1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/svc.c 4 * 5 * High-level RPC service routines 6 * 7 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 8 * 9 * Multiple threads pools and NUMAisation 10 * Copyright (c) 2006 Silicon Graphics, Inc. 11 * by Greg Banks <gnb@melbourne.sgi.com> 12 */ 13 14 #include <linux/linkage.h> 15 #include <linux/sched/signal.h> 16 #include <linux/errno.h> 17 #include <linux/net.h> 18 #include <linux/in.h> 19 #include <linux/mm.h> 20 #include <linux/interrupt.h> 21 #include <linux/module.h> 22 #include <linux/kthread.h> 23 #include <linux/slab.h> 24 25 #include <linux/sunrpc/types.h> 26 #include <linux/sunrpc/xdr.h> 27 #include <linux/sunrpc/stats.h> 28 #include <linux/sunrpc/svcsock.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/sunrpc/bc_xprt.h> 31 32 #include <trace/events/sunrpc.h> 33 34 #define RPCDBG_FACILITY RPCDBG_SVCDSP 35 36 static void svc_unregister(const struct svc_serv *serv, struct net *net); 37 38 #define svc_serv_is_pooled(serv) ((serv)->sv_ops->svo_function) 39 40 #define SVC_POOL_DEFAULT SVC_POOL_GLOBAL 41 42 /* 43 * Structure for mapping cpus to pools and vice versa. 44 * Setup once during sunrpc initialisation. 45 */ 46 struct svc_pool_map svc_pool_map = { 47 .mode = SVC_POOL_DEFAULT 48 }; 49 EXPORT_SYMBOL_GPL(svc_pool_map); 50 51 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */ 52 53 static int 54 param_set_pool_mode(const char *val, const struct kernel_param *kp) 55 { 56 int *ip = (int *)kp->arg; 57 struct svc_pool_map *m = &svc_pool_map; 58 int err; 59 60 mutex_lock(&svc_pool_map_mutex); 61 62 err = -EBUSY; 63 if (m->count) 64 goto out; 65 66 err = 0; 67 if (!strncmp(val, "auto", 4)) 68 *ip = SVC_POOL_AUTO; 69 else if (!strncmp(val, "global", 6)) 70 *ip = SVC_POOL_GLOBAL; 71 else if (!strncmp(val, "percpu", 6)) 72 *ip = SVC_POOL_PERCPU; 73 else if (!strncmp(val, "pernode", 7)) 74 *ip = SVC_POOL_PERNODE; 75 else 76 err = -EINVAL; 77 78 out: 79 mutex_unlock(&svc_pool_map_mutex); 80 return err; 81 } 82 83 static int 84 param_get_pool_mode(char *buf, const struct kernel_param *kp) 85 { 86 int *ip = (int *)kp->arg; 87 88 switch (*ip) 89 { 90 case SVC_POOL_AUTO: 91 return strlcpy(buf, "auto\n", 20); 92 case SVC_POOL_GLOBAL: 93 return strlcpy(buf, "global\n", 20); 94 case SVC_POOL_PERCPU: 95 return strlcpy(buf, "percpu\n", 20); 96 case SVC_POOL_PERNODE: 97 return strlcpy(buf, "pernode\n", 20); 98 default: 99 return sprintf(buf, "%d\n", *ip); 100 } 101 } 102 103 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode, 104 &svc_pool_map.mode, 0644); 105 106 /* 107 * Detect best pool mapping mode heuristically, 108 * according to the machine's topology. 109 */ 110 static int 111 svc_pool_map_choose_mode(void) 112 { 113 unsigned int node; 114 115 if (nr_online_nodes > 1) { 116 /* 117 * Actually have multiple NUMA nodes, 118 * so split pools on NUMA node boundaries 119 */ 120 return SVC_POOL_PERNODE; 121 } 122 123 node = first_online_node; 124 if (nr_cpus_node(node) > 2) { 125 /* 126 * Non-trivial SMP, or CONFIG_NUMA on 127 * non-NUMA hardware, e.g. with a generic 128 * x86_64 kernel on Xeons. In this case we 129 * want to divide the pools on cpu boundaries. 130 */ 131 return SVC_POOL_PERCPU; 132 } 133 134 /* default: one global pool */ 135 return SVC_POOL_GLOBAL; 136 } 137 138 /* 139 * Allocate the to_pool[] and pool_to[] arrays. 140 * Returns 0 on success or an errno. 141 */ 142 static int 143 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools) 144 { 145 m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 146 if (!m->to_pool) 147 goto fail; 148 m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 149 if (!m->pool_to) 150 goto fail_free; 151 152 return 0; 153 154 fail_free: 155 kfree(m->to_pool); 156 m->to_pool = NULL; 157 fail: 158 return -ENOMEM; 159 } 160 161 /* 162 * Initialise the pool map for SVC_POOL_PERCPU mode. 163 * Returns number of pools or <0 on error. 164 */ 165 static int 166 svc_pool_map_init_percpu(struct svc_pool_map *m) 167 { 168 unsigned int maxpools = nr_cpu_ids; 169 unsigned int pidx = 0; 170 unsigned int cpu; 171 int err; 172 173 err = svc_pool_map_alloc_arrays(m, maxpools); 174 if (err) 175 return err; 176 177 for_each_online_cpu(cpu) { 178 BUG_ON(pidx >= maxpools); 179 m->to_pool[cpu] = pidx; 180 m->pool_to[pidx] = cpu; 181 pidx++; 182 } 183 /* cpus brought online later all get mapped to pool0, sorry */ 184 185 return pidx; 186 }; 187 188 189 /* 190 * Initialise the pool map for SVC_POOL_PERNODE mode. 191 * Returns number of pools or <0 on error. 192 */ 193 static int 194 svc_pool_map_init_pernode(struct svc_pool_map *m) 195 { 196 unsigned int maxpools = nr_node_ids; 197 unsigned int pidx = 0; 198 unsigned int node; 199 int err; 200 201 err = svc_pool_map_alloc_arrays(m, maxpools); 202 if (err) 203 return err; 204 205 for_each_node_with_cpus(node) { 206 /* some architectures (e.g. SN2) have cpuless nodes */ 207 BUG_ON(pidx > maxpools); 208 m->to_pool[node] = pidx; 209 m->pool_to[pidx] = node; 210 pidx++; 211 } 212 /* nodes brought online later all get mapped to pool0, sorry */ 213 214 return pidx; 215 } 216 217 218 /* 219 * Add a reference to the global map of cpus to pools (and 220 * vice versa). Initialise the map if we're the first user. 221 * Returns the number of pools. 222 */ 223 unsigned int 224 svc_pool_map_get(void) 225 { 226 struct svc_pool_map *m = &svc_pool_map; 227 int npools = -1; 228 229 mutex_lock(&svc_pool_map_mutex); 230 231 if (m->count++) { 232 mutex_unlock(&svc_pool_map_mutex); 233 return m->npools; 234 } 235 236 if (m->mode == SVC_POOL_AUTO) 237 m->mode = svc_pool_map_choose_mode(); 238 239 switch (m->mode) { 240 case SVC_POOL_PERCPU: 241 npools = svc_pool_map_init_percpu(m); 242 break; 243 case SVC_POOL_PERNODE: 244 npools = svc_pool_map_init_pernode(m); 245 break; 246 } 247 248 if (npools < 0) { 249 /* default, or memory allocation failure */ 250 npools = 1; 251 m->mode = SVC_POOL_GLOBAL; 252 } 253 m->npools = npools; 254 255 mutex_unlock(&svc_pool_map_mutex); 256 return m->npools; 257 } 258 EXPORT_SYMBOL_GPL(svc_pool_map_get); 259 260 /* 261 * Drop a reference to the global map of cpus to pools. 262 * When the last reference is dropped, the map data is 263 * freed; this allows the sysadmin to change the pool 264 * mode using the pool_mode module option without 265 * rebooting or re-loading sunrpc.ko. 266 */ 267 void 268 svc_pool_map_put(void) 269 { 270 struct svc_pool_map *m = &svc_pool_map; 271 272 mutex_lock(&svc_pool_map_mutex); 273 274 if (!--m->count) { 275 kfree(m->to_pool); 276 m->to_pool = NULL; 277 kfree(m->pool_to); 278 m->pool_to = NULL; 279 m->npools = 0; 280 } 281 282 mutex_unlock(&svc_pool_map_mutex); 283 } 284 EXPORT_SYMBOL_GPL(svc_pool_map_put); 285 286 static int svc_pool_map_get_node(unsigned int pidx) 287 { 288 const struct svc_pool_map *m = &svc_pool_map; 289 290 if (m->count) { 291 if (m->mode == SVC_POOL_PERCPU) 292 return cpu_to_node(m->pool_to[pidx]); 293 if (m->mode == SVC_POOL_PERNODE) 294 return m->pool_to[pidx]; 295 } 296 return NUMA_NO_NODE; 297 } 298 /* 299 * Set the given thread's cpus_allowed mask so that it 300 * will only run on cpus in the given pool. 301 */ 302 static inline void 303 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx) 304 { 305 struct svc_pool_map *m = &svc_pool_map; 306 unsigned int node = m->pool_to[pidx]; 307 308 /* 309 * The caller checks for sv_nrpools > 1, which 310 * implies that we've been initialized. 311 */ 312 WARN_ON_ONCE(m->count == 0); 313 if (m->count == 0) 314 return; 315 316 switch (m->mode) { 317 case SVC_POOL_PERCPU: 318 { 319 set_cpus_allowed_ptr(task, cpumask_of(node)); 320 break; 321 } 322 case SVC_POOL_PERNODE: 323 { 324 set_cpus_allowed_ptr(task, cpumask_of_node(node)); 325 break; 326 } 327 } 328 } 329 330 /* 331 * Use the mapping mode to choose a pool for a given CPU. 332 * Used when enqueueing an incoming RPC. Always returns 333 * a non-NULL pool pointer. 334 */ 335 struct svc_pool * 336 svc_pool_for_cpu(struct svc_serv *serv, int cpu) 337 { 338 struct svc_pool_map *m = &svc_pool_map; 339 unsigned int pidx = 0; 340 341 /* 342 * An uninitialised map happens in a pure client when 343 * lockd is brought up, so silently treat it the 344 * same as SVC_POOL_GLOBAL. 345 */ 346 if (svc_serv_is_pooled(serv)) { 347 switch (m->mode) { 348 case SVC_POOL_PERCPU: 349 pidx = m->to_pool[cpu]; 350 break; 351 case SVC_POOL_PERNODE: 352 pidx = m->to_pool[cpu_to_node(cpu)]; 353 break; 354 } 355 } 356 return &serv->sv_pools[pidx % serv->sv_nrpools]; 357 } 358 359 int svc_rpcb_setup(struct svc_serv *serv, struct net *net) 360 { 361 int err; 362 363 err = rpcb_create_local(net); 364 if (err) 365 return err; 366 367 /* Remove any stale portmap registrations */ 368 svc_unregister(serv, net); 369 return 0; 370 } 371 EXPORT_SYMBOL_GPL(svc_rpcb_setup); 372 373 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net) 374 { 375 svc_unregister(serv, net); 376 rpcb_put_local(net); 377 } 378 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup); 379 380 static int svc_uses_rpcbind(struct svc_serv *serv) 381 { 382 struct svc_program *progp; 383 unsigned int i; 384 385 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 386 for (i = 0; i < progp->pg_nvers; i++) { 387 if (progp->pg_vers[i] == NULL) 388 continue; 389 if (!progp->pg_vers[i]->vs_hidden) 390 return 1; 391 } 392 } 393 394 return 0; 395 } 396 397 int svc_bind(struct svc_serv *serv, struct net *net) 398 { 399 if (!svc_uses_rpcbind(serv)) 400 return 0; 401 return svc_rpcb_setup(serv, net); 402 } 403 EXPORT_SYMBOL_GPL(svc_bind); 404 405 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 406 static void 407 __svc_init_bc(struct svc_serv *serv) 408 { 409 INIT_LIST_HEAD(&serv->sv_cb_list); 410 spin_lock_init(&serv->sv_cb_lock); 411 init_waitqueue_head(&serv->sv_cb_waitq); 412 } 413 #else 414 static void 415 __svc_init_bc(struct svc_serv *serv) 416 { 417 } 418 #endif 419 420 /* 421 * Create an RPC service 422 */ 423 static struct svc_serv * 424 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools, 425 const struct svc_serv_ops *ops) 426 { 427 struct svc_serv *serv; 428 unsigned int vers; 429 unsigned int xdrsize; 430 unsigned int i; 431 432 if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL))) 433 return NULL; 434 serv->sv_name = prog->pg_name; 435 serv->sv_program = prog; 436 serv->sv_nrthreads = 1; 437 serv->sv_stats = prog->pg_stats; 438 if (bufsize > RPCSVC_MAXPAYLOAD) 439 bufsize = RPCSVC_MAXPAYLOAD; 440 serv->sv_max_payload = bufsize? bufsize : 4096; 441 serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE); 442 serv->sv_ops = ops; 443 xdrsize = 0; 444 while (prog) { 445 prog->pg_lovers = prog->pg_nvers-1; 446 for (vers=0; vers<prog->pg_nvers ; vers++) 447 if (prog->pg_vers[vers]) { 448 prog->pg_hivers = vers; 449 if (prog->pg_lovers > vers) 450 prog->pg_lovers = vers; 451 if (prog->pg_vers[vers]->vs_xdrsize > xdrsize) 452 xdrsize = prog->pg_vers[vers]->vs_xdrsize; 453 } 454 prog = prog->pg_next; 455 } 456 serv->sv_xdrsize = xdrsize; 457 INIT_LIST_HEAD(&serv->sv_tempsocks); 458 INIT_LIST_HEAD(&serv->sv_permsocks); 459 timer_setup(&serv->sv_temptimer, NULL, 0); 460 spin_lock_init(&serv->sv_lock); 461 462 __svc_init_bc(serv); 463 464 serv->sv_nrpools = npools; 465 serv->sv_pools = 466 kcalloc(serv->sv_nrpools, sizeof(struct svc_pool), 467 GFP_KERNEL); 468 if (!serv->sv_pools) { 469 kfree(serv); 470 return NULL; 471 } 472 473 for (i = 0; i < serv->sv_nrpools; i++) { 474 struct svc_pool *pool = &serv->sv_pools[i]; 475 476 dprintk("svc: initialising pool %u for %s\n", 477 i, serv->sv_name); 478 479 pool->sp_id = i; 480 INIT_LIST_HEAD(&pool->sp_sockets); 481 INIT_LIST_HEAD(&pool->sp_all_threads); 482 spin_lock_init(&pool->sp_lock); 483 } 484 485 return serv; 486 } 487 488 struct svc_serv * 489 svc_create(struct svc_program *prog, unsigned int bufsize, 490 const struct svc_serv_ops *ops) 491 { 492 return __svc_create(prog, bufsize, /*npools*/1, ops); 493 } 494 EXPORT_SYMBOL_GPL(svc_create); 495 496 struct svc_serv * 497 svc_create_pooled(struct svc_program *prog, unsigned int bufsize, 498 const struct svc_serv_ops *ops) 499 { 500 struct svc_serv *serv; 501 unsigned int npools = svc_pool_map_get(); 502 503 serv = __svc_create(prog, bufsize, npools, ops); 504 if (!serv) 505 goto out_err; 506 return serv; 507 out_err: 508 svc_pool_map_put(); 509 return NULL; 510 } 511 EXPORT_SYMBOL_GPL(svc_create_pooled); 512 513 void svc_shutdown_net(struct svc_serv *serv, struct net *net) 514 { 515 svc_close_net(serv, net); 516 517 if (serv->sv_ops->svo_shutdown) 518 serv->sv_ops->svo_shutdown(serv, net); 519 } 520 EXPORT_SYMBOL_GPL(svc_shutdown_net); 521 522 /* 523 * Destroy an RPC service. Should be called with appropriate locking to 524 * protect the sv_nrthreads, sv_permsocks and sv_tempsocks. 525 */ 526 void 527 svc_destroy(struct svc_serv *serv) 528 { 529 dprintk("svc: svc_destroy(%s, %d)\n", 530 serv->sv_program->pg_name, 531 serv->sv_nrthreads); 532 533 if (serv->sv_nrthreads) { 534 if (--(serv->sv_nrthreads) != 0) { 535 svc_sock_update_bufs(serv); 536 return; 537 } 538 } else 539 printk("svc_destroy: no threads for serv=%p!\n", serv); 540 541 del_timer_sync(&serv->sv_temptimer); 542 543 /* 544 * The last user is gone and thus all sockets have to be destroyed to 545 * the point. Check this. 546 */ 547 BUG_ON(!list_empty(&serv->sv_permsocks)); 548 BUG_ON(!list_empty(&serv->sv_tempsocks)); 549 550 cache_clean_deferred(serv); 551 552 if (svc_serv_is_pooled(serv)) 553 svc_pool_map_put(); 554 555 kfree(serv->sv_pools); 556 kfree(serv); 557 } 558 EXPORT_SYMBOL_GPL(svc_destroy); 559 560 /* 561 * Allocate an RPC server's buffer space. 562 * We allocate pages and place them in rq_pages. 563 */ 564 static int 565 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node) 566 { 567 unsigned int pages, arghi; 568 569 /* bc_xprt uses fore channel allocated buffers */ 570 if (svc_is_backchannel(rqstp)) 571 return 1; 572 573 pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply. 574 * We assume one is at most one page 575 */ 576 arghi = 0; 577 WARN_ON_ONCE(pages > RPCSVC_MAXPAGES); 578 if (pages > RPCSVC_MAXPAGES) 579 pages = RPCSVC_MAXPAGES; 580 while (pages) { 581 struct page *p = alloc_pages_node(node, GFP_KERNEL, 0); 582 if (!p) 583 break; 584 rqstp->rq_pages[arghi++] = p; 585 pages--; 586 } 587 return pages == 0; 588 } 589 590 /* 591 * Release an RPC server buffer 592 */ 593 static void 594 svc_release_buffer(struct svc_rqst *rqstp) 595 { 596 unsigned int i; 597 598 for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++) 599 if (rqstp->rq_pages[i]) 600 put_page(rqstp->rq_pages[i]); 601 } 602 603 struct svc_rqst * 604 svc_rqst_alloc(struct svc_serv *serv, struct svc_pool *pool, int node) 605 { 606 struct svc_rqst *rqstp; 607 608 rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node); 609 if (!rqstp) 610 return rqstp; 611 612 __set_bit(RQ_BUSY, &rqstp->rq_flags); 613 spin_lock_init(&rqstp->rq_lock); 614 rqstp->rq_server = serv; 615 rqstp->rq_pool = pool; 616 617 rqstp->rq_scratch_page = alloc_pages_node(node, GFP_KERNEL, 0); 618 if (!rqstp->rq_scratch_page) 619 goto out_enomem; 620 621 rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 622 if (!rqstp->rq_argp) 623 goto out_enomem; 624 625 rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 626 if (!rqstp->rq_resp) 627 goto out_enomem; 628 629 if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node)) 630 goto out_enomem; 631 632 return rqstp; 633 out_enomem: 634 svc_rqst_free(rqstp); 635 return NULL; 636 } 637 EXPORT_SYMBOL_GPL(svc_rqst_alloc); 638 639 struct svc_rqst * 640 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node) 641 { 642 struct svc_rqst *rqstp; 643 644 rqstp = svc_rqst_alloc(serv, pool, node); 645 if (!rqstp) 646 return ERR_PTR(-ENOMEM); 647 648 serv->sv_nrthreads++; 649 spin_lock_bh(&pool->sp_lock); 650 pool->sp_nrthreads++; 651 list_add_rcu(&rqstp->rq_all, &pool->sp_all_threads); 652 spin_unlock_bh(&pool->sp_lock); 653 return rqstp; 654 } 655 EXPORT_SYMBOL_GPL(svc_prepare_thread); 656 657 /* 658 * Choose a pool in which to create a new thread, for svc_set_num_threads 659 */ 660 static inline struct svc_pool * 661 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 662 { 663 if (pool != NULL) 664 return pool; 665 666 return &serv->sv_pools[(*state)++ % serv->sv_nrpools]; 667 } 668 669 /* 670 * Choose a thread to kill, for svc_set_num_threads 671 */ 672 static inline struct task_struct * 673 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 674 { 675 unsigned int i; 676 struct task_struct *task = NULL; 677 678 if (pool != NULL) { 679 spin_lock_bh(&pool->sp_lock); 680 } else { 681 /* choose a pool in round-robin fashion */ 682 for (i = 0; i < serv->sv_nrpools; i++) { 683 pool = &serv->sv_pools[--(*state) % serv->sv_nrpools]; 684 spin_lock_bh(&pool->sp_lock); 685 if (!list_empty(&pool->sp_all_threads)) 686 goto found_pool; 687 spin_unlock_bh(&pool->sp_lock); 688 } 689 return NULL; 690 } 691 692 found_pool: 693 if (!list_empty(&pool->sp_all_threads)) { 694 struct svc_rqst *rqstp; 695 696 /* 697 * Remove from the pool->sp_all_threads list 698 * so we don't try to kill it again. 699 */ 700 rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all); 701 set_bit(RQ_VICTIM, &rqstp->rq_flags); 702 list_del_rcu(&rqstp->rq_all); 703 task = rqstp->rq_task; 704 } 705 spin_unlock_bh(&pool->sp_lock); 706 707 return task; 708 } 709 710 /* create new threads */ 711 static int 712 svc_start_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 713 { 714 struct svc_rqst *rqstp; 715 struct task_struct *task; 716 struct svc_pool *chosen_pool; 717 unsigned int state = serv->sv_nrthreads-1; 718 int node; 719 720 do { 721 nrservs--; 722 chosen_pool = choose_pool(serv, pool, &state); 723 724 node = svc_pool_map_get_node(chosen_pool->sp_id); 725 rqstp = svc_prepare_thread(serv, chosen_pool, node); 726 if (IS_ERR(rqstp)) 727 return PTR_ERR(rqstp); 728 729 __module_get(serv->sv_ops->svo_module); 730 task = kthread_create_on_node(serv->sv_ops->svo_function, rqstp, 731 node, "%s", serv->sv_name); 732 if (IS_ERR(task)) { 733 module_put(serv->sv_ops->svo_module); 734 svc_exit_thread(rqstp); 735 return PTR_ERR(task); 736 } 737 738 rqstp->rq_task = task; 739 if (serv->sv_nrpools > 1) 740 svc_pool_map_set_cpumask(task, chosen_pool->sp_id); 741 742 svc_sock_update_bufs(serv); 743 wake_up_process(task); 744 } while (nrservs > 0); 745 746 return 0; 747 } 748 749 750 /* destroy old threads */ 751 static int 752 svc_signal_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 753 { 754 struct task_struct *task; 755 unsigned int state = serv->sv_nrthreads-1; 756 757 /* destroy old threads */ 758 do { 759 task = choose_victim(serv, pool, &state); 760 if (task == NULL) 761 break; 762 send_sig(SIGINT, task, 1); 763 nrservs++; 764 } while (nrservs < 0); 765 766 return 0; 767 } 768 769 /* 770 * Create or destroy enough new threads to make the number 771 * of threads the given number. If `pool' is non-NULL, applies 772 * only to threads in that pool, otherwise round-robins between 773 * all pools. Caller must ensure that mutual exclusion between this and 774 * server startup or shutdown. 775 * 776 * Destroying threads relies on the service threads filling in 777 * rqstp->rq_task, which only the nfs ones do. Assumes the serv 778 * has been created using svc_create_pooled(). 779 * 780 * Based on code that used to be in nfsd_svc() but tweaked 781 * to be pool-aware. 782 */ 783 int 784 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 785 { 786 if (pool == NULL) { 787 /* The -1 assumes caller has done a svc_get() */ 788 nrservs -= (serv->sv_nrthreads-1); 789 } else { 790 spin_lock_bh(&pool->sp_lock); 791 nrservs -= pool->sp_nrthreads; 792 spin_unlock_bh(&pool->sp_lock); 793 } 794 795 if (nrservs > 0) 796 return svc_start_kthreads(serv, pool, nrservs); 797 if (nrservs < 0) 798 return svc_signal_kthreads(serv, pool, nrservs); 799 return 0; 800 } 801 EXPORT_SYMBOL_GPL(svc_set_num_threads); 802 803 /* destroy old threads */ 804 static int 805 svc_stop_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 806 { 807 struct task_struct *task; 808 unsigned int state = serv->sv_nrthreads-1; 809 810 /* destroy old threads */ 811 do { 812 task = choose_victim(serv, pool, &state); 813 if (task == NULL) 814 break; 815 kthread_stop(task); 816 nrservs++; 817 } while (nrservs < 0); 818 return 0; 819 } 820 821 int 822 svc_set_num_threads_sync(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 823 { 824 if (pool == NULL) { 825 /* The -1 assumes caller has done a svc_get() */ 826 nrservs -= (serv->sv_nrthreads-1); 827 } else { 828 spin_lock_bh(&pool->sp_lock); 829 nrservs -= pool->sp_nrthreads; 830 spin_unlock_bh(&pool->sp_lock); 831 } 832 833 if (nrservs > 0) 834 return svc_start_kthreads(serv, pool, nrservs); 835 if (nrservs < 0) 836 return svc_stop_kthreads(serv, pool, nrservs); 837 return 0; 838 } 839 EXPORT_SYMBOL_GPL(svc_set_num_threads_sync); 840 841 /** 842 * svc_rqst_replace_page - Replace one page in rq_pages[] 843 * @rqstp: svc_rqst with pages to replace 844 * @page: replacement page 845 * 846 * When replacing a page in rq_pages, batch the release of the 847 * replaced pages to avoid hammering the page allocator. 848 */ 849 void svc_rqst_replace_page(struct svc_rqst *rqstp, struct page *page) 850 { 851 if (*rqstp->rq_next_page) { 852 if (!pagevec_space(&rqstp->rq_pvec)) 853 __pagevec_release(&rqstp->rq_pvec); 854 pagevec_add(&rqstp->rq_pvec, *rqstp->rq_next_page); 855 } 856 857 get_page(page); 858 *(rqstp->rq_next_page++) = page; 859 } 860 EXPORT_SYMBOL_GPL(svc_rqst_replace_page); 861 862 /* 863 * Called from a server thread as it's exiting. Caller must hold the "service 864 * mutex" for the service. 865 */ 866 void 867 svc_rqst_free(struct svc_rqst *rqstp) 868 { 869 svc_release_buffer(rqstp); 870 if (rqstp->rq_scratch_page) 871 put_page(rqstp->rq_scratch_page); 872 kfree(rqstp->rq_resp); 873 kfree(rqstp->rq_argp); 874 kfree(rqstp->rq_auth_data); 875 kfree_rcu(rqstp, rq_rcu_head); 876 } 877 EXPORT_SYMBOL_GPL(svc_rqst_free); 878 879 void 880 svc_exit_thread(struct svc_rqst *rqstp) 881 { 882 struct svc_serv *serv = rqstp->rq_server; 883 struct svc_pool *pool = rqstp->rq_pool; 884 885 spin_lock_bh(&pool->sp_lock); 886 pool->sp_nrthreads--; 887 if (!test_and_set_bit(RQ_VICTIM, &rqstp->rq_flags)) 888 list_del_rcu(&rqstp->rq_all); 889 spin_unlock_bh(&pool->sp_lock); 890 891 svc_rqst_free(rqstp); 892 893 /* Release the server */ 894 if (serv) 895 svc_destroy(serv); 896 } 897 EXPORT_SYMBOL_GPL(svc_exit_thread); 898 899 /* 900 * Register an "inet" protocol family netid with the local 901 * rpcbind daemon via an rpcbind v4 SET request. 902 * 903 * No netconfig infrastructure is available in the kernel, so 904 * we map IP_ protocol numbers to netids by hand. 905 * 906 * Returns zero on success; a negative errno value is returned 907 * if any error occurs. 908 */ 909 static int __svc_rpcb_register4(struct net *net, const u32 program, 910 const u32 version, 911 const unsigned short protocol, 912 const unsigned short port) 913 { 914 const struct sockaddr_in sin = { 915 .sin_family = AF_INET, 916 .sin_addr.s_addr = htonl(INADDR_ANY), 917 .sin_port = htons(port), 918 }; 919 const char *netid; 920 int error; 921 922 switch (protocol) { 923 case IPPROTO_UDP: 924 netid = RPCBIND_NETID_UDP; 925 break; 926 case IPPROTO_TCP: 927 netid = RPCBIND_NETID_TCP; 928 break; 929 default: 930 return -ENOPROTOOPT; 931 } 932 933 error = rpcb_v4_register(net, program, version, 934 (const struct sockaddr *)&sin, netid); 935 936 /* 937 * User space didn't support rpcbind v4, so retry this 938 * registration request with the legacy rpcbind v2 protocol. 939 */ 940 if (error == -EPROTONOSUPPORT) 941 error = rpcb_register(net, program, version, protocol, port); 942 943 return error; 944 } 945 946 #if IS_ENABLED(CONFIG_IPV6) 947 /* 948 * Register an "inet6" protocol family netid with the local 949 * rpcbind daemon via an rpcbind v4 SET request. 950 * 951 * No netconfig infrastructure is available in the kernel, so 952 * we map IP_ protocol numbers to netids by hand. 953 * 954 * Returns zero on success; a negative errno value is returned 955 * if any error occurs. 956 */ 957 static int __svc_rpcb_register6(struct net *net, const u32 program, 958 const u32 version, 959 const unsigned short protocol, 960 const unsigned short port) 961 { 962 const struct sockaddr_in6 sin6 = { 963 .sin6_family = AF_INET6, 964 .sin6_addr = IN6ADDR_ANY_INIT, 965 .sin6_port = htons(port), 966 }; 967 const char *netid; 968 int error; 969 970 switch (protocol) { 971 case IPPROTO_UDP: 972 netid = RPCBIND_NETID_UDP6; 973 break; 974 case IPPROTO_TCP: 975 netid = RPCBIND_NETID_TCP6; 976 break; 977 default: 978 return -ENOPROTOOPT; 979 } 980 981 error = rpcb_v4_register(net, program, version, 982 (const struct sockaddr *)&sin6, netid); 983 984 /* 985 * User space didn't support rpcbind version 4, so we won't 986 * use a PF_INET6 listener. 987 */ 988 if (error == -EPROTONOSUPPORT) 989 error = -EAFNOSUPPORT; 990 991 return error; 992 } 993 #endif /* IS_ENABLED(CONFIG_IPV6) */ 994 995 /* 996 * Register a kernel RPC service via rpcbind version 4. 997 * 998 * Returns zero on success; a negative errno value is returned 999 * if any error occurs. 1000 */ 1001 static int __svc_register(struct net *net, const char *progname, 1002 const u32 program, const u32 version, 1003 const int family, 1004 const unsigned short protocol, 1005 const unsigned short port) 1006 { 1007 int error = -EAFNOSUPPORT; 1008 1009 switch (family) { 1010 case PF_INET: 1011 error = __svc_rpcb_register4(net, program, version, 1012 protocol, port); 1013 break; 1014 #if IS_ENABLED(CONFIG_IPV6) 1015 case PF_INET6: 1016 error = __svc_rpcb_register6(net, program, version, 1017 protocol, port); 1018 #endif 1019 } 1020 1021 trace_svc_register(progname, version, protocol, port, family, error); 1022 return error; 1023 } 1024 1025 int svc_rpcbind_set_version(struct net *net, 1026 const struct svc_program *progp, 1027 u32 version, int family, 1028 unsigned short proto, 1029 unsigned short port) 1030 { 1031 return __svc_register(net, progp->pg_name, progp->pg_prog, 1032 version, family, proto, port); 1033 1034 } 1035 EXPORT_SYMBOL_GPL(svc_rpcbind_set_version); 1036 1037 int svc_generic_rpcbind_set(struct net *net, 1038 const struct svc_program *progp, 1039 u32 version, int family, 1040 unsigned short proto, 1041 unsigned short port) 1042 { 1043 const struct svc_version *vers = progp->pg_vers[version]; 1044 int error; 1045 1046 if (vers == NULL) 1047 return 0; 1048 1049 if (vers->vs_hidden) { 1050 trace_svc_noregister(progp->pg_name, version, proto, 1051 port, family, 0); 1052 return 0; 1053 } 1054 1055 /* 1056 * Don't register a UDP port if we need congestion 1057 * control. 1058 */ 1059 if (vers->vs_need_cong_ctrl && proto == IPPROTO_UDP) 1060 return 0; 1061 1062 error = svc_rpcbind_set_version(net, progp, version, 1063 family, proto, port); 1064 1065 return (vers->vs_rpcb_optnl) ? 0 : error; 1066 } 1067 EXPORT_SYMBOL_GPL(svc_generic_rpcbind_set); 1068 1069 /** 1070 * svc_register - register an RPC service with the local portmapper 1071 * @serv: svc_serv struct for the service to register 1072 * @net: net namespace for the service to register 1073 * @family: protocol family of service's listener socket 1074 * @proto: transport protocol number to advertise 1075 * @port: port to advertise 1076 * 1077 * Service is registered for any address in the passed-in protocol family 1078 */ 1079 int svc_register(const struct svc_serv *serv, struct net *net, 1080 const int family, const unsigned short proto, 1081 const unsigned short port) 1082 { 1083 struct svc_program *progp; 1084 unsigned int i; 1085 int error = 0; 1086 1087 WARN_ON_ONCE(proto == 0 && port == 0); 1088 if (proto == 0 && port == 0) 1089 return -EINVAL; 1090 1091 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 1092 for (i = 0; i < progp->pg_nvers; i++) { 1093 1094 error = progp->pg_rpcbind_set(net, progp, i, 1095 family, proto, port); 1096 if (error < 0) { 1097 printk(KERN_WARNING "svc: failed to register " 1098 "%sv%u RPC service (errno %d).\n", 1099 progp->pg_name, i, -error); 1100 break; 1101 } 1102 } 1103 } 1104 1105 return error; 1106 } 1107 1108 /* 1109 * If user space is running rpcbind, it should take the v4 UNSET 1110 * and clear everything for this [program, version]. If user space 1111 * is running portmap, it will reject the v4 UNSET, but won't have 1112 * any "inet6" entries anyway. So a PMAP_UNSET should be sufficient 1113 * in this case to clear all existing entries for [program, version]. 1114 */ 1115 static void __svc_unregister(struct net *net, const u32 program, const u32 version, 1116 const char *progname) 1117 { 1118 int error; 1119 1120 error = rpcb_v4_register(net, program, version, NULL, ""); 1121 1122 /* 1123 * User space didn't support rpcbind v4, so retry this 1124 * request with the legacy rpcbind v2 protocol. 1125 */ 1126 if (error == -EPROTONOSUPPORT) 1127 error = rpcb_register(net, program, version, 0, 0); 1128 1129 trace_svc_unregister(progname, version, error); 1130 } 1131 1132 /* 1133 * All netids, bind addresses and ports registered for [program, version] 1134 * are removed from the local rpcbind database (if the service is not 1135 * hidden) to make way for a new instance of the service. 1136 * 1137 * The result of unregistration is reported via dprintk for those who want 1138 * verification of the result, but is otherwise not important. 1139 */ 1140 static void svc_unregister(const struct svc_serv *serv, struct net *net) 1141 { 1142 struct svc_program *progp; 1143 unsigned long flags; 1144 unsigned int i; 1145 1146 clear_thread_flag(TIF_SIGPENDING); 1147 1148 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 1149 for (i = 0; i < progp->pg_nvers; i++) { 1150 if (progp->pg_vers[i] == NULL) 1151 continue; 1152 if (progp->pg_vers[i]->vs_hidden) 1153 continue; 1154 __svc_unregister(net, progp->pg_prog, i, progp->pg_name); 1155 } 1156 } 1157 1158 spin_lock_irqsave(¤t->sighand->siglock, flags); 1159 recalc_sigpending(); 1160 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 1161 } 1162 1163 /* 1164 * dprintk the given error with the address of the client that caused it. 1165 */ 1166 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 1167 static __printf(2, 3) 1168 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) 1169 { 1170 struct va_format vaf; 1171 va_list args; 1172 char buf[RPC_MAX_ADDRBUFLEN]; 1173 1174 va_start(args, fmt); 1175 1176 vaf.fmt = fmt; 1177 vaf.va = &args; 1178 1179 dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf); 1180 1181 va_end(args); 1182 } 1183 #else 1184 static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {} 1185 #endif 1186 1187 __be32 1188 svc_return_autherr(struct svc_rqst *rqstp, __be32 auth_err) 1189 { 1190 set_bit(RQ_AUTHERR, &rqstp->rq_flags); 1191 return auth_err; 1192 } 1193 EXPORT_SYMBOL_GPL(svc_return_autherr); 1194 1195 static __be32 1196 svc_get_autherr(struct svc_rqst *rqstp, __be32 *statp) 1197 { 1198 if (test_and_clear_bit(RQ_AUTHERR, &rqstp->rq_flags)) 1199 return *statp; 1200 return rpc_auth_ok; 1201 } 1202 1203 static int 1204 svc_generic_dispatch(struct svc_rqst *rqstp, __be32 *statp) 1205 { 1206 struct kvec *argv = &rqstp->rq_arg.head[0]; 1207 struct kvec *resv = &rqstp->rq_res.head[0]; 1208 const struct svc_procedure *procp = rqstp->rq_procinfo; 1209 1210 /* 1211 * Decode arguments 1212 * XXX: why do we ignore the return value? 1213 */ 1214 if (procp->pc_decode && 1215 !procp->pc_decode(rqstp, argv->iov_base)) { 1216 *statp = rpc_garbage_args; 1217 return 1; 1218 } 1219 1220 *statp = procp->pc_func(rqstp); 1221 1222 if (*statp == rpc_drop_reply || 1223 test_bit(RQ_DROPME, &rqstp->rq_flags)) 1224 return 0; 1225 1226 if (test_bit(RQ_AUTHERR, &rqstp->rq_flags)) 1227 return 1; 1228 1229 if (*statp != rpc_success) 1230 return 1; 1231 1232 /* Encode reply */ 1233 if (procp->pc_encode && 1234 !procp->pc_encode(rqstp, resv->iov_base + resv->iov_len)) { 1235 dprintk("svc: failed to encode reply\n"); 1236 /* serv->sv_stats->rpcsystemerr++; */ 1237 *statp = rpc_system_err; 1238 } 1239 return 1; 1240 } 1241 1242 __be32 1243 svc_generic_init_request(struct svc_rqst *rqstp, 1244 const struct svc_program *progp, 1245 struct svc_process_info *ret) 1246 { 1247 const struct svc_version *versp = NULL; /* compiler food */ 1248 const struct svc_procedure *procp = NULL; 1249 1250 if (rqstp->rq_vers >= progp->pg_nvers ) 1251 goto err_bad_vers; 1252 versp = progp->pg_vers[rqstp->rq_vers]; 1253 if (!versp) 1254 goto err_bad_vers; 1255 1256 /* 1257 * Some protocol versions (namely NFSv4) require some form of 1258 * congestion control. (See RFC 7530 section 3.1 paragraph 2) 1259 * In other words, UDP is not allowed. We mark those when setting 1260 * up the svc_xprt, and verify that here. 1261 * 1262 * The spec is not very clear about what error should be returned 1263 * when someone tries to access a server that is listening on UDP 1264 * for lower versions. RPC_PROG_MISMATCH seems to be the closest 1265 * fit. 1266 */ 1267 if (versp->vs_need_cong_ctrl && rqstp->rq_xprt && 1268 !test_bit(XPT_CONG_CTRL, &rqstp->rq_xprt->xpt_flags)) 1269 goto err_bad_vers; 1270 1271 if (rqstp->rq_proc >= versp->vs_nproc) 1272 goto err_bad_proc; 1273 rqstp->rq_procinfo = procp = &versp->vs_proc[rqstp->rq_proc]; 1274 if (!procp) 1275 goto err_bad_proc; 1276 1277 /* Initialize storage for argp and resp */ 1278 memset(rqstp->rq_argp, 0, procp->pc_argsize); 1279 memset(rqstp->rq_resp, 0, procp->pc_ressize); 1280 1281 /* Bump per-procedure stats counter */ 1282 versp->vs_count[rqstp->rq_proc]++; 1283 1284 ret->dispatch = versp->vs_dispatch; 1285 return rpc_success; 1286 err_bad_vers: 1287 ret->mismatch.lovers = progp->pg_lovers; 1288 ret->mismatch.hivers = progp->pg_hivers; 1289 return rpc_prog_mismatch; 1290 err_bad_proc: 1291 return rpc_proc_unavail; 1292 } 1293 EXPORT_SYMBOL_GPL(svc_generic_init_request); 1294 1295 /* 1296 * Common routine for processing the RPC request. 1297 */ 1298 static int 1299 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv) 1300 { 1301 struct svc_program *progp; 1302 const struct svc_procedure *procp = NULL; 1303 struct svc_serv *serv = rqstp->rq_server; 1304 struct svc_process_info process; 1305 __be32 *statp; 1306 u32 prog, vers; 1307 __be32 auth_stat, rpc_stat; 1308 int auth_res; 1309 __be32 *reply_statp; 1310 1311 rpc_stat = rpc_success; 1312 1313 if (argv->iov_len < 6*4) 1314 goto err_short_len; 1315 1316 /* Will be turned off by GSS integrity and privacy services */ 1317 set_bit(RQ_SPLICE_OK, &rqstp->rq_flags); 1318 /* Will be turned off only when NFSv4 Sessions are used */ 1319 set_bit(RQ_USEDEFERRAL, &rqstp->rq_flags); 1320 clear_bit(RQ_DROPME, &rqstp->rq_flags); 1321 1322 svc_putu32(resv, rqstp->rq_xid); 1323 1324 vers = svc_getnl(argv); 1325 1326 /* First words of reply: */ 1327 svc_putnl(resv, 1); /* REPLY */ 1328 1329 if (vers != 2) /* RPC version number */ 1330 goto err_bad_rpc; 1331 1332 /* Save position in case we later decide to reject: */ 1333 reply_statp = resv->iov_base + resv->iov_len; 1334 1335 svc_putnl(resv, 0); /* ACCEPT */ 1336 1337 rqstp->rq_prog = prog = svc_getnl(argv); /* program number */ 1338 rqstp->rq_vers = svc_getnl(argv); /* version number */ 1339 rqstp->rq_proc = svc_getnl(argv); /* procedure number */ 1340 1341 for (progp = serv->sv_program; progp; progp = progp->pg_next) 1342 if (prog == progp->pg_prog) 1343 break; 1344 1345 /* 1346 * Decode auth data, and add verifier to reply buffer. 1347 * We do this before anything else in order to get a decent 1348 * auth verifier. 1349 */ 1350 auth_res = svc_authenticate(rqstp, &auth_stat); 1351 /* Also give the program a chance to reject this call: */ 1352 if (auth_res == SVC_OK && progp) { 1353 auth_stat = rpc_autherr_badcred; 1354 auth_res = progp->pg_authenticate(rqstp); 1355 } 1356 if (auth_res != SVC_OK) 1357 trace_svc_authenticate(rqstp, auth_res, auth_stat); 1358 switch (auth_res) { 1359 case SVC_OK: 1360 break; 1361 case SVC_GARBAGE: 1362 goto err_garbage; 1363 case SVC_SYSERR: 1364 rpc_stat = rpc_system_err; 1365 goto err_bad; 1366 case SVC_DENIED: 1367 goto err_bad_auth; 1368 case SVC_CLOSE: 1369 goto close; 1370 case SVC_DROP: 1371 goto dropit; 1372 case SVC_COMPLETE: 1373 goto sendit; 1374 } 1375 1376 if (progp == NULL) 1377 goto err_bad_prog; 1378 1379 rpc_stat = progp->pg_init_request(rqstp, progp, &process); 1380 switch (rpc_stat) { 1381 case rpc_success: 1382 break; 1383 case rpc_prog_unavail: 1384 goto err_bad_prog; 1385 case rpc_prog_mismatch: 1386 goto err_bad_vers; 1387 case rpc_proc_unavail: 1388 goto err_bad_proc; 1389 } 1390 1391 procp = rqstp->rq_procinfo; 1392 /* Should this check go into the dispatcher? */ 1393 if (!procp || !procp->pc_func) 1394 goto err_bad_proc; 1395 1396 /* Syntactic check complete */ 1397 serv->sv_stats->rpccnt++; 1398 trace_svc_process(rqstp, progp->pg_name); 1399 1400 /* Build the reply header. */ 1401 statp = resv->iov_base +resv->iov_len; 1402 svc_putnl(resv, RPC_SUCCESS); 1403 1404 /* un-reserve some of the out-queue now that we have a 1405 * better idea of reply size 1406 */ 1407 if (procp->pc_xdrressize) 1408 svc_reserve_auth(rqstp, procp->pc_xdrressize<<2); 1409 1410 /* Call the function that processes the request. */ 1411 if (!process.dispatch) { 1412 if (!svc_generic_dispatch(rqstp, statp)) 1413 goto release_dropit; 1414 if (*statp == rpc_garbage_args) 1415 goto err_garbage; 1416 auth_stat = svc_get_autherr(rqstp, statp); 1417 if (auth_stat != rpc_auth_ok) 1418 goto err_release_bad_auth; 1419 } else { 1420 dprintk("svc: calling dispatcher\n"); 1421 if (!process.dispatch(rqstp, statp)) 1422 goto release_dropit; /* Release reply info */ 1423 } 1424 1425 /* Check RPC status result */ 1426 if (*statp != rpc_success) 1427 resv->iov_len = ((void*)statp) - resv->iov_base + 4; 1428 1429 /* Release reply info */ 1430 if (procp->pc_release) 1431 procp->pc_release(rqstp); 1432 1433 if (procp->pc_encode == NULL) 1434 goto dropit; 1435 1436 sendit: 1437 if (svc_authorise(rqstp)) 1438 goto close_xprt; 1439 return 1; /* Caller can now send it */ 1440 1441 release_dropit: 1442 if (procp->pc_release) 1443 procp->pc_release(rqstp); 1444 dropit: 1445 svc_authorise(rqstp); /* doesn't hurt to call this twice */ 1446 dprintk("svc: svc_process dropit\n"); 1447 return 0; 1448 1449 close: 1450 svc_authorise(rqstp); 1451 close_xprt: 1452 if (rqstp->rq_xprt && test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags)) 1453 svc_close_xprt(rqstp->rq_xprt); 1454 dprintk("svc: svc_process close\n"); 1455 return 0; 1456 1457 err_short_len: 1458 svc_printk(rqstp, "short len %zd, dropping request\n", 1459 argv->iov_len); 1460 goto close_xprt; 1461 1462 err_bad_rpc: 1463 serv->sv_stats->rpcbadfmt++; 1464 svc_putnl(resv, 1); /* REJECT */ 1465 svc_putnl(resv, 0); /* RPC_MISMATCH */ 1466 svc_putnl(resv, 2); /* Only RPCv2 supported */ 1467 svc_putnl(resv, 2); 1468 goto sendit; 1469 1470 err_release_bad_auth: 1471 if (procp->pc_release) 1472 procp->pc_release(rqstp); 1473 err_bad_auth: 1474 dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat)); 1475 serv->sv_stats->rpcbadauth++; 1476 /* Restore write pointer to location of accept status: */ 1477 xdr_ressize_check(rqstp, reply_statp); 1478 svc_putnl(resv, 1); /* REJECT */ 1479 svc_putnl(resv, 1); /* AUTH_ERROR */ 1480 svc_putnl(resv, ntohl(auth_stat)); /* status */ 1481 goto sendit; 1482 1483 err_bad_prog: 1484 dprintk("svc: unknown program %d\n", prog); 1485 serv->sv_stats->rpcbadfmt++; 1486 svc_putnl(resv, RPC_PROG_UNAVAIL); 1487 goto sendit; 1488 1489 err_bad_vers: 1490 svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n", 1491 rqstp->rq_vers, rqstp->rq_prog, progp->pg_name); 1492 1493 serv->sv_stats->rpcbadfmt++; 1494 svc_putnl(resv, RPC_PROG_MISMATCH); 1495 svc_putnl(resv, process.mismatch.lovers); 1496 svc_putnl(resv, process.mismatch.hivers); 1497 goto sendit; 1498 1499 err_bad_proc: 1500 svc_printk(rqstp, "unknown procedure (%d)\n", rqstp->rq_proc); 1501 1502 serv->sv_stats->rpcbadfmt++; 1503 svc_putnl(resv, RPC_PROC_UNAVAIL); 1504 goto sendit; 1505 1506 err_garbage: 1507 svc_printk(rqstp, "failed to decode args\n"); 1508 1509 rpc_stat = rpc_garbage_args; 1510 err_bad: 1511 serv->sv_stats->rpcbadfmt++; 1512 svc_putnl(resv, ntohl(rpc_stat)); 1513 goto sendit; 1514 } 1515 1516 /* 1517 * Process the RPC request. 1518 */ 1519 int 1520 svc_process(struct svc_rqst *rqstp) 1521 { 1522 struct kvec *argv = &rqstp->rq_arg.head[0]; 1523 struct kvec *resv = &rqstp->rq_res.head[0]; 1524 struct svc_serv *serv = rqstp->rq_server; 1525 u32 dir; 1526 1527 /* 1528 * Setup response xdr_buf. 1529 * Initially it has just one page 1530 */ 1531 rqstp->rq_next_page = &rqstp->rq_respages[1]; 1532 resv->iov_base = page_address(rqstp->rq_respages[0]); 1533 resv->iov_len = 0; 1534 rqstp->rq_res.pages = rqstp->rq_respages + 1; 1535 rqstp->rq_res.len = 0; 1536 rqstp->rq_res.page_base = 0; 1537 rqstp->rq_res.page_len = 0; 1538 rqstp->rq_res.buflen = PAGE_SIZE; 1539 rqstp->rq_res.tail[0].iov_base = NULL; 1540 rqstp->rq_res.tail[0].iov_len = 0; 1541 1542 dir = svc_getnl(argv); 1543 if (dir != 0) { 1544 /* direction != CALL */ 1545 svc_printk(rqstp, "bad direction %d, dropping request\n", dir); 1546 serv->sv_stats->rpcbadfmt++; 1547 goto out_drop; 1548 } 1549 1550 /* Returns 1 for send, 0 for drop */ 1551 if (likely(svc_process_common(rqstp, argv, resv))) 1552 return svc_send(rqstp); 1553 1554 out_drop: 1555 svc_drop(rqstp); 1556 return 0; 1557 } 1558 EXPORT_SYMBOL_GPL(svc_process); 1559 1560 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1561 /* 1562 * Process a backchannel RPC request that arrived over an existing 1563 * outbound connection 1564 */ 1565 int 1566 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req, 1567 struct svc_rqst *rqstp) 1568 { 1569 struct kvec *argv = &rqstp->rq_arg.head[0]; 1570 struct kvec *resv = &rqstp->rq_res.head[0]; 1571 struct rpc_task *task; 1572 int proc_error; 1573 int error; 1574 1575 dprintk("svc: %s(%p)\n", __func__, req); 1576 1577 /* Build the svc_rqst used by the common processing routine */ 1578 rqstp->rq_xid = req->rq_xid; 1579 rqstp->rq_prot = req->rq_xprt->prot; 1580 rqstp->rq_server = serv; 1581 rqstp->rq_bc_net = req->rq_xprt->xprt_net; 1582 1583 rqstp->rq_addrlen = sizeof(req->rq_xprt->addr); 1584 memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen); 1585 memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg)); 1586 memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res)); 1587 1588 /* Adjust the argument buffer length */ 1589 rqstp->rq_arg.len = req->rq_private_buf.len; 1590 if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) { 1591 rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len; 1592 rqstp->rq_arg.page_len = 0; 1593 } else if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len + 1594 rqstp->rq_arg.page_len) 1595 rqstp->rq_arg.page_len = rqstp->rq_arg.len - 1596 rqstp->rq_arg.head[0].iov_len; 1597 else 1598 rqstp->rq_arg.len = rqstp->rq_arg.head[0].iov_len + 1599 rqstp->rq_arg.page_len; 1600 1601 /* reset result send buffer "put" position */ 1602 resv->iov_len = 0; 1603 1604 /* 1605 * Skip the next two words because they've already been 1606 * processed in the transport 1607 */ 1608 svc_getu32(argv); /* XID */ 1609 svc_getnl(argv); /* CALLDIR */ 1610 1611 /* Parse and execute the bc call */ 1612 proc_error = svc_process_common(rqstp, argv, resv); 1613 1614 atomic_dec(&req->rq_xprt->bc_slot_count); 1615 if (!proc_error) { 1616 /* Processing error: drop the request */ 1617 xprt_free_bc_request(req); 1618 error = -EINVAL; 1619 goto out; 1620 } 1621 /* Finally, send the reply synchronously */ 1622 memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf)); 1623 task = rpc_run_bc_task(req); 1624 if (IS_ERR(task)) { 1625 error = PTR_ERR(task); 1626 goto out; 1627 } 1628 1629 WARN_ON_ONCE(atomic_read(&task->tk_count) != 1); 1630 error = task->tk_status; 1631 rpc_put_task(task); 1632 1633 out: 1634 dprintk("svc: %s(), error=%d\n", __func__, error); 1635 return error; 1636 } 1637 EXPORT_SYMBOL_GPL(bc_svc_process); 1638 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1639 1640 /* 1641 * Return (transport-specific) limit on the rpc payload. 1642 */ 1643 u32 svc_max_payload(const struct svc_rqst *rqstp) 1644 { 1645 u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload; 1646 1647 if (rqstp->rq_server->sv_max_payload < max) 1648 max = rqstp->rq_server->sv_max_payload; 1649 return max; 1650 } 1651 EXPORT_SYMBOL_GPL(svc_max_payload); 1652 1653 /** 1654 * svc_encode_result_payload - mark a range of bytes as a result payload 1655 * @rqstp: svc_rqst to operate on 1656 * @offset: payload's byte offset in rqstp->rq_res 1657 * @length: size of payload, in bytes 1658 * 1659 * Returns zero on success, or a negative errno if a permanent 1660 * error occurred. 1661 */ 1662 int svc_encode_result_payload(struct svc_rqst *rqstp, unsigned int offset, 1663 unsigned int length) 1664 { 1665 return rqstp->rq_xprt->xpt_ops->xpo_result_payload(rqstp, offset, 1666 length); 1667 } 1668 EXPORT_SYMBOL_GPL(svc_encode_result_payload); 1669 1670 /** 1671 * svc_fill_write_vector - Construct data argument for VFS write call 1672 * @rqstp: svc_rqst to operate on 1673 * @pages: list of pages containing data payload 1674 * @first: buffer containing first section of write payload 1675 * @total: total number of bytes of write payload 1676 * 1677 * Fills in rqstp::rq_vec, and returns the number of elements. 1678 */ 1679 unsigned int svc_fill_write_vector(struct svc_rqst *rqstp, struct page **pages, 1680 struct kvec *first, size_t total) 1681 { 1682 struct kvec *vec = rqstp->rq_vec; 1683 unsigned int i; 1684 1685 /* Some types of transport can present the write payload 1686 * entirely in rq_arg.pages. In this case, @first is empty. 1687 */ 1688 i = 0; 1689 if (first->iov_len) { 1690 vec[i].iov_base = first->iov_base; 1691 vec[i].iov_len = min_t(size_t, total, first->iov_len); 1692 total -= vec[i].iov_len; 1693 ++i; 1694 } 1695 1696 while (total) { 1697 vec[i].iov_base = page_address(*pages); 1698 vec[i].iov_len = min_t(size_t, total, PAGE_SIZE); 1699 total -= vec[i].iov_len; 1700 ++i; 1701 ++pages; 1702 } 1703 1704 WARN_ON_ONCE(i > ARRAY_SIZE(rqstp->rq_vec)); 1705 return i; 1706 } 1707 EXPORT_SYMBOL_GPL(svc_fill_write_vector); 1708 1709 /** 1710 * svc_fill_symlink_pathname - Construct pathname argument for VFS symlink call 1711 * @rqstp: svc_rqst to operate on 1712 * @first: buffer containing first section of pathname 1713 * @p: buffer containing remaining section of pathname 1714 * @total: total length of the pathname argument 1715 * 1716 * The VFS symlink API demands a NUL-terminated pathname in mapped memory. 1717 * Returns pointer to a NUL-terminated string, or an ERR_PTR. Caller must free 1718 * the returned string. 1719 */ 1720 char *svc_fill_symlink_pathname(struct svc_rqst *rqstp, struct kvec *first, 1721 void *p, size_t total) 1722 { 1723 size_t len, remaining; 1724 char *result, *dst; 1725 1726 result = kmalloc(total + 1, GFP_KERNEL); 1727 if (!result) 1728 return ERR_PTR(-ESERVERFAULT); 1729 1730 dst = result; 1731 remaining = total; 1732 1733 len = min_t(size_t, total, first->iov_len); 1734 if (len) { 1735 memcpy(dst, first->iov_base, len); 1736 dst += len; 1737 remaining -= len; 1738 } 1739 1740 if (remaining) { 1741 len = min_t(size_t, remaining, PAGE_SIZE); 1742 memcpy(dst, p, len); 1743 dst += len; 1744 } 1745 1746 *dst = '\0'; 1747 1748 /* Sanity check: Linux doesn't allow the pathname argument to 1749 * contain a NUL byte. 1750 */ 1751 if (strlen(result) != total) { 1752 kfree(result); 1753 return ERR_PTR(-EINVAL); 1754 } 1755 return result; 1756 } 1757 EXPORT_SYMBOL_GPL(svc_fill_symlink_pathname); 1758