1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/svc.c 4 * 5 * High-level RPC service routines 6 * 7 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 8 * 9 * Multiple threads pools and NUMAisation 10 * Copyright (c) 2006 Silicon Graphics, Inc. 11 * by Greg Banks <gnb@melbourne.sgi.com> 12 */ 13 14 #include <linux/linkage.h> 15 #include <linux/sched/signal.h> 16 #include <linux/errno.h> 17 #include <linux/net.h> 18 #include <linux/in.h> 19 #include <linux/mm.h> 20 #include <linux/interrupt.h> 21 #include <linux/module.h> 22 #include <linux/kthread.h> 23 #include <linux/slab.h> 24 25 #include <linux/sunrpc/types.h> 26 #include <linux/sunrpc/xdr.h> 27 #include <linux/sunrpc/stats.h> 28 #include <linux/sunrpc/svcsock.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/sunrpc/bc_xprt.h> 31 32 #include <trace/events/sunrpc.h> 33 34 #include "fail.h" 35 36 #define RPCDBG_FACILITY RPCDBG_SVCDSP 37 38 static void svc_unregister(const struct svc_serv *serv, struct net *net); 39 40 #define SVC_POOL_DEFAULT SVC_POOL_GLOBAL 41 42 /* 43 * Mode for mapping cpus to pools. 44 */ 45 enum { 46 SVC_POOL_AUTO = -1, /* choose one of the others */ 47 SVC_POOL_GLOBAL, /* no mapping, just a single global pool 48 * (legacy & UP mode) */ 49 SVC_POOL_PERCPU, /* one pool per cpu */ 50 SVC_POOL_PERNODE /* one pool per numa node */ 51 }; 52 53 /* 54 * Structure for mapping cpus to pools and vice versa. 55 * Setup once during sunrpc initialisation. 56 */ 57 58 struct svc_pool_map { 59 int count; /* How many svc_servs use us */ 60 int mode; /* Note: int not enum to avoid 61 * warnings about "enumeration value 62 * not handled in switch" */ 63 unsigned int npools; 64 unsigned int *pool_to; /* maps pool id to cpu or node */ 65 unsigned int *to_pool; /* maps cpu or node to pool id */ 66 }; 67 68 static struct svc_pool_map svc_pool_map = { 69 .mode = SVC_POOL_DEFAULT 70 }; 71 72 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */ 73 74 static int 75 param_set_pool_mode(const char *val, const struct kernel_param *kp) 76 { 77 int *ip = (int *)kp->arg; 78 struct svc_pool_map *m = &svc_pool_map; 79 int err; 80 81 mutex_lock(&svc_pool_map_mutex); 82 83 err = -EBUSY; 84 if (m->count) 85 goto out; 86 87 err = 0; 88 if (!strncmp(val, "auto", 4)) 89 *ip = SVC_POOL_AUTO; 90 else if (!strncmp(val, "global", 6)) 91 *ip = SVC_POOL_GLOBAL; 92 else if (!strncmp(val, "percpu", 6)) 93 *ip = SVC_POOL_PERCPU; 94 else if (!strncmp(val, "pernode", 7)) 95 *ip = SVC_POOL_PERNODE; 96 else 97 err = -EINVAL; 98 99 out: 100 mutex_unlock(&svc_pool_map_mutex); 101 return err; 102 } 103 104 static int 105 param_get_pool_mode(char *buf, const struct kernel_param *kp) 106 { 107 int *ip = (int *)kp->arg; 108 109 switch (*ip) 110 { 111 case SVC_POOL_AUTO: 112 return strlcpy(buf, "auto\n", 20); 113 case SVC_POOL_GLOBAL: 114 return strlcpy(buf, "global\n", 20); 115 case SVC_POOL_PERCPU: 116 return strlcpy(buf, "percpu\n", 20); 117 case SVC_POOL_PERNODE: 118 return strlcpy(buf, "pernode\n", 20); 119 default: 120 return sprintf(buf, "%d\n", *ip); 121 } 122 } 123 124 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode, 125 &svc_pool_map.mode, 0644); 126 127 /* 128 * Detect best pool mapping mode heuristically, 129 * according to the machine's topology. 130 */ 131 static int 132 svc_pool_map_choose_mode(void) 133 { 134 unsigned int node; 135 136 if (nr_online_nodes > 1) { 137 /* 138 * Actually have multiple NUMA nodes, 139 * so split pools on NUMA node boundaries 140 */ 141 return SVC_POOL_PERNODE; 142 } 143 144 node = first_online_node; 145 if (nr_cpus_node(node) > 2) { 146 /* 147 * Non-trivial SMP, or CONFIG_NUMA on 148 * non-NUMA hardware, e.g. with a generic 149 * x86_64 kernel on Xeons. In this case we 150 * want to divide the pools on cpu boundaries. 151 */ 152 return SVC_POOL_PERCPU; 153 } 154 155 /* default: one global pool */ 156 return SVC_POOL_GLOBAL; 157 } 158 159 /* 160 * Allocate the to_pool[] and pool_to[] arrays. 161 * Returns 0 on success or an errno. 162 */ 163 static int 164 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools) 165 { 166 m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 167 if (!m->to_pool) 168 goto fail; 169 m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 170 if (!m->pool_to) 171 goto fail_free; 172 173 return 0; 174 175 fail_free: 176 kfree(m->to_pool); 177 m->to_pool = NULL; 178 fail: 179 return -ENOMEM; 180 } 181 182 /* 183 * Initialise the pool map for SVC_POOL_PERCPU mode. 184 * Returns number of pools or <0 on error. 185 */ 186 static int 187 svc_pool_map_init_percpu(struct svc_pool_map *m) 188 { 189 unsigned int maxpools = nr_cpu_ids; 190 unsigned int pidx = 0; 191 unsigned int cpu; 192 int err; 193 194 err = svc_pool_map_alloc_arrays(m, maxpools); 195 if (err) 196 return err; 197 198 for_each_online_cpu(cpu) { 199 BUG_ON(pidx >= maxpools); 200 m->to_pool[cpu] = pidx; 201 m->pool_to[pidx] = cpu; 202 pidx++; 203 } 204 /* cpus brought online later all get mapped to pool0, sorry */ 205 206 return pidx; 207 }; 208 209 210 /* 211 * Initialise the pool map for SVC_POOL_PERNODE mode. 212 * Returns number of pools or <0 on error. 213 */ 214 static int 215 svc_pool_map_init_pernode(struct svc_pool_map *m) 216 { 217 unsigned int maxpools = nr_node_ids; 218 unsigned int pidx = 0; 219 unsigned int node; 220 int err; 221 222 err = svc_pool_map_alloc_arrays(m, maxpools); 223 if (err) 224 return err; 225 226 for_each_node_with_cpus(node) { 227 /* some architectures (e.g. SN2) have cpuless nodes */ 228 BUG_ON(pidx > maxpools); 229 m->to_pool[node] = pidx; 230 m->pool_to[pidx] = node; 231 pidx++; 232 } 233 /* nodes brought online later all get mapped to pool0, sorry */ 234 235 return pidx; 236 } 237 238 239 /* 240 * Add a reference to the global map of cpus to pools (and 241 * vice versa) if pools are in use. 242 * Initialise the map if we're the first user. 243 * Returns the number of pools. If this is '1', no reference 244 * was taken. 245 */ 246 static unsigned int 247 svc_pool_map_get(void) 248 { 249 struct svc_pool_map *m = &svc_pool_map; 250 int npools = -1; 251 252 mutex_lock(&svc_pool_map_mutex); 253 254 if (m->count++) { 255 mutex_unlock(&svc_pool_map_mutex); 256 WARN_ON_ONCE(m->npools <= 1); 257 return m->npools; 258 } 259 260 if (m->mode == SVC_POOL_AUTO) 261 m->mode = svc_pool_map_choose_mode(); 262 263 switch (m->mode) { 264 case SVC_POOL_PERCPU: 265 npools = svc_pool_map_init_percpu(m); 266 break; 267 case SVC_POOL_PERNODE: 268 npools = svc_pool_map_init_pernode(m); 269 break; 270 } 271 272 if (npools <= 0) { 273 /* default, or memory allocation failure */ 274 npools = 1; 275 m->mode = SVC_POOL_GLOBAL; 276 } 277 m->npools = npools; 278 279 if (npools == 1) 280 /* service is unpooled, so doesn't hold a reference */ 281 m->count--; 282 283 mutex_unlock(&svc_pool_map_mutex); 284 return npools; 285 } 286 287 /* 288 * Drop a reference to the global map of cpus to pools, if 289 * pools were in use, i.e. if npools > 1. 290 * When the last reference is dropped, the map data is 291 * freed; this allows the sysadmin to change the pool 292 * mode using the pool_mode module option without 293 * rebooting or re-loading sunrpc.ko. 294 */ 295 static void 296 svc_pool_map_put(int npools) 297 { 298 struct svc_pool_map *m = &svc_pool_map; 299 300 if (npools <= 1) 301 return; 302 mutex_lock(&svc_pool_map_mutex); 303 304 if (!--m->count) { 305 kfree(m->to_pool); 306 m->to_pool = NULL; 307 kfree(m->pool_to); 308 m->pool_to = NULL; 309 m->npools = 0; 310 } 311 312 mutex_unlock(&svc_pool_map_mutex); 313 } 314 315 static int svc_pool_map_get_node(unsigned int pidx) 316 { 317 const struct svc_pool_map *m = &svc_pool_map; 318 319 if (m->count) { 320 if (m->mode == SVC_POOL_PERCPU) 321 return cpu_to_node(m->pool_to[pidx]); 322 if (m->mode == SVC_POOL_PERNODE) 323 return m->pool_to[pidx]; 324 } 325 return NUMA_NO_NODE; 326 } 327 /* 328 * Set the given thread's cpus_allowed mask so that it 329 * will only run on cpus in the given pool. 330 */ 331 static inline void 332 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx) 333 { 334 struct svc_pool_map *m = &svc_pool_map; 335 unsigned int node = m->pool_to[pidx]; 336 337 /* 338 * The caller checks for sv_nrpools > 1, which 339 * implies that we've been initialized. 340 */ 341 WARN_ON_ONCE(m->count == 0); 342 if (m->count == 0) 343 return; 344 345 switch (m->mode) { 346 case SVC_POOL_PERCPU: 347 { 348 set_cpus_allowed_ptr(task, cpumask_of(node)); 349 break; 350 } 351 case SVC_POOL_PERNODE: 352 { 353 set_cpus_allowed_ptr(task, cpumask_of_node(node)); 354 break; 355 } 356 } 357 } 358 359 /* 360 * Use the mapping mode to choose a pool for a given CPU. 361 * Used when enqueueing an incoming RPC. Always returns 362 * a non-NULL pool pointer. 363 */ 364 struct svc_pool * 365 svc_pool_for_cpu(struct svc_serv *serv, int cpu) 366 { 367 struct svc_pool_map *m = &svc_pool_map; 368 unsigned int pidx = 0; 369 370 if (serv->sv_nrpools <= 1) 371 return serv->sv_pools; 372 373 switch (m->mode) { 374 case SVC_POOL_PERCPU: 375 pidx = m->to_pool[cpu]; 376 break; 377 case SVC_POOL_PERNODE: 378 pidx = m->to_pool[cpu_to_node(cpu)]; 379 break; 380 } 381 382 return &serv->sv_pools[pidx % serv->sv_nrpools]; 383 } 384 385 int svc_rpcb_setup(struct svc_serv *serv, struct net *net) 386 { 387 int err; 388 389 err = rpcb_create_local(net); 390 if (err) 391 return err; 392 393 /* Remove any stale portmap registrations */ 394 svc_unregister(serv, net); 395 return 0; 396 } 397 EXPORT_SYMBOL_GPL(svc_rpcb_setup); 398 399 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net) 400 { 401 svc_unregister(serv, net); 402 rpcb_put_local(net); 403 } 404 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup); 405 406 static int svc_uses_rpcbind(struct svc_serv *serv) 407 { 408 struct svc_program *progp; 409 unsigned int i; 410 411 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 412 for (i = 0; i < progp->pg_nvers; i++) { 413 if (progp->pg_vers[i] == NULL) 414 continue; 415 if (!progp->pg_vers[i]->vs_hidden) 416 return 1; 417 } 418 } 419 420 return 0; 421 } 422 423 int svc_bind(struct svc_serv *serv, struct net *net) 424 { 425 if (!svc_uses_rpcbind(serv)) 426 return 0; 427 return svc_rpcb_setup(serv, net); 428 } 429 EXPORT_SYMBOL_GPL(svc_bind); 430 431 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 432 static void 433 __svc_init_bc(struct svc_serv *serv) 434 { 435 INIT_LIST_HEAD(&serv->sv_cb_list); 436 spin_lock_init(&serv->sv_cb_lock); 437 init_waitqueue_head(&serv->sv_cb_waitq); 438 } 439 #else 440 static void 441 __svc_init_bc(struct svc_serv *serv) 442 { 443 } 444 #endif 445 446 /* 447 * Create an RPC service 448 */ 449 static struct svc_serv * 450 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools, 451 int (*threadfn)(void *data)) 452 { 453 struct svc_serv *serv; 454 unsigned int vers; 455 unsigned int xdrsize; 456 unsigned int i; 457 458 if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL))) 459 return NULL; 460 serv->sv_name = prog->pg_name; 461 serv->sv_program = prog; 462 kref_init(&serv->sv_refcnt); 463 serv->sv_stats = prog->pg_stats; 464 if (bufsize > RPCSVC_MAXPAYLOAD) 465 bufsize = RPCSVC_MAXPAYLOAD; 466 serv->sv_max_payload = bufsize? bufsize : 4096; 467 serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE); 468 serv->sv_threadfn = threadfn; 469 xdrsize = 0; 470 while (prog) { 471 prog->pg_lovers = prog->pg_nvers-1; 472 for (vers=0; vers<prog->pg_nvers ; vers++) 473 if (prog->pg_vers[vers]) { 474 prog->pg_hivers = vers; 475 if (prog->pg_lovers > vers) 476 prog->pg_lovers = vers; 477 if (prog->pg_vers[vers]->vs_xdrsize > xdrsize) 478 xdrsize = prog->pg_vers[vers]->vs_xdrsize; 479 } 480 prog = prog->pg_next; 481 } 482 serv->sv_xdrsize = xdrsize; 483 INIT_LIST_HEAD(&serv->sv_tempsocks); 484 INIT_LIST_HEAD(&serv->sv_permsocks); 485 timer_setup(&serv->sv_temptimer, NULL, 0); 486 spin_lock_init(&serv->sv_lock); 487 488 __svc_init_bc(serv); 489 490 serv->sv_nrpools = npools; 491 serv->sv_pools = 492 kcalloc(serv->sv_nrpools, sizeof(struct svc_pool), 493 GFP_KERNEL); 494 if (!serv->sv_pools) { 495 kfree(serv); 496 return NULL; 497 } 498 499 for (i = 0; i < serv->sv_nrpools; i++) { 500 struct svc_pool *pool = &serv->sv_pools[i]; 501 502 dprintk("svc: initialising pool %u for %s\n", 503 i, serv->sv_name); 504 505 pool->sp_id = i; 506 INIT_LIST_HEAD(&pool->sp_sockets); 507 INIT_LIST_HEAD(&pool->sp_all_threads); 508 spin_lock_init(&pool->sp_lock); 509 } 510 511 return serv; 512 } 513 514 /** 515 * svc_create - Create an RPC service 516 * @prog: the RPC program the new service will handle 517 * @bufsize: maximum message size for @prog 518 * @threadfn: a function to service RPC requests for @prog 519 * 520 * Returns an instantiated struct svc_serv object or NULL. 521 */ 522 struct svc_serv *svc_create(struct svc_program *prog, unsigned int bufsize, 523 int (*threadfn)(void *data)) 524 { 525 return __svc_create(prog, bufsize, 1, threadfn); 526 } 527 EXPORT_SYMBOL_GPL(svc_create); 528 529 /** 530 * svc_create_pooled - Create an RPC service with pooled threads 531 * @prog: the RPC program the new service will handle 532 * @bufsize: maximum message size for @prog 533 * @threadfn: a function to service RPC requests for @prog 534 * 535 * Returns an instantiated struct svc_serv object or NULL. 536 */ 537 struct svc_serv *svc_create_pooled(struct svc_program *prog, 538 unsigned int bufsize, 539 int (*threadfn)(void *data)) 540 { 541 struct svc_serv *serv; 542 unsigned int npools = svc_pool_map_get(); 543 544 serv = __svc_create(prog, bufsize, npools, threadfn); 545 if (!serv) 546 goto out_err; 547 return serv; 548 out_err: 549 svc_pool_map_put(npools); 550 return NULL; 551 } 552 EXPORT_SYMBOL_GPL(svc_create_pooled); 553 554 /* 555 * Destroy an RPC service. Should be called with appropriate locking to 556 * protect sv_permsocks and sv_tempsocks. 557 */ 558 void 559 svc_destroy(struct kref *ref) 560 { 561 struct svc_serv *serv = container_of(ref, struct svc_serv, sv_refcnt); 562 563 dprintk("svc: svc_destroy(%s)\n", serv->sv_program->pg_name); 564 del_timer_sync(&serv->sv_temptimer); 565 566 /* 567 * The last user is gone and thus all sockets have to be destroyed to 568 * the point. Check this. 569 */ 570 BUG_ON(!list_empty(&serv->sv_permsocks)); 571 BUG_ON(!list_empty(&serv->sv_tempsocks)); 572 573 cache_clean_deferred(serv); 574 575 svc_pool_map_put(serv->sv_nrpools); 576 577 kfree(serv->sv_pools); 578 kfree(serv); 579 } 580 EXPORT_SYMBOL_GPL(svc_destroy); 581 582 /* 583 * Allocate an RPC server's buffer space. 584 * We allocate pages and place them in rq_pages. 585 */ 586 static int 587 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node) 588 { 589 unsigned int pages, arghi; 590 591 /* bc_xprt uses fore channel allocated buffers */ 592 if (svc_is_backchannel(rqstp)) 593 return 1; 594 595 pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply. 596 * We assume one is at most one page 597 */ 598 arghi = 0; 599 WARN_ON_ONCE(pages > RPCSVC_MAXPAGES); 600 if (pages > RPCSVC_MAXPAGES) 601 pages = RPCSVC_MAXPAGES; 602 while (pages) { 603 struct page *p = alloc_pages_node(node, GFP_KERNEL, 0); 604 if (!p) 605 break; 606 rqstp->rq_pages[arghi++] = p; 607 pages--; 608 } 609 return pages == 0; 610 } 611 612 /* 613 * Release an RPC server buffer 614 */ 615 static void 616 svc_release_buffer(struct svc_rqst *rqstp) 617 { 618 unsigned int i; 619 620 for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++) 621 if (rqstp->rq_pages[i]) 622 put_page(rqstp->rq_pages[i]); 623 } 624 625 struct svc_rqst * 626 svc_rqst_alloc(struct svc_serv *serv, struct svc_pool *pool, int node) 627 { 628 struct svc_rqst *rqstp; 629 630 rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node); 631 if (!rqstp) 632 return rqstp; 633 634 __set_bit(RQ_BUSY, &rqstp->rq_flags); 635 spin_lock_init(&rqstp->rq_lock); 636 rqstp->rq_server = serv; 637 rqstp->rq_pool = pool; 638 639 rqstp->rq_scratch_page = alloc_pages_node(node, GFP_KERNEL, 0); 640 if (!rqstp->rq_scratch_page) 641 goto out_enomem; 642 643 rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 644 if (!rqstp->rq_argp) 645 goto out_enomem; 646 647 rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 648 if (!rqstp->rq_resp) 649 goto out_enomem; 650 651 if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node)) 652 goto out_enomem; 653 654 return rqstp; 655 out_enomem: 656 svc_rqst_free(rqstp); 657 return NULL; 658 } 659 EXPORT_SYMBOL_GPL(svc_rqst_alloc); 660 661 static struct svc_rqst * 662 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node) 663 { 664 struct svc_rqst *rqstp; 665 666 rqstp = svc_rqst_alloc(serv, pool, node); 667 if (!rqstp) 668 return ERR_PTR(-ENOMEM); 669 670 svc_get(serv); 671 spin_lock_bh(&serv->sv_lock); 672 serv->sv_nrthreads += 1; 673 spin_unlock_bh(&serv->sv_lock); 674 675 spin_lock_bh(&pool->sp_lock); 676 pool->sp_nrthreads++; 677 list_add_rcu(&rqstp->rq_all, &pool->sp_all_threads); 678 spin_unlock_bh(&pool->sp_lock); 679 return rqstp; 680 } 681 682 /* 683 * Choose a pool in which to create a new thread, for svc_set_num_threads 684 */ 685 static inline struct svc_pool * 686 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 687 { 688 if (pool != NULL) 689 return pool; 690 691 return &serv->sv_pools[(*state)++ % serv->sv_nrpools]; 692 } 693 694 /* 695 * Choose a thread to kill, for svc_set_num_threads 696 */ 697 static inline struct task_struct * 698 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 699 { 700 unsigned int i; 701 struct task_struct *task = NULL; 702 703 if (pool != NULL) { 704 spin_lock_bh(&pool->sp_lock); 705 } else { 706 /* choose a pool in round-robin fashion */ 707 for (i = 0; i < serv->sv_nrpools; i++) { 708 pool = &serv->sv_pools[--(*state) % serv->sv_nrpools]; 709 spin_lock_bh(&pool->sp_lock); 710 if (!list_empty(&pool->sp_all_threads)) 711 goto found_pool; 712 spin_unlock_bh(&pool->sp_lock); 713 } 714 return NULL; 715 } 716 717 found_pool: 718 if (!list_empty(&pool->sp_all_threads)) { 719 struct svc_rqst *rqstp; 720 721 /* 722 * Remove from the pool->sp_all_threads list 723 * so we don't try to kill it again. 724 */ 725 rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all); 726 set_bit(RQ_VICTIM, &rqstp->rq_flags); 727 list_del_rcu(&rqstp->rq_all); 728 task = rqstp->rq_task; 729 } 730 spin_unlock_bh(&pool->sp_lock); 731 732 return task; 733 } 734 735 /* create new threads */ 736 static int 737 svc_start_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 738 { 739 struct svc_rqst *rqstp; 740 struct task_struct *task; 741 struct svc_pool *chosen_pool; 742 unsigned int state = serv->sv_nrthreads-1; 743 int node; 744 745 do { 746 nrservs--; 747 chosen_pool = choose_pool(serv, pool, &state); 748 749 node = svc_pool_map_get_node(chosen_pool->sp_id); 750 rqstp = svc_prepare_thread(serv, chosen_pool, node); 751 if (IS_ERR(rqstp)) 752 return PTR_ERR(rqstp); 753 754 task = kthread_create_on_node(serv->sv_threadfn, rqstp, 755 node, "%s", serv->sv_name); 756 if (IS_ERR(task)) { 757 svc_exit_thread(rqstp); 758 return PTR_ERR(task); 759 } 760 761 rqstp->rq_task = task; 762 if (serv->sv_nrpools > 1) 763 svc_pool_map_set_cpumask(task, chosen_pool->sp_id); 764 765 svc_sock_update_bufs(serv); 766 wake_up_process(task); 767 } while (nrservs > 0); 768 769 return 0; 770 } 771 772 /* 773 * Create or destroy enough new threads to make the number 774 * of threads the given number. If `pool' is non-NULL, applies 775 * only to threads in that pool, otherwise round-robins between 776 * all pools. Caller must ensure that mutual exclusion between this and 777 * server startup or shutdown. 778 */ 779 780 /* destroy old threads */ 781 static int 782 svc_stop_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 783 { 784 struct task_struct *task; 785 unsigned int state = serv->sv_nrthreads-1; 786 787 /* destroy old threads */ 788 do { 789 task = choose_victim(serv, pool, &state); 790 if (task == NULL) 791 break; 792 kthread_stop(task); 793 nrservs++; 794 } while (nrservs < 0); 795 return 0; 796 } 797 798 int 799 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 800 { 801 if (pool == NULL) { 802 nrservs -= serv->sv_nrthreads; 803 } else { 804 spin_lock_bh(&pool->sp_lock); 805 nrservs -= pool->sp_nrthreads; 806 spin_unlock_bh(&pool->sp_lock); 807 } 808 809 if (nrservs > 0) 810 return svc_start_kthreads(serv, pool, nrservs); 811 if (nrservs < 0) 812 return svc_stop_kthreads(serv, pool, nrservs); 813 return 0; 814 } 815 EXPORT_SYMBOL_GPL(svc_set_num_threads); 816 817 /** 818 * svc_rqst_replace_page - Replace one page in rq_pages[] 819 * @rqstp: svc_rqst with pages to replace 820 * @page: replacement page 821 * 822 * When replacing a page in rq_pages, batch the release of the 823 * replaced pages to avoid hammering the page allocator. 824 */ 825 void svc_rqst_replace_page(struct svc_rqst *rqstp, struct page *page) 826 { 827 if (*rqstp->rq_next_page) { 828 if (!pagevec_space(&rqstp->rq_pvec)) 829 __pagevec_release(&rqstp->rq_pvec); 830 pagevec_add(&rqstp->rq_pvec, *rqstp->rq_next_page); 831 } 832 833 get_page(page); 834 *(rqstp->rq_next_page++) = page; 835 } 836 EXPORT_SYMBOL_GPL(svc_rqst_replace_page); 837 838 /* 839 * Called from a server thread as it's exiting. Caller must hold the "service 840 * mutex" for the service. 841 */ 842 void 843 svc_rqst_free(struct svc_rqst *rqstp) 844 { 845 svc_release_buffer(rqstp); 846 if (rqstp->rq_scratch_page) 847 put_page(rqstp->rq_scratch_page); 848 kfree(rqstp->rq_resp); 849 kfree(rqstp->rq_argp); 850 kfree(rqstp->rq_auth_data); 851 kfree_rcu(rqstp, rq_rcu_head); 852 } 853 EXPORT_SYMBOL_GPL(svc_rqst_free); 854 855 void 856 svc_exit_thread(struct svc_rqst *rqstp) 857 { 858 struct svc_serv *serv = rqstp->rq_server; 859 struct svc_pool *pool = rqstp->rq_pool; 860 861 spin_lock_bh(&pool->sp_lock); 862 pool->sp_nrthreads--; 863 if (!test_and_set_bit(RQ_VICTIM, &rqstp->rq_flags)) 864 list_del_rcu(&rqstp->rq_all); 865 spin_unlock_bh(&pool->sp_lock); 866 867 spin_lock_bh(&serv->sv_lock); 868 serv->sv_nrthreads -= 1; 869 spin_unlock_bh(&serv->sv_lock); 870 svc_sock_update_bufs(serv); 871 872 svc_rqst_free(rqstp); 873 874 svc_put(serv); 875 } 876 EXPORT_SYMBOL_GPL(svc_exit_thread); 877 878 /* 879 * Register an "inet" protocol family netid with the local 880 * rpcbind daemon via an rpcbind v4 SET request. 881 * 882 * No netconfig infrastructure is available in the kernel, so 883 * we map IP_ protocol numbers to netids by hand. 884 * 885 * Returns zero on success; a negative errno value is returned 886 * if any error occurs. 887 */ 888 static int __svc_rpcb_register4(struct net *net, const u32 program, 889 const u32 version, 890 const unsigned short protocol, 891 const unsigned short port) 892 { 893 const struct sockaddr_in sin = { 894 .sin_family = AF_INET, 895 .sin_addr.s_addr = htonl(INADDR_ANY), 896 .sin_port = htons(port), 897 }; 898 const char *netid; 899 int error; 900 901 switch (protocol) { 902 case IPPROTO_UDP: 903 netid = RPCBIND_NETID_UDP; 904 break; 905 case IPPROTO_TCP: 906 netid = RPCBIND_NETID_TCP; 907 break; 908 default: 909 return -ENOPROTOOPT; 910 } 911 912 error = rpcb_v4_register(net, program, version, 913 (const struct sockaddr *)&sin, netid); 914 915 /* 916 * User space didn't support rpcbind v4, so retry this 917 * registration request with the legacy rpcbind v2 protocol. 918 */ 919 if (error == -EPROTONOSUPPORT) 920 error = rpcb_register(net, program, version, protocol, port); 921 922 return error; 923 } 924 925 #if IS_ENABLED(CONFIG_IPV6) 926 /* 927 * Register an "inet6" protocol family netid with the local 928 * rpcbind daemon via an rpcbind v4 SET request. 929 * 930 * No netconfig infrastructure is available in the kernel, so 931 * we map IP_ protocol numbers to netids by hand. 932 * 933 * Returns zero on success; a negative errno value is returned 934 * if any error occurs. 935 */ 936 static int __svc_rpcb_register6(struct net *net, const u32 program, 937 const u32 version, 938 const unsigned short protocol, 939 const unsigned short port) 940 { 941 const struct sockaddr_in6 sin6 = { 942 .sin6_family = AF_INET6, 943 .sin6_addr = IN6ADDR_ANY_INIT, 944 .sin6_port = htons(port), 945 }; 946 const char *netid; 947 int error; 948 949 switch (protocol) { 950 case IPPROTO_UDP: 951 netid = RPCBIND_NETID_UDP6; 952 break; 953 case IPPROTO_TCP: 954 netid = RPCBIND_NETID_TCP6; 955 break; 956 default: 957 return -ENOPROTOOPT; 958 } 959 960 error = rpcb_v4_register(net, program, version, 961 (const struct sockaddr *)&sin6, netid); 962 963 /* 964 * User space didn't support rpcbind version 4, so we won't 965 * use a PF_INET6 listener. 966 */ 967 if (error == -EPROTONOSUPPORT) 968 error = -EAFNOSUPPORT; 969 970 return error; 971 } 972 #endif /* IS_ENABLED(CONFIG_IPV6) */ 973 974 /* 975 * Register a kernel RPC service via rpcbind version 4. 976 * 977 * Returns zero on success; a negative errno value is returned 978 * if any error occurs. 979 */ 980 static int __svc_register(struct net *net, const char *progname, 981 const u32 program, const u32 version, 982 const int family, 983 const unsigned short protocol, 984 const unsigned short port) 985 { 986 int error = -EAFNOSUPPORT; 987 988 switch (family) { 989 case PF_INET: 990 error = __svc_rpcb_register4(net, program, version, 991 protocol, port); 992 break; 993 #if IS_ENABLED(CONFIG_IPV6) 994 case PF_INET6: 995 error = __svc_rpcb_register6(net, program, version, 996 protocol, port); 997 #endif 998 } 999 1000 trace_svc_register(progname, version, protocol, port, family, error); 1001 return error; 1002 } 1003 1004 int svc_rpcbind_set_version(struct net *net, 1005 const struct svc_program *progp, 1006 u32 version, int family, 1007 unsigned short proto, 1008 unsigned short port) 1009 { 1010 return __svc_register(net, progp->pg_name, progp->pg_prog, 1011 version, family, proto, port); 1012 1013 } 1014 EXPORT_SYMBOL_GPL(svc_rpcbind_set_version); 1015 1016 int svc_generic_rpcbind_set(struct net *net, 1017 const struct svc_program *progp, 1018 u32 version, int family, 1019 unsigned short proto, 1020 unsigned short port) 1021 { 1022 const struct svc_version *vers = progp->pg_vers[version]; 1023 int error; 1024 1025 if (vers == NULL) 1026 return 0; 1027 1028 if (vers->vs_hidden) { 1029 trace_svc_noregister(progp->pg_name, version, proto, 1030 port, family, 0); 1031 return 0; 1032 } 1033 1034 /* 1035 * Don't register a UDP port if we need congestion 1036 * control. 1037 */ 1038 if (vers->vs_need_cong_ctrl && proto == IPPROTO_UDP) 1039 return 0; 1040 1041 error = svc_rpcbind_set_version(net, progp, version, 1042 family, proto, port); 1043 1044 return (vers->vs_rpcb_optnl) ? 0 : error; 1045 } 1046 EXPORT_SYMBOL_GPL(svc_generic_rpcbind_set); 1047 1048 /** 1049 * svc_register - register an RPC service with the local portmapper 1050 * @serv: svc_serv struct for the service to register 1051 * @net: net namespace for the service to register 1052 * @family: protocol family of service's listener socket 1053 * @proto: transport protocol number to advertise 1054 * @port: port to advertise 1055 * 1056 * Service is registered for any address in the passed-in protocol family 1057 */ 1058 int svc_register(const struct svc_serv *serv, struct net *net, 1059 const int family, const unsigned short proto, 1060 const unsigned short port) 1061 { 1062 struct svc_program *progp; 1063 unsigned int i; 1064 int error = 0; 1065 1066 WARN_ON_ONCE(proto == 0 && port == 0); 1067 if (proto == 0 && port == 0) 1068 return -EINVAL; 1069 1070 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 1071 for (i = 0; i < progp->pg_nvers; i++) { 1072 1073 error = progp->pg_rpcbind_set(net, progp, i, 1074 family, proto, port); 1075 if (error < 0) { 1076 printk(KERN_WARNING "svc: failed to register " 1077 "%sv%u RPC service (errno %d).\n", 1078 progp->pg_name, i, -error); 1079 break; 1080 } 1081 } 1082 } 1083 1084 return error; 1085 } 1086 1087 /* 1088 * If user space is running rpcbind, it should take the v4 UNSET 1089 * and clear everything for this [program, version]. If user space 1090 * is running portmap, it will reject the v4 UNSET, but won't have 1091 * any "inet6" entries anyway. So a PMAP_UNSET should be sufficient 1092 * in this case to clear all existing entries for [program, version]. 1093 */ 1094 static void __svc_unregister(struct net *net, const u32 program, const u32 version, 1095 const char *progname) 1096 { 1097 int error; 1098 1099 error = rpcb_v4_register(net, program, version, NULL, ""); 1100 1101 /* 1102 * User space didn't support rpcbind v4, so retry this 1103 * request with the legacy rpcbind v2 protocol. 1104 */ 1105 if (error == -EPROTONOSUPPORT) 1106 error = rpcb_register(net, program, version, 0, 0); 1107 1108 trace_svc_unregister(progname, version, error); 1109 } 1110 1111 /* 1112 * All netids, bind addresses and ports registered for [program, version] 1113 * are removed from the local rpcbind database (if the service is not 1114 * hidden) to make way for a new instance of the service. 1115 * 1116 * The result of unregistration is reported via dprintk for those who want 1117 * verification of the result, but is otherwise not important. 1118 */ 1119 static void svc_unregister(const struct svc_serv *serv, struct net *net) 1120 { 1121 struct svc_program *progp; 1122 unsigned long flags; 1123 unsigned int i; 1124 1125 clear_thread_flag(TIF_SIGPENDING); 1126 1127 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 1128 for (i = 0; i < progp->pg_nvers; i++) { 1129 if (progp->pg_vers[i] == NULL) 1130 continue; 1131 if (progp->pg_vers[i]->vs_hidden) 1132 continue; 1133 __svc_unregister(net, progp->pg_prog, i, progp->pg_name); 1134 } 1135 } 1136 1137 spin_lock_irqsave(¤t->sighand->siglock, flags); 1138 recalc_sigpending(); 1139 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 1140 } 1141 1142 /* 1143 * dprintk the given error with the address of the client that caused it. 1144 */ 1145 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 1146 static __printf(2, 3) 1147 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) 1148 { 1149 struct va_format vaf; 1150 va_list args; 1151 char buf[RPC_MAX_ADDRBUFLEN]; 1152 1153 va_start(args, fmt); 1154 1155 vaf.fmt = fmt; 1156 vaf.va = &args; 1157 1158 dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf); 1159 1160 va_end(args); 1161 } 1162 #else 1163 static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {} 1164 #endif 1165 1166 __be32 1167 svc_generic_init_request(struct svc_rqst *rqstp, 1168 const struct svc_program *progp, 1169 struct svc_process_info *ret) 1170 { 1171 const struct svc_version *versp = NULL; /* compiler food */ 1172 const struct svc_procedure *procp = NULL; 1173 1174 if (rqstp->rq_vers >= progp->pg_nvers ) 1175 goto err_bad_vers; 1176 versp = progp->pg_vers[rqstp->rq_vers]; 1177 if (!versp) 1178 goto err_bad_vers; 1179 1180 /* 1181 * Some protocol versions (namely NFSv4) require some form of 1182 * congestion control. (See RFC 7530 section 3.1 paragraph 2) 1183 * In other words, UDP is not allowed. We mark those when setting 1184 * up the svc_xprt, and verify that here. 1185 * 1186 * The spec is not very clear about what error should be returned 1187 * when someone tries to access a server that is listening on UDP 1188 * for lower versions. RPC_PROG_MISMATCH seems to be the closest 1189 * fit. 1190 */ 1191 if (versp->vs_need_cong_ctrl && rqstp->rq_xprt && 1192 !test_bit(XPT_CONG_CTRL, &rqstp->rq_xprt->xpt_flags)) 1193 goto err_bad_vers; 1194 1195 if (rqstp->rq_proc >= versp->vs_nproc) 1196 goto err_bad_proc; 1197 rqstp->rq_procinfo = procp = &versp->vs_proc[rqstp->rq_proc]; 1198 if (!procp) 1199 goto err_bad_proc; 1200 1201 /* Initialize storage for argp and resp */ 1202 memset(rqstp->rq_argp, 0, procp->pc_argsize); 1203 memset(rqstp->rq_resp, 0, procp->pc_ressize); 1204 1205 /* Bump per-procedure stats counter */ 1206 versp->vs_count[rqstp->rq_proc]++; 1207 1208 ret->dispatch = versp->vs_dispatch; 1209 return rpc_success; 1210 err_bad_vers: 1211 ret->mismatch.lovers = progp->pg_lovers; 1212 ret->mismatch.hivers = progp->pg_hivers; 1213 return rpc_prog_mismatch; 1214 err_bad_proc: 1215 return rpc_proc_unavail; 1216 } 1217 EXPORT_SYMBOL_GPL(svc_generic_init_request); 1218 1219 /* 1220 * Common routine for processing the RPC request. 1221 */ 1222 static int 1223 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv) 1224 { 1225 struct svc_program *progp; 1226 const struct svc_procedure *procp = NULL; 1227 struct svc_serv *serv = rqstp->rq_server; 1228 struct svc_process_info process; 1229 __be32 *statp; 1230 u32 prog, vers; 1231 __be32 rpc_stat; 1232 int auth_res, rc; 1233 __be32 *reply_statp; 1234 1235 rpc_stat = rpc_success; 1236 1237 if (argv->iov_len < 6*4) 1238 goto err_short_len; 1239 1240 /* Will be turned off by GSS integrity and privacy services */ 1241 set_bit(RQ_SPLICE_OK, &rqstp->rq_flags); 1242 /* Will be turned off only when NFSv4 Sessions are used */ 1243 set_bit(RQ_USEDEFERRAL, &rqstp->rq_flags); 1244 clear_bit(RQ_DROPME, &rqstp->rq_flags); 1245 1246 svc_putu32(resv, rqstp->rq_xid); 1247 1248 vers = svc_getnl(argv); 1249 1250 /* First words of reply: */ 1251 svc_putnl(resv, 1); /* REPLY */ 1252 1253 if (vers != 2) /* RPC version number */ 1254 goto err_bad_rpc; 1255 1256 /* Save position in case we later decide to reject: */ 1257 reply_statp = resv->iov_base + resv->iov_len; 1258 1259 svc_putnl(resv, 0); /* ACCEPT */ 1260 1261 rqstp->rq_prog = prog = svc_getnl(argv); /* program number */ 1262 rqstp->rq_vers = svc_getnl(argv); /* version number */ 1263 rqstp->rq_proc = svc_getnl(argv); /* procedure number */ 1264 1265 for (progp = serv->sv_program; progp; progp = progp->pg_next) 1266 if (prog == progp->pg_prog) 1267 break; 1268 1269 /* 1270 * Decode auth data, and add verifier to reply buffer. 1271 * We do this before anything else in order to get a decent 1272 * auth verifier. 1273 */ 1274 auth_res = svc_authenticate(rqstp); 1275 /* Also give the program a chance to reject this call: */ 1276 if (auth_res == SVC_OK && progp) 1277 auth_res = progp->pg_authenticate(rqstp); 1278 if (auth_res != SVC_OK) 1279 trace_svc_authenticate(rqstp, auth_res); 1280 switch (auth_res) { 1281 case SVC_OK: 1282 break; 1283 case SVC_GARBAGE: 1284 goto err_garbage; 1285 case SVC_SYSERR: 1286 rpc_stat = rpc_system_err; 1287 goto err_bad; 1288 case SVC_DENIED: 1289 goto err_bad_auth; 1290 case SVC_CLOSE: 1291 goto close; 1292 case SVC_DROP: 1293 goto dropit; 1294 case SVC_COMPLETE: 1295 goto sendit; 1296 } 1297 1298 if (progp == NULL) 1299 goto err_bad_prog; 1300 1301 rpc_stat = progp->pg_init_request(rqstp, progp, &process); 1302 switch (rpc_stat) { 1303 case rpc_success: 1304 break; 1305 case rpc_prog_unavail: 1306 goto err_bad_prog; 1307 case rpc_prog_mismatch: 1308 goto err_bad_vers; 1309 case rpc_proc_unavail: 1310 goto err_bad_proc; 1311 } 1312 1313 procp = rqstp->rq_procinfo; 1314 /* Should this check go into the dispatcher? */ 1315 if (!procp || !procp->pc_func) 1316 goto err_bad_proc; 1317 1318 /* Syntactic check complete */ 1319 serv->sv_stats->rpccnt++; 1320 trace_svc_process(rqstp, progp->pg_name); 1321 1322 /* Build the reply header. */ 1323 statp = resv->iov_base +resv->iov_len; 1324 svc_putnl(resv, RPC_SUCCESS); 1325 1326 /* un-reserve some of the out-queue now that we have a 1327 * better idea of reply size 1328 */ 1329 if (procp->pc_xdrressize) 1330 svc_reserve_auth(rqstp, procp->pc_xdrressize<<2); 1331 1332 /* Call the function that processes the request. */ 1333 rc = process.dispatch(rqstp, statp); 1334 if (procp->pc_release) 1335 procp->pc_release(rqstp); 1336 if (!rc) 1337 goto dropit; 1338 if (rqstp->rq_auth_stat != rpc_auth_ok) 1339 goto err_bad_auth; 1340 1341 /* Check RPC status result */ 1342 if (*statp != rpc_success) 1343 resv->iov_len = ((void*)statp) - resv->iov_base + 4; 1344 1345 if (procp->pc_encode == NULL) 1346 goto dropit; 1347 1348 sendit: 1349 if (svc_authorise(rqstp)) 1350 goto close_xprt; 1351 return 1; /* Caller can now send it */ 1352 1353 dropit: 1354 svc_authorise(rqstp); /* doesn't hurt to call this twice */ 1355 dprintk("svc: svc_process dropit\n"); 1356 return 0; 1357 1358 close: 1359 svc_authorise(rqstp); 1360 close_xprt: 1361 if (rqstp->rq_xprt && test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags)) 1362 svc_xprt_close(rqstp->rq_xprt); 1363 dprintk("svc: svc_process close\n"); 1364 return 0; 1365 1366 err_short_len: 1367 svc_printk(rqstp, "short len %zd, dropping request\n", 1368 argv->iov_len); 1369 goto close_xprt; 1370 1371 err_bad_rpc: 1372 serv->sv_stats->rpcbadfmt++; 1373 svc_putnl(resv, 1); /* REJECT */ 1374 svc_putnl(resv, 0); /* RPC_MISMATCH */ 1375 svc_putnl(resv, 2); /* Only RPCv2 supported */ 1376 svc_putnl(resv, 2); 1377 goto sendit; 1378 1379 err_bad_auth: 1380 dprintk("svc: authentication failed (%d)\n", 1381 be32_to_cpu(rqstp->rq_auth_stat)); 1382 serv->sv_stats->rpcbadauth++; 1383 /* Restore write pointer to location of accept status: */ 1384 xdr_ressize_check(rqstp, reply_statp); 1385 svc_putnl(resv, 1); /* REJECT */ 1386 svc_putnl(resv, 1); /* AUTH_ERROR */ 1387 svc_putu32(resv, rqstp->rq_auth_stat); /* status */ 1388 goto sendit; 1389 1390 err_bad_prog: 1391 dprintk("svc: unknown program %d\n", prog); 1392 serv->sv_stats->rpcbadfmt++; 1393 svc_putnl(resv, RPC_PROG_UNAVAIL); 1394 goto sendit; 1395 1396 err_bad_vers: 1397 svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n", 1398 rqstp->rq_vers, rqstp->rq_prog, progp->pg_name); 1399 1400 serv->sv_stats->rpcbadfmt++; 1401 svc_putnl(resv, RPC_PROG_MISMATCH); 1402 svc_putnl(resv, process.mismatch.lovers); 1403 svc_putnl(resv, process.mismatch.hivers); 1404 goto sendit; 1405 1406 err_bad_proc: 1407 svc_printk(rqstp, "unknown procedure (%d)\n", rqstp->rq_proc); 1408 1409 serv->sv_stats->rpcbadfmt++; 1410 svc_putnl(resv, RPC_PROC_UNAVAIL); 1411 goto sendit; 1412 1413 err_garbage: 1414 svc_printk(rqstp, "failed to decode args\n"); 1415 1416 rpc_stat = rpc_garbage_args; 1417 err_bad: 1418 serv->sv_stats->rpcbadfmt++; 1419 svc_putnl(resv, ntohl(rpc_stat)); 1420 goto sendit; 1421 } 1422 1423 /* 1424 * Process the RPC request. 1425 */ 1426 int 1427 svc_process(struct svc_rqst *rqstp) 1428 { 1429 struct kvec *argv = &rqstp->rq_arg.head[0]; 1430 struct kvec *resv = &rqstp->rq_res.head[0]; 1431 struct svc_serv *serv = rqstp->rq_server; 1432 u32 dir; 1433 1434 #if IS_ENABLED(CONFIG_FAIL_SUNRPC) 1435 if (!fail_sunrpc.ignore_server_disconnect && 1436 should_fail(&fail_sunrpc.attr, 1)) 1437 svc_xprt_deferred_close(rqstp->rq_xprt); 1438 #endif 1439 1440 /* 1441 * Setup response xdr_buf. 1442 * Initially it has just one page 1443 */ 1444 rqstp->rq_next_page = &rqstp->rq_respages[1]; 1445 resv->iov_base = page_address(rqstp->rq_respages[0]); 1446 resv->iov_len = 0; 1447 rqstp->rq_res.pages = rqstp->rq_respages + 1; 1448 rqstp->rq_res.len = 0; 1449 rqstp->rq_res.page_base = 0; 1450 rqstp->rq_res.page_len = 0; 1451 rqstp->rq_res.buflen = PAGE_SIZE; 1452 rqstp->rq_res.tail[0].iov_base = NULL; 1453 rqstp->rq_res.tail[0].iov_len = 0; 1454 1455 dir = svc_getnl(argv); 1456 if (dir != 0) { 1457 /* direction != CALL */ 1458 svc_printk(rqstp, "bad direction %d, dropping request\n", dir); 1459 serv->sv_stats->rpcbadfmt++; 1460 goto out_drop; 1461 } 1462 1463 /* Returns 1 for send, 0 for drop */ 1464 if (likely(svc_process_common(rqstp, argv, resv))) 1465 return svc_send(rqstp); 1466 1467 out_drop: 1468 svc_drop(rqstp); 1469 return 0; 1470 } 1471 EXPORT_SYMBOL_GPL(svc_process); 1472 1473 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1474 /* 1475 * Process a backchannel RPC request that arrived over an existing 1476 * outbound connection 1477 */ 1478 int 1479 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req, 1480 struct svc_rqst *rqstp) 1481 { 1482 struct kvec *argv = &rqstp->rq_arg.head[0]; 1483 struct kvec *resv = &rqstp->rq_res.head[0]; 1484 struct rpc_task *task; 1485 int proc_error; 1486 int error; 1487 1488 dprintk("svc: %s(%p)\n", __func__, req); 1489 1490 /* Build the svc_rqst used by the common processing routine */ 1491 rqstp->rq_xid = req->rq_xid; 1492 rqstp->rq_prot = req->rq_xprt->prot; 1493 rqstp->rq_server = serv; 1494 rqstp->rq_bc_net = req->rq_xprt->xprt_net; 1495 1496 rqstp->rq_addrlen = sizeof(req->rq_xprt->addr); 1497 memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen); 1498 memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg)); 1499 memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res)); 1500 1501 /* Adjust the argument buffer length */ 1502 rqstp->rq_arg.len = req->rq_private_buf.len; 1503 if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) { 1504 rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len; 1505 rqstp->rq_arg.page_len = 0; 1506 } else if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len + 1507 rqstp->rq_arg.page_len) 1508 rqstp->rq_arg.page_len = rqstp->rq_arg.len - 1509 rqstp->rq_arg.head[0].iov_len; 1510 else 1511 rqstp->rq_arg.len = rqstp->rq_arg.head[0].iov_len + 1512 rqstp->rq_arg.page_len; 1513 1514 /* reset result send buffer "put" position */ 1515 resv->iov_len = 0; 1516 1517 /* 1518 * Skip the next two words because they've already been 1519 * processed in the transport 1520 */ 1521 svc_getu32(argv); /* XID */ 1522 svc_getnl(argv); /* CALLDIR */ 1523 1524 /* Parse and execute the bc call */ 1525 proc_error = svc_process_common(rqstp, argv, resv); 1526 1527 atomic_dec(&req->rq_xprt->bc_slot_count); 1528 if (!proc_error) { 1529 /* Processing error: drop the request */ 1530 xprt_free_bc_request(req); 1531 error = -EINVAL; 1532 goto out; 1533 } 1534 /* Finally, send the reply synchronously */ 1535 memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf)); 1536 task = rpc_run_bc_task(req); 1537 if (IS_ERR(task)) { 1538 error = PTR_ERR(task); 1539 goto out; 1540 } 1541 1542 WARN_ON_ONCE(atomic_read(&task->tk_count) != 1); 1543 error = task->tk_status; 1544 rpc_put_task(task); 1545 1546 out: 1547 dprintk("svc: %s(), error=%d\n", __func__, error); 1548 return error; 1549 } 1550 EXPORT_SYMBOL_GPL(bc_svc_process); 1551 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1552 1553 /* 1554 * Return (transport-specific) limit on the rpc payload. 1555 */ 1556 u32 svc_max_payload(const struct svc_rqst *rqstp) 1557 { 1558 u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload; 1559 1560 if (rqstp->rq_server->sv_max_payload < max) 1561 max = rqstp->rq_server->sv_max_payload; 1562 return max; 1563 } 1564 EXPORT_SYMBOL_GPL(svc_max_payload); 1565 1566 /** 1567 * svc_proc_name - Return RPC procedure name in string form 1568 * @rqstp: svc_rqst to operate on 1569 * 1570 * Return value: 1571 * Pointer to a NUL-terminated string 1572 */ 1573 const char *svc_proc_name(const struct svc_rqst *rqstp) 1574 { 1575 if (rqstp && rqstp->rq_procinfo) 1576 return rqstp->rq_procinfo->pc_name; 1577 return "unknown"; 1578 } 1579 1580 1581 /** 1582 * svc_encode_result_payload - mark a range of bytes as a result payload 1583 * @rqstp: svc_rqst to operate on 1584 * @offset: payload's byte offset in rqstp->rq_res 1585 * @length: size of payload, in bytes 1586 * 1587 * Returns zero on success, or a negative errno if a permanent 1588 * error occurred. 1589 */ 1590 int svc_encode_result_payload(struct svc_rqst *rqstp, unsigned int offset, 1591 unsigned int length) 1592 { 1593 return rqstp->rq_xprt->xpt_ops->xpo_result_payload(rqstp, offset, 1594 length); 1595 } 1596 EXPORT_SYMBOL_GPL(svc_encode_result_payload); 1597 1598 /** 1599 * svc_fill_write_vector - Construct data argument for VFS write call 1600 * @rqstp: svc_rqst to operate on 1601 * @payload: xdr_buf containing only the write data payload 1602 * 1603 * Fills in rqstp::rq_vec, and returns the number of elements. 1604 */ 1605 unsigned int svc_fill_write_vector(struct svc_rqst *rqstp, 1606 struct xdr_buf *payload) 1607 { 1608 struct page **pages = payload->pages; 1609 struct kvec *first = payload->head; 1610 struct kvec *vec = rqstp->rq_vec; 1611 size_t total = payload->len; 1612 unsigned int i; 1613 1614 /* Some types of transport can present the write payload 1615 * entirely in rq_arg.pages. In this case, @first is empty. 1616 */ 1617 i = 0; 1618 if (first->iov_len) { 1619 vec[i].iov_base = first->iov_base; 1620 vec[i].iov_len = min_t(size_t, total, first->iov_len); 1621 total -= vec[i].iov_len; 1622 ++i; 1623 } 1624 1625 while (total) { 1626 vec[i].iov_base = page_address(*pages); 1627 vec[i].iov_len = min_t(size_t, total, PAGE_SIZE); 1628 total -= vec[i].iov_len; 1629 ++i; 1630 ++pages; 1631 } 1632 1633 WARN_ON_ONCE(i > ARRAY_SIZE(rqstp->rq_vec)); 1634 return i; 1635 } 1636 EXPORT_SYMBOL_GPL(svc_fill_write_vector); 1637 1638 /** 1639 * svc_fill_symlink_pathname - Construct pathname argument for VFS symlink call 1640 * @rqstp: svc_rqst to operate on 1641 * @first: buffer containing first section of pathname 1642 * @p: buffer containing remaining section of pathname 1643 * @total: total length of the pathname argument 1644 * 1645 * The VFS symlink API demands a NUL-terminated pathname in mapped memory. 1646 * Returns pointer to a NUL-terminated string, or an ERR_PTR. Caller must free 1647 * the returned string. 1648 */ 1649 char *svc_fill_symlink_pathname(struct svc_rqst *rqstp, struct kvec *first, 1650 void *p, size_t total) 1651 { 1652 size_t len, remaining; 1653 char *result, *dst; 1654 1655 result = kmalloc(total + 1, GFP_KERNEL); 1656 if (!result) 1657 return ERR_PTR(-ESERVERFAULT); 1658 1659 dst = result; 1660 remaining = total; 1661 1662 len = min_t(size_t, total, first->iov_len); 1663 if (len) { 1664 memcpy(dst, first->iov_base, len); 1665 dst += len; 1666 remaining -= len; 1667 } 1668 1669 if (remaining) { 1670 len = min_t(size_t, remaining, PAGE_SIZE); 1671 memcpy(dst, p, len); 1672 dst += len; 1673 } 1674 1675 *dst = '\0'; 1676 1677 /* Sanity check: Linux doesn't allow the pathname argument to 1678 * contain a NUL byte. 1679 */ 1680 if (strlen(result) != total) { 1681 kfree(result); 1682 return ERR_PTR(-EINVAL); 1683 } 1684 return result; 1685 } 1686 EXPORT_SYMBOL_GPL(svc_fill_symlink_pathname); 1687