xref: /linux/net/sunrpc/svc.c (revision 861e10be08c69808065d755d3e3cab5d520a2d32)
1 /*
2  * linux/net/sunrpc/svc.c
3  *
4  * High-level RPC service routines
5  *
6  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
7  *
8  * Multiple threads pools and NUMAisation
9  * Copyright (c) 2006 Silicon Graphics, Inc.
10  * by Greg Banks <gnb@melbourne.sgi.com>
11  */
12 
13 #include <linux/linkage.h>
14 #include <linux/sched.h>
15 #include <linux/errno.h>
16 #include <linux/net.h>
17 #include <linux/in.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/kthread.h>
22 #include <linux/slab.h>
23 
24 #include <linux/sunrpc/types.h>
25 #include <linux/sunrpc/xdr.h>
26 #include <linux/sunrpc/stats.h>
27 #include <linux/sunrpc/svcsock.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/sunrpc/bc_xprt.h>
30 
31 #define RPCDBG_FACILITY	RPCDBG_SVCDSP
32 
33 static void svc_unregister(const struct svc_serv *serv, struct net *net);
34 
35 #define svc_serv_is_pooled(serv)    ((serv)->sv_function)
36 
37 /*
38  * Mode for mapping cpus to pools.
39  */
40 enum {
41 	SVC_POOL_AUTO = -1,	/* choose one of the others */
42 	SVC_POOL_GLOBAL,	/* no mapping, just a single global pool
43 				 * (legacy & UP mode) */
44 	SVC_POOL_PERCPU,	/* one pool per cpu */
45 	SVC_POOL_PERNODE	/* one pool per numa node */
46 };
47 #define SVC_POOL_DEFAULT	SVC_POOL_GLOBAL
48 
49 /*
50  * Structure for mapping cpus to pools and vice versa.
51  * Setup once during sunrpc initialisation.
52  */
53 static struct svc_pool_map {
54 	int count;			/* How many svc_servs use us */
55 	int mode;			/* Note: int not enum to avoid
56 					 * warnings about "enumeration value
57 					 * not handled in switch" */
58 	unsigned int npools;
59 	unsigned int *pool_to;		/* maps pool id to cpu or node */
60 	unsigned int *to_pool;		/* maps cpu or node to pool id */
61 } svc_pool_map = {
62 	.count = 0,
63 	.mode = SVC_POOL_DEFAULT
64 };
65 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
66 
67 static int
68 param_set_pool_mode(const char *val, struct kernel_param *kp)
69 {
70 	int *ip = (int *)kp->arg;
71 	struct svc_pool_map *m = &svc_pool_map;
72 	int err;
73 
74 	mutex_lock(&svc_pool_map_mutex);
75 
76 	err = -EBUSY;
77 	if (m->count)
78 		goto out;
79 
80 	err = 0;
81 	if (!strncmp(val, "auto", 4))
82 		*ip = SVC_POOL_AUTO;
83 	else if (!strncmp(val, "global", 6))
84 		*ip = SVC_POOL_GLOBAL;
85 	else if (!strncmp(val, "percpu", 6))
86 		*ip = SVC_POOL_PERCPU;
87 	else if (!strncmp(val, "pernode", 7))
88 		*ip = SVC_POOL_PERNODE;
89 	else
90 		err = -EINVAL;
91 
92 out:
93 	mutex_unlock(&svc_pool_map_mutex);
94 	return err;
95 }
96 
97 static int
98 param_get_pool_mode(char *buf, struct kernel_param *kp)
99 {
100 	int *ip = (int *)kp->arg;
101 
102 	switch (*ip)
103 	{
104 	case SVC_POOL_AUTO:
105 		return strlcpy(buf, "auto", 20);
106 	case SVC_POOL_GLOBAL:
107 		return strlcpy(buf, "global", 20);
108 	case SVC_POOL_PERCPU:
109 		return strlcpy(buf, "percpu", 20);
110 	case SVC_POOL_PERNODE:
111 		return strlcpy(buf, "pernode", 20);
112 	default:
113 		return sprintf(buf, "%d", *ip);
114 	}
115 }
116 
117 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
118 		 &svc_pool_map.mode, 0644);
119 
120 /*
121  * Detect best pool mapping mode heuristically,
122  * according to the machine's topology.
123  */
124 static int
125 svc_pool_map_choose_mode(void)
126 {
127 	unsigned int node;
128 
129 	if (nr_online_nodes > 1) {
130 		/*
131 		 * Actually have multiple NUMA nodes,
132 		 * so split pools on NUMA node boundaries
133 		 */
134 		return SVC_POOL_PERNODE;
135 	}
136 
137 	node = first_online_node;
138 	if (nr_cpus_node(node) > 2) {
139 		/*
140 		 * Non-trivial SMP, or CONFIG_NUMA on
141 		 * non-NUMA hardware, e.g. with a generic
142 		 * x86_64 kernel on Xeons.  In this case we
143 		 * want to divide the pools on cpu boundaries.
144 		 */
145 		return SVC_POOL_PERCPU;
146 	}
147 
148 	/* default: one global pool */
149 	return SVC_POOL_GLOBAL;
150 }
151 
152 /*
153  * Allocate the to_pool[] and pool_to[] arrays.
154  * Returns 0 on success or an errno.
155  */
156 static int
157 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
158 {
159 	m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
160 	if (!m->to_pool)
161 		goto fail;
162 	m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
163 	if (!m->pool_to)
164 		goto fail_free;
165 
166 	return 0;
167 
168 fail_free:
169 	kfree(m->to_pool);
170 	m->to_pool = NULL;
171 fail:
172 	return -ENOMEM;
173 }
174 
175 /*
176  * Initialise the pool map for SVC_POOL_PERCPU mode.
177  * Returns number of pools or <0 on error.
178  */
179 static int
180 svc_pool_map_init_percpu(struct svc_pool_map *m)
181 {
182 	unsigned int maxpools = nr_cpu_ids;
183 	unsigned int pidx = 0;
184 	unsigned int cpu;
185 	int err;
186 
187 	err = svc_pool_map_alloc_arrays(m, maxpools);
188 	if (err)
189 		return err;
190 
191 	for_each_online_cpu(cpu) {
192 		BUG_ON(pidx > maxpools);
193 		m->to_pool[cpu] = pidx;
194 		m->pool_to[pidx] = cpu;
195 		pidx++;
196 	}
197 	/* cpus brought online later all get mapped to pool0, sorry */
198 
199 	return pidx;
200 };
201 
202 
203 /*
204  * Initialise the pool map for SVC_POOL_PERNODE mode.
205  * Returns number of pools or <0 on error.
206  */
207 static int
208 svc_pool_map_init_pernode(struct svc_pool_map *m)
209 {
210 	unsigned int maxpools = nr_node_ids;
211 	unsigned int pidx = 0;
212 	unsigned int node;
213 	int err;
214 
215 	err = svc_pool_map_alloc_arrays(m, maxpools);
216 	if (err)
217 		return err;
218 
219 	for_each_node_with_cpus(node) {
220 		/* some architectures (e.g. SN2) have cpuless nodes */
221 		BUG_ON(pidx > maxpools);
222 		m->to_pool[node] = pidx;
223 		m->pool_to[pidx] = node;
224 		pidx++;
225 	}
226 	/* nodes brought online later all get mapped to pool0, sorry */
227 
228 	return pidx;
229 }
230 
231 
232 /*
233  * Add a reference to the global map of cpus to pools (and
234  * vice versa).  Initialise the map if we're the first user.
235  * Returns the number of pools.
236  */
237 static unsigned int
238 svc_pool_map_get(void)
239 {
240 	struct svc_pool_map *m = &svc_pool_map;
241 	int npools = -1;
242 
243 	mutex_lock(&svc_pool_map_mutex);
244 
245 	if (m->count++) {
246 		mutex_unlock(&svc_pool_map_mutex);
247 		return m->npools;
248 	}
249 
250 	if (m->mode == SVC_POOL_AUTO)
251 		m->mode = svc_pool_map_choose_mode();
252 
253 	switch (m->mode) {
254 	case SVC_POOL_PERCPU:
255 		npools = svc_pool_map_init_percpu(m);
256 		break;
257 	case SVC_POOL_PERNODE:
258 		npools = svc_pool_map_init_pernode(m);
259 		break;
260 	}
261 
262 	if (npools < 0) {
263 		/* default, or memory allocation failure */
264 		npools = 1;
265 		m->mode = SVC_POOL_GLOBAL;
266 	}
267 	m->npools = npools;
268 
269 	mutex_unlock(&svc_pool_map_mutex);
270 	return m->npools;
271 }
272 
273 
274 /*
275  * Drop a reference to the global map of cpus to pools.
276  * When the last reference is dropped, the map data is
277  * freed; this allows the sysadmin to change the pool
278  * mode using the pool_mode module option without
279  * rebooting or re-loading sunrpc.ko.
280  */
281 static void
282 svc_pool_map_put(void)
283 {
284 	struct svc_pool_map *m = &svc_pool_map;
285 
286 	mutex_lock(&svc_pool_map_mutex);
287 
288 	if (!--m->count) {
289 		kfree(m->to_pool);
290 		m->to_pool = NULL;
291 		kfree(m->pool_to);
292 		m->pool_to = NULL;
293 		m->npools = 0;
294 	}
295 
296 	mutex_unlock(&svc_pool_map_mutex);
297 }
298 
299 
300 static int svc_pool_map_get_node(unsigned int pidx)
301 {
302 	const struct svc_pool_map *m = &svc_pool_map;
303 
304 	if (m->count) {
305 		if (m->mode == SVC_POOL_PERCPU)
306 			return cpu_to_node(m->pool_to[pidx]);
307 		if (m->mode == SVC_POOL_PERNODE)
308 			return m->pool_to[pidx];
309 	}
310 	return NUMA_NO_NODE;
311 }
312 /*
313  * Set the given thread's cpus_allowed mask so that it
314  * will only run on cpus in the given pool.
315  */
316 static inline void
317 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
318 {
319 	struct svc_pool_map *m = &svc_pool_map;
320 	unsigned int node = m->pool_to[pidx];
321 
322 	/*
323 	 * The caller checks for sv_nrpools > 1, which
324 	 * implies that we've been initialized.
325 	 */
326 	WARN_ON_ONCE(m->count == 0);
327 	if (m->count == 0)
328 		return;
329 
330 	switch (m->mode) {
331 	case SVC_POOL_PERCPU:
332 	{
333 		set_cpus_allowed_ptr(task, cpumask_of(node));
334 		break;
335 	}
336 	case SVC_POOL_PERNODE:
337 	{
338 		set_cpus_allowed_ptr(task, cpumask_of_node(node));
339 		break;
340 	}
341 	}
342 }
343 
344 /*
345  * Use the mapping mode to choose a pool for a given CPU.
346  * Used when enqueueing an incoming RPC.  Always returns
347  * a non-NULL pool pointer.
348  */
349 struct svc_pool *
350 svc_pool_for_cpu(struct svc_serv *serv, int cpu)
351 {
352 	struct svc_pool_map *m = &svc_pool_map;
353 	unsigned int pidx = 0;
354 
355 	/*
356 	 * An uninitialised map happens in a pure client when
357 	 * lockd is brought up, so silently treat it the
358 	 * same as SVC_POOL_GLOBAL.
359 	 */
360 	if (svc_serv_is_pooled(serv)) {
361 		switch (m->mode) {
362 		case SVC_POOL_PERCPU:
363 			pidx = m->to_pool[cpu];
364 			break;
365 		case SVC_POOL_PERNODE:
366 			pidx = m->to_pool[cpu_to_node(cpu)];
367 			break;
368 		}
369 	}
370 	return &serv->sv_pools[pidx % serv->sv_nrpools];
371 }
372 
373 int svc_rpcb_setup(struct svc_serv *serv, struct net *net)
374 {
375 	int err;
376 
377 	err = rpcb_create_local(net);
378 	if (err)
379 		return err;
380 
381 	/* Remove any stale portmap registrations */
382 	svc_unregister(serv, net);
383 	return 0;
384 }
385 EXPORT_SYMBOL_GPL(svc_rpcb_setup);
386 
387 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net)
388 {
389 	svc_unregister(serv, net);
390 	rpcb_put_local(net);
391 }
392 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup);
393 
394 static int svc_uses_rpcbind(struct svc_serv *serv)
395 {
396 	struct svc_program	*progp;
397 	unsigned int		i;
398 
399 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
400 		for (i = 0; i < progp->pg_nvers; i++) {
401 			if (progp->pg_vers[i] == NULL)
402 				continue;
403 			if (progp->pg_vers[i]->vs_hidden == 0)
404 				return 1;
405 		}
406 	}
407 
408 	return 0;
409 }
410 
411 int svc_bind(struct svc_serv *serv, struct net *net)
412 {
413 	if (!svc_uses_rpcbind(serv))
414 		return 0;
415 	return svc_rpcb_setup(serv, net);
416 }
417 EXPORT_SYMBOL_GPL(svc_bind);
418 
419 /*
420  * Create an RPC service
421  */
422 static struct svc_serv *
423 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools,
424 	     void (*shutdown)(struct svc_serv *serv, struct net *net))
425 {
426 	struct svc_serv	*serv;
427 	unsigned int vers;
428 	unsigned int xdrsize;
429 	unsigned int i;
430 
431 	if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
432 		return NULL;
433 	serv->sv_name      = prog->pg_name;
434 	serv->sv_program   = prog;
435 	serv->sv_nrthreads = 1;
436 	serv->sv_stats     = prog->pg_stats;
437 	if (bufsize > RPCSVC_MAXPAYLOAD)
438 		bufsize = RPCSVC_MAXPAYLOAD;
439 	serv->sv_max_payload = bufsize? bufsize : 4096;
440 	serv->sv_max_mesg  = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
441 	serv->sv_shutdown  = shutdown;
442 	xdrsize = 0;
443 	while (prog) {
444 		prog->pg_lovers = prog->pg_nvers-1;
445 		for (vers=0; vers<prog->pg_nvers ; vers++)
446 			if (prog->pg_vers[vers]) {
447 				prog->pg_hivers = vers;
448 				if (prog->pg_lovers > vers)
449 					prog->pg_lovers = vers;
450 				if (prog->pg_vers[vers]->vs_xdrsize > xdrsize)
451 					xdrsize = prog->pg_vers[vers]->vs_xdrsize;
452 			}
453 		prog = prog->pg_next;
454 	}
455 	serv->sv_xdrsize   = xdrsize;
456 	INIT_LIST_HEAD(&serv->sv_tempsocks);
457 	INIT_LIST_HEAD(&serv->sv_permsocks);
458 	init_timer(&serv->sv_temptimer);
459 	spin_lock_init(&serv->sv_lock);
460 
461 	serv->sv_nrpools = npools;
462 	serv->sv_pools =
463 		kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
464 			GFP_KERNEL);
465 	if (!serv->sv_pools) {
466 		kfree(serv);
467 		return NULL;
468 	}
469 
470 	for (i = 0; i < serv->sv_nrpools; i++) {
471 		struct svc_pool *pool = &serv->sv_pools[i];
472 
473 		dprintk("svc: initialising pool %u for %s\n",
474 				i, serv->sv_name);
475 
476 		pool->sp_id = i;
477 		INIT_LIST_HEAD(&pool->sp_threads);
478 		INIT_LIST_HEAD(&pool->sp_sockets);
479 		INIT_LIST_HEAD(&pool->sp_all_threads);
480 		spin_lock_init(&pool->sp_lock);
481 	}
482 
483 	if (svc_uses_rpcbind(serv) && (!serv->sv_shutdown))
484 		serv->sv_shutdown = svc_rpcb_cleanup;
485 
486 	return serv;
487 }
488 
489 struct svc_serv *
490 svc_create(struct svc_program *prog, unsigned int bufsize,
491 	   void (*shutdown)(struct svc_serv *serv, struct net *net))
492 {
493 	return __svc_create(prog, bufsize, /*npools*/1, shutdown);
494 }
495 EXPORT_SYMBOL_GPL(svc_create);
496 
497 struct svc_serv *
498 svc_create_pooled(struct svc_program *prog, unsigned int bufsize,
499 		  void (*shutdown)(struct svc_serv *serv, struct net *net),
500 		  svc_thread_fn func, struct module *mod)
501 {
502 	struct svc_serv *serv;
503 	unsigned int npools = svc_pool_map_get();
504 
505 	serv = __svc_create(prog, bufsize, npools, shutdown);
506 
507 	if (serv != NULL) {
508 		serv->sv_function = func;
509 		serv->sv_module = mod;
510 	}
511 
512 	return serv;
513 }
514 EXPORT_SYMBOL_GPL(svc_create_pooled);
515 
516 void svc_shutdown_net(struct svc_serv *serv, struct net *net)
517 {
518 	/*
519 	 * The set of xprts (contained in the sv_tempsocks and
520 	 * sv_permsocks lists) is now constant, since it is modified
521 	 * only by accepting new sockets (done by service threads in
522 	 * svc_recv) or aging old ones (done by sv_temptimer), or
523 	 * configuration changes (excluded by whatever locking the
524 	 * caller is using--nfsd_mutex in the case of nfsd).  So it's
525 	 * safe to traverse those lists and shut everything down:
526 	 */
527 	svc_close_net(serv, net);
528 
529 	if (serv->sv_shutdown)
530 		serv->sv_shutdown(serv, net);
531 }
532 EXPORT_SYMBOL_GPL(svc_shutdown_net);
533 
534 /*
535  * Destroy an RPC service. Should be called with appropriate locking to
536  * protect the sv_nrthreads, sv_permsocks and sv_tempsocks.
537  */
538 void
539 svc_destroy(struct svc_serv *serv)
540 {
541 	dprintk("svc: svc_destroy(%s, %d)\n",
542 				serv->sv_program->pg_name,
543 				serv->sv_nrthreads);
544 
545 	if (serv->sv_nrthreads) {
546 		if (--(serv->sv_nrthreads) != 0) {
547 			svc_sock_update_bufs(serv);
548 			return;
549 		}
550 	} else
551 		printk("svc_destroy: no threads for serv=%p!\n", serv);
552 
553 	del_timer_sync(&serv->sv_temptimer);
554 
555 	/*
556 	 * The last user is gone and thus all sockets have to be destroyed to
557 	 * the point. Check this.
558 	 */
559 	BUG_ON(!list_empty(&serv->sv_permsocks));
560 	BUG_ON(!list_empty(&serv->sv_tempsocks));
561 
562 	cache_clean_deferred(serv);
563 
564 	if (svc_serv_is_pooled(serv))
565 		svc_pool_map_put();
566 
567 	kfree(serv->sv_pools);
568 	kfree(serv);
569 }
570 EXPORT_SYMBOL_GPL(svc_destroy);
571 
572 /*
573  * Allocate an RPC server's buffer space.
574  * We allocate pages and place them in rq_argpages.
575  */
576 static int
577 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node)
578 {
579 	unsigned int pages, arghi;
580 
581 	/* bc_xprt uses fore channel allocated buffers */
582 	if (svc_is_backchannel(rqstp))
583 		return 1;
584 
585 	pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
586 				       * We assume one is at most one page
587 				       */
588 	arghi = 0;
589 	WARN_ON_ONCE(pages > RPCSVC_MAXPAGES);
590 	if (pages > RPCSVC_MAXPAGES)
591 		pages = RPCSVC_MAXPAGES;
592 	while (pages) {
593 		struct page *p = alloc_pages_node(node, GFP_KERNEL, 0);
594 		if (!p)
595 			break;
596 		rqstp->rq_pages[arghi++] = p;
597 		pages--;
598 	}
599 	return pages == 0;
600 }
601 
602 /*
603  * Release an RPC server buffer
604  */
605 static void
606 svc_release_buffer(struct svc_rqst *rqstp)
607 {
608 	unsigned int i;
609 
610 	for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++)
611 		if (rqstp->rq_pages[i])
612 			put_page(rqstp->rq_pages[i]);
613 }
614 
615 struct svc_rqst *
616 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node)
617 {
618 	struct svc_rqst	*rqstp;
619 
620 	rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node);
621 	if (!rqstp)
622 		goto out_enomem;
623 
624 	init_waitqueue_head(&rqstp->rq_wait);
625 
626 	serv->sv_nrthreads++;
627 	spin_lock_bh(&pool->sp_lock);
628 	pool->sp_nrthreads++;
629 	list_add(&rqstp->rq_all, &pool->sp_all_threads);
630 	spin_unlock_bh(&pool->sp_lock);
631 	rqstp->rq_server = serv;
632 	rqstp->rq_pool = pool;
633 
634 	rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
635 	if (!rqstp->rq_argp)
636 		goto out_thread;
637 
638 	rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
639 	if (!rqstp->rq_resp)
640 		goto out_thread;
641 
642 	if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node))
643 		goto out_thread;
644 
645 	return rqstp;
646 out_thread:
647 	svc_exit_thread(rqstp);
648 out_enomem:
649 	return ERR_PTR(-ENOMEM);
650 }
651 EXPORT_SYMBOL_GPL(svc_prepare_thread);
652 
653 /*
654  * Choose a pool in which to create a new thread, for svc_set_num_threads
655  */
656 static inline struct svc_pool *
657 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
658 {
659 	if (pool != NULL)
660 		return pool;
661 
662 	return &serv->sv_pools[(*state)++ % serv->sv_nrpools];
663 }
664 
665 /*
666  * Choose a thread to kill, for svc_set_num_threads
667  */
668 static inline struct task_struct *
669 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
670 {
671 	unsigned int i;
672 	struct task_struct *task = NULL;
673 
674 	if (pool != NULL) {
675 		spin_lock_bh(&pool->sp_lock);
676 	} else {
677 		/* choose a pool in round-robin fashion */
678 		for (i = 0; i < serv->sv_nrpools; i++) {
679 			pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
680 			spin_lock_bh(&pool->sp_lock);
681 			if (!list_empty(&pool->sp_all_threads))
682 				goto found_pool;
683 			spin_unlock_bh(&pool->sp_lock);
684 		}
685 		return NULL;
686 	}
687 
688 found_pool:
689 	if (!list_empty(&pool->sp_all_threads)) {
690 		struct svc_rqst *rqstp;
691 
692 		/*
693 		 * Remove from the pool->sp_all_threads list
694 		 * so we don't try to kill it again.
695 		 */
696 		rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all);
697 		list_del_init(&rqstp->rq_all);
698 		task = rqstp->rq_task;
699 	}
700 	spin_unlock_bh(&pool->sp_lock);
701 
702 	return task;
703 }
704 
705 /*
706  * Create or destroy enough new threads to make the number
707  * of threads the given number.  If `pool' is non-NULL, applies
708  * only to threads in that pool, otherwise round-robins between
709  * all pools.  Caller must ensure that mutual exclusion between this and
710  * server startup or shutdown.
711  *
712  * Destroying threads relies on the service threads filling in
713  * rqstp->rq_task, which only the nfs ones do.  Assumes the serv
714  * has been created using svc_create_pooled().
715  *
716  * Based on code that used to be in nfsd_svc() but tweaked
717  * to be pool-aware.
718  */
719 int
720 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
721 {
722 	struct svc_rqst	*rqstp;
723 	struct task_struct *task;
724 	struct svc_pool *chosen_pool;
725 	int error = 0;
726 	unsigned int state = serv->sv_nrthreads-1;
727 	int node;
728 
729 	if (pool == NULL) {
730 		/* The -1 assumes caller has done a svc_get() */
731 		nrservs -= (serv->sv_nrthreads-1);
732 	} else {
733 		spin_lock_bh(&pool->sp_lock);
734 		nrservs -= pool->sp_nrthreads;
735 		spin_unlock_bh(&pool->sp_lock);
736 	}
737 
738 	/* create new threads */
739 	while (nrservs > 0) {
740 		nrservs--;
741 		chosen_pool = choose_pool(serv, pool, &state);
742 
743 		node = svc_pool_map_get_node(chosen_pool->sp_id);
744 		rqstp = svc_prepare_thread(serv, chosen_pool, node);
745 		if (IS_ERR(rqstp)) {
746 			error = PTR_ERR(rqstp);
747 			break;
748 		}
749 
750 		__module_get(serv->sv_module);
751 		task = kthread_create_on_node(serv->sv_function, rqstp,
752 					      node, serv->sv_name);
753 		if (IS_ERR(task)) {
754 			error = PTR_ERR(task);
755 			module_put(serv->sv_module);
756 			svc_exit_thread(rqstp);
757 			break;
758 		}
759 
760 		rqstp->rq_task = task;
761 		if (serv->sv_nrpools > 1)
762 			svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
763 
764 		svc_sock_update_bufs(serv);
765 		wake_up_process(task);
766 	}
767 	/* destroy old threads */
768 	while (nrservs < 0 &&
769 	       (task = choose_victim(serv, pool, &state)) != NULL) {
770 		send_sig(SIGINT, task, 1);
771 		nrservs++;
772 	}
773 
774 	return error;
775 }
776 EXPORT_SYMBOL_GPL(svc_set_num_threads);
777 
778 /*
779  * Called from a server thread as it's exiting. Caller must hold the BKL or
780  * the "service mutex", whichever is appropriate for the service.
781  */
782 void
783 svc_exit_thread(struct svc_rqst *rqstp)
784 {
785 	struct svc_serv	*serv = rqstp->rq_server;
786 	struct svc_pool	*pool = rqstp->rq_pool;
787 
788 	svc_release_buffer(rqstp);
789 	kfree(rqstp->rq_resp);
790 	kfree(rqstp->rq_argp);
791 	kfree(rqstp->rq_auth_data);
792 
793 	spin_lock_bh(&pool->sp_lock);
794 	pool->sp_nrthreads--;
795 	list_del(&rqstp->rq_all);
796 	spin_unlock_bh(&pool->sp_lock);
797 
798 	kfree(rqstp);
799 
800 	/* Release the server */
801 	if (serv)
802 		svc_destroy(serv);
803 }
804 EXPORT_SYMBOL_GPL(svc_exit_thread);
805 
806 /*
807  * Register an "inet" protocol family netid with the local
808  * rpcbind daemon via an rpcbind v4 SET request.
809  *
810  * No netconfig infrastructure is available in the kernel, so
811  * we map IP_ protocol numbers to netids by hand.
812  *
813  * Returns zero on success; a negative errno value is returned
814  * if any error occurs.
815  */
816 static int __svc_rpcb_register4(struct net *net, const u32 program,
817 				const u32 version,
818 				const unsigned short protocol,
819 				const unsigned short port)
820 {
821 	const struct sockaddr_in sin = {
822 		.sin_family		= AF_INET,
823 		.sin_addr.s_addr	= htonl(INADDR_ANY),
824 		.sin_port		= htons(port),
825 	};
826 	const char *netid;
827 	int error;
828 
829 	switch (protocol) {
830 	case IPPROTO_UDP:
831 		netid = RPCBIND_NETID_UDP;
832 		break;
833 	case IPPROTO_TCP:
834 		netid = RPCBIND_NETID_TCP;
835 		break;
836 	default:
837 		return -ENOPROTOOPT;
838 	}
839 
840 	error = rpcb_v4_register(net, program, version,
841 					(const struct sockaddr *)&sin, netid);
842 
843 	/*
844 	 * User space didn't support rpcbind v4, so retry this
845 	 * registration request with the legacy rpcbind v2 protocol.
846 	 */
847 	if (error == -EPROTONOSUPPORT)
848 		error = rpcb_register(net, program, version, protocol, port);
849 
850 	return error;
851 }
852 
853 #if IS_ENABLED(CONFIG_IPV6)
854 /*
855  * Register an "inet6" protocol family netid with the local
856  * rpcbind daemon via an rpcbind v4 SET request.
857  *
858  * No netconfig infrastructure is available in the kernel, so
859  * we map IP_ protocol numbers to netids by hand.
860  *
861  * Returns zero on success; a negative errno value is returned
862  * if any error occurs.
863  */
864 static int __svc_rpcb_register6(struct net *net, const u32 program,
865 				const u32 version,
866 				const unsigned short protocol,
867 				const unsigned short port)
868 {
869 	const struct sockaddr_in6 sin6 = {
870 		.sin6_family		= AF_INET6,
871 		.sin6_addr		= IN6ADDR_ANY_INIT,
872 		.sin6_port		= htons(port),
873 	};
874 	const char *netid;
875 	int error;
876 
877 	switch (protocol) {
878 	case IPPROTO_UDP:
879 		netid = RPCBIND_NETID_UDP6;
880 		break;
881 	case IPPROTO_TCP:
882 		netid = RPCBIND_NETID_TCP6;
883 		break;
884 	default:
885 		return -ENOPROTOOPT;
886 	}
887 
888 	error = rpcb_v4_register(net, program, version,
889 					(const struct sockaddr *)&sin6, netid);
890 
891 	/*
892 	 * User space didn't support rpcbind version 4, so we won't
893 	 * use a PF_INET6 listener.
894 	 */
895 	if (error == -EPROTONOSUPPORT)
896 		error = -EAFNOSUPPORT;
897 
898 	return error;
899 }
900 #endif	/* IS_ENABLED(CONFIG_IPV6) */
901 
902 /*
903  * Register a kernel RPC service via rpcbind version 4.
904  *
905  * Returns zero on success; a negative errno value is returned
906  * if any error occurs.
907  */
908 static int __svc_register(struct net *net, const char *progname,
909 			  const u32 program, const u32 version,
910 			  const int family,
911 			  const unsigned short protocol,
912 			  const unsigned short port)
913 {
914 	int error = -EAFNOSUPPORT;
915 
916 	switch (family) {
917 	case PF_INET:
918 		error = __svc_rpcb_register4(net, program, version,
919 						protocol, port);
920 		break;
921 #if IS_ENABLED(CONFIG_IPV6)
922 	case PF_INET6:
923 		error = __svc_rpcb_register6(net, program, version,
924 						protocol, port);
925 #endif
926 	}
927 
928 	if (error < 0)
929 		printk(KERN_WARNING "svc: failed to register %sv%u RPC "
930 			"service (errno %d).\n", progname, version, -error);
931 	return error;
932 }
933 
934 /**
935  * svc_register - register an RPC service with the local portmapper
936  * @serv: svc_serv struct for the service to register
937  * @net: net namespace for the service to register
938  * @family: protocol family of service's listener socket
939  * @proto: transport protocol number to advertise
940  * @port: port to advertise
941  *
942  * Service is registered for any address in the passed-in protocol family
943  */
944 int svc_register(const struct svc_serv *serv, struct net *net,
945 		 const int family, const unsigned short proto,
946 		 const unsigned short port)
947 {
948 	struct svc_program	*progp;
949 	unsigned int		i;
950 	int			error = 0;
951 
952 	WARN_ON_ONCE(proto == 0 && port == 0);
953 	if (proto == 0 && port == 0)
954 		return -EINVAL;
955 
956 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
957 		for (i = 0; i < progp->pg_nvers; i++) {
958 			if (progp->pg_vers[i] == NULL)
959 				continue;
960 
961 			dprintk("svc: svc_register(%sv%d, %s, %u, %u)%s\n",
962 					progp->pg_name,
963 					i,
964 					proto == IPPROTO_UDP?  "udp" : "tcp",
965 					port,
966 					family,
967 					progp->pg_vers[i]->vs_hidden?
968 						" (but not telling portmap)" : "");
969 
970 			if (progp->pg_vers[i]->vs_hidden)
971 				continue;
972 
973 			error = __svc_register(net, progp->pg_name, progp->pg_prog,
974 						i, family, proto, port);
975 			if (error < 0)
976 				break;
977 		}
978 	}
979 
980 	return error;
981 }
982 
983 /*
984  * If user space is running rpcbind, it should take the v4 UNSET
985  * and clear everything for this [program, version].  If user space
986  * is running portmap, it will reject the v4 UNSET, but won't have
987  * any "inet6" entries anyway.  So a PMAP_UNSET should be sufficient
988  * in this case to clear all existing entries for [program, version].
989  */
990 static void __svc_unregister(struct net *net, const u32 program, const u32 version,
991 			     const char *progname)
992 {
993 	int error;
994 
995 	error = rpcb_v4_register(net, program, version, NULL, "");
996 
997 	/*
998 	 * User space didn't support rpcbind v4, so retry this
999 	 * request with the legacy rpcbind v2 protocol.
1000 	 */
1001 	if (error == -EPROTONOSUPPORT)
1002 		error = rpcb_register(net, program, version, 0, 0);
1003 
1004 	dprintk("svc: %s(%sv%u), error %d\n",
1005 			__func__, progname, version, error);
1006 }
1007 
1008 /*
1009  * All netids, bind addresses and ports registered for [program, version]
1010  * are removed from the local rpcbind database (if the service is not
1011  * hidden) to make way for a new instance of the service.
1012  *
1013  * The result of unregistration is reported via dprintk for those who want
1014  * verification of the result, but is otherwise not important.
1015  */
1016 static void svc_unregister(const struct svc_serv *serv, struct net *net)
1017 {
1018 	struct svc_program *progp;
1019 	unsigned long flags;
1020 	unsigned int i;
1021 
1022 	clear_thread_flag(TIF_SIGPENDING);
1023 
1024 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1025 		for (i = 0; i < progp->pg_nvers; i++) {
1026 			if (progp->pg_vers[i] == NULL)
1027 				continue;
1028 			if (progp->pg_vers[i]->vs_hidden)
1029 				continue;
1030 
1031 			dprintk("svc: attempting to unregister %sv%u\n",
1032 				progp->pg_name, i);
1033 			__svc_unregister(net, progp->pg_prog, i, progp->pg_name);
1034 		}
1035 	}
1036 
1037 	spin_lock_irqsave(&current->sighand->siglock, flags);
1038 	recalc_sigpending();
1039 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
1040 }
1041 
1042 /*
1043  * dprintk the given error with the address of the client that caused it.
1044  */
1045 static __printf(2, 3)
1046 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
1047 {
1048 	struct va_format vaf;
1049 	va_list args;
1050 	char 	buf[RPC_MAX_ADDRBUFLEN];
1051 
1052 	va_start(args, fmt);
1053 
1054 	vaf.fmt = fmt;
1055 	vaf.va = &args;
1056 
1057 	dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf);
1058 
1059 	va_end(args);
1060 }
1061 
1062 /*
1063  * Common routine for processing the RPC request.
1064  */
1065 static int
1066 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv)
1067 {
1068 	struct svc_program	*progp;
1069 	struct svc_version	*versp = NULL;	/* compiler food */
1070 	struct svc_procedure	*procp = NULL;
1071 	struct svc_serv		*serv = rqstp->rq_server;
1072 	kxdrproc_t		xdr;
1073 	__be32			*statp;
1074 	u32			prog, vers, proc;
1075 	__be32			auth_stat, rpc_stat;
1076 	int			auth_res;
1077 	__be32			*reply_statp;
1078 
1079 	rpc_stat = rpc_success;
1080 
1081 	if (argv->iov_len < 6*4)
1082 		goto err_short_len;
1083 
1084 	/* Will be turned off only in gss privacy case: */
1085 	rqstp->rq_splice_ok = 1;
1086 	/* Will be turned off only when NFSv4 Sessions are used */
1087 	rqstp->rq_usedeferral = 1;
1088 	rqstp->rq_dropme = false;
1089 
1090 	/* Setup reply header */
1091 	rqstp->rq_xprt->xpt_ops->xpo_prep_reply_hdr(rqstp);
1092 
1093 	svc_putu32(resv, rqstp->rq_xid);
1094 
1095 	vers = svc_getnl(argv);
1096 
1097 	/* First words of reply: */
1098 	svc_putnl(resv, 1);		/* REPLY */
1099 
1100 	if (vers != 2)		/* RPC version number */
1101 		goto err_bad_rpc;
1102 
1103 	/* Save position in case we later decide to reject: */
1104 	reply_statp = resv->iov_base + resv->iov_len;
1105 
1106 	svc_putnl(resv, 0);		/* ACCEPT */
1107 
1108 	rqstp->rq_prog = prog = svc_getnl(argv);	/* program number */
1109 	rqstp->rq_vers = vers = svc_getnl(argv);	/* version number */
1110 	rqstp->rq_proc = proc = svc_getnl(argv);	/* procedure number */
1111 
1112 	progp = serv->sv_program;
1113 
1114 	for (progp = serv->sv_program; progp; progp = progp->pg_next)
1115 		if (prog == progp->pg_prog)
1116 			break;
1117 
1118 	/*
1119 	 * Decode auth data, and add verifier to reply buffer.
1120 	 * We do this before anything else in order to get a decent
1121 	 * auth verifier.
1122 	 */
1123 	auth_res = svc_authenticate(rqstp, &auth_stat);
1124 	/* Also give the program a chance to reject this call: */
1125 	if (auth_res == SVC_OK && progp) {
1126 		auth_stat = rpc_autherr_badcred;
1127 		auth_res = progp->pg_authenticate(rqstp);
1128 	}
1129 	switch (auth_res) {
1130 	case SVC_OK:
1131 		break;
1132 	case SVC_GARBAGE:
1133 		goto err_garbage;
1134 	case SVC_SYSERR:
1135 		rpc_stat = rpc_system_err;
1136 		goto err_bad;
1137 	case SVC_DENIED:
1138 		goto err_bad_auth;
1139 	case SVC_CLOSE:
1140 		if (test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags))
1141 			svc_close_xprt(rqstp->rq_xprt);
1142 	case SVC_DROP:
1143 		goto dropit;
1144 	case SVC_COMPLETE:
1145 		goto sendit;
1146 	}
1147 
1148 	if (progp == NULL)
1149 		goto err_bad_prog;
1150 
1151 	if (vers >= progp->pg_nvers ||
1152 	  !(versp = progp->pg_vers[vers]))
1153 		goto err_bad_vers;
1154 
1155 	procp = versp->vs_proc + proc;
1156 	if (proc >= versp->vs_nproc || !procp->pc_func)
1157 		goto err_bad_proc;
1158 	rqstp->rq_procinfo = procp;
1159 
1160 	/* Syntactic check complete */
1161 	serv->sv_stats->rpccnt++;
1162 
1163 	/* Build the reply header. */
1164 	statp = resv->iov_base +resv->iov_len;
1165 	svc_putnl(resv, RPC_SUCCESS);
1166 
1167 	/* Bump per-procedure stats counter */
1168 	procp->pc_count++;
1169 
1170 	/* Initialize storage for argp and resp */
1171 	memset(rqstp->rq_argp, 0, procp->pc_argsize);
1172 	memset(rqstp->rq_resp, 0, procp->pc_ressize);
1173 
1174 	/* un-reserve some of the out-queue now that we have a
1175 	 * better idea of reply size
1176 	 */
1177 	if (procp->pc_xdrressize)
1178 		svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1179 
1180 	/* Call the function that processes the request. */
1181 	if (!versp->vs_dispatch) {
1182 		/* Decode arguments */
1183 		xdr = procp->pc_decode;
1184 		if (xdr && !xdr(rqstp, argv->iov_base, rqstp->rq_argp))
1185 			goto err_garbage;
1186 
1187 		*statp = procp->pc_func(rqstp, rqstp->rq_argp, rqstp->rq_resp);
1188 
1189 		/* Encode reply */
1190 		if (rqstp->rq_dropme) {
1191 			if (procp->pc_release)
1192 				procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1193 			goto dropit;
1194 		}
1195 		if (*statp == rpc_success &&
1196 		    (xdr = procp->pc_encode) &&
1197 		    !xdr(rqstp, resv->iov_base+resv->iov_len, rqstp->rq_resp)) {
1198 			dprintk("svc: failed to encode reply\n");
1199 			/* serv->sv_stats->rpcsystemerr++; */
1200 			*statp = rpc_system_err;
1201 		}
1202 	} else {
1203 		dprintk("svc: calling dispatcher\n");
1204 		if (!versp->vs_dispatch(rqstp, statp)) {
1205 			/* Release reply info */
1206 			if (procp->pc_release)
1207 				procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1208 			goto dropit;
1209 		}
1210 	}
1211 
1212 	/* Check RPC status result */
1213 	if (*statp != rpc_success)
1214 		resv->iov_len = ((void*)statp)  - resv->iov_base + 4;
1215 
1216 	/* Release reply info */
1217 	if (procp->pc_release)
1218 		procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1219 
1220 	if (procp->pc_encode == NULL)
1221 		goto dropit;
1222 
1223  sendit:
1224 	if (svc_authorise(rqstp))
1225 		goto dropit;
1226 	return 1;		/* Caller can now send it */
1227 
1228  dropit:
1229 	svc_authorise(rqstp);	/* doesn't hurt to call this twice */
1230 	dprintk("svc: svc_process dropit\n");
1231 	return 0;
1232 
1233 err_short_len:
1234 	svc_printk(rqstp, "short len %Zd, dropping request\n",
1235 			argv->iov_len);
1236 
1237 	goto dropit;			/* drop request */
1238 
1239 err_bad_rpc:
1240 	serv->sv_stats->rpcbadfmt++;
1241 	svc_putnl(resv, 1);	/* REJECT */
1242 	svc_putnl(resv, 0);	/* RPC_MISMATCH */
1243 	svc_putnl(resv, 2);	/* Only RPCv2 supported */
1244 	svc_putnl(resv, 2);
1245 	goto sendit;
1246 
1247 err_bad_auth:
1248 	dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat));
1249 	serv->sv_stats->rpcbadauth++;
1250 	/* Restore write pointer to location of accept status: */
1251 	xdr_ressize_check(rqstp, reply_statp);
1252 	svc_putnl(resv, 1);	/* REJECT */
1253 	svc_putnl(resv, 1);	/* AUTH_ERROR */
1254 	svc_putnl(resv, ntohl(auth_stat));	/* status */
1255 	goto sendit;
1256 
1257 err_bad_prog:
1258 	dprintk("svc: unknown program %d\n", prog);
1259 	serv->sv_stats->rpcbadfmt++;
1260 	svc_putnl(resv, RPC_PROG_UNAVAIL);
1261 	goto sendit;
1262 
1263 err_bad_vers:
1264 	svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1265 		       vers, prog, progp->pg_name);
1266 
1267 	serv->sv_stats->rpcbadfmt++;
1268 	svc_putnl(resv, RPC_PROG_MISMATCH);
1269 	svc_putnl(resv, progp->pg_lovers);
1270 	svc_putnl(resv, progp->pg_hivers);
1271 	goto sendit;
1272 
1273 err_bad_proc:
1274 	svc_printk(rqstp, "unknown procedure (%d)\n", proc);
1275 
1276 	serv->sv_stats->rpcbadfmt++;
1277 	svc_putnl(resv, RPC_PROC_UNAVAIL);
1278 	goto sendit;
1279 
1280 err_garbage:
1281 	svc_printk(rqstp, "failed to decode args\n");
1282 
1283 	rpc_stat = rpc_garbage_args;
1284 err_bad:
1285 	serv->sv_stats->rpcbadfmt++;
1286 	svc_putnl(resv, ntohl(rpc_stat));
1287 	goto sendit;
1288 }
1289 EXPORT_SYMBOL_GPL(svc_process);
1290 
1291 /*
1292  * Process the RPC request.
1293  */
1294 int
1295 svc_process(struct svc_rqst *rqstp)
1296 {
1297 	struct kvec		*argv = &rqstp->rq_arg.head[0];
1298 	struct kvec		*resv = &rqstp->rq_res.head[0];
1299 	struct svc_serv		*serv = rqstp->rq_server;
1300 	u32			dir;
1301 
1302 	/*
1303 	 * Setup response xdr_buf.
1304 	 * Initially it has just one page
1305 	 */
1306 	rqstp->rq_next_page = &rqstp->rq_respages[1];
1307 	resv->iov_base = page_address(rqstp->rq_respages[0]);
1308 	resv->iov_len = 0;
1309 	rqstp->rq_res.pages = rqstp->rq_respages + 1;
1310 	rqstp->rq_res.len = 0;
1311 	rqstp->rq_res.page_base = 0;
1312 	rqstp->rq_res.page_len = 0;
1313 	rqstp->rq_res.buflen = PAGE_SIZE;
1314 	rqstp->rq_res.tail[0].iov_base = NULL;
1315 	rqstp->rq_res.tail[0].iov_len = 0;
1316 
1317 	rqstp->rq_xid = svc_getu32(argv);
1318 
1319 	dir  = svc_getnl(argv);
1320 	if (dir != 0) {
1321 		/* direction != CALL */
1322 		svc_printk(rqstp, "bad direction %d, dropping request\n", dir);
1323 		serv->sv_stats->rpcbadfmt++;
1324 		svc_drop(rqstp);
1325 		return 0;
1326 	}
1327 
1328 	/* Returns 1 for send, 0 for drop */
1329 	if (svc_process_common(rqstp, argv, resv))
1330 		return svc_send(rqstp);
1331 	else {
1332 		svc_drop(rqstp);
1333 		return 0;
1334 	}
1335 }
1336 
1337 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1338 /*
1339  * Process a backchannel RPC request that arrived over an existing
1340  * outbound connection
1341  */
1342 int
1343 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req,
1344 	       struct svc_rqst *rqstp)
1345 {
1346 	struct kvec	*argv = &rqstp->rq_arg.head[0];
1347 	struct kvec	*resv = &rqstp->rq_res.head[0];
1348 
1349 	/* Build the svc_rqst used by the common processing routine */
1350 	rqstp->rq_xprt = serv->sv_bc_xprt;
1351 	rqstp->rq_xid = req->rq_xid;
1352 	rqstp->rq_prot = req->rq_xprt->prot;
1353 	rqstp->rq_server = serv;
1354 
1355 	rqstp->rq_addrlen = sizeof(req->rq_xprt->addr);
1356 	memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen);
1357 	memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg));
1358 	memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res));
1359 
1360 	/* reset result send buffer "put" position */
1361 	resv->iov_len = 0;
1362 
1363 	if (rqstp->rq_prot != IPPROTO_TCP) {
1364 		printk(KERN_ERR "No support for Non-TCP transports!\n");
1365 		BUG();
1366 	}
1367 
1368 	/*
1369 	 * Skip the next two words because they've already been
1370 	 * processed in the trasport
1371 	 */
1372 	svc_getu32(argv);	/* XID */
1373 	svc_getnl(argv);	/* CALLDIR */
1374 
1375 	/* Returns 1 for send, 0 for drop */
1376 	if (svc_process_common(rqstp, argv, resv)) {
1377 		memcpy(&req->rq_snd_buf, &rqstp->rq_res,
1378 						sizeof(req->rq_snd_buf));
1379 		return bc_send(req);
1380 	} else {
1381 		/* drop request */
1382 		xprt_free_bc_request(req);
1383 		return 0;
1384 	}
1385 }
1386 EXPORT_SYMBOL_GPL(bc_svc_process);
1387 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1388 
1389 /*
1390  * Return (transport-specific) limit on the rpc payload.
1391  */
1392 u32 svc_max_payload(const struct svc_rqst *rqstp)
1393 {
1394 	u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1395 
1396 	if (rqstp->rq_server->sv_max_payload < max)
1397 		max = rqstp->rq_server->sv_max_payload;
1398 	return max;
1399 }
1400 EXPORT_SYMBOL_GPL(svc_max_payload);
1401