1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/svc.c 4 * 5 * High-level RPC service routines 6 * 7 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 8 * 9 * Multiple threads pools and NUMAisation 10 * Copyright (c) 2006 Silicon Graphics, Inc. 11 * by Greg Banks <gnb@melbourne.sgi.com> 12 */ 13 14 #include <linux/linkage.h> 15 #include <linux/sched/signal.h> 16 #include <linux/errno.h> 17 #include <linux/net.h> 18 #include <linux/in.h> 19 #include <linux/mm.h> 20 #include <linux/interrupt.h> 21 #include <linux/module.h> 22 #include <linux/kthread.h> 23 #include <linux/slab.h> 24 25 #include <linux/sunrpc/types.h> 26 #include <linux/sunrpc/xdr.h> 27 #include <linux/sunrpc/stats.h> 28 #include <linux/sunrpc/svcsock.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/sunrpc/bc_xprt.h> 31 32 #include <trace/events/sunrpc.h> 33 34 #define RPCDBG_FACILITY RPCDBG_SVCDSP 35 36 static void svc_unregister(const struct svc_serv *serv, struct net *net); 37 38 #define svc_serv_is_pooled(serv) ((serv)->sv_ops->svo_function) 39 40 #define SVC_POOL_DEFAULT SVC_POOL_GLOBAL 41 42 /* 43 * Structure for mapping cpus to pools and vice versa. 44 * Setup once during sunrpc initialisation. 45 */ 46 struct svc_pool_map svc_pool_map = { 47 .mode = SVC_POOL_DEFAULT 48 }; 49 EXPORT_SYMBOL_GPL(svc_pool_map); 50 51 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */ 52 53 static int 54 param_set_pool_mode(const char *val, const struct kernel_param *kp) 55 { 56 int *ip = (int *)kp->arg; 57 struct svc_pool_map *m = &svc_pool_map; 58 int err; 59 60 mutex_lock(&svc_pool_map_mutex); 61 62 err = -EBUSY; 63 if (m->count) 64 goto out; 65 66 err = 0; 67 if (!strncmp(val, "auto", 4)) 68 *ip = SVC_POOL_AUTO; 69 else if (!strncmp(val, "global", 6)) 70 *ip = SVC_POOL_GLOBAL; 71 else if (!strncmp(val, "percpu", 6)) 72 *ip = SVC_POOL_PERCPU; 73 else if (!strncmp(val, "pernode", 7)) 74 *ip = SVC_POOL_PERNODE; 75 else 76 err = -EINVAL; 77 78 out: 79 mutex_unlock(&svc_pool_map_mutex); 80 return err; 81 } 82 83 static int 84 param_get_pool_mode(char *buf, const struct kernel_param *kp) 85 { 86 int *ip = (int *)kp->arg; 87 88 switch (*ip) 89 { 90 case SVC_POOL_AUTO: 91 return strlcpy(buf, "auto", 20); 92 case SVC_POOL_GLOBAL: 93 return strlcpy(buf, "global", 20); 94 case SVC_POOL_PERCPU: 95 return strlcpy(buf, "percpu", 20); 96 case SVC_POOL_PERNODE: 97 return strlcpy(buf, "pernode", 20); 98 default: 99 return sprintf(buf, "%d", *ip); 100 } 101 } 102 103 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode, 104 &svc_pool_map.mode, 0644); 105 106 /* 107 * Detect best pool mapping mode heuristically, 108 * according to the machine's topology. 109 */ 110 static int 111 svc_pool_map_choose_mode(void) 112 { 113 unsigned int node; 114 115 if (nr_online_nodes > 1) { 116 /* 117 * Actually have multiple NUMA nodes, 118 * so split pools on NUMA node boundaries 119 */ 120 return SVC_POOL_PERNODE; 121 } 122 123 node = first_online_node; 124 if (nr_cpus_node(node) > 2) { 125 /* 126 * Non-trivial SMP, or CONFIG_NUMA on 127 * non-NUMA hardware, e.g. with a generic 128 * x86_64 kernel on Xeons. In this case we 129 * want to divide the pools on cpu boundaries. 130 */ 131 return SVC_POOL_PERCPU; 132 } 133 134 /* default: one global pool */ 135 return SVC_POOL_GLOBAL; 136 } 137 138 /* 139 * Allocate the to_pool[] and pool_to[] arrays. 140 * Returns 0 on success or an errno. 141 */ 142 static int 143 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools) 144 { 145 m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 146 if (!m->to_pool) 147 goto fail; 148 m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 149 if (!m->pool_to) 150 goto fail_free; 151 152 return 0; 153 154 fail_free: 155 kfree(m->to_pool); 156 m->to_pool = NULL; 157 fail: 158 return -ENOMEM; 159 } 160 161 /* 162 * Initialise the pool map for SVC_POOL_PERCPU mode. 163 * Returns number of pools or <0 on error. 164 */ 165 static int 166 svc_pool_map_init_percpu(struct svc_pool_map *m) 167 { 168 unsigned int maxpools = nr_cpu_ids; 169 unsigned int pidx = 0; 170 unsigned int cpu; 171 int err; 172 173 err = svc_pool_map_alloc_arrays(m, maxpools); 174 if (err) 175 return err; 176 177 for_each_online_cpu(cpu) { 178 BUG_ON(pidx >= maxpools); 179 m->to_pool[cpu] = pidx; 180 m->pool_to[pidx] = cpu; 181 pidx++; 182 } 183 /* cpus brought online later all get mapped to pool0, sorry */ 184 185 return pidx; 186 }; 187 188 189 /* 190 * Initialise the pool map for SVC_POOL_PERNODE mode. 191 * Returns number of pools or <0 on error. 192 */ 193 static int 194 svc_pool_map_init_pernode(struct svc_pool_map *m) 195 { 196 unsigned int maxpools = nr_node_ids; 197 unsigned int pidx = 0; 198 unsigned int node; 199 int err; 200 201 err = svc_pool_map_alloc_arrays(m, maxpools); 202 if (err) 203 return err; 204 205 for_each_node_with_cpus(node) { 206 /* some architectures (e.g. SN2) have cpuless nodes */ 207 BUG_ON(pidx > maxpools); 208 m->to_pool[node] = pidx; 209 m->pool_to[pidx] = node; 210 pidx++; 211 } 212 /* nodes brought online later all get mapped to pool0, sorry */ 213 214 return pidx; 215 } 216 217 218 /* 219 * Add a reference to the global map of cpus to pools (and 220 * vice versa). Initialise the map if we're the first user. 221 * Returns the number of pools. 222 */ 223 unsigned int 224 svc_pool_map_get(void) 225 { 226 struct svc_pool_map *m = &svc_pool_map; 227 int npools = -1; 228 229 mutex_lock(&svc_pool_map_mutex); 230 231 if (m->count++) { 232 mutex_unlock(&svc_pool_map_mutex); 233 return m->npools; 234 } 235 236 if (m->mode == SVC_POOL_AUTO) 237 m->mode = svc_pool_map_choose_mode(); 238 239 switch (m->mode) { 240 case SVC_POOL_PERCPU: 241 npools = svc_pool_map_init_percpu(m); 242 break; 243 case SVC_POOL_PERNODE: 244 npools = svc_pool_map_init_pernode(m); 245 break; 246 } 247 248 if (npools < 0) { 249 /* default, or memory allocation failure */ 250 npools = 1; 251 m->mode = SVC_POOL_GLOBAL; 252 } 253 m->npools = npools; 254 255 mutex_unlock(&svc_pool_map_mutex); 256 return m->npools; 257 } 258 EXPORT_SYMBOL_GPL(svc_pool_map_get); 259 260 /* 261 * Drop a reference to the global map of cpus to pools. 262 * When the last reference is dropped, the map data is 263 * freed; this allows the sysadmin to change the pool 264 * mode using the pool_mode module option without 265 * rebooting or re-loading sunrpc.ko. 266 */ 267 void 268 svc_pool_map_put(void) 269 { 270 struct svc_pool_map *m = &svc_pool_map; 271 272 mutex_lock(&svc_pool_map_mutex); 273 274 if (!--m->count) { 275 kfree(m->to_pool); 276 m->to_pool = NULL; 277 kfree(m->pool_to); 278 m->pool_to = NULL; 279 m->npools = 0; 280 } 281 282 mutex_unlock(&svc_pool_map_mutex); 283 } 284 EXPORT_SYMBOL_GPL(svc_pool_map_put); 285 286 static int svc_pool_map_get_node(unsigned int pidx) 287 { 288 const struct svc_pool_map *m = &svc_pool_map; 289 290 if (m->count) { 291 if (m->mode == SVC_POOL_PERCPU) 292 return cpu_to_node(m->pool_to[pidx]); 293 if (m->mode == SVC_POOL_PERNODE) 294 return m->pool_to[pidx]; 295 } 296 return NUMA_NO_NODE; 297 } 298 /* 299 * Set the given thread's cpus_allowed mask so that it 300 * will only run on cpus in the given pool. 301 */ 302 static inline void 303 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx) 304 { 305 struct svc_pool_map *m = &svc_pool_map; 306 unsigned int node = m->pool_to[pidx]; 307 308 /* 309 * The caller checks for sv_nrpools > 1, which 310 * implies that we've been initialized. 311 */ 312 WARN_ON_ONCE(m->count == 0); 313 if (m->count == 0) 314 return; 315 316 switch (m->mode) { 317 case SVC_POOL_PERCPU: 318 { 319 set_cpus_allowed_ptr(task, cpumask_of(node)); 320 break; 321 } 322 case SVC_POOL_PERNODE: 323 { 324 set_cpus_allowed_ptr(task, cpumask_of_node(node)); 325 break; 326 } 327 } 328 } 329 330 /* 331 * Use the mapping mode to choose a pool for a given CPU. 332 * Used when enqueueing an incoming RPC. Always returns 333 * a non-NULL pool pointer. 334 */ 335 struct svc_pool * 336 svc_pool_for_cpu(struct svc_serv *serv, int cpu) 337 { 338 struct svc_pool_map *m = &svc_pool_map; 339 unsigned int pidx = 0; 340 341 /* 342 * An uninitialised map happens in a pure client when 343 * lockd is brought up, so silently treat it the 344 * same as SVC_POOL_GLOBAL. 345 */ 346 if (svc_serv_is_pooled(serv)) { 347 switch (m->mode) { 348 case SVC_POOL_PERCPU: 349 pidx = m->to_pool[cpu]; 350 break; 351 case SVC_POOL_PERNODE: 352 pidx = m->to_pool[cpu_to_node(cpu)]; 353 break; 354 } 355 } 356 return &serv->sv_pools[pidx % serv->sv_nrpools]; 357 } 358 359 int svc_rpcb_setup(struct svc_serv *serv, struct net *net) 360 { 361 int err; 362 363 err = rpcb_create_local(net); 364 if (err) 365 return err; 366 367 /* Remove any stale portmap registrations */ 368 svc_unregister(serv, net); 369 return 0; 370 } 371 EXPORT_SYMBOL_GPL(svc_rpcb_setup); 372 373 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net) 374 { 375 svc_unregister(serv, net); 376 rpcb_put_local(net); 377 } 378 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup); 379 380 static int svc_uses_rpcbind(struct svc_serv *serv) 381 { 382 struct svc_program *progp; 383 unsigned int i; 384 385 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 386 for (i = 0; i < progp->pg_nvers; i++) { 387 if (progp->pg_vers[i] == NULL) 388 continue; 389 if (!progp->pg_vers[i]->vs_hidden) 390 return 1; 391 } 392 } 393 394 return 0; 395 } 396 397 int svc_bind(struct svc_serv *serv, struct net *net) 398 { 399 if (!svc_uses_rpcbind(serv)) 400 return 0; 401 return svc_rpcb_setup(serv, net); 402 } 403 EXPORT_SYMBOL_GPL(svc_bind); 404 405 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 406 static void 407 __svc_init_bc(struct svc_serv *serv) 408 { 409 INIT_LIST_HEAD(&serv->sv_cb_list); 410 spin_lock_init(&serv->sv_cb_lock); 411 init_waitqueue_head(&serv->sv_cb_waitq); 412 } 413 #else 414 static void 415 __svc_init_bc(struct svc_serv *serv) 416 { 417 } 418 #endif 419 420 /* 421 * Create an RPC service 422 */ 423 static struct svc_serv * 424 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools, 425 const struct svc_serv_ops *ops) 426 { 427 struct svc_serv *serv; 428 unsigned int vers; 429 unsigned int xdrsize; 430 unsigned int i; 431 432 if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL))) 433 return NULL; 434 serv->sv_name = prog->pg_name; 435 serv->sv_program = prog; 436 serv->sv_nrthreads = 1; 437 serv->sv_stats = prog->pg_stats; 438 if (bufsize > RPCSVC_MAXPAYLOAD) 439 bufsize = RPCSVC_MAXPAYLOAD; 440 serv->sv_max_payload = bufsize? bufsize : 4096; 441 serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE); 442 serv->sv_ops = ops; 443 xdrsize = 0; 444 while (prog) { 445 prog->pg_lovers = prog->pg_nvers-1; 446 for (vers=0; vers<prog->pg_nvers ; vers++) 447 if (prog->pg_vers[vers]) { 448 prog->pg_hivers = vers; 449 if (prog->pg_lovers > vers) 450 prog->pg_lovers = vers; 451 if (prog->pg_vers[vers]->vs_xdrsize > xdrsize) 452 xdrsize = prog->pg_vers[vers]->vs_xdrsize; 453 } 454 prog = prog->pg_next; 455 } 456 serv->sv_xdrsize = xdrsize; 457 INIT_LIST_HEAD(&serv->sv_tempsocks); 458 INIT_LIST_HEAD(&serv->sv_permsocks); 459 timer_setup(&serv->sv_temptimer, NULL, 0); 460 spin_lock_init(&serv->sv_lock); 461 462 __svc_init_bc(serv); 463 464 serv->sv_nrpools = npools; 465 serv->sv_pools = 466 kcalloc(serv->sv_nrpools, sizeof(struct svc_pool), 467 GFP_KERNEL); 468 if (!serv->sv_pools) { 469 kfree(serv); 470 return NULL; 471 } 472 473 for (i = 0; i < serv->sv_nrpools; i++) { 474 struct svc_pool *pool = &serv->sv_pools[i]; 475 476 dprintk("svc: initialising pool %u for %s\n", 477 i, serv->sv_name); 478 479 pool->sp_id = i; 480 INIT_LIST_HEAD(&pool->sp_sockets); 481 INIT_LIST_HEAD(&pool->sp_all_threads); 482 spin_lock_init(&pool->sp_lock); 483 } 484 485 return serv; 486 } 487 488 struct svc_serv * 489 svc_create(struct svc_program *prog, unsigned int bufsize, 490 const struct svc_serv_ops *ops) 491 { 492 return __svc_create(prog, bufsize, /*npools*/1, ops); 493 } 494 EXPORT_SYMBOL_GPL(svc_create); 495 496 struct svc_serv * 497 svc_create_pooled(struct svc_program *prog, unsigned int bufsize, 498 const struct svc_serv_ops *ops) 499 { 500 struct svc_serv *serv; 501 unsigned int npools = svc_pool_map_get(); 502 503 serv = __svc_create(prog, bufsize, npools, ops); 504 if (!serv) 505 goto out_err; 506 return serv; 507 out_err: 508 svc_pool_map_put(); 509 return NULL; 510 } 511 EXPORT_SYMBOL_GPL(svc_create_pooled); 512 513 void svc_shutdown_net(struct svc_serv *serv, struct net *net) 514 { 515 svc_close_net(serv, net); 516 517 if (serv->sv_ops->svo_shutdown) 518 serv->sv_ops->svo_shutdown(serv, net); 519 } 520 EXPORT_SYMBOL_GPL(svc_shutdown_net); 521 522 /* 523 * Destroy an RPC service. Should be called with appropriate locking to 524 * protect the sv_nrthreads, sv_permsocks and sv_tempsocks. 525 */ 526 void 527 svc_destroy(struct svc_serv *serv) 528 { 529 dprintk("svc: svc_destroy(%s, %d)\n", 530 serv->sv_program->pg_name, 531 serv->sv_nrthreads); 532 533 if (serv->sv_nrthreads) { 534 if (--(serv->sv_nrthreads) != 0) { 535 svc_sock_update_bufs(serv); 536 return; 537 } 538 } else 539 printk("svc_destroy: no threads for serv=%p!\n", serv); 540 541 del_timer_sync(&serv->sv_temptimer); 542 543 /* 544 * The last user is gone and thus all sockets have to be destroyed to 545 * the point. Check this. 546 */ 547 BUG_ON(!list_empty(&serv->sv_permsocks)); 548 BUG_ON(!list_empty(&serv->sv_tempsocks)); 549 550 cache_clean_deferred(serv); 551 552 if (svc_serv_is_pooled(serv)) 553 svc_pool_map_put(); 554 555 kfree(serv->sv_pools); 556 kfree(serv); 557 } 558 EXPORT_SYMBOL_GPL(svc_destroy); 559 560 /* 561 * Allocate an RPC server's buffer space. 562 * We allocate pages and place them in rq_argpages. 563 */ 564 static int 565 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node) 566 { 567 unsigned int pages, arghi; 568 569 /* bc_xprt uses fore channel allocated buffers */ 570 if (svc_is_backchannel(rqstp)) 571 return 1; 572 573 pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply. 574 * We assume one is at most one page 575 */ 576 arghi = 0; 577 WARN_ON_ONCE(pages > RPCSVC_MAXPAGES); 578 if (pages > RPCSVC_MAXPAGES) 579 pages = RPCSVC_MAXPAGES; 580 while (pages) { 581 struct page *p = alloc_pages_node(node, GFP_KERNEL, 0); 582 if (!p) 583 break; 584 rqstp->rq_pages[arghi++] = p; 585 pages--; 586 } 587 return pages == 0; 588 } 589 590 /* 591 * Release an RPC server buffer 592 */ 593 static void 594 svc_release_buffer(struct svc_rqst *rqstp) 595 { 596 unsigned int i; 597 598 for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++) 599 if (rqstp->rq_pages[i]) 600 put_page(rqstp->rq_pages[i]); 601 } 602 603 struct svc_rqst * 604 svc_rqst_alloc(struct svc_serv *serv, struct svc_pool *pool, int node) 605 { 606 struct svc_rqst *rqstp; 607 608 rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node); 609 if (!rqstp) 610 return rqstp; 611 612 __set_bit(RQ_BUSY, &rqstp->rq_flags); 613 spin_lock_init(&rqstp->rq_lock); 614 rqstp->rq_server = serv; 615 rqstp->rq_pool = pool; 616 617 rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 618 if (!rqstp->rq_argp) 619 goto out_enomem; 620 621 rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 622 if (!rqstp->rq_resp) 623 goto out_enomem; 624 625 if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node)) 626 goto out_enomem; 627 628 return rqstp; 629 out_enomem: 630 svc_rqst_free(rqstp); 631 return NULL; 632 } 633 EXPORT_SYMBOL_GPL(svc_rqst_alloc); 634 635 struct svc_rqst * 636 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node) 637 { 638 struct svc_rqst *rqstp; 639 640 rqstp = svc_rqst_alloc(serv, pool, node); 641 if (!rqstp) 642 return ERR_PTR(-ENOMEM); 643 644 serv->sv_nrthreads++; 645 spin_lock_bh(&pool->sp_lock); 646 pool->sp_nrthreads++; 647 list_add_rcu(&rqstp->rq_all, &pool->sp_all_threads); 648 spin_unlock_bh(&pool->sp_lock); 649 return rqstp; 650 } 651 EXPORT_SYMBOL_GPL(svc_prepare_thread); 652 653 /* 654 * Choose a pool in which to create a new thread, for svc_set_num_threads 655 */ 656 static inline struct svc_pool * 657 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 658 { 659 if (pool != NULL) 660 return pool; 661 662 return &serv->sv_pools[(*state)++ % serv->sv_nrpools]; 663 } 664 665 /* 666 * Choose a thread to kill, for svc_set_num_threads 667 */ 668 static inline struct task_struct * 669 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 670 { 671 unsigned int i; 672 struct task_struct *task = NULL; 673 674 if (pool != NULL) { 675 spin_lock_bh(&pool->sp_lock); 676 } else { 677 /* choose a pool in round-robin fashion */ 678 for (i = 0; i < serv->sv_nrpools; i++) { 679 pool = &serv->sv_pools[--(*state) % serv->sv_nrpools]; 680 spin_lock_bh(&pool->sp_lock); 681 if (!list_empty(&pool->sp_all_threads)) 682 goto found_pool; 683 spin_unlock_bh(&pool->sp_lock); 684 } 685 return NULL; 686 } 687 688 found_pool: 689 if (!list_empty(&pool->sp_all_threads)) { 690 struct svc_rqst *rqstp; 691 692 /* 693 * Remove from the pool->sp_all_threads list 694 * so we don't try to kill it again. 695 */ 696 rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all); 697 set_bit(RQ_VICTIM, &rqstp->rq_flags); 698 list_del_rcu(&rqstp->rq_all); 699 task = rqstp->rq_task; 700 } 701 spin_unlock_bh(&pool->sp_lock); 702 703 return task; 704 } 705 706 /* create new threads */ 707 static int 708 svc_start_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 709 { 710 struct svc_rqst *rqstp; 711 struct task_struct *task; 712 struct svc_pool *chosen_pool; 713 unsigned int state = serv->sv_nrthreads-1; 714 int node; 715 716 do { 717 nrservs--; 718 chosen_pool = choose_pool(serv, pool, &state); 719 720 node = svc_pool_map_get_node(chosen_pool->sp_id); 721 rqstp = svc_prepare_thread(serv, chosen_pool, node); 722 if (IS_ERR(rqstp)) 723 return PTR_ERR(rqstp); 724 725 __module_get(serv->sv_ops->svo_module); 726 task = kthread_create_on_node(serv->sv_ops->svo_function, rqstp, 727 node, "%s", serv->sv_name); 728 if (IS_ERR(task)) { 729 module_put(serv->sv_ops->svo_module); 730 svc_exit_thread(rqstp); 731 return PTR_ERR(task); 732 } 733 734 rqstp->rq_task = task; 735 if (serv->sv_nrpools > 1) 736 svc_pool_map_set_cpumask(task, chosen_pool->sp_id); 737 738 svc_sock_update_bufs(serv); 739 wake_up_process(task); 740 } while (nrservs > 0); 741 742 return 0; 743 } 744 745 746 /* destroy old threads */ 747 static int 748 svc_signal_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 749 { 750 struct task_struct *task; 751 unsigned int state = serv->sv_nrthreads-1; 752 753 /* destroy old threads */ 754 do { 755 task = choose_victim(serv, pool, &state); 756 if (task == NULL) 757 break; 758 send_sig(SIGINT, task, 1); 759 nrservs++; 760 } while (nrservs < 0); 761 762 return 0; 763 } 764 765 /* 766 * Create or destroy enough new threads to make the number 767 * of threads the given number. If `pool' is non-NULL, applies 768 * only to threads in that pool, otherwise round-robins between 769 * all pools. Caller must ensure that mutual exclusion between this and 770 * server startup or shutdown. 771 * 772 * Destroying threads relies on the service threads filling in 773 * rqstp->rq_task, which only the nfs ones do. Assumes the serv 774 * has been created using svc_create_pooled(). 775 * 776 * Based on code that used to be in nfsd_svc() but tweaked 777 * to be pool-aware. 778 */ 779 int 780 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 781 { 782 if (pool == NULL) { 783 /* The -1 assumes caller has done a svc_get() */ 784 nrservs -= (serv->sv_nrthreads-1); 785 } else { 786 spin_lock_bh(&pool->sp_lock); 787 nrservs -= pool->sp_nrthreads; 788 spin_unlock_bh(&pool->sp_lock); 789 } 790 791 if (nrservs > 0) 792 return svc_start_kthreads(serv, pool, nrservs); 793 if (nrservs < 0) 794 return svc_signal_kthreads(serv, pool, nrservs); 795 return 0; 796 } 797 EXPORT_SYMBOL_GPL(svc_set_num_threads); 798 799 /* destroy old threads */ 800 static int 801 svc_stop_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 802 { 803 struct task_struct *task; 804 unsigned int state = serv->sv_nrthreads-1; 805 806 /* destroy old threads */ 807 do { 808 task = choose_victim(serv, pool, &state); 809 if (task == NULL) 810 break; 811 kthread_stop(task); 812 nrservs++; 813 } while (nrservs < 0); 814 return 0; 815 } 816 817 int 818 svc_set_num_threads_sync(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 819 { 820 if (pool == NULL) { 821 /* The -1 assumes caller has done a svc_get() */ 822 nrservs -= (serv->sv_nrthreads-1); 823 } else { 824 spin_lock_bh(&pool->sp_lock); 825 nrservs -= pool->sp_nrthreads; 826 spin_unlock_bh(&pool->sp_lock); 827 } 828 829 if (nrservs > 0) 830 return svc_start_kthreads(serv, pool, nrservs); 831 if (nrservs < 0) 832 return svc_stop_kthreads(serv, pool, nrservs); 833 return 0; 834 } 835 EXPORT_SYMBOL_GPL(svc_set_num_threads_sync); 836 837 /* 838 * Called from a server thread as it's exiting. Caller must hold the "service 839 * mutex" for the service. 840 */ 841 void 842 svc_rqst_free(struct svc_rqst *rqstp) 843 { 844 svc_release_buffer(rqstp); 845 kfree(rqstp->rq_resp); 846 kfree(rqstp->rq_argp); 847 kfree(rqstp->rq_auth_data); 848 kfree_rcu(rqstp, rq_rcu_head); 849 } 850 EXPORT_SYMBOL_GPL(svc_rqst_free); 851 852 void 853 svc_exit_thread(struct svc_rqst *rqstp) 854 { 855 struct svc_serv *serv = rqstp->rq_server; 856 struct svc_pool *pool = rqstp->rq_pool; 857 858 spin_lock_bh(&pool->sp_lock); 859 pool->sp_nrthreads--; 860 if (!test_and_set_bit(RQ_VICTIM, &rqstp->rq_flags)) 861 list_del_rcu(&rqstp->rq_all); 862 spin_unlock_bh(&pool->sp_lock); 863 864 svc_rqst_free(rqstp); 865 866 /* Release the server */ 867 if (serv) 868 svc_destroy(serv); 869 } 870 EXPORT_SYMBOL_GPL(svc_exit_thread); 871 872 /* 873 * Register an "inet" protocol family netid with the local 874 * rpcbind daemon via an rpcbind v4 SET request. 875 * 876 * No netconfig infrastructure is available in the kernel, so 877 * we map IP_ protocol numbers to netids by hand. 878 * 879 * Returns zero on success; a negative errno value is returned 880 * if any error occurs. 881 */ 882 static int __svc_rpcb_register4(struct net *net, const u32 program, 883 const u32 version, 884 const unsigned short protocol, 885 const unsigned short port) 886 { 887 const struct sockaddr_in sin = { 888 .sin_family = AF_INET, 889 .sin_addr.s_addr = htonl(INADDR_ANY), 890 .sin_port = htons(port), 891 }; 892 const char *netid; 893 int error; 894 895 switch (protocol) { 896 case IPPROTO_UDP: 897 netid = RPCBIND_NETID_UDP; 898 break; 899 case IPPROTO_TCP: 900 netid = RPCBIND_NETID_TCP; 901 break; 902 default: 903 return -ENOPROTOOPT; 904 } 905 906 error = rpcb_v4_register(net, program, version, 907 (const struct sockaddr *)&sin, netid); 908 909 /* 910 * User space didn't support rpcbind v4, so retry this 911 * registration request with the legacy rpcbind v2 protocol. 912 */ 913 if (error == -EPROTONOSUPPORT) 914 error = rpcb_register(net, program, version, protocol, port); 915 916 return error; 917 } 918 919 #if IS_ENABLED(CONFIG_IPV6) 920 /* 921 * Register an "inet6" protocol family netid with the local 922 * rpcbind daemon via an rpcbind v4 SET request. 923 * 924 * No netconfig infrastructure is available in the kernel, so 925 * we map IP_ protocol numbers to netids by hand. 926 * 927 * Returns zero on success; a negative errno value is returned 928 * if any error occurs. 929 */ 930 static int __svc_rpcb_register6(struct net *net, const u32 program, 931 const u32 version, 932 const unsigned short protocol, 933 const unsigned short port) 934 { 935 const struct sockaddr_in6 sin6 = { 936 .sin6_family = AF_INET6, 937 .sin6_addr = IN6ADDR_ANY_INIT, 938 .sin6_port = htons(port), 939 }; 940 const char *netid; 941 int error; 942 943 switch (protocol) { 944 case IPPROTO_UDP: 945 netid = RPCBIND_NETID_UDP6; 946 break; 947 case IPPROTO_TCP: 948 netid = RPCBIND_NETID_TCP6; 949 break; 950 default: 951 return -ENOPROTOOPT; 952 } 953 954 error = rpcb_v4_register(net, program, version, 955 (const struct sockaddr *)&sin6, netid); 956 957 /* 958 * User space didn't support rpcbind version 4, so we won't 959 * use a PF_INET6 listener. 960 */ 961 if (error == -EPROTONOSUPPORT) 962 error = -EAFNOSUPPORT; 963 964 return error; 965 } 966 #endif /* IS_ENABLED(CONFIG_IPV6) */ 967 968 /* 969 * Register a kernel RPC service via rpcbind version 4. 970 * 971 * Returns zero on success; a negative errno value is returned 972 * if any error occurs. 973 */ 974 static int __svc_register(struct net *net, const char *progname, 975 const u32 program, const u32 version, 976 const int family, 977 const unsigned short protocol, 978 const unsigned short port) 979 { 980 int error = -EAFNOSUPPORT; 981 982 switch (family) { 983 case PF_INET: 984 error = __svc_rpcb_register4(net, program, version, 985 protocol, port); 986 break; 987 #if IS_ENABLED(CONFIG_IPV6) 988 case PF_INET6: 989 error = __svc_rpcb_register6(net, program, version, 990 protocol, port); 991 #endif 992 } 993 994 return error; 995 } 996 997 int svc_rpcbind_set_version(struct net *net, 998 const struct svc_program *progp, 999 u32 version, int family, 1000 unsigned short proto, 1001 unsigned short port) 1002 { 1003 dprintk("svc: svc_register(%sv%d, %s, %u, %u)\n", 1004 progp->pg_name, version, 1005 proto == IPPROTO_UDP? "udp" : "tcp", 1006 port, family); 1007 1008 return __svc_register(net, progp->pg_name, progp->pg_prog, 1009 version, family, proto, port); 1010 1011 } 1012 EXPORT_SYMBOL_GPL(svc_rpcbind_set_version); 1013 1014 int svc_generic_rpcbind_set(struct net *net, 1015 const struct svc_program *progp, 1016 u32 version, int family, 1017 unsigned short proto, 1018 unsigned short port) 1019 { 1020 const struct svc_version *vers = progp->pg_vers[version]; 1021 int error; 1022 1023 if (vers == NULL) 1024 return 0; 1025 1026 if (vers->vs_hidden) { 1027 dprintk("svc: svc_register(%sv%d, %s, %u, %u)" 1028 " (but not telling portmap)\n", 1029 progp->pg_name, version, 1030 proto == IPPROTO_UDP? "udp" : "tcp", 1031 port, family); 1032 return 0; 1033 } 1034 1035 /* 1036 * Don't register a UDP port if we need congestion 1037 * control. 1038 */ 1039 if (vers->vs_need_cong_ctrl && proto == IPPROTO_UDP) 1040 return 0; 1041 1042 error = svc_rpcbind_set_version(net, progp, version, 1043 family, proto, port); 1044 1045 return (vers->vs_rpcb_optnl) ? 0 : error; 1046 } 1047 EXPORT_SYMBOL_GPL(svc_generic_rpcbind_set); 1048 1049 /** 1050 * svc_register - register an RPC service with the local portmapper 1051 * @serv: svc_serv struct for the service to register 1052 * @net: net namespace for the service to register 1053 * @family: protocol family of service's listener socket 1054 * @proto: transport protocol number to advertise 1055 * @port: port to advertise 1056 * 1057 * Service is registered for any address in the passed-in protocol family 1058 */ 1059 int svc_register(const struct svc_serv *serv, struct net *net, 1060 const int family, const unsigned short proto, 1061 const unsigned short port) 1062 { 1063 struct svc_program *progp; 1064 unsigned int i; 1065 int error = 0; 1066 1067 WARN_ON_ONCE(proto == 0 && port == 0); 1068 if (proto == 0 && port == 0) 1069 return -EINVAL; 1070 1071 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 1072 for (i = 0; i < progp->pg_nvers; i++) { 1073 1074 error = progp->pg_rpcbind_set(net, progp, i, 1075 family, proto, port); 1076 if (error < 0) { 1077 printk(KERN_WARNING "svc: failed to register " 1078 "%sv%u RPC service (errno %d).\n", 1079 progp->pg_name, i, -error); 1080 break; 1081 } 1082 } 1083 } 1084 1085 return error; 1086 } 1087 1088 /* 1089 * If user space is running rpcbind, it should take the v4 UNSET 1090 * and clear everything for this [program, version]. If user space 1091 * is running portmap, it will reject the v4 UNSET, but won't have 1092 * any "inet6" entries anyway. So a PMAP_UNSET should be sufficient 1093 * in this case to clear all existing entries for [program, version]. 1094 */ 1095 static void __svc_unregister(struct net *net, const u32 program, const u32 version, 1096 const char *progname) 1097 { 1098 int error; 1099 1100 error = rpcb_v4_register(net, program, version, NULL, ""); 1101 1102 /* 1103 * User space didn't support rpcbind v4, so retry this 1104 * request with the legacy rpcbind v2 protocol. 1105 */ 1106 if (error == -EPROTONOSUPPORT) 1107 error = rpcb_register(net, program, version, 0, 0); 1108 1109 dprintk("svc: %s(%sv%u), error %d\n", 1110 __func__, progname, version, error); 1111 } 1112 1113 /* 1114 * All netids, bind addresses and ports registered for [program, version] 1115 * are removed from the local rpcbind database (if the service is not 1116 * hidden) to make way for a new instance of the service. 1117 * 1118 * The result of unregistration is reported via dprintk for those who want 1119 * verification of the result, but is otherwise not important. 1120 */ 1121 static void svc_unregister(const struct svc_serv *serv, struct net *net) 1122 { 1123 struct svc_program *progp; 1124 unsigned long flags; 1125 unsigned int i; 1126 1127 clear_thread_flag(TIF_SIGPENDING); 1128 1129 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 1130 for (i = 0; i < progp->pg_nvers; i++) { 1131 if (progp->pg_vers[i] == NULL) 1132 continue; 1133 if (progp->pg_vers[i]->vs_hidden) 1134 continue; 1135 1136 dprintk("svc: attempting to unregister %sv%u\n", 1137 progp->pg_name, i); 1138 __svc_unregister(net, progp->pg_prog, i, progp->pg_name); 1139 } 1140 } 1141 1142 spin_lock_irqsave(¤t->sighand->siglock, flags); 1143 recalc_sigpending(); 1144 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 1145 } 1146 1147 /* 1148 * dprintk the given error with the address of the client that caused it. 1149 */ 1150 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 1151 static __printf(2, 3) 1152 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) 1153 { 1154 struct va_format vaf; 1155 va_list args; 1156 char buf[RPC_MAX_ADDRBUFLEN]; 1157 1158 va_start(args, fmt); 1159 1160 vaf.fmt = fmt; 1161 vaf.va = &args; 1162 1163 dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf); 1164 1165 va_end(args); 1166 } 1167 #else 1168 static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {} 1169 #endif 1170 1171 __be32 1172 svc_return_autherr(struct svc_rqst *rqstp, __be32 auth_err) 1173 { 1174 set_bit(RQ_AUTHERR, &rqstp->rq_flags); 1175 return auth_err; 1176 } 1177 EXPORT_SYMBOL_GPL(svc_return_autherr); 1178 1179 static __be32 1180 svc_get_autherr(struct svc_rqst *rqstp, __be32 *statp) 1181 { 1182 if (test_and_clear_bit(RQ_AUTHERR, &rqstp->rq_flags)) 1183 return *statp; 1184 return rpc_auth_ok; 1185 } 1186 1187 static int 1188 svc_generic_dispatch(struct svc_rqst *rqstp, __be32 *statp) 1189 { 1190 struct kvec *argv = &rqstp->rq_arg.head[0]; 1191 struct kvec *resv = &rqstp->rq_res.head[0]; 1192 const struct svc_procedure *procp = rqstp->rq_procinfo; 1193 1194 /* 1195 * Decode arguments 1196 * XXX: why do we ignore the return value? 1197 */ 1198 if (procp->pc_decode && 1199 !procp->pc_decode(rqstp, argv->iov_base)) { 1200 *statp = rpc_garbage_args; 1201 return 1; 1202 } 1203 1204 *statp = procp->pc_func(rqstp); 1205 1206 if (*statp == rpc_drop_reply || 1207 test_bit(RQ_DROPME, &rqstp->rq_flags)) 1208 return 0; 1209 1210 if (test_bit(RQ_AUTHERR, &rqstp->rq_flags)) 1211 return 1; 1212 1213 if (*statp != rpc_success) 1214 return 1; 1215 1216 /* Encode reply */ 1217 if (procp->pc_encode && 1218 !procp->pc_encode(rqstp, resv->iov_base + resv->iov_len)) { 1219 dprintk("svc: failed to encode reply\n"); 1220 /* serv->sv_stats->rpcsystemerr++; */ 1221 *statp = rpc_system_err; 1222 } 1223 return 1; 1224 } 1225 1226 __be32 1227 svc_generic_init_request(struct svc_rqst *rqstp, 1228 const struct svc_program *progp, 1229 struct svc_process_info *ret) 1230 { 1231 const struct svc_version *versp = NULL; /* compiler food */ 1232 const struct svc_procedure *procp = NULL; 1233 1234 if (rqstp->rq_vers >= progp->pg_nvers ) 1235 goto err_bad_vers; 1236 versp = progp->pg_vers[rqstp->rq_vers]; 1237 if (!versp) 1238 goto err_bad_vers; 1239 1240 /* 1241 * Some protocol versions (namely NFSv4) require some form of 1242 * congestion control. (See RFC 7530 section 3.1 paragraph 2) 1243 * In other words, UDP is not allowed. We mark those when setting 1244 * up the svc_xprt, and verify that here. 1245 * 1246 * The spec is not very clear about what error should be returned 1247 * when someone tries to access a server that is listening on UDP 1248 * for lower versions. RPC_PROG_MISMATCH seems to be the closest 1249 * fit. 1250 */ 1251 if (versp->vs_need_cong_ctrl && rqstp->rq_xprt && 1252 !test_bit(XPT_CONG_CTRL, &rqstp->rq_xprt->xpt_flags)) 1253 goto err_bad_vers; 1254 1255 if (rqstp->rq_proc >= versp->vs_nproc) 1256 goto err_bad_proc; 1257 rqstp->rq_procinfo = procp = &versp->vs_proc[rqstp->rq_proc]; 1258 if (!procp) 1259 goto err_bad_proc; 1260 1261 /* Initialize storage for argp and resp */ 1262 memset(rqstp->rq_argp, 0, procp->pc_argsize); 1263 memset(rqstp->rq_resp, 0, procp->pc_ressize); 1264 1265 /* Bump per-procedure stats counter */ 1266 versp->vs_count[rqstp->rq_proc]++; 1267 1268 ret->dispatch = versp->vs_dispatch; 1269 return rpc_success; 1270 err_bad_vers: 1271 ret->mismatch.lovers = progp->pg_lovers; 1272 ret->mismatch.hivers = progp->pg_hivers; 1273 return rpc_prog_mismatch; 1274 err_bad_proc: 1275 return rpc_proc_unavail; 1276 } 1277 EXPORT_SYMBOL_GPL(svc_generic_init_request); 1278 1279 /* 1280 * Common routine for processing the RPC request. 1281 */ 1282 static int 1283 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv) 1284 { 1285 struct svc_program *progp; 1286 const struct svc_procedure *procp = NULL; 1287 struct svc_serv *serv = rqstp->rq_server; 1288 struct svc_process_info process; 1289 __be32 *statp; 1290 u32 prog, vers; 1291 __be32 auth_stat, rpc_stat; 1292 int auth_res; 1293 __be32 *reply_statp; 1294 1295 rpc_stat = rpc_success; 1296 1297 if (argv->iov_len < 6*4) 1298 goto err_short_len; 1299 1300 /* Will be turned off by GSS integrity and privacy services */ 1301 set_bit(RQ_SPLICE_OK, &rqstp->rq_flags); 1302 /* Will be turned off only when NFSv4 Sessions are used */ 1303 set_bit(RQ_USEDEFERRAL, &rqstp->rq_flags); 1304 clear_bit(RQ_DROPME, &rqstp->rq_flags); 1305 1306 svc_putu32(resv, rqstp->rq_xid); 1307 1308 vers = svc_getnl(argv); 1309 1310 /* First words of reply: */ 1311 svc_putnl(resv, 1); /* REPLY */ 1312 1313 if (vers != 2) /* RPC version number */ 1314 goto err_bad_rpc; 1315 1316 /* Save position in case we later decide to reject: */ 1317 reply_statp = resv->iov_base + resv->iov_len; 1318 1319 svc_putnl(resv, 0); /* ACCEPT */ 1320 1321 rqstp->rq_prog = prog = svc_getnl(argv); /* program number */ 1322 rqstp->rq_vers = svc_getnl(argv); /* version number */ 1323 rqstp->rq_proc = svc_getnl(argv); /* procedure number */ 1324 1325 for (progp = serv->sv_program; progp; progp = progp->pg_next) 1326 if (prog == progp->pg_prog) 1327 break; 1328 1329 /* 1330 * Decode auth data, and add verifier to reply buffer. 1331 * We do this before anything else in order to get a decent 1332 * auth verifier. 1333 */ 1334 auth_res = svc_authenticate(rqstp, &auth_stat); 1335 /* Also give the program a chance to reject this call: */ 1336 if (auth_res == SVC_OK && progp) { 1337 auth_stat = rpc_autherr_badcred; 1338 auth_res = progp->pg_authenticate(rqstp); 1339 } 1340 switch (auth_res) { 1341 case SVC_OK: 1342 break; 1343 case SVC_GARBAGE: 1344 goto err_garbage; 1345 case SVC_SYSERR: 1346 rpc_stat = rpc_system_err; 1347 goto err_bad; 1348 case SVC_DENIED: 1349 goto err_bad_auth; 1350 case SVC_CLOSE: 1351 goto close; 1352 case SVC_DROP: 1353 goto dropit; 1354 case SVC_COMPLETE: 1355 goto sendit; 1356 } 1357 1358 if (progp == NULL) 1359 goto err_bad_prog; 1360 1361 rpc_stat = progp->pg_init_request(rqstp, progp, &process); 1362 switch (rpc_stat) { 1363 case rpc_success: 1364 break; 1365 case rpc_prog_unavail: 1366 goto err_bad_prog; 1367 case rpc_prog_mismatch: 1368 goto err_bad_vers; 1369 case rpc_proc_unavail: 1370 goto err_bad_proc; 1371 } 1372 1373 procp = rqstp->rq_procinfo; 1374 /* Should this check go into the dispatcher? */ 1375 if (!procp || !procp->pc_func) 1376 goto err_bad_proc; 1377 1378 /* Syntactic check complete */ 1379 serv->sv_stats->rpccnt++; 1380 trace_svc_process(rqstp, progp->pg_name); 1381 1382 /* Build the reply header. */ 1383 statp = resv->iov_base +resv->iov_len; 1384 svc_putnl(resv, RPC_SUCCESS); 1385 1386 /* un-reserve some of the out-queue now that we have a 1387 * better idea of reply size 1388 */ 1389 if (procp->pc_xdrressize) 1390 svc_reserve_auth(rqstp, procp->pc_xdrressize<<2); 1391 1392 /* Call the function that processes the request. */ 1393 if (!process.dispatch) { 1394 if (!svc_generic_dispatch(rqstp, statp)) 1395 goto release_dropit; 1396 if (*statp == rpc_garbage_args) 1397 goto err_garbage; 1398 auth_stat = svc_get_autherr(rqstp, statp); 1399 if (auth_stat != rpc_auth_ok) 1400 goto err_release_bad_auth; 1401 } else { 1402 dprintk("svc: calling dispatcher\n"); 1403 if (!process.dispatch(rqstp, statp)) 1404 goto release_dropit; /* Release reply info */ 1405 } 1406 1407 /* Check RPC status result */ 1408 if (*statp != rpc_success) 1409 resv->iov_len = ((void*)statp) - resv->iov_base + 4; 1410 1411 /* Release reply info */ 1412 if (procp->pc_release) 1413 procp->pc_release(rqstp); 1414 1415 if (procp->pc_encode == NULL) 1416 goto dropit; 1417 1418 sendit: 1419 if (svc_authorise(rqstp)) 1420 goto close; 1421 return 1; /* Caller can now send it */ 1422 1423 release_dropit: 1424 if (procp->pc_release) 1425 procp->pc_release(rqstp); 1426 dropit: 1427 svc_authorise(rqstp); /* doesn't hurt to call this twice */ 1428 dprintk("svc: svc_process dropit\n"); 1429 return 0; 1430 1431 close: 1432 if (rqstp->rq_xprt && test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags)) 1433 svc_close_xprt(rqstp->rq_xprt); 1434 dprintk("svc: svc_process close\n"); 1435 return 0; 1436 1437 err_short_len: 1438 svc_printk(rqstp, "short len %zd, dropping request\n", 1439 argv->iov_len); 1440 goto close; 1441 1442 err_bad_rpc: 1443 serv->sv_stats->rpcbadfmt++; 1444 svc_putnl(resv, 1); /* REJECT */ 1445 svc_putnl(resv, 0); /* RPC_MISMATCH */ 1446 svc_putnl(resv, 2); /* Only RPCv2 supported */ 1447 svc_putnl(resv, 2); 1448 goto sendit; 1449 1450 err_release_bad_auth: 1451 if (procp->pc_release) 1452 procp->pc_release(rqstp); 1453 err_bad_auth: 1454 dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat)); 1455 serv->sv_stats->rpcbadauth++; 1456 /* Restore write pointer to location of accept status: */ 1457 xdr_ressize_check(rqstp, reply_statp); 1458 svc_putnl(resv, 1); /* REJECT */ 1459 svc_putnl(resv, 1); /* AUTH_ERROR */ 1460 svc_putnl(resv, ntohl(auth_stat)); /* status */ 1461 goto sendit; 1462 1463 err_bad_prog: 1464 dprintk("svc: unknown program %d\n", prog); 1465 serv->sv_stats->rpcbadfmt++; 1466 svc_putnl(resv, RPC_PROG_UNAVAIL); 1467 goto sendit; 1468 1469 err_bad_vers: 1470 svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n", 1471 rqstp->rq_vers, rqstp->rq_prog, progp->pg_name); 1472 1473 serv->sv_stats->rpcbadfmt++; 1474 svc_putnl(resv, RPC_PROG_MISMATCH); 1475 svc_putnl(resv, process.mismatch.lovers); 1476 svc_putnl(resv, process.mismatch.hivers); 1477 goto sendit; 1478 1479 err_bad_proc: 1480 svc_printk(rqstp, "unknown procedure (%d)\n", rqstp->rq_proc); 1481 1482 serv->sv_stats->rpcbadfmt++; 1483 svc_putnl(resv, RPC_PROC_UNAVAIL); 1484 goto sendit; 1485 1486 err_garbage: 1487 svc_printk(rqstp, "failed to decode args\n"); 1488 1489 rpc_stat = rpc_garbage_args; 1490 err_bad: 1491 serv->sv_stats->rpcbadfmt++; 1492 svc_putnl(resv, ntohl(rpc_stat)); 1493 goto sendit; 1494 } 1495 1496 /* 1497 * Process the RPC request. 1498 */ 1499 int 1500 svc_process(struct svc_rqst *rqstp) 1501 { 1502 struct kvec *argv = &rqstp->rq_arg.head[0]; 1503 struct kvec *resv = &rqstp->rq_res.head[0]; 1504 struct svc_serv *serv = rqstp->rq_server; 1505 u32 dir; 1506 1507 /* 1508 * Setup response xdr_buf. 1509 * Initially it has just one page 1510 */ 1511 rqstp->rq_next_page = &rqstp->rq_respages[1]; 1512 resv->iov_base = page_address(rqstp->rq_respages[0]); 1513 resv->iov_len = 0; 1514 rqstp->rq_res.pages = rqstp->rq_respages + 1; 1515 rqstp->rq_res.len = 0; 1516 rqstp->rq_res.page_base = 0; 1517 rqstp->rq_res.page_len = 0; 1518 rqstp->rq_res.buflen = PAGE_SIZE; 1519 rqstp->rq_res.tail[0].iov_base = NULL; 1520 rqstp->rq_res.tail[0].iov_len = 0; 1521 1522 dir = svc_getnl(argv); 1523 if (dir != 0) { 1524 /* direction != CALL */ 1525 svc_printk(rqstp, "bad direction %d, dropping request\n", dir); 1526 serv->sv_stats->rpcbadfmt++; 1527 goto out_drop; 1528 } 1529 1530 /* Reserve space for the record marker */ 1531 if (rqstp->rq_prot == IPPROTO_TCP) 1532 svc_putnl(resv, 0); 1533 1534 /* Returns 1 for send, 0 for drop */ 1535 if (likely(svc_process_common(rqstp, argv, resv))) 1536 return svc_send(rqstp); 1537 1538 out_drop: 1539 svc_drop(rqstp); 1540 return 0; 1541 } 1542 EXPORT_SYMBOL_GPL(svc_process); 1543 1544 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1545 /* 1546 * Process a backchannel RPC request that arrived over an existing 1547 * outbound connection 1548 */ 1549 int 1550 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req, 1551 struct svc_rqst *rqstp) 1552 { 1553 struct kvec *argv = &rqstp->rq_arg.head[0]; 1554 struct kvec *resv = &rqstp->rq_res.head[0]; 1555 struct rpc_task *task; 1556 int proc_error; 1557 int error; 1558 1559 dprintk("svc: %s(%p)\n", __func__, req); 1560 1561 /* Build the svc_rqst used by the common processing routine */ 1562 rqstp->rq_xid = req->rq_xid; 1563 rqstp->rq_prot = req->rq_xprt->prot; 1564 rqstp->rq_server = serv; 1565 rqstp->rq_bc_net = req->rq_xprt->xprt_net; 1566 1567 rqstp->rq_addrlen = sizeof(req->rq_xprt->addr); 1568 memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen); 1569 memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg)); 1570 memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res)); 1571 1572 /* Adjust the argument buffer length */ 1573 rqstp->rq_arg.len = req->rq_private_buf.len; 1574 if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) { 1575 rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len; 1576 rqstp->rq_arg.page_len = 0; 1577 } else if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len + 1578 rqstp->rq_arg.page_len) 1579 rqstp->rq_arg.page_len = rqstp->rq_arg.len - 1580 rqstp->rq_arg.head[0].iov_len; 1581 else 1582 rqstp->rq_arg.len = rqstp->rq_arg.head[0].iov_len + 1583 rqstp->rq_arg.page_len; 1584 1585 /* reset result send buffer "put" position */ 1586 resv->iov_len = 0; 1587 1588 /* 1589 * Skip the next two words because they've already been 1590 * processed in the transport 1591 */ 1592 svc_getu32(argv); /* XID */ 1593 svc_getnl(argv); /* CALLDIR */ 1594 1595 /* Parse and execute the bc call */ 1596 proc_error = svc_process_common(rqstp, argv, resv); 1597 1598 atomic_inc(&req->rq_xprt->bc_free_slots); 1599 if (!proc_error) { 1600 /* Processing error: drop the request */ 1601 xprt_free_bc_request(req); 1602 error = -EINVAL; 1603 goto out; 1604 } 1605 /* Finally, send the reply synchronously */ 1606 memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf)); 1607 task = rpc_run_bc_task(req); 1608 if (IS_ERR(task)) { 1609 error = PTR_ERR(task); 1610 goto out; 1611 } 1612 1613 WARN_ON_ONCE(atomic_read(&task->tk_count) != 1); 1614 error = task->tk_status; 1615 rpc_put_task(task); 1616 1617 out: 1618 dprintk("svc: %s(), error=%d\n", __func__, error); 1619 return error; 1620 } 1621 EXPORT_SYMBOL_GPL(bc_svc_process); 1622 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1623 1624 /* 1625 * Return (transport-specific) limit on the rpc payload. 1626 */ 1627 u32 svc_max_payload(const struct svc_rqst *rqstp) 1628 { 1629 u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload; 1630 1631 if (rqstp->rq_server->sv_max_payload < max) 1632 max = rqstp->rq_server->sv_max_payload; 1633 return max; 1634 } 1635 EXPORT_SYMBOL_GPL(svc_max_payload); 1636 1637 /** 1638 * svc_fill_write_vector - Construct data argument for VFS write call 1639 * @rqstp: svc_rqst to operate on 1640 * @pages: list of pages containing data payload 1641 * @first: buffer containing first section of write payload 1642 * @total: total number of bytes of write payload 1643 * 1644 * Fills in rqstp::rq_vec, and returns the number of elements. 1645 */ 1646 unsigned int svc_fill_write_vector(struct svc_rqst *rqstp, struct page **pages, 1647 struct kvec *first, size_t total) 1648 { 1649 struct kvec *vec = rqstp->rq_vec; 1650 unsigned int i; 1651 1652 /* Some types of transport can present the write payload 1653 * entirely in rq_arg.pages. In this case, @first is empty. 1654 */ 1655 i = 0; 1656 if (first->iov_len) { 1657 vec[i].iov_base = first->iov_base; 1658 vec[i].iov_len = min_t(size_t, total, first->iov_len); 1659 total -= vec[i].iov_len; 1660 ++i; 1661 } 1662 1663 while (total) { 1664 vec[i].iov_base = page_address(*pages); 1665 vec[i].iov_len = min_t(size_t, total, PAGE_SIZE); 1666 total -= vec[i].iov_len; 1667 ++i; 1668 ++pages; 1669 } 1670 1671 WARN_ON_ONCE(i > ARRAY_SIZE(rqstp->rq_vec)); 1672 return i; 1673 } 1674 EXPORT_SYMBOL_GPL(svc_fill_write_vector); 1675 1676 /** 1677 * svc_fill_symlink_pathname - Construct pathname argument for VFS symlink call 1678 * @rqstp: svc_rqst to operate on 1679 * @first: buffer containing first section of pathname 1680 * @p: buffer containing remaining section of pathname 1681 * @total: total length of the pathname argument 1682 * 1683 * The VFS symlink API demands a NUL-terminated pathname in mapped memory. 1684 * Returns pointer to a NUL-terminated string, or an ERR_PTR. Caller must free 1685 * the returned string. 1686 */ 1687 char *svc_fill_symlink_pathname(struct svc_rqst *rqstp, struct kvec *first, 1688 void *p, size_t total) 1689 { 1690 size_t len, remaining; 1691 char *result, *dst; 1692 1693 result = kmalloc(total + 1, GFP_KERNEL); 1694 if (!result) 1695 return ERR_PTR(-ESERVERFAULT); 1696 1697 dst = result; 1698 remaining = total; 1699 1700 len = min_t(size_t, total, first->iov_len); 1701 if (len) { 1702 memcpy(dst, first->iov_base, len); 1703 dst += len; 1704 remaining -= len; 1705 } 1706 1707 if (remaining) { 1708 len = min_t(size_t, remaining, PAGE_SIZE); 1709 memcpy(dst, p, len); 1710 dst += len; 1711 } 1712 1713 *dst = '\0'; 1714 1715 /* Sanity check: Linux doesn't allow the pathname argument to 1716 * contain a NUL byte. 1717 */ 1718 if (strlen(result) != total) { 1719 kfree(result); 1720 return ERR_PTR(-EINVAL); 1721 } 1722 return result; 1723 } 1724 EXPORT_SYMBOL_GPL(svc_fill_symlink_pathname); 1725