%s", xprt_name);
348 		err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
349 	}
350 	return err;
351 }
352 EXPORT_SYMBOL_GPL(svc_xprt_create);
353 
354 /*
355  * Copy the local and remote xprt addresses to the rqstp structure
356  */
357 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
358 {
359 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
360 	rqstp->rq_addrlen = xprt->xpt_remotelen;
361 
362 	/*
363 	 * Destination address in request is needed for binding the
364 	 * source address in RPC replies/callbacks later.
365 	 */
366 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
367 	rqstp->rq_daddrlen = xprt->xpt_locallen;
368 }
369 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
370 
371 /**
372  * svc_print_addr - Format rq_addr field for printing
373  * @rqstp: svc_rqst struct containing address to print
374  * @buf: target buffer for formatted address
375  * @len: length of target buffer
376  *
377  */
378 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
379 {
380 	return __svc_print_addr(svc_addr(rqstp), buf, len);
381 }
382 EXPORT_SYMBOL_GPL(svc_print_addr);
383 
384 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
385 {
386 	unsigned int limit = svc_rpc_per_connection_limit;
387 	int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
388 
389 	return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
390 }
391 
392 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
393 {
394 	if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
395 		if (!svc_xprt_slots_in_range(xprt))
396 			return false;
397 		atomic_inc(&xprt->xpt_nr_rqsts);
398 		set_bit(RQ_DATA, &rqstp->rq_flags);
399 	}
400 	return true;
401 }
402 
403 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
404 {
405 	struct svc_xprt	*xprt = rqstp->rq_xprt;
406 	if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
407 		atomic_dec(&xprt->xpt_nr_rqsts);
408 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
409 		svc_xprt_enqueue(xprt);
410 	}
411 }
412 
413 static bool svc_xprt_ready(struct svc_xprt *xprt)
414 {
415 	unsigned long xpt_flags;
416 
417 	/*
418 	 * If another cpu has recently updated xpt_flags,
419 	 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
420 	 * know about it; otherwise it's possible that both that cpu and
421 	 * this one could call svc_xprt_enqueue() without either
422 	 * svc_xprt_enqueue() recognizing that the conditions below
423 	 * are satisfied, and we could stall indefinitely:
424 	 */
425 	smp_rmb();
426 	xpt_flags = READ_ONCE(xprt->xpt_flags);
427 
428 	if (xpt_flags & BIT(XPT_BUSY))
429 		return false;
430 	if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE)))
431 		return true;
432 	if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
433 		if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
434 		    svc_xprt_slots_in_range(xprt))
435 			return true;
436 		trace_svc_xprt_no_write_space(xprt);
437 		return false;
438 	}
439 	return false;
440 }
441 
442 /**
443  * svc_xprt_enqueue - Queue a transport on an idle nfsd thread
444  * @xprt: transport with data pending
445  *
446  */
447 void svc_xprt_enqueue(struct svc_xprt *xprt)
448 {
449 	struct svc_pool *pool;
450 	struct svc_rqst	*rqstp = NULL;
451 
452 	if (!svc_xprt_ready(xprt))
453 		return;
454 
455 	/* Mark transport as busy. It will remain in this state until
456 	 * the provider calls svc_xprt_received. We update XPT_BUSY
457 	 * atomically because it also guards against trying to enqueue
458 	 * the transport twice.
459 	 */
460 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
461 		return;
462 
463 	pool = svc_pool_for_cpu(xprt->xpt_server);
464 
465 	percpu_counter_inc(&pool->sp_sockets_queued);
466 	spin_lock_bh(&pool->sp_lock);
467 	list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
468 	spin_unlock_bh(&pool->sp_lock);
469 
470 	/* find a thread for this xprt */
471 	rcu_read_lock();
472 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
473 		if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
474 			continue;
475 		percpu_counter_inc(&pool->sp_threads_woken);
476 		rqstp->rq_qtime = ktime_get();
477 		wake_up_process(rqstp->rq_task);
478 		goto out_unlock;
479 	}
480 	set_bit(SP_CONGESTED, &pool->sp_flags);
481 	rqstp = NULL;
482 out_unlock:
483 	rcu_read_unlock();
484 	trace_svc_xprt_enqueue(xprt, rqstp);
485 }
486 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
487 
488 /*
489  * Dequeue the first transport, if there is one.
490  */
491 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
492 {
493 	struct svc_xprt	*xprt = NULL;
494 
495 	if (list_empty(&pool->sp_sockets))
496 		goto out;
497 
498 	spin_lock_bh(&pool->sp_lock);
499 	if (likely(!list_empty(&pool->sp_sockets))) {
500 		xprt = list_first_entry(&pool->sp_sockets,
501 					struct svc_xprt, xpt_ready);
502 		list_del_init(&xprt->xpt_ready);
503 		svc_xprt_get(xprt);
504 	}
505 	spin_unlock_bh(&pool->sp_lock);
506 out:
507 	return xprt;
508 }
509 
510 /**
511  * svc_reserve - change the space reserved for the reply to a request.
512  * @rqstp:  The request in question
513  * @space: new max space to reserve
514  *
515  * Each request reserves some space on the output queue of the transport
516  * to make sure the reply fits.  This function reduces that reserved
517  * space to be the amount of space used already, plus @space.
518  *
519  */
520 void svc_reserve(struct svc_rqst *rqstp, int space)
521 {
522 	struct svc_xprt *xprt = rqstp->rq_xprt;
523 
524 	space += rqstp->rq_res.head[0].iov_len;
525 
526 	if (xprt && space < rqstp->rq_reserved) {
527 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
528 		rqstp->rq_reserved = space;
529 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
530 		svc_xprt_enqueue(xprt);
531 	}
532 }
533 EXPORT_SYMBOL_GPL(svc_reserve);
534 
535 static void svc_xprt_release(struct svc_rqst *rqstp)
536 {
537 	struct svc_xprt	*xprt = rqstp->rq_xprt;
538 
539 	xprt->xpt_ops->xpo_release_rqst(rqstp);
540 
541 	kfree(rqstp->rq_deferred);
542 	rqstp->rq_deferred = NULL;
543 
544 	pagevec_release(&rqstp->rq_pvec);
545 	svc_free_res_pages(rqstp);
546 	rqstp->rq_res.page_len = 0;
547 	rqstp->rq_res.page_base = 0;
548 
549 	/* Reset response buffer and release
550 	 * the reservation.
551 	 * But first, check that enough space was reserved
552 	 * for the reply, otherwise we have a bug!
553 	 */
554 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
555 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
556 		       rqstp->rq_reserved,
557 		       rqstp->rq_res.len);
558 
559 	rqstp->rq_res.head[0].iov_len = 0;
560 	svc_reserve(rqstp, 0);
561 	svc_xprt_release_slot(rqstp);
562 	rqstp->rq_xprt = NULL;
563 	svc_xprt_put(xprt);
564 }
565 
566 /*
567  * Some svc_serv's will have occasional work to do, even when a xprt is not
568  * waiting to be serviced. This function is there to "kick" a task in one of
569  * those services so that it can wake up and do that work. Note that we only
570  * bother with pool 0 as we don't need to wake up more than one thread for
571  * this purpose.
572  */
573 void svc_wake_up(struct svc_serv *serv)
574 {
575 	struct svc_rqst	*rqstp;
576 	struct svc_pool *pool;
577 
578 	pool = &serv->sv_pools[0];
579 
580 	rcu_read_lock();
581 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
582 		/* skip any that aren't queued */
583 		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
584 			continue;
585 		rcu_read_unlock();
586 		wake_up_process(rqstp->rq_task);
587 		trace_svc_wake_up(rqstp->rq_task->pid);
588 		return;
589 	}
590 	rcu_read_unlock();
591 
592 	/* No free entries available */
593 	set_bit(SP_TASK_PENDING, &pool->sp_flags);
594 	smp_wmb();
595 	trace_svc_wake_up(0);
596 }
597 EXPORT_SYMBOL_GPL(svc_wake_up);
598 
599 int svc_port_is_privileged(struct sockaddr *sin)
600 {
601 	switch (sin->sa_family) {
602 	case AF_INET:
603 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
604 			< PROT_SOCK;
605 	case AF_INET6:
606 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
607 			< PROT_SOCK;
608 	default:
609 		return 0;
610 	}
611 }
612 
613 /*
614  * Make sure that we don't have too many active connections. If we have,
615  * something must be dropped. It's not clear what will happen if we allow
616  * "too many" connections, but when dealing with network-facing software,
617  * we have to code defensively. Here we do that by imposing hard limits.
618  *
619  * There's no point in trying to do random drop here for DoS
620  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
621  * attacker can easily beat that.
622  *
623  * The only somewhat efficient mechanism would be if drop old
624  * connections from the same IP first. But right now we don't even
625  * record the client IP in svc_sock.
626  *
627  * single-threaded services that expect a lot of clients will probably
628  * need to set sv_maxconn to override the default value which is based
629  * on the number of threads
630  */
631 static void svc_check_conn_limits(struct svc_serv *serv)
632 {
633 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
634 				(serv->sv_nrthreads+3) * 20;
635 
636 	if (serv->sv_tmpcnt > limit) {
637 		struct svc_xprt *xprt = NULL;
638 		spin_lock_bh(&serv->sv_lock);
639 		if (!list_empty(&serv->sv_tempsocks)) {
640 			/* Try to help the admin */
641 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
642 					       serv->sv_name, serv->sv_maxconn ?
643 					       "max number of connections" :
644 					       "number of threads");
645 			/*
646 			 * Always select the oldest connection. It's not fair,
647 			 * but so is life
648 			 */
649 			xprt = list_entry(serv->sv_tempsocks.prev,
650 					  struct svc_xprt,
651 					  xpt_list);
652 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
653 			svc_xprt_get(xprt);
654 		}
655 		spin_unlock_bh(&serv->sv_lock);
656 
657 		if (xprt) {
658 			svc_xprt_enqueue(xprt);
659 			svc_xprt_put(xprt);
660 		}
661 	}
662 }
663 
664 static int svc_alloc_arg(struct svc_rqst *rqstp)
665 {
666 	struct svc_serv *serv = rqstp->rq_server;
667 	struct xdr_buf *arg = &rqstp->rq_arg;
668 	unsigned long pages, filled, ret;
669 
670 	pagevec_init(&rqstp->rq_pvec);
671 
672 	pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
673 	if (pages > RPCSVC_MAXPAGES) {
674 		pr_warn_once("svc: warning: pages=%lu > RPCSVC_MAXPAGES=%lu\n",
675 			     pages, RPCSVC_MAXPAGES);
676 		/* use as many pages as possible */
677 		pages = RPCSVC_MAXPAGES;
678 	}
679 
680 	for (filled = 0; filled < pages; filled = ret) {
681 		ret = alloc_pages_bulk_array(GFP_KERNEL, pages,
682 					     rqstp->rq_pages);
683 		if (ret > filled)
684 			/* Made progress, don't sleep yet */
685 			continue;
686 
687 		set_current_state(TASK_INTERRUPTIBLE);
688 		if (signalled() || kthread_should_stop()) {
689 			set_current_state(TASK_RUNNING);
690 			return -EINTR;
691 		}
692 		trace_svc_alloc_arg_err(pages, ret);
693 		memalloc_retry_wait(GFP_KERNEL);
694 	}
695 	rqstp->rq_page_end = &rqstp->rq_pages[pages];
696 	rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */
697 
698 	/* Make arg->head point to first page and arg->pages point to rest */
699 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
700 	arg->head[0].iov_len = PAGE_SIZE;
701 	arg->pages = rqstp->rq_pages + 1;
702 	arg->page_base = 0;
703 	/* save at least one page for response */
704 	arg->page_len = (pages-2)*PAGE_SIZE;
705 	arg->len = (pages-1)*PAGE_SIZE;
706 	arg->tail[0].iov_len = 0;
707 	return 0;
708 }
709 
710 static bool
711 rqst_should_sleep(struct svc_rqst *rqstp)
712 {
713 	struct svc_pool		*pool = rqstp->rq_pool;
714 
715 	/* did someone call svc_wake_up? */
716 	if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
717 		return false;
718 
719 	/* was a socket queued? */
720 	if (!list_empty(&pool->sp_sockets))
721 		return false;
722 
723 	/* are we shutting down? */
724 	if (signalled() || kthread_should_stop())
725 		return false;
726 
727 	/* are we freezing? */
728 	if (freezing(current))
729 		return false;
730 
731 	return true;
732 }
733 
734 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
735 {
736 	struct svc_pool		*pool = rqstp->rq_pool;
737 	long			time_left = 0;
738 
739 	/* rq_xprt should be clear on entry */
740 	WARN_ON_ONCE(rqstp->rq_xprt);
741 
742 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
743 	if (rqstp->rq_xprt)
744 		goto out_found;
745 
746 	/*
747 	 * We have to be able to interrupt this wait
748 	 * to bring down the daemons ...
749 	 */
750 	set_current_state(TASK_INTERRUPTIBLE);
751 	smp_mb__before_atomic();
752 	clear_bit(SP_CONGESTED, &pool->sp_flags);
753 	clear_bit(RQ_BUSY, &rqstp->rq_flags);
754 	smp_mb__after_atomic();
755 
756 	if (likely(rqst_should_sleep(rqstp)))
757 		time_left = schedule_timeout(timeout);
758 	else
759 		__set_current_state(TASK_RUNNING);
760 
761 	try_to_freeze();
762 
763 	set_bit(RQ_BUSY, &rqstp->rq_flags);
764 	smp_mb__after_atomic();
765 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
766 	if (rqstp->rq_xprt)
767 		goto out_found;
768 
769 	if (!time_left)
770 		percpu_counter_inc(&pool->sp_threads_timedout);
771 
772 	if (signalled() || kthread_should_stop())
773 		return ERR_PTR(-EINTR);
774 	return ERR_PTR(-EAGAIN);
775 out_found:
776 	/* Normally we will wait up to 5 seconds for any required
777 	 * cache information to be provided.
778 	 */
779 	if (!test_bit(SP_CONGESTED, &pool->sp_flags))
780 		rqstp->rq_chandle.thread_wait = 5*HZ;
781 	else
782 		rqstp->rq_chandle.thread_wait = 1*HZ;
783 	trace_svc_xprt_dequeue(rqstp);
784 	return rqstp->rq_xprt;
785 }
786 
787 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
788 {
789 	spin_lock_bh(&serv->sv_lock);
790 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
791 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
792 	serv->sv_tmpcnt++;
793 	if (serv->sv_temptimer.function == NULL) {
794 		/* setup timer to age temp transports */
795 		serv->sv_temptimer.function = svc_age_temp_xprts;
796 		mod_timer(&serv->sv_temptimer,
797 			  jiffies + svc_conn_age_period * HZ);
798 	}
799 	spin_unlock_bh(&serv->sv_lock);
800 	svc_xprt_received(newxpt);
801 }
802 
803 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
804 {
805 	struct svc_serv *serv = rqstp->rq_server;
806 	int len = 0;
807 
808 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
809 		if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
810 			xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
811 		svc_delete_xprt(xprt);
812 		/* Leave XPT_BUSY set on the dead xprt: */
813 		goto out;
814 	}
815 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
816 		struct svc_xprt *newxpt;
817 		/*
818 		 * We know this module_get will succeed because the
819 		 * listener holds a reference too
820 		 */
821 		__module_get(xprt->xpt_class->xcl_owner);
822 		svc_check_conn_limits(xprt->xpt_server);
823 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
824 		if (newxpt) {
825 			newxpt->xpt_cred = get_cred(xprt->xpt_cred);
826 			svc_add_new_temp_xprt(serv, newxpt);
827 			trace_svc_xprt_accept(newxpt, serv->sv_name);
828 		} else {
829 			module_put(xprt->xpt_class->xcl_owner);
830 		}
831 		svc_xprt_received(xprt);
832 	} else if (svc_xprt_reserve_slot(rqstp, xprt)) {
833 		/* XPT_DATA|XPT_DEFERRED case: */
834 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
835 			rqstp, rqstp->rq_pool->sp_id, xprt,
836 			kref_read(&xprt->xpt_ref));
837 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
838 		if (rqstp->rq_deferred)
839 			len = svc_deferred_recv(rqstp);
840 		else
841 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
842 		rqstp->rq_stime = ktime_get();
843 		rqstp->rq_reserved = serv->sv_max_mesg;
844 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
845 	} else
846 		svc_xprt_received(xprt);
847 
848 out:
849 	return len;
850 }
851 
852 /*
853  * Receive the next request on any transport.  This code is carefully
854  * organised not to touch any cachelines in the shared svc_serv
855  * structure, only cachelines in the local svc_pool.
856  */
857 int svc_recv(struct svc_rqst *rqstp, long timeout)
858 {
859 	struct svc_xprt		*xprt = NULL;
860 	struct svc_serv		*serv = rqstp->rq_server;
861 	int			len, err;
862 
863 	err = svc_alloc_arg(rqstp);
864 	if (err)
865 		goto out;
866 
867 	try_to_freeze();
868 	cond_resched();
869 	err = -EINTR;
870 	if (signalled() || kthread_should_stop())
871 		goto out;
872 
873 	xprt = svc_get_next_xprt(rqstp, timeout);
874 	if (IS_ERR(xprt)) {
875 		err = PTR_ERR(xprt);
876 		goto out;
877 	}
878 
879 	len = svc_handle_xprt(rqstp, xprt);
880 
881 	/* No data, incomplete (TCP) read, or accept() */
882 	err = -EAGAIN;
883 	if (len <= 0)
884 		goto out_release;
885 	trace_svc_xdr_recvfrom(&rqstp->rq_arg);
886 
887 	clear_bit(XPT_OLD, &xprt->xpt_flags);
888 
889 	rqstp->rq_chandle.defer = svc_defer;
890 
891 	if (serv->sv_stats)
892 		serv->sv_stats->netcnt++;
893 	return len;
894 out_release:
895 	rqstp->rq_res.len = 0;
896 	svc_xprt_release(rqstp);
897 out:
898 	return err;
899 }
900 EXPORT_SYMBOL_GPL(svc_recv);
901 
902 /*
903  * Drop request
904  */
905 void svc_drop(struct svc_rqst *rqstp)
906 {
907 	trace_svc_drop(rqstp);
908 	svc_xprt_release(rqstp);
909 }
910 EXPORT_SYMBOL_GPL(svc_drop);
911 
912 /*
913  * Return reply to client.
914  */
915 int svc_send(struct svc_rqst *rqstp)
916 {
917 	struct svc_xprt	*xprt;
918 	int		len = -EFAULT;
919 	struct xdr_buf	*xb;
920 
921 	xprt = rqstp->rq_xprt;
922 	if (!xprt)
923 		goto out;
924 
925 	/* calculate over-all length */
926 	xb = &rqstp->rq_res;
927 	xb->len = xb->head[0].iov_len +
928 		xb->page_len +
929 		xb->tail[0].iov_len;
930 	trace_svc_xdr_sendto(rqstp->rq_xid, xb);
931 	trace_svc_stats_latency(rqstp);
932 
933 	len = xprt->xpt_ops->xpo_sendto(rqstp);
934 
935 	trace_svc_send(rqstp, len);
936 	svc_xprt_release(rqstp);
937 
938 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
939 		len = 0;
940 out:
941 	return len;
942 }
943 
944 /*
945  * Timer function to close old temporary transports, using
946  * a mark-and-sweep algorithm.
947  */
948 static void svc_age_temp_xprts(struct timer_list *t)
949 {
950 	struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
951 	struct svc_xprt *xprt;
952 	struct list_head *le, *next;
953 
954 	dprintk("svc_age_temp_xprts\n");
955 
956 	if (!spin_trylock_bh(&serv->sv_lock)) {
957 		/* busy, try again 1 sec later */
958 		dprintk("svc_age_temp_xprts: busy\n");
959 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
960 		return;
961 	}
962 
963 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
964 		xprt = list_entry(le, struct svc_xprt, xpt_list);
965 
966 		/* First time through, just mark it OLD. Second time
967 		 * through, close it. */
968 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
969 			continue;
970 		if (kref_read(&xprt->xpt_ref) > 1 ||
971 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
972 			continue;
973 		list_del_init(le);
974 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
975 		dprintk("queuing xprt %p for closing\n", xprt);
976 
977 		/* a thread will dequeue and close it soon */
978 		svc_xprt_enqueue(xprt);
979 	}
980 	spin_unlock_bh(&serv->sv_lock);
981 
982 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
983 }
984 
985 /* Close temporary transports whose xpt_local matches server_addr immediately
986  * instead of waiting for them to be picked up by the timer.
987  *
988  * This is meant to be called from a notifier_block that runs when an ip
989  * address is deleted.
990  */
991 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
992 {
993 	struct svc_xprt *xprt;
994 	struct list_head *le, *next;
995 	LIST_HEAD(to_be_closed);
996 
997 	spin_lock_bh(&serv->sv_lock);
998 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
999 		xprt = list_entry(le, struct svc_xprt, xpt_list);
1000 		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
1001 				&xprt->xpt_local)) {
1002 			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
1003 			list_move(le, &to_be_closed);
1004 		}
1005 	}
1006 	spin_unlock_bh(&serv->sv_lock);
1007 
1008 	while (!list_empty(&to_be_closed)) {
1009 		le = to_be_closed.next;
1010 		list_del_init(le);
1011 		xprt = list_entry(le, struct svc_xprt, xpt_list);
1012 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1013 		set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
1014 		dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
1015 				xprt);
1016 		svc_xprt_enqueue(xprt);
1017 	}
1018 }
1019 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1020 
1021 static void call_xpt_users(struct svc_xprt *xprt)
1022 {
1023 	struct svc_xpt_user *u;
1024 
1025 	spin_lock(&xprt->xpt_lock);
1026 	while (!list_empty(&xprt->xpt_users)) {
1027 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1028 		list_del_init(&u->list);
1029 		u->callback(u);
1030 	}
1031 	spin_unlock(&xprt->xpt_lock);
1032 }
1033 
1034 /*
1035  * Remove a dead transport
1036  */
1037 static void svc_delete_xprt(struct svc_xprt *xprt)
1038 {
1039 	struct svc_serv	*serv = xprt->xpt_server;
1040 	struct svc_deferred_req *dr;
1041 
1042 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1043 		return;
1044 
1045 	trace_svc_xprt_detach(xprt);
1046 	xprt->xpt_ops->xpo_detach(xprt);
1047 	if (xprt->xpt_bc_xprt)
1048 		xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt);
1049 
1050 	spin_lock_bh(&serv->sv_lock);
1051 	list_del_init(&xprt->xpt_list);
1052 	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1053 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1054 		serv->sv_tmpcnt--;
1055 	spin_unlock_bh(&serv->sv_lock);
1056 
1057 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1058 		kfree(dr);
1059 
1060 	call_xpt_users(xprt);
1061 	svc_xprt_put(xprt);
1062 }
1063 
1064 /**
1065  * svc_xprt_close - Close a client connection
1066  * @xprt: transport to disconnect
1067  *
1068  */
1069 void svc_xprt_close(struct svc_xprt *xprt)
1070 {
1071 	trace_svc_xprt_close(xprt);
1072 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1073 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1074 		/* someone else will have to effect the close */
1075 		return;
1076 	/*
1077 	 * We expect svc_close_xprt() to work even when no threads are
1078 	 * running (e.g., while configuring the server before starting
1079 	 * any threads), so if the transport isn't busy, we delete
1080 	 * it ourself:
1081 	 */
1082 	svc_delete_xprt(xprt);
1083 }
1084 EXPORT_SYMBOL_GPL(svc_xprt_close);
1085 
1086 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1087 {
1088 	struct svc_xprt *xprt;
1089 	int ret = 0;
1090 
1091 	spin_lock_bh(&serv->sv_lock);
1092 	list_for_each_entry(xprt, xprt_list, xpt_list) {
1093 		if (xprt->xpt_net != net)
1094 			continue;
1095 		ret++;
1096 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1097 		svc_xprt_enqueue(xprt);
1098 	}
1099 	spin_unlock_bh(&serv->sv_lock);
1100 	return ret;
1101 }
1102 
1103 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1104 {
1105 	struct svc_pool *pool;
1106 	struct svc_xprt *xprt;
1107 	struct svc_xprt *tmp;
1108 	int i;
1109 
1110 	for (i = 0; i < serv->sv_nrpools; i++) {
1111 		pool = &serv->sv_pools[i];
1112 
1113 		spin_lock_bh(&pool->sp_lock);
1114 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1115 			if (xprt->xpt_net != net)
1116 				continue;
1117 			list_del_init(&xprt->xpt_ready);
1118 			spin_unlock_bh(&pool->sp_lock);
1119 			return xprt;
1120 		}
1121 		spin_unlock_bh(&pool->sp_lock);
1122 	}
1123 	return NULL;
1124 }
1125 
1126 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1127 {
1128 	struct svc_xprt *xprt;
1129 
1130 	while ((xprt = svc_dequeue_net(serv, net))) {
1131 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1132 		svc_delete_xprt(xprt);
1133 	}
1134 }
1135 
1136 /**
1137  * svc_xprt_destroy_all - Destroy transports associated with @serv
1138  * @serv: RPC service to be shut down
1139  * @net: target network namespace
1140  *
1141  * Server threads may still be running (especially in the case where the
1142  * service is still running in other network namespaces).
1143  *
1144  * So we shut down sockets the same way we would on a running server, by
1145  * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1146  * the close.  In the case there are no such other threads,
1147  * threads running, svc_clean_up_xprts() does a simple version of a
1148  * server's main event loop, and in the case where there are other
1149  * threads, we may need to wait a little while and then check again to
1150  * see if they're done.
1151  */
1152 void svc_xprt_destroy_all(struct svc_serv *serv, struct net *net)
1153 {
1154 	int delay = 0;
1155 
1156 	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1157 	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1158 
1159 		svc_clean_up_xprts(serv, net);
1160 		msleep(delay++);
1161 	}
1162 }
1163 EXPORT_SYMBOL_GPL(svc_xprt_destroy_all);
1164 
1165 /*
1166  * Handle defer and revisit of requests
1167  */
1168 
1169 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1170 {
1171 	struct svc_deferred_req *dr =
1172 		container_of(dreq, struct svc_deferred_req, handle);
1173 	struct svc_xprt *xprt = dr->xprt;
1174 
1175 	spin_lock(&xprt->xpt_lock);
1176 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1177 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1178 		spin_unlock(&xprt->xpt_lock);
1179 		trace_svc_defer_drop(dr);
1180 		svc_xprt_put(xprt);
1181 		kfree(dr);
1182 		return;
1183 	}
1184 	dr->xprt = NULL;
1185 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1186 	spin_unlock(&xprt->xpt_lock);
1187 	trace_svc_defer_queue(dr);
1188 	svc_xprt_enqueue(xprt);
1189 	svc_xprt_put(xprt);
1190 }
1191 
1192 /*
1193  * Save the request off for later processing. The request buffer looks
1194  * like this:
1195  *
1196  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1197  *
1198  * This code can only handle requests that consist of an xprt-header
1199  * and rpc-header.
1200  */
1201 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1202 {
1203 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1204 	struct svc_deferred_req *dr;
1205 
1206 	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1207 		return NULL; /* if more than a page, give up FIXME */
1208 	if (rqstp->rq_deferred) {
1209 		dr = rqstp->rq_deferred;
1210 		rqstp->rq_deferred = NULL;
1211 	} else {
1212 		size_t skip;
1213 		size_t size;
1214 		/* FIXME maybe discard if size too large */
1215 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1216 		dr = kmalloc(size, GFP_KERNEL);
1217 		if (dr == NULL)
1218 			return NULL;
1219 
1220 		dr->handle.owner = rqstp->rq_server;
1221 		dr->prot = rqstp->rq_prot;
1222 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1223 		dr->addrlen = rqstp->rq_addrlen;
1224 		dr->daddr = rqstp->rq_daddr;
1225 		dr->argslen = rqstp->rq_arg.len >> 2;
1226 		dr->xprt_ctxt = rqstp->rq_xprt_ctxt;
1227 		rqstp->rq_xprt_ctxt = NULL;
1228 
1229 		/* back up head to the start of the buffer and copy */
1230 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1231 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1232 		       dr->argslen << 2);
1233 	}
1234 	trace_svc_defer(rqstp);
1235 	svc_xprt_get(rqstp->rq_xprt);
1236 	dr->xprt = rqstp->rq_xprt;
1237 	set_bit(RQ_DROPME, &rqstp->rq_flags);
1238 
1239 	dr->handle.revisit = svc_revisit;
1240 	return &dr->handle;
1241 }
1242 
1243 /*
1244  * recv data from a deferred request into an active one
1245  */
1246 static noinline int svc_deferred_recv(struct svc_rqst *rqstp)
1247 {
1248 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1249 
1250 	trace_svc_defer_recv(dr);
1251 
1252 	/* setup iov_base past transport header */
1253 	rqstp->rq_arg.head[0].iov_base = dr->args;
1254 	/* The iov_len does not include the transport header bytes */
1255 	rqstp->rq_arg.head[0].iov_len = dr->argslen << 2;
1256 	rqstp->rq_arg.page_len = 0;
1257 	/* The rq_arg.len includes the transport header bytes */
1258 	rqstp->rq_arg.len     = dr->argslen << 2;
1259 	rqstp->rq_prot        = dr->prot;
1260 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1261 	rqstp->rq_addrlen     = dr->addrlen;
1262 	/* Save off transport header len in case we get deferred again */
1263 	rqstp->rq_daddr       = dr->daddr;
1264 	rqstp->rq_respages    = rqstp->rq_pages;
1265 	rqstp->rq_xprt_ctxt   = dr->xprt_ctxt;
1266 	svc_xprt_received(rqstp->rq_xprt);
1267 	return dr->argslen << 2;
1268 }
1269 
1270 
1271 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1272 {
1273 	struct svc_deferred_req *dr = NULL;
1274 
1275 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1276 		return NULL;
1277 	spin_lock(&xprt->xpt_lock);
1278 	if (!list_empty(&xprt->xpt_deferred)) {
1279 		dr = list_entry(xprt->xpt_deferred.next,
1280 				struct svc_deferred_req,
1281 				handle.recent);
1282 		list_del_init(&dr->handle.recent);
1283 	} else
1284 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1285 	spin_unlock(&xprt->xpt_lock);
1286 	return dr;
1287 }
1288 
1289 /**
1290  * svc_find_xprt - find an RPC transport instance
1291  * @serv: pointer to svc_serv to search
1292  * @xcl_name: C string containing transport's class name
1293  * @net: owner net pointer
1294  * @af: Address family of transport's local address
1295  * @port: transport's IP port number
1296  *
1297  * Return the transport instance pointer for the endpoint accepting
1298  * connections/peer traffic from the specified transport class,
1299  * address family and port.
1300  *
1301  * Specifying 0 for the address family or port is effectively a
1302  * wild-card, and will result in matching the first transport in the
1303  * service's list that has a matching class name.
1304  */
1305 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1306 			       struct net *net, const sa_family_t af,
1307 			       const unsigned short port)
1308 {
1309 	struct svc_xprt *xprt;
1310 	struct svc_xprt *found = NULL;
1311 
1312 	/* Sanity check the args */
1313 	if (serv == NULL || xcl_name == NULL)
1314 		return found;
1315 
1316 	spin_lock_bh(&serv->sv_lock);
1317 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1318 		if (xprt->xpt_net != net)
1319 			continue;
1320 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1321 			continue;
1322 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1323 			continue;
1324 		if (port != 0 && port != svc_xprt_local_port(xprt))
1325 			continue;
1326 		found = xprt;
1327 		svc_xprt_get(xprt);
1328 		break;
1329 	}
1330 	spin_unlock_bh(&serv->sv_lock);
1331 	return found;
1332 }
1333 EXPORT_SYMBOL_GPL(svc_find_xprt);
1334 
1335 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1336 			     char *pos, int remaining)
1337 {
1338 	int len;
1339 
1340 	len = snprintf(pos, remaining, "%s %u\n",
1341 			xprt->xpt_class->xcl_name,
1342 			svc_xprt_local_port(xprt));
1343 	if (len >= remaining)
1344 		return -ENAMETOOLONG;
1345 	return len;
1346 }
1347 
1348 /**
1349  * svc_xprt_names - format a buffer with a list of transport names
1350  * @serv: pointer to an RPC service
1351  * @buf: pointer to a buffer to be filled in
1352  * @buflen: length of buffer to be filled in
1353  *
1354  * Fills in @buf with a string containing a list of transport names,
1355  * each name terminated with '\n'.
1356  *
1357  * Returns positive length of the filled-in string on success; otherwise
1358  * a negative errno value is returned if an error occurs.
1359  */
1360 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1361 {
1362 	struct svc_xprt *xprt;
1363 	int len, totlen;
1364 	char *pos;
1365 
1366 	/* Sanity check args */
1367 	if (!serv)
1368 		return 0;
1369 
1370 	spin_lock_bh(&serv->sv_lock);
1371 
1372 	pos = buf;
1373 	totlen = 0;
1374 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1375 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1376 		if (len < 0) {
1377 			*buf = '\0';
1378 			totlen = len;
1379 		}
1380 		if (len <= 0)
1381 			break;
1382 
1383 		pos += len;
1384 		totlen += len;
1385 	}
1386 
1387 	spin_unlock_bh(&serv->sv_lock);
1388 	return totlen;
1389 }
1390 EXPORT_SYMBOL_GPL(svc_xprt_names);
1391 
1392 
1393 /*----------------------------------------------------------------------------*/
1394 
1395 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1396 {
1397 	unsigned int pidx = (unsigned int)*pos;
1398 	struct svc_serv *serv = m->private;
1399 
1400 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1401 
1402 	if (!pidx)
1403 		return SEQ_START_TOKEN;
1404 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1405 }
1406 
1407 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1408 {
1409 	struct svc_pool *pool = p;
1410 	struct svc_serv *serv = m->private;
1411 
1412 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1413 
1414 	if (p == SEQ_START_TOKEN) {
1415 		pool = &serv->sv_pools[0];
1416 	} else {
1417 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1418 		if (pidx < serv->sv_nrpools-1)
1419 			pool = &serv->sv_pools[pidx+1];
1420 		else
1421 			pool = NULL;
1422 	}
1423 	++*pos;
1424 	return pool;
1425 }
1426 
1427 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1428 {
1429 }
1430 
1431 static int svc_pool_stats_show(struct seq_file *m, void *p)
1432 {
1433 	struct svc_pool *pool = p;
1434 
1435 	if (p == SEQ_START_TOKEN) {
1436 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1437 		return 0;
1438 	}
1439 
1440 	seq_printf(m, "%u %llu %llu %llu %llu\n",
1441 		pool->sp_id,
1442 		percpu_counter_sum_positive(&pool->sp_sockets_queued),
1443 		percpu_counter_sum_positive(&pool->sp_sockets_queued),
1444 		percpu_counter_sum_positive(&pool->sp_threads_woken),
1445 		percpu_counter_sum_positive(&pool->sp_threads_timedout));
1446 
1447 	return 0;
1448 }
1449 
1450 static const struct seq_operations svc_pool_stats_seq_ops = {
1451 	.start	= svc_pool_stats_start,
1452 	.next	= svc_pool_stats_next,
1453 	.stop	= svc_pool_stats_stop,
1454 	.show	= svc_pool_stats_show,
1455 };
1456 
1457 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1458 {
1459 	int err;
1460 
1461 	err = seq_open(file, &svc_pool_stats_seq_ops);
1462 	if (!err)
1463 		((struct seq_file *) file->private_data)->private = serv;
1464 	return err;
1465 }
1466 EXPORT_SYMBOL(svc_pool_stats_open);
1467 
1468 /*----------------------------------------------------------------------------*/
1469