xref: /linux/net/sunrpc/svc.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * linux/net/sunrpc/svc.c
3  *
4  * High-level RPC service routines
5  *
6  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
7  *
8  * Multiple threads pools and NUMAisation
9  * Copyright (c) 2006 Silicon Graphics, Inc.
10  * by Greg Banks <gnb@melbourne.sgi.com>
11  */
12 
13 #include <linux/linkage.h>
14 #include <linux/sched.h>
15 #include <linux/errno.h>
16 #include <linux/net.h>
17 #include <linux/in.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/kthread.h>
22 
23 #include <linux/sunrpc/types.h>
24 #include <linux/sunrpc/xdr.h>
25 #include <linux/sunrpc/stats.h>
26 #include <linux/sunrpc/svcsock.h>
27 #include <linux/sunrpc/clnt.h>
28 
29 #define RPCDBG_FACILITY	RPCDBG_SVCDSP
30 
31 static void svc_unregister(const struct svc_serv *serv);
32 
33 #define svc_serv_is_pooled(serv)    ((serv)->sv_function)
34 
35 /*
36  * Mode for mapping cpus to pools.
37  */
38 enum {
39 	SVC_POOL_AUTO = -1,	/* choose one of the others */
40 	SVC_POOL_GLOBAL,	/* no mapping, just a single global pool
41 				 * (legacy & UP mode) */
42 	SVC_POOL_PERCPU,	/* one pool per cpu */
43 	SVC_POOL_PERNODE	/* one pool per numa node */
44 };
45 #define SVC_POOL_DEFAULT	SVC_POOL_GLOBAL
46 
47 /*
48  * Structure for mapping cpus to pools and vice versa.
49  * Setup once during sunrpc initialisation.
50  */
51 static struct svc_pool_map {
52 	int count;			/* How many svc_servs use us */
53 	int mode;			/* Note: int not enum to avoid
54 					 * warnings about "enumeration value
55 					 * not handled in switch" */
56 	unsigned int npools;
57 	unsigned int *pool_to;		/* maps pool id to cpu or node */
58 	unsigned int *to_pool;		/* maps cpu or node to pool id */
59 } svc_pool_map = {
60 	.count = 0,
61 	.mode = SVC_POOL_DEFAULT
62 };
63 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
64 
65 static int
66 param_set_pool_mode(const char *val, struct kernel_param *kp)
67 {
68 	int *ip = (int *)kp->arg;
69 	struct svc_pool_map *m = &svc_pool_map;
70 	int err;
71 
72 	mutex_lock(&svc_pool_map_mutex);
73 
74 	err = -EBUSY;
75 	if (m->count)
76 		goto out;
77 
78 	err = 0;
79 	if (!strncmp(val, "auto", 4))
80 		*ip = SVC_POOL_AUTO;
81 	else if (!strncmp(val, "global", 6))
82 		*ip = SVC_POOL_GLOBAL;
83 	else if (!strncmp(val, "percpu", 6))
84 		*ip = SVC_POOL_PERCPU;
85 	else if (!strncmp(val, "pernode", 7))
86 		*ip = SVC_POOL_PERNODE;
87 	else
88 		err = -EINVAL;
89 
90 out:
91 	mutex_unlock(&svc_pool_map_mutex);
92 	return err;
93 }
94 
95 static int
96 param_get_pool_mode(char *buf, struct kernel_param *kp)
97 {
98 	int *ip = (int *)kp->arg;
99 
100 	switch (*ip)
101 	{
102 	case SVC_POOL_AUTO:
103 		return strlcpy(buf, "auto", 20);
104 	case SVC_POOL_GLOBAL:
105 		return strlcpy(buf, "global", 20);
106 	case SVC_POOL_PERCPU:
107 		return strlcpy(buf, "percpu", 20);
108 	case SVC_POOL_PERNODE:
109 		return strlcpy(buf, "pernode", 20);
110 	default:
111 		return sprintf(buf, "%d", *ip);
112 	}
113 }
114 
115 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
116 		 &svc_pool_map.mode, 0644);
117 
118 /*
119  * Detect best pool mapping mode heuristically,
120  * according to the machine's topology.
121  */
122 static int
123 svc_pool_map_choose_mode(void)
124 {
125 	unsigned int node;
126 
127 	if (num_online_nodes() > 1) {
128 		/*
129 		 * Actually have multiple NUMA nodes,
130 		 * so split pools on NUMA node boundaries
131 		 */
132 		return SVC_POOL_PERNODE;
133 	}
134 
135 	node = any_online_node(node_online_map);
136 	if (nr_cpus_node(node) > 2) {
137 		/*
138 		 * Non-trivial SMP, or CONFIG_NUMA on
139 		 * non-NUMA hardware, e.g. with a generic
140 		 * x86_64 kernel on Xeons.  In this case we
141 		 * want to divide the pools on cpu boundaries.
142 		 */
143 		return SVC_POOL_PERCPU;
144 	}
145 
146 	/* default: one global pool */
147 	return SVC_POOL_GLOBAL;
148 }
149 
150 /*
151  * Allocate the to_pool[] and pool_to[] arrays.
152  * Returns 0 on success or an errno.
153  */
154 static int
155 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
156 {
157 	m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
158 	if (!m->to_pool)
159 		goto fail;
160 	m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
161 	if (!m->pool_to)
162 		goto fail_free;
163 
164 	return 0;
165 
166 fail_free:
167 	kfree(m->to_pool);
168 fail:
169 	return -ENOMEM;
170 }
171 
172 /*
173  * Initialise the pool map for SVC_POOL_PERCPU mode.
174  * Returns number of pools or <0 on error.
175  */
176 static int
177 svc_pool_map_init_percpu(struct svc_pool_map *m)
178 {
179 	unsigned int maxpools = nr_cpu_ids;
180 	unsigned int pidx = 0;
181 	unsigned int cpu;
182 	int err;
183 
184 	err = svc_pool_map_alloc_arrays(m, maxpools);
185 	if (err)
186 		return err;
187 
188 	for_each_online_cpu(cpu) {
189 		BUG_ON(pidx > maxpools);
190 		m->to_pool[cpu] = pidx;
191 		m->pool_to[pidx] = cpu;
192 		pidx++;
193 	}
194 	/* cpus brought online later all get mapped to pool0, sorry */
195 
196 	return pidx;
197 };
198 
199 
200 /*
201  * Initialise the pool map for SVC_POOL_PERNODE mode.
202  * Returns number of pools or <0 on error.
203  */
204 static int
205 svc_pool_map_init_pernode(struct svc_pool_map *m)
206 {
207 	unsigned int maxpools = nr_node_ids;
208 	unsigned int pidx = 0;
209 	unsigned int node;
210 	int err;
211 
212 	err = svc_pool_map_alloc_arrays(m, maxpools);
213 	if (err)
214 		return err;
215 
216 	for_each_node_with_cpus(node) {
217 		/* some architectures (e.g. SN2) have cpuless nodes */
218 		BUG_ON(pidx > maxpools);
219 		m->to_pool[node] = pidx;
220 		m->pool_to[pidx] = node;
221 		pidx++;
222 	}
223 	/* nodes brought online later all get mapped to pool0, sorry */
224 
225 	return pidx;
226 }
227 
228 
229 /*
230  * Add a reference to the global map of cpus to pools (and
231  * vice versa).  Initialise the map if we're the first user.
232  * Returns the number of pools.
233  */
234 static unsigned int
235 svc_pool_map_get(void)
236 {
237 	struct svc_pool_map *m = &svc_pool_map;
238 	int npools = -1;
239 
240 	mutex_lock(&svc_pool_map_mutex);
241 
242 	if (m->count++) {
243 		mutex_unlock(&svc_pool_map_mutex);
244 		return m->npools;
245 	}
246 
247 	if (m->mode == SVC_POOL_AUTO)
248 		m->mode = svc_pool_map_choose_mode();
249 
250 	switch (m->mode) {
251 	case SVC_POOL_PERCPU:
252 		npools = svc_pool_map_init_percpu(m);
253 		break;
254 	case SVC_POOL_PERNODE:
255 		npools = svc_pool_map_init_pernode(m);
256 		break;
257 	}
258 
259 	if (npools < 0) {
260 		/* default, or memory allocation failure */
261 		npools = 1;
262 		m->mode = SVC_POOL_GLOBAL;
263 	}
264 	m->npools = npools;
265 
266 	mutex_unlock(&svc_pool_map_mutex);
267 	return m->npools;
268 }
269 
270 
271 /*
272  * Drop a reference to the global map of cpus to pools.
273  * When the last reference is dropped, the map data is
274  * freed; this allows the sysadmin to change the pool
275  * mode using the pool_mode module option without
276  * rebooting or re-loading sunrpc.ko.
277  */
278 static void
279 svc_pool_map_put(void)
280 {
281 	struct svc_pool_map *m = &svc_pool_map;
282 
283 	mutex_lock(&svc_pool_map_mutex);
284 
285 	if (!--m->count) {
286 		m->mode = SVC_POOL_DEFAULT;
287 		kfree(m->to_pool);
288 		kfree(m->pool_to);
289 		m->npools = 0;
290 	}
291 
292 	mutex_unlock(&svc_pool_map_mutex);
293 }
294 
295 
296 /*
297  * Set the given thread's cpus_allowed mask so that it
298  * will only run on cpus in the given pool.
299  */
300 static inline void
301 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
302 {
303 	struct svc_pool_map *m = &svc_pool_map;
304 	unsigned int node = m->pool_to[pidx];
305 
306 	/*
307 	 * The caller checks for sv_nrpools > 1, which
308 	 * implies that we've been initialized.
309 	 */
310 	BUG_ON(m->count == 0);
311 
312 	switch (m->mode) {
313 	case SVC_POOL_PERCPU:
314 	{
315 		set_cpus_allowed_ptr(task, &cpumask_of_cpu(node));
316 		break;
317 	}
318 	case SVC_POOL_PERNODE:
319 	{
320 		node_to_cpumask_ptr(nodecpumask, node);
321 		set_cpus_allowed_ptr(task, nodecpumask);
322 		break;
323 	}
324 	}
325 }
326 
327 /*
328  * Use the mapping mode to choose a pool for a given CPU.
329  * Used when enqueueing an incoming RPC.  Always returns
330  * a non-NULL pool pointer.
331  */
332 struct svc_pool *
333 svc_pool_for_cpu(struct svc_serv *serv, int cpu)
334 {
335 	struct svc_pool_map *m = &svc_pool_map;
336 	unsigned int pidx = 0;
337 
338 	/*
339 	 * An uninitialised map happens in a pure client when
340 	 * lockd is brought up, so silently treat it the
341 	 * same as SVC_POOL_GLOBAL.
342 	 */
343 	if (svc_serv_is_pooled(serv)) {
344 		switch (m->mode) {
345 		case SVC_POOL_PERCPU:
346 			pidx = m->to_pool[cpu];
347 			break;
348 		case SVC_POOL_PERNODE:
349 			pidx = m->to_pool[cpu_to_node(cpu)];
350 			break;
351 		}
352 	}
353 	return &serv->sv_pools[pidx % serv->sv_nrpools];
354 }
355 
356 
357 /*
358  * Create an RPC service
359  */
360 static struct svc_serv *
361 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools,
362 	   sa_family_t family, void (*shutdown)(struct svc_serv *serv))
363 {
364 	struct svc_serv	*serv;
365 	unsigned int vers;
366 	unsigned int xdrsize;
367 	unsigned int i;
368 
369 	if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
370 		return NULL;
371 	serv->sv_family    = family;
372 	serv->sv_name      = prog->pg_name;
373 	serv->sv_program   = prog;
374 	serv->sv_nrthreads = 1;
375 	serv->sv_stats     = prog->pg_stats;
376 	if (bufsize > RPCSVC_MAXPAYLOAD)
377 		bufsize = RPCSVC_MAXPAYLOAD;
378 	serv->sv_max_payload = bufsize? bufsize : 4096;
379 	serv->sv_max_mesg  = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
380 	serv->sv_shutdown  = shutdown;
381 	xdrsize = 0;
382 	while (prog) {
383 		prog->pg_lovers = prog->pg_nvers-1;
384 		for (vers=0; vers<prog->pg_nvers ; vers++)
385 			if (prog->pg_vers[vers]) {
386 				prog->pg_hivers = vers;
387 				if (prog->pg_lovers > vers)
388 					prog->pg_lovers = vers;
389 				if (prog->pg_vers[vers]->vs_xdrsize > xdrsize)
390 					xdrsize = prog->pg_vers[vers]->vs_xdrsize;
391 			}
392 		prog = prog->pg_next;
393 	}
394 	serv->sv_xdrsize   = xdrsize;
395 	INIT_LIST_HEAD(&serv->sv_tempsocks);
396 	INIT_LIST_HEAD(&serv->sv_permsocks);
397 	init_timer(&serv->sv_temptimer);
398 	spin_lock_init(&serv->sv_lock);
399 
400 	serv->sv_nrpools = npools;
401 	serv->sv_pools =
402 		kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
403 			GFP_KERNEL);
404 	if (!serv->sv_pools) {
405 		kfree(serv);
406 		return NULL;
407 	}
408 
409 	for (i = 0; i < serv->sv_nrpools; i++) {
410 		struct svc_pool *pool = &serv->sv_pools[i];
411 
412 		dprintk("svc: initialising pool %u for %s\n",
413 				i, serv->sv_name);
414 
415 		pool->sp_id = i;
416 		INIT_LIST_HEAD(&pool->sp_threads);
417 		INIT_LIST_HEAD(&pool->sp_sockets);
418 		INIT_LIST_HEAD(&pool->sp_all_threads);
419 		spin_lock_init(&pool->sp_lock);
420 	}
421 
422 	/* Remove any stale portmap registrations */
423 	svc_unregister(serv);
424 
425 	return serv;
426 }
427 
428 struct svc_serv *
429 svc_create(struct svc_program *prog, unsigned int bufsize,
430 		sa_family_t family, void (*shutdown)(struct svc_serv *serv))
431 {
432 	return __svc_create(prog, bufsize, /*npools*/1, family, shutdown);
433 }
434 EXPORT_SYMBOL(svc_create);
435 
436 struct svc_serv *
437 svc_create_pooled(struct svc_program *prog, unsigned int bufsize,
438 		  sa_family_t family, void (*shutdown)(struct svc_serv *serv),
439 		  svc_thread_fn func, struct module *mod)
440 {
441 	struct svc_serv *serv;
442 	unsigned int npools = svc_pool_map_get();
443 
444 	serv = __svc_create(prog, bufsize, npools, family, shutdown);
445 
446 	if (serv != NULL) {
447 		serv->sv_function = func;
448 		serv->sv_module = mod;
449 	}
450 
451 	return serv;
452 }
453 EXPORT_SYMBOL(svc_create_pooled);
454 
455 /*
456  * Destroy an RPC service. Should be called with appropriate locking to
457  * protect the sv_nrthreads, sv_permsocks and sv_tempsocks.
458  */
459 void
460 svc_destroy(struct svc_serv *serv)
461 {
462 	dprintk("svc: svc_destroy(%s, %d)\n",
463 				serv->sv_program->pg_name,
464 				serv->sv_nrthreads);
465 
466 	if (serv->sv_nrthreads) {
467 		if (--(serv->sv_nrthreads) != 0) {
468 			svc_sock_update_bufs(serv);
469 			return;
470 		}
471 	} else
472 		printk("svc_destroy: no threads for serv=%p!\n", serv);
473 
474 	del_timer_sync(&serv->sv_temptimer);
475 
476 	svc_close_all(&serv->sv_tempsocks);
477 
478 	if (serv->sv_shutdown)
479 		serv->sv_shutdown(serv);
480 
481 	svc_close_all(&serv->sv_permsocks);
482 
483 	BUG_ON(!list_empty(&serv->sv_permsocks));
484 	BUG_ON(!list_empty(&serv->sv_tempsocks));
485 
486 	cache_clean_deferred(serv);
487 
488 	if (svc_serv_is_pooled(serv))
489 		svc_pool_map_put();
490 
491 	svc_unregister(serv);
492 	kfree(serv->sv_pools);
493 	kfree(serv);
494 }
495 EXPORT_SYMBOL(svc_destroy);
496 
497 /*
498  * Allocate an RPC server's buffer space.
499  * We allocate pages and place them in rq_argpages.
500  */
501 static int
502 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size)
503 {
504 	unsigned int pages, arghi;
505 
506 	pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
507 				       * We assume one is at most one page
508 				       */
509 	arghi = 0;
510 	BUG_ON(pages > RPCSVC_MAXPAGES);
511 	while (pages) {
512 		struct page *p = alloc_page(GFP_KERNEL);
513 		if (!p)
514 			break;
515 		rqstp->rq_pages[arghi++] = p;
516 		pages--;
517 	}
518 	return pages == 0;
519 }
520 
521 /*
522  * Release an RPC server buffer
523  */
524 static void
525 svc_release_buffer(struct svc_rqst *rqstp)
526 {
527 	unsigned int i;
528 
529 	for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++)
530 		if (rqstp->rq_pages[i])
531 			put_page(rqstp->rq_pages[i]);
532 }
533 
534 struct svc_rqst *
535 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool)
536 {
537 	struct svc_rqst	*rqstp;
538 
539 	rqstp = kzalloc(sizeof(*rqstp), GFP_KERNEL);
540 	if (!rqstp)
541 		goto out_enomem;
542 
543 	init_waitqueue_head(&rqstp->rq_wait);
544 
545 	serv->sv_nrthreads++;
546 	spin_lock_bh(&pool->sp_lock);
547 	pool->sp_nrthreads++;
548 	list_add(&rqstp->rq_all, &pool->sp_all_threads);
549 	spin_unlock_bh(&pool->sp_lock);
550 	rqstp->rq_server = serv;
551 	rqstp->rq_pool = pool;
552 
553 	rqstp->rq_argp = kmalloc(serv->sv_xdrsize, GFP_KERNEL);
554 	if (!rqstp->rq_argp)
555 		goto out_thread;
556 
557 	rqstp->rq_resp = kmalloc(serv->sv_xdrsize, GFP_KERNEL);
558 	if (!rqstp->rq_resp)
559 		goto out_thread;
560 
561 	if (!svc_init_buffer(rqstp, serv->sv_max_mesg))
562 		goto out_thread;
563 
564 	return rqstp;
565 out_thread:
566 	svc_exit_thread(rqstp);
567 out_enomem:
568 	return ERR_PTR(-ENOMEM);
569 }
570 EXPORT_SYMBOL(svc_prepare_thread);
571 
572 /*
573  * Choose a pool in which to create a new thread, for svc_set_num_threads
574  */
575 static inline struct svc_pool *
576 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
577 {
578 	if (pool != NULL)
579 		return pool;
580 
581 	return &serv->sv_pools[(*state)++ % serv->sv_nrpools];
582 }
583 
584 /*
585  * Choose a thread to kill, for svc_set_num_threads
586  */
587 static inline struct task_struct *
588 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
589 {
590 	unsigned int i;
591 	struct task_struct *task = NULL;
592 
593 	if (pool != NULL) {
594 		spin_lock_bh(&pool->sp_lock);
595 	} else {
596 		/* choose a pool in round-robin fashion */
597 		for (i = 0; i < serv->sv_nrpools; i++) {
598 			pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
599 			spin_lock_bh(&pool->sp_lock);
600 			if (!list_empty(&pool->sp_all_threads))
601 				goto found_pool;
602 			spin_unlock_bh(&pool->sp_lock);
603 		}
604 		return NULL;
605 	}
606 
607 found_pool:
608 	if (!list_empty(&pool->sp_all_threads)) {
609 		struct svc_rqst *rqstp;
610 
611 		/*
612 		 * Remove from the pool->sp_all_threads list
613 		 * so we don't try to kill it again.
614 		 */
615 		rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all);
616 		list_del_init(&rqstp->rq_all);
617 		task = rqstp->rq_task;
618 	}
619 	spin_unlock_bh(&pool->sp_lock);
620 
621 	return task;
622 }
623 
624 /*
625  * Create or destroy enough new threads to make the number
626  * of threads the given number.  If `pool' is non-NULL, applies
627  * only to threads in that pool, otherwise round-robins between
628  * all pools.  Must be called with a svc_get() reference and
629  * the BKL or another lock to protect access to svc_serv fields.
630  *
631  * Destroying threads relies on the service threads filling in
632  * rqstp->rq_task, which only the nfs ones do.  Assumes the serv
633  * has been created using svc_create_pooled().
634  *
635  * Based on code that used to be in nfsd_svc() but tweaked
636  * to be pool-aware.
637  */
638 int
639 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
640 {
641 	struct svc_rqst	*rqstp;
642 	struct task_struct *task;
643 	struct svc_pool *chosen_pool;
644 	int error = 0;
645 	unsigned int state = serv->sv_nrthreads-1;
646 
647 	if (pool == NULL) {
648 		/* The -1 assumes caller has done a svc_get() */
649 		nrservs -= (serv->sv_nrthreads-1);
650 	} else {
651 		spin_lock_bh(&pool->sp_lock);
652 		nrservs -= pool->sp_nrthreads;
653 		spin_unlock_bh(&pool->sp_lock);
654 	}
655 
656 	/* create new threads */
657 	while (nrservs > 0) {
658 		nrservs--;
659 		chosen_pool = choose_pool(serv, pool, &state);
660 
661 		rqstp = svc_prepare_thread(serv, chosen_pool);
662 		if (IS_ERR(rqstp)) {
663 			error = PTR_ERR(rqstp);
664 			break;
665 		}
666 
667 		__module_get(serv->sv_module);
668 		task = kthread_create(serv->sv_function, rqstp, serv->sv_name);
669 		if (IS_ERR(task)) {
670 			error = PTR_ERR(task);
671 			module_put(serv->sv_module);
672 			svc_exit_thread(rqstp);
673 			break;
674 		}
675 
676 		rqstp->rq_task = task;
677 		if (serv->sv_nrpools > 1)
678 			svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
679 
680 		svc_sock_update_bufs(serv);
681 		wake_up_process(task);
682 	}
683 	/* destroy old threads */
684 	while (nrservs < 0 &&
685 	       (task = choose_victim(serv, pool, &state)) != NULL) {
686 		send_sig(SIGINT, task, 1);
687 		nrservs++;
688 	}
689 
690 	return error;
691 }
692 EXPORT_SYMBOL(svc_set_num_threads);
693 
694 /*
695  * Called from a server thread as it's exiting. Caller must hold the BKL or
696  * the "service mutex", whichever is appropriate for the service.
697  */
698 void
699 svc_exit_thread(struct svc_rqst *rqstp)
700 {
701 	struct svc_serv	*serv = rqstp->rq_server;
702 	struct svc_pool	*pool = rqstp->rq_pool;
703 
704 	svc_release_buffer(rqstp);
705 	kfree(rqstp->rq_resp);
706 	kfree(rqstp->rq_argp);
707 	kfree(rqstp->rq_auth_data);
708 
709 	spin_lock_bh(&pool->sp_lock);
710 	pool->sp_nrthreads--;
711 	list_del(&rqstp->rq_all);
712 	spin_unlock_bh(&pool->sp_lock);
713 
714 	kfree(rqstp);
715 
716 	/* Release the server */
717 	if (serv)
718 		svc_destroy(serv);
719 }
720 EXPORT_SYMBOL(svc_exit_thread);
721 
722 #ifdef CONFIG_SUNRPC_REGISTER_V4
723 
724 /*
725  * Register an "inet" protocol family netid with the local
726  * rpcbind daemon via an rpcbind v4 SET request.
727  *
728  * No netconfig infrastructure is available in the kernel, so
729  * we map IP_ protocol numbers to netids by hand.
730  *
731  * Returns zero on success; a negative errno value is returned
732  * if any error occurs.
733  */
734 static int __svc_rpcb_register4(const u32 program, const u32 version,
735 				const unsigned short protocol,
736 				const unsigned short port)
737 {
738 	struct sockaddr_in sin = {
739 		.sin_family		= AF_INET,
740 		.sin_addr.s_addr	= htonl(INADDR_ANY),
741 		.sin_port		= htons(port),
742 	};
743 	char *netid;
744 
745 	switch (protocol) {
746 	case IPPROTO_UDP:
747 		netid = RPCBIND_NETID_UDP;
748 		break;
749 	case IPPROTO_TCP:
750 		netid = RPCBIND_NETID_TCP;
751 		break;
752 	default:
753 		return -EPROTONOSUPPORT;
754 	}
755 
756 	return rpcb_v4_register(program, version,
757 				(struct sockaddr *)&sin, netid);
758 }
759 
760 /*
761  * Register an "inet6" protocol family netid with the local
762  * rpcbind daemon via an rpcbind v4 SET request.
763  *
764  * No netconfig infrastructure is available in the kernel, so
765  * we map IP_ protocol numbers to netids by hand.
766  *
767  * Returns zero on success; a negative errno value is returned
768  * if any error occurs.
769  */
770 static int __svc_rpcb_register6(const u32 program, const u32 version,
771 				const unsigned short protocol,
772 				const unsigned short port)
773 {
774 	struct sockaddr_in6 sin6 = {
775 		.sin6_family		= AF_INET6,
776 		.sin6_addr		= IN6ADDR_ANY_INIT,
777 		.sin6_port		= htons(port),
778 	};
779 	char *netid;
780 
781 	switch (protocol) {
782 	case IPPROTO_UDP:
783 		netid = RPCBIND_NETID_UDP6;
784 		break;
785 	case IPPROTO_TCP:
786 		netid = RPCBIND_NETID_TCP6;
787 		break;
788 	default:
789 		return -EPROTONOSUPPORT;
790 	}
791 
792 	return rpcb_v4_register(program, version,
793 				(struct sockaddr *)&sin6, netid);
794 }
795 
796 /*
797  * Register a kernel RPC service via rpcbind version 4.
798  *
799  * Returns zero on success; a negative errno value is returned
800  * if any error occurs.
801  */
802 static int __svc_register(const u32 program, const u32 version,
803 			  const sa_family_t family,
804 			  const unsigned short protocol,
805 			  const unsigned short port)
806 {
807 	int error;
808 
809 	switch (family) {
810 	case AF_INET:
811 		return __svc_rpcb_register4(program, version,
812 						protocol, port);
813 	case AF_INET6:
814 		error = __svc_rpcb_register6(program, version,
815 						protocol, port);
816 		if (error < 0)
817 			return error;
818 
819 		/*
820 		 * Work around bug in some versions of Linux rpcbind
821 		 * which don't allow registration of both inet and
822 		 * inet6 netids.
823 		 *
824 		 * Error return ignored for now.
825 		 */
826 		__svc_rpcb_register4(program, version,
827 						protocol, port);
828 		return 0;
829 	}
830 
831 	return -EAFNOSUPPORT;
832 }
833 
834 #else	/* CONFIG_SUNRPC_REGISTER_V4 */
835 
836 /*
837  * Register a kernel RPC service via rpcbind version 2.
838  *
839  * Returns zero on success; a negative errno value is returned
840  * if any error occurs.
841  */
842 static int __svc_register(const u32 program, const u32 version,
843 			  sa_family_t family,
844 			  const unsigned short protocol,
845 			  const unsigned short port)
846 {
847 	if (family != AF_INET)
848 		return -EAFNOSUPPORT;
849 
850 	return rpcb_register(program, version, protocol, port);
851 }
852 
853 #endif /* CONFIG_SUNRPC_REGISTER_V4 */
854 
855 /**
856  * svc_register - register an RPC service with the local portmapper
857  * @serv: svc_serv struct for the service to register
858  * @proto: transport protocol number to advertise
859  * @port: port to advertise
860  *
861  * Service is registered for any address in serv's address family
862  */
863 int svc_register(const struct svc_serv *serv, const unsigned short proto,
864 		 const unsigned short port)
865 {
866 	struct svc_program	*progp;
867 	unsigned int		i;
868 	int			error = 0;
869 
870 	BUG_ON(proto == 0 && port == 0);
871 
872 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
873 		for (i = 0; i < progp->pg_nvers; i++) {
874 			if (progp->pg_vers[i] == NULL)
875 				continue;
876 
877 			dprintk("svc: svc_register(%sv%d, %s, %u, %u)%s\n",
878 					progp->pg_name,
879 					i,
880 					proto == IPPROTO_UDP?  "udp" : "tcp",
881 					port,
882 					serv->sv_family,
883 					progp->pg_vers[i]->vs_hidden?
884 						" (but not telling portmap)" : "");
885 
886 			if (progp->pg_vers[i]->vs_hidden)
887 				continue;
888 
889 			error = __svc_register(progp->pg_prog, i,
890 						serv->sv_family, proto, port);
891 			if (error < 0)
892 				break;
893 		}
894 	}
895 
896 	return error;
897 }
898 
899 #ifdef CONFIG_SUNRPC_REGISTER_V4
900 
901 static void __svc_unregister(const u32 program, const u32 version,
902 			     const char *progname)
903 {
904 	struct sockaddr_in6 sin6 = {
905 		.sin6_family		= AF_INET6,
906 		.sin6_addr		= IN6ADDR_ANY_INIT,
907 		.sin6_port		= 0,
908 	};
909 	int error;
910 
911 	error = rpcb_v4_register(program, version,
912 				(struct sockaddr *)&sin6, "");
913 	dprintk("svc: %s(%sv%u), error %d\n",
914 			__func__, progname, version, error);
915 }
916 
917 #else	/* CONFIG_SUNRPC_REGISTER_V4 */
918 
919 static void __svc_unregister(const u32 program, const u32 version,
920 			     const char *progname)
921 {
922 	int error;
923 
924 	error = rpcb_register(program, version, 0, 0);
925 	dprintk("svc: %s(%sv%u), error %d\n",
926 			__func__, progname, version, error);
927 }
928 
929 #endif	/* CONFIG_SUNRPC_REGISTER_V4 */
930 
931 /*
932  * All netids, bind addresses and ports registered for [program, version]
933  * are removed from the local rpcbind database (if the service is not
934  * hidden) to make way for a new instance of the service.
935  *
936  * The result of unregistration is reported via dprintk for those who want
937  * verification of the result, but is otherwise not important.
938  */
939 static void svc_unregister(const struct svc_serv *serv)
940 {
941 	struct svc_program *progp;
942 	unsigned long flags;
943 	unsigned int i;
944 
945 	clear_thread_flag(TIF_SIGPENDING);
946 
947 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
948 		for (i = 0; i < progp->pg_nvers; i++) {
949 			if (progp->pg_vers[i] == NULL)
950 				continue;
951 			if (progp->pg_vers[i]->vs_hidden)
952 				continue;
953 
954 			__svc_unregister(progp->pg_prog, i, progp->pg_name);
955 		}
956 	}
957 
958 	spin_lock_irqsave(&current->sighand->siglock, flags);
959 	recalc_sigpending();
960 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
961 }
962 
963 /*
964  * Printk the given error with the address of the client that caused it.
965  */
966 static int
967 __attribute__ ((format (printf, 2, 3)))
968 svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
969 {
970 	va_list args;
971 	int 	r;
972 	char 	buf[RPC_MAX_ADDRBUFLEN];
973 
974 	if (!net_ratelimit())
975 		return 0;
976 
977 	printk(KERN_WARNING "svc: %s: ",
978 		svc_print_addr(rqstp, buf, sizeof(buf)));
979 
980 	va_start(args, fmt);
981 	r = vprintk(fmt, args);
982 	va_end(args);
983 
984 	return r;
985 }
986 
987 /*
988  * Process the RPC request.
989  */
990 int
991 svc_process(struct svc_rqst *rqstp)
992 {
993 	struct svc_program	*progp;
994 	struct svc_version	*versp = NULL;	/* compiler food */
995 	struct svc_procedure	*procp = NULL;
996 	struct kvec *		argv = &rqstp->rq_arg.head[0];
997 	struct kvec *		resv = &rqstp->rq_res.head[0];
998 	struct svc_serv		*serv = rqstp->rq_server;
999 	kxdrproc_t		xdr;
1000 	__be32			*statp;
1001 	u32			dir, prog, vers, proc;
1002 	__be32			auth_stat, rpc_stat;
1003 	int			auth_res;
1004 	__be32			*reply_statp;
1005 
1006 	rpc_stat = rpc_success;
1007 
1008 	if (argv->iov_len < 6*4)
1009 		goto err_short_len;
1010 
1011 	/* setup response xdr_buf.
1012 	 * Initially it has just one page
1013 	 */
1014 	rqstp->rq_resused = 1;
1015 	resv->iov_base = page_address(rqstp->rq_respages[0]);
1016 	resv->iov_len = 0;
1017 	rqstp->rq_res.pages = rqstp->rq_respages + 1;
1018 	rqstp->rq_res.len = 0;
1019 	rqstp->rq_res.page_base = 0;
1020 	rqstp->rq_res.page_len = 0;
1021 	rqstp->rq_res.buflen = PAGE_SIZE;
1022 	rqstp->rq_res.tail[0].iov_base = NULL;
1023 	rqstp->rq_res.tail[0].iov_len = 0;
1024 	/* Will be turned off only in gss privacy case: */
1025 	rqstp->rq_splice_ok = 1;
1026 
1027 	/* Setup reply header */
1028 	rqstp->rq_xprt->xpt_ops->xpo_prep_reply_hdr(rqstp);
1029 
1030 	rqstp->rq_xid = svc_getu32(argv);
1031 	svc_putu32(resv, rqstp->rq_xid);
1032 
1033 	dir  = svc_getnl(argv);
1034 	vers = svc_getnl(argv);
1035 
1036 	/* First words of reply: */
1037 	svc_putnl(resv, 1);		/* REPLY */
1038 
1039 	if (dir != 0)		/* direction != CALL */
1040 		goto err_bad_dir;
1041 	if (vers != 2)		/* RPC version number */
1042 		goto err_bad_rpc;
1043 
1044 	/* Save position in case we later decide to reject: */
1045 	reply_statp = resv->iov_base + resv->iov_len;
1046 
1047 	svc_putnl(resv, 0);		/* ACCEPT */
1048 
1049 	rqstp->rq_prog = prog = svc_getnl(argv);	/* program number */
1050 	rqstp->rq_vers = vers = svc_getnl(argv);	/* version number */
1051 	rqstp->rq_proc = proc = svc_getnl(argv);	/* procedure number */
1052 
1053 	progp = serv->sv_program;
1054 
1055 	for (progp = serv->sv_program; progp; progp = progp->pg_next)
1056 		if (prog == progp->pg_prog)
1057 			break;
1058 
1059 	/*
1060 	 * Decode auth data, and add verifier to reply buffer.
1061 	 * We do this before anything else in order to get a decent
1062 	 * auth verifier.
1063 	 */
1064 	auth_res = svc_authenticate(rqstp, &auth_stat);
1065 	/* Also give the program a chance to reject this call: */
1066 	if (auth_res == SVC_OK && progp) {
1067 		auth_stat = rpc_autherr_badcred;
1068 		auth_res = progp->pg_authenticate(rqstp);
1069 	}
1070 	switch (auth_res) {
1071 	case SVC_OK:
1072 		break;
1073 	case SVC_GARBAGE:
1074 		goto err_garbage;
1075 	case SVC_SYSERR:
1076 		rpc_stat = rpc_system_err;
1077 		goto err_bad;
1078 	case SVC_DENIED:
1079 		goto err_bad_auth;
1080 	case SVC_DROP:
1081 		goto dropit;
1082 	case SVC_COMPLETE:
1083 		goto sendit;
1084 	}
1085 
1086 	if (progp == NULL)
1087 		goto err_bad_prog;
1088 
1089 	if (vers >= progp->pg_nvers ||
1090 	  !(versp = progp->pg_vers[vers]))
1091 		goto err_bad_vers;
1092 
1093 	procp = versp->vs_proc + proc;
1094 	if (proc >= versp->vs_nproc || !procp->pc_func)
1095 		goto err_bad_proc;
1096 	rqstp->rq_server   = serv;
1097 	rqstp->rq_procinfo = procp;
1098 
1099 	/* Syntactic check complete */
1100 	serv->sv_stats->rpccnt++;
1101 
1102 	/* Build the reply header. */
1103 	statp = resv->iov_base +resv->iov_len;
1104 	svc_putnl(resv, RPC_SUCCESS);
1105 
1106 	/* Bump per-procedure stats counter */
1107 	procp->pc_count++;
1108 
1109 	/* Initialize storage for argp and resp */
1110 	memset(rqstp->rq_argp, 0, procp->pc_argsize);
1111 	memset(rqstp->rq_resp, 0, procp->pc_ressize);
1112 
1113 	/* un-reserve some of the out-queue now that we have a
1114 	 * better idea of reply size
1115 	 */
1116 	if (procp->pc_xdrressize)
1117 		svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1118 
1119 	/* Call the function that processes the request. */
1120 	if (!versp->vs_dispatch) {
1121 		/* Decode arguments */
1122 		xdr = procp->pc_decode;
1123 		if (xdr && !xdr(rqstp, argv->iov_base, rqstp->rq_argp))
1124 			goto err_garbage;
1125 
1126 		*statp = procp->pc_func(rqstp, rqstp->rq_argp, rqstp->rq_resp);
1127 
1128 		/* Encode reply */
1129 		if (*statp == rpc_drop_reply) {
1130 			if (procp->pc_release)
1131 				procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1132 			goto dropit;
1133 		}
1134 		if (*statp == rpc_success && (xdr = procp->pc_encode)
1135 		 && !xdr(rqstp, resv->iov_base+resv->iov_len, rqstp->rq_resp)) {
1136 			dprintk("svc: failed to encode reply\n");
1137 			/* serv->sv_stats->rpcsystemerr++; */
1138 			*statp = rpc_system_err;
1139 		}
1140 	} else {
1141 		dprintk("svc: calling dispatcher\n");
1142 		if (!versp->vs_dispatch(rqstp, statp)) {
1143 			/* Release reply info */
1144 			if (procp->pc_release)
1145 				procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1146 			goto dropit;
1147 		}
1148 	}
1149 
1150 	/* Check RPC status result */
1151 	if (*statp != rpc_success)
1152 		resv->iov_len = ((void*)statp)  - resv->iov_base + 4;
1153 
1154 	/* Release reply info */
1155 	if (procp->pc_release)
1156 		procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1157 
1158 	if (procp->pc_encode == NULL)
1159 		goto dropit;
1160 
1161  sendit:
1162 	if (svc_authorise(rqstp))
1163 		goto dropit;
1164 	return svc_send(rqstp);
1165 
1166  dropit:
1167 	svc_authorise(rqstp);	/* doesn't hurt to call this twice */
1168 	dprintk("svc: svc_process dropit\n");
1169 	svc_drop(rqstp);
1170 	return 0;
1171 
1172 err_short_len:
1173 	svc_printk(rqstp, "short len %Zd, dropping request\n",
1174 			argv->iov_len);
1175 
1176 	goto dropit;			/* drop request */
1177 
1178 err_bad_dir:
1179 	svc_printk(rqstp, "bad direction %d, dropping request\n", dir);
1180 
1181 	serv->sv_stats->rpcbadfmt++;
1182 	goto dropit;			/* drop request */
1183 
1184 err_bad_rpc:
1185 	serv->sv_stats->rpcbadfmt++;
1186 	svc_putnl(resv, 1);	/* REJECT */
1187 	svc_putnl(resv, 0);	/* RPC_MISMATCH */
1188 	svc_putnl(resv, 2);	/* Only RPCv2 supported */
1189 	svc_putnl(resv, 2);
1190 	goto sendit;
1191 
1192 err_bad_auth:
1193 	dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat));
1194 	serv->sv_stats->rpcbadauth++;
1195 	/* Restore write pointer to location of accept status: */
1196 	xdr_ressize_check(rqstp, reply_statp);
1197 	svc_putnl(resv, 1);	/* REJECT */
1198 	svc_putnl(resv, 1);	/* AUTH_ERROR */
1199 	svc_putnl(resv, ntohl(auth_stat));	/* status */
1200 	goto sendit;
1201 
1202 err_bad_prog:
1203 	dprintk("svc: unknown program %d\n", prog);
1204 	serv->sv_stats->rpcbadfmt++;
1205 	svc_putnl(resv, RPC_PROG_UNAVAIL);
1206 	goto sendit;
1207 
1208 err_bad_vers:
1209 	svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1210 		       vers, prog, progp->pg_name);
1211 
1212 	serv->sv_stats->rpcbadfmt++;
1213 	svc_putnl(resv, RPC_PROG_MISMATCH);
1214 	svc_putnl(resv, progp->pg_lovers);
1215 	svc_putnl(resv, progp->pg_hivers);
1216 	goto sendit;
1217 
1218 err_bad_proc:
1219 	svc_printk(rqstp, "unknown procedure (%d)\n", proc);
1220 
1221 	serv->sv_stats->rpcbadfmt++;
1222 	svc_putnl(resv, RPC_PROC_UNAVAIL);
1223 	goto sendit;
1224 
1225 err_garbage:
1226 	svc_printk(rqstp, "failed to decode args\n");
1227 
1228 	rpc_stat = rpc_garbage_args;
1229 err_bad:
1230 	serv->sv_stats->rpcbadfmt++;
1231 	svc_putnl(resv, ntohl(rpc_stat));
1232 	goto sendit;
1233 }
1234 EXPORT_SYMBOL(svc_process);
1235 
1236 /*
1237  * Return (transport-specific) limit on the rpc payload.
1238  */
1239 u32 svc_max_payload(const struct svc_rqst *rqstp)
1240 {
1241 	u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1242 
1243 	if (rqstp->rq_server->sv_max_payload < max)
1244 		max = rqstp->rq_server->sv_max_payload;
1245 	return max;
1246 }
1247 EXPORT_SYMBOL_GPL(svc_max_payload);
1248