1 /* 2 * linux/net/sunrpc/svc.c 3 * 4 * High-level RPC service routines 5 * 6 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 7 * 8 * Multiple threads pools and NUMAisation 9 * Copyright (c) 2006 Silicon Graphics, Inc. 10 * by Greg Banks <gnb@melbourne.sgi.com> 11 */ 12 13 #include <linux/linkage.h> 14 #include <linux/sched.h> 15 #include <linux/errno.h> 16 #include <linux/net.h> 17 #include <linux/in.h> 18 #include <linux/mm.h> 19 #include <linux/interrupt.h> 20 #include <linux/module.h> 21 #include <linux/kthread.h> 22 #include <linux/slab.h> 23 24 #include <linux/sunrpc/types.h> 25 #include <linux/sunrpc/xdr.h> 26 #include <linux/sunrpc/stats.h> 27 #include <linux/sunrpc/svcsock.h> 28 #include <linux/sunrpc/clnt.h> 29 #include <linux/sunrpc/bc_xprt.h> 30 31 #define RPCDBG_FACILITY RPCDBG_SVCDSP 32 33 static void svc_unregister(const struct svc_serv *serv); 34 35 #define svc_serv_is_pooled(serv) ((serv)->sv_function) 36 37 /* 38 * Mode for mapping cpus to pools. 39 */ 40 enum { 41 SVC_POOL_AUTO = -1, /* choose one of the others */ 42 SVC_POOL_GLOBAL, /* no mapping, just a single global pool 43 * (legacy & UP mode) */ 44 SVC_POOL_PERCPU, /* one pool per cpu */ 45 SVC_POOL_PERNODE /* one pool per numa node */ 46 }; 47 #define SVC_POOL_DEFAULT SVC_POOL_GLOBAL 48 49 /* 50 * Structure for mapping cpus to pools and vice versa. 51 * Setup once during sunrpc initialisation. 52 */ 53 static struct svc_pool_map { 54 int count; /* How many svc_servs use us */ 55 int mode; /* Note: int not enum to avoid 56 * warnings about "enumeration value 57 * not handled in switch" */ 58 unsigned int npools; 59 unsigned int *pool_to; /* maps pool id to cpu or node */ 60 unsigned int *to_pool; /* maps cpu or node to pool id */ 61 } svc_pool_map = { 62 .count = 0, 63 .mode = SVC_POOL_DEFAULT 64 }; 65 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */ 66 67 static int 68 param_set_pool_mode(const char *val, struct kernel_param *kp) 69 { 70 int *ip = (int *)kp->arg; 71 struct svc_pool_map *m = &svc_pool_map; 72 int err; 73 74 mutex_lock(&svc_pool_map_mutex); 75 76 err = -EBUSY; 77 if (m->count) 78 goto out; 79 80 err = 0; 81 if (!strncmp(val, "auto", 4)) 82 *ip = SVC_POOL_AUTO; 83 else if (!strncmp(val, "global", 6)) 84 *ip = SVC_POOL_GLOBAL; 85 else if (!strncmp(val, "percpu", 6)) 86 *ip = SVC_POOL_PERCPU; 87 else if (!strncmp(val, "pernode", 7)) 88 *ip = SVC_POOL_PERNODE; 89 else 90 err = -EINVAL; 91 92 out: 93 mutex_unlock(&svc_pool_map_mutex); 94 return err; 95 } 96 97 static int 98 param_get_pool_mode(char *buf, struct kernel_param *kp) 99 { 100 int *ip = (int *)kp->arg; 101 102 switch (*ip) 103 { 104 case SVC_POOL_AUTO: 105 return strlcpy(buf, "auto", 20); 106 case SVC_POOL_GLOBAL: 107 return strlcpy(buf, "global", 20); 108 case SVC_POOL_PERCPU: 109 return strlcpy(buf, "percpu", 20); 110 case SVC_POOL_PERNODE: 111 return strlcpy(buf, "pernode", 20); 112 default: 113 return sprintf(buf, "%d", *ip); 114 } 115 } 116 117 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode, 118 &svc_pool_map.mode, 0644); 119 120 /* 121 * Detect best pool mapping mode heuristically, 122 * according to the machine's topology. 123 */ 124 static int 125 svc_pool_map_choose_mode(void) 126 { 127 unsigned int node; 128 129 if (nr_online_nodes > 1) { 130 /* 131 * Actually have multiple NUMA nodes, 132 * so split pools on NUMA node boundaries 133 */ 134 return SVC_POOL_PERNODE; 135 } 136 137 node = first_online_node; 138 if (nr_cpus_node(node) > 2) { 139 /* 140 * Non-trivial SMP, or CONFIG_NUMA on 141 * non-NUMA hardware, e.g. with a generic 142 * x86_64 kernel on Xeons. In this case we 143 * want to divide the pools on cpu boundaries. 144 */ 145 return SVC_POOL_PERCPU; 146 } 147 148 /* default: one global pool */ 149 return SVC_POOL_GLOBAL; 150 } 151 152 /* 153 * Allocate the to_pool[] and pool_to[] arrays. 154 * Returns 0 on success or an errno. 155 */ 156 static int 157 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools) 158 { 159 m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 160 if (!m->to_pool) 161 goto fail; 162 m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 163 if (!m->pool_to) 164 goto fail_free; 165 166 return 0; 167 168 fail_free: 169 kfree(m->to_pool); 170 m->to_pool = NULL; 171 fail: 172 return -ENOMEM; 173 } 174 175 /* 176 * Initialise the pool map for SVC_POOL_PERCPU mode. 177 * Returns number of pools or <0 on error. 178 */ 179 static int 180 svc_pool_map_init_percpu(struct svc_pool_map *m) 181 { 182 unsigned int maxpools = nr_cpu_ids; 183 unsigned int pidx = 0; 184 unsigned int cpu; 185 int err; 186 187 err = svc_pool_map_alloc_arrays(m, maxpools); 188 if (err) 189 return err; 190 191 for_each_online_cpu(cpu) { 192 BUG_ON(pidx > maxpools); 193 m->to_pool[cpu] = pidx; 194 m->pool_to[pidx] = cpu; 195 pidx++; 196 } 197 /* cpus brought online later all get mapped to pool0, sorry */ 198 199 return pidx; 200 }; 201 202 203 /* 204 * Initialise the pool map for SVC_POOL_PERNODE mode. 205 * Returns number of pools or <0 on error. 206 */ 207 static int 208 svc_pool_map_init_pernode(struct svc_pool_map *m) 209 { 210 unsigned int maxpools = nr_node_ids; 211 unsigned int pidx = 0; 212 unsigned int node; 213 int err; 214 215 err = svc_pool_map_alloc_arrays(m, maxpools); 216 if (err) 217 return err; 218 219 for_each_node_with_cpus(node) { 220 /* some architectures (e.g. SN2) have cpuless nodes */ 221 BUG_ON(pidx > maxpools); 222 m->to_pool[node] = pidx; 223 m->pool_to[pidx] = node; 224 pidx++; 225 } 226 /* nodes brought online later all get mapped to pool0, sorry */ 227 228 return pidx; 229 } 230 231 232 /* 233 * Add a reference to the global map of cpus to pools (and 234 * vice versa). Initialise the map if we're the first user. 235 * Returns the number of pools. 236 */ 237 static unsigned int 238 svc_pool_map_get(void) 239 { 240 struct svc_pool_map *m = &svc_pool_map; 241 int npools = -1; 242 243 mutex_lock(&svc_pool_map_mutex); 244 245 if (m->count++) { 246 mutex_unlock(&svc_pool_map_mutex); 247 return m->npools; 248 } 249 250 if (m->mode == SVC_POOL_AUTO) 251 m->mode = svc_pool_map_choose_mode(); 252 253 switch (m->mode) { 254 case SVC_POOL_PERCPU: 255 npools = svc_pool_map_init_percpu(m); 256 break; 257 case SVC_POOL_PERNODE: 258 npools = svc_pool_map_init_pernode(m); 259 break; 260 } 261 262 if (npools < 0) { 263 /* default, or memory allocation failure */ 264 npools = 1; 265 m->mode = SVC_POOL_GLOBAL; 266 } 267 m->npools = npools; 268 269 mutex_unlock(&svc_pool_map_mutex); 270 return m->npools; 271 } 272 273 274 /* 275 * Drop a reference to the global map of cpus to pools. 276 * When the last reference is dropped, the map data is 277 * freed; this allows the sysadmin to change the pool 278 * mode using the pool_mode module option without 279 * rebooting or re-loading sunrpc.ko. 280 */ 281 static void 282 svc_pool_map_put(void) 283 { 284 struct svc_pool_map *m = &svc_pool_map; 285 286 mutex_lock(&svc_pool_map_mutex); 287 288 if (!--m->count) { 289 kfree(m->to_pool); 290 m->to_pool = NULL; 291 kfree(m->pool_to); 292 m->pool_to = NULL; 293 m->npools = 0; 294 } 295 296 mutex_unlock(&svc_pool_map_mutex); 297 } 298 299 300 static int svc_pool_map_get_node(unsigned int pidx) 301 { 302 const struct svc_pool_map *m = &svc_pool_map; 303 304 if (m->count) { 305 if (m->mode == SVC_POOL_PERCPU) 306 return cpu_to_node(m->pool_to[pidx]); 307 if (m->mode == SVC_POOL_PERNODE) 308 return m->pool_to[pidx]; 309 } 310 return NUMA_NO_NODE; 311 } 312 /* 313 * Set the given thread's cpus_allowed mask so that it 314 * will only run on cpus in the given pool. 315 */ 316 static inline void 317 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx) 318 { 319 struct svc_pool_map *m = &svc_pool_map; 320 unsigned int node = m->pool_to[pidx]; 321 322 /* 323 * The caller checks for sv_nrpools > 1, which 324 * implies that we've been initialized. 325 */ 326 BUG_ON(m->count == 0); 327 328 switch (m->mode) { 329 case SVC_POOL_PERCPU: 330 { 331 set_cpus_allowed_ptr(task, cpumask_of(node)); 332 break; 333 } 334 case SVC_POOL_PERNODE: 335 { 336 set_cpus_allowed_ptr(task, cpumask_of_node(node)); 337 break; 338 } 339 } 340 } 341 342 /* 343 * Use the mapping mode to choose a pool for a given CPU. 344 * Used when enqueueing an incoming RPC. Always returns 345 * a non-NULL pool pointer. 346 */ 347 struct svc_pool * 348 svc_pool_for_cpu(struct svc_serv *serv, int cpu) 349 { 350 struct svc_pool_map *m = &svc_pool_map; 351 unsigned int pidx = 0; 352 353 /* 354 * An uninitialised map happens in a pure client when 355 * lockd is brought up, so silently treat it the 356 * same as SVC_POOL_GLOBAL. 357 */ 358 if (svc_serv_is_pooled(serv)) { 359 switch (m->mode) { 360 case SVC_POOL_PERCPU: 361 pidx = m->to_pool[cpu]; 362 break; 363 case SVC_POOL_PERNODE: 364 pidx = m->to_pool[cpu_to_node(cpu)]; 365 break; 366 } 367 } 368 return &serv->sv_pools[pidx % serv->sv_nrpools]; 369 } 370 371 static int svc_rpcb_setup(struct svc_serv *serv) 372 { 373 int err; 374 375 err = rpcb_create_local(); 376 if (err) 377 return err; 378 379 /* Remove any stale portmap registrations */ 380 svc_unregister(serv); 381 return 0; 382 } 383 384 void svc_rpcb_cleanup(struct svc_serv *serv) 385 { 386 svc_unregister(serv); 387 rpcb_put_local(); 388 } 389 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup); 390 391 static int svc_uses_rpcbind(struct svc_serv *serv) 392 { 393 struct svc_program *progp; 394 unsigned int i; 395 396 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 397 for (i = 0; i < progp->pg_nvers; i++) { 398 if (progp->pg_vers[i] == NULL) 399 continue; 400 if (progp->pg_vers[i]->vs_hidden == 0) 401 return 1; 402 } 403 } 404 405 return 0; 406 } 407 408 /* 409 * Create an RPC service 410 */ 411 static struct svc_serv * 412 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools, 413 void (*shutdown)(struct svc_serv *serv)) 414 { 415 struct svc_serv *serv; 416 unsigned int vers; 417 unsigned int xdrsize; 418 unsigned int i; 419 420 if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL))) 421 return NULL; 422 serv->sv_name = prog->pg_name; 423 serv->sv_program = prog; 424 serv->sv_nrthreads = 1; 425 serv->sv_stats = prog->pg_stats; 426 if (bufsize > RPCSVC_MAXPAYLOAD) 427 bufsize = RPCSVC_MAXPAYLOAD; 428 serv->sv_max_payload = bufsize? bufsize : 4096; 429 serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE); 430 serv->sv_shutdown = shutdown; 431 xdrsize = 0; 432 while (prog) { 433 prog->pg_lovers = prog->pg_nvers-1; 434 for (vers=0; vers<prog->pg_nvers ; vers++) 435 if (prog->pg_vers[vers]) { 436 prog->pg_hivers = vers; 437 if (prog->pg_lovers > vers) 438 prog->pg_lovers = vers; 439 if (prog->pg_vers[vers]->vs_xdrsize > xdrsize) 440 xdrsize = prog->pg_vers[vers]->vs_xdrsize; 441 } 442 prog = prog->pg_next; 443 } 444 serv->sv_xdrsize = xdrsize; 445 INIT_LIST_HEAD(&serv->sv_tempsocks); 446 INIT_LIST_HEAD(&serv->sv_permsocks); 447 init_timer(&serv->sv_temptimer); 448 spin_lock_init(&serv->sv_lock); 449 450 serv->sv_nrpools = npools; 451 serv->sv_pools = 452 kcalloc(serv->sv_nrpools, sizeof(struct svc_pool), 453 GFP_KERNEL); 454 if (!serv->sv_pools) { 455 kfree(serv); 456 return NULL; 457 } 458 459 for (i = 0; i < serv->sv_nrpools; i++) { 460 struct svc_pool *pool = &serv->sv_pools[i]; 461 462 dprintk("svc: initialising pool %u for %s\n", 463 i, serv->sv_name); 464 465 pool->sp_id = i; 466 INIT_LIST_HEAD(&pool->sp_threads); 467 INIT_LIST_HEAD(&pool->sp_sockets); 468 INIT_LIST_HEAD(&pool->sp_all_threads); 469 spin_lock_init(&pool->sp_lock); 470 } 471 472 if (svc_uses_rpcbind(serv)) { 473 if (svc_rpcb_setup(serv) < 0) { 474 kfree(serv->sv_pools); 475 kfree(serv); 476 return NULL; 477 } 478 if (!serv->sv_shutdown) 479 serv->sv_shutdown = svc_rpcb_cleanup; 480 } 481 482 return serv; 483 } 484 485 struct svc_serv * 486 svc_create(struct svc_program *prog, unsigned int bufsize, 487 void (*shutdown)(struct svc_serv *serv)) 488 { 489 return __svc_create(prog, bufsize, /*npools*/1, shutdown); 490 } 491 EXPORT_SYMBOL_GPL(svc_create); 492 493 struct svc_serv * 494 svc_create_pooled(struct svc_program *prog, unsigned int bufsize, 495 void (*shutdown)(struct svc_serv *serv), 496 svc_thread_fn func, struct module *mod) 497 { 498 struct svc_serv *serv; 499 unsigned int npools = svc_pool_map_get(); 500 501 serv = __svc_create(prog, bufsize, npools, shutdown); 502 503 if (serv != NULL) { 504 serv->sv_function = func; 505 serv->sv_module = mod; 506 } 507 508 return serv; 509 } 510 EXPORT_SYMBOL_GPL(svc_create_pooled); 511 512 /* 513 * Destroy an RPC service. Should be called with appropriate locking to 514 * protect the sv_nrthreads, sv_permsocks and sv_tempsocks. 515 */ 516 void 517 svc_destroy(struct svc_serv *serv) 518 { 519 dprintk("svc: svc_destroy(%s, %d)\n", 520 serv->sv_program->pg_name, 521 serv->sv_nrthreads); 522 523 if (serv->sv_nrthreads) { 524 if (--(serv->sv_nrthreads) != 0) { 525 svc_sock_update_bufs(serv); 526 return; 527 } 528 } else 529 printk("svc_destroy: no threads for serv=%p!\n", serv); 530 531 del_timer_sync(&serv->sv_temptimer); 532 /* 533 * The set of xprts (contained in the sv_tempsocks and 534 * sv_permsocks lists) is now constant, since it is modified 535 * only by accepting new sockets (done by service threads in 536 * svc_recv) or aging old ones (done by sv_temptimer), or 537 * configuration changes (excluded by whatever locking the 538 * caller is using--nfsd_mutex in the case of nfsd). So it's 539 * safe to traverse those lists and shut everything down: 540 */ 541 svc_close_all(serv); 542 543 if (serv->sv_shutdown) 544 serv->sv_shutdown(serv); 545 546 cache_clean_deferred(serv); 547 548 if (svc_serv_is_pooled(serv)) 549 svc_pool_map_put(); 550 551 kfree(serv->sv_pools); 552 kfree(serv); 553 } 554 EXPORT_SYMBOL_GPL(svc_destroy); 555 556 /* 557 * Allocate an RPC server's buffer space. 558 * We allocate pages and place them in rq_argpages. 559 */ 560 static int 561 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node) 562 { 563 unsigned int pages, arghi; 564 565 /* bc_xprt uses fore channel allocated buffers */ 566 if (svc_is_backchannel(rqstp)) 567 return 1; 568 569 pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply. 570 * We assume one is at most one page 571 */ 572 arghi = 0; 573 BUG_ON(pages > RPCSVC_MAXPAGES); 574 while (pages) { 575 struct page *p = alloc_pages_node(node, GFP_KERNEL, 0); 576 if (!p) 577 break; 578 rqstp->rq_pages[arghi++] = p; 579 pages--; 580 } 581 return pages == 0; 582 } 583 584 /* 585 * Release an RPC server buffer 586 */ 587 static void 588 svc_release_buffer(struct svc_rqst *rqstp) 589 { 590 unsigned int i; 591 592 for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++) 593 if (rqstp->rq_pages[i]) 594 put_page(rqstp->rq_pages[i]); 595 } 596 597 struct svc_rqst * 598 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node) 599 { 600 struct svc_rqst *rqstp; 601 602 rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node); 603 if (!rqstp) 604 goto out_enomem; 605 606 init_waitqueue_head(&rqstp->rq_wait); 607 608 serv->sv_nrthreads++; 609 spin_lock_bh(&pool->sp_lock); 610 pool->sp_nrthreads++; 611 list_add(&rqstp->rq_all, &pool->sp_all_threads); 612 spin_unlock_bh(&pool->sp_lock); 613 rqstp->rq_server = serv; 614 rqstp->rq_pool = pool; 615 616 rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 617 if (!rqstp->rq_argp) 618 goto out_thread; 619 620 rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 621 if (!rqstp->rq_resp) 622 goto out_thread; 623 624 if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node)) 625 goto out_thread; 626 627 return rqstp; 628 out_thread: 629 svc_exit_thread(rqstp); 630 out_enomem: 631 return ERR_PTR(-ENOMEM); 632 } 633 EXPORT_SYMBOL_GPL(svc_prepare_thread); 634 635 /* 636 * Choose a pool in which to create a new thread, for svc_set_num_threads 637 */ 638 static inline struct svc_pool * 639 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 640 { 641 if (pool != NULL) 642 return pool; 643 644 return &serv->sv_pools[(*state)++ % serv->sv_nrpools]; 645 } 646 647 /* 648 * Choose a thread to kill, for svc_set_num_threads 649 */ 650 static inline struct task_struct * 651 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 652 { 653 unsigned int i; 654 struct task_struct *task = NULL; 655 656 if (pool != NULL) { 657 spin_lock_bh(&pool->sp_lock); 658 } else { 659 /* choose a pool in round-robin fashion */ 660 for (i = 0; i < serv->sv_nrpools; i++) { 661 pool = &serv->sv_pools[--(*state) % serv->sv_nrpools]; 662 spin_lock_bh(&pool->sp_lock); 663 if (!list_empty(&pool->sp_all_threads)) 664 goto found_pool; 665 spin_unlock_bh(&pool->sp_lock); 666 } 667 return NULL; 668 } 669 670 found_pool: 671 if (!list_empty(&pool->sp_all_threads)) { 672 struct svc_rqst *rqstp; 673 674 /* 675 * Remove from the pool->sp_all_threads list 676 * so we don't try to kill it again. 677 */ 678 rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all); 679 list_del_init(&rqstp->rq_all); 680 task = rqstp->rq_task; 681 } 682 spin_unlock_bh(&pool->sp_lock); 683 684 return task; 685 } 686 687 /* 688 * Create or destroy enough new threads to make the number 689 * of threads the given number. If `pool' is non-NULL, applies 690 * only to threads in that pool, otherwise round-robins between 691 * all pools. Caller must ensure that mutual exclusion between this and 692 * server startup or shutdown. 693 * 694 * Destroying threads relies on the service threads filling in 695 * rqstp->rq_task, which only the nfs ones do. Assumes the serv 696 * has been created using svc_create_pooled(). 697 * 698 * Based on code that used to be in nfsd_svc() but tweaked 699 * to be pool-aware. 700 */ 701 int 702 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 703 { 704 struct svc_rqst *rqstp; 705 struct task_struct *task; 706 struct svc_pool *chosen_pool; 707 int error = 0; 708 unsigned int state = serv->sv_nrthreads-1; 709 int node; 710 711 if (pool == NULL) { 712 /* The -1 assumes caller has done a svc_get() */ 713 nrservs -= (serv->sv_nrthreads-1); 714 } else { 715 spin_lock_bh(&pool->sp_lock); 716 nrservs -= pool->sp_nrthreads; 717 spin_unlock_bh(&pool->sp_lock); 718 } 719 720 /* create new threads */ 721 while (nrservs > 0) { 722 nrservs--; 723 chosen_pool = choose_pool(serv, pool, &state); 724 725 node = svc_pool_map_get_node(chosen_pool->sp_id); 726 rqstp = svc_prepare_thread(serv, chosen_pool, node); 727 if (IS_ERR(rqstp)) { 728 error = PTR_ERR(rqstp); 729 break; 730 } 731 732 __module_get(serv->sv_module); 733 task = kthread_create_on_node(serv->sv_function, rqstp, 734 node, serv->sv_name); 735 if (IS_ERR(task)) { 736 error = PTR_ERR(task); 737 module_put(serv->sv_module); 738 svc_exit_thread(rqstp); 739 break; 740 } 741 742 rqstp->rq_task = task; 743 if (serv->sv_nrpools > 1) 744 svc_pool_map_set_cpumask(task, chosen_pool->sp_id); 745 746 svc_sock_update_bufs(serv); 747 wake_up_process(task); 748 } 749 /* destroy old threads */ 750 while (nrservs < 0 && 751 (task = choose_victim(serv, pool, &state)) != NULL) { 752 send_sig(SIGINT, task, 1); 753 nrservs++; 754 } 755 756 return error; 757 } 758 EXPORT_SYMBOL_GPL(svc_set_num_threads); 759 760 /* 761 * Called from a server thread as it's exiting. Caller must hold the BKL or 762 * the "service mutex", whichever is appropriate for the service. 763 */ 764 void 765 svc_exit_thread(struct svc_rqst *rqstp) 766 { 767 struct svc_serv *serv = rqstp->rq_server; 768 struct svc_pool *pool = rqstp->rq_pool; 769 770 svc_release_buffer(rqstp); 771 kfree(rqstp->rq_resp); 772 kfree(rqstp->rq_argp); 773 kfree(rqstp->rq_auth_data); 774 775 spin_lock_bh(&pool->sp_lock); 776 pool->sp_nrthreads--; 777 list_del(&rqstp->rq_all); 778 spin_unlock_bh(&pool->sp_lock); 779 780 kfree(rqstp); 781 782 /* Release the server */ 783 if (serv) 784 svc_destroy(serv); 785 } 786 EXPORT_SYMBOL_GPL(svc_exit_thread); 787 788 /* 789 * Register an "inet" protocol family netid with the local 790 * rpcbind daemon via an rpcbind v4 SET request. 791 * 792 * No netconfig infrastructure is available in the kernel, so 793 * we map IP_ protocol numbers to netids by hand. 794 * 795 * Returns zero on success; a negative errno value is returned 796 * if any error occurs. 797 */ 798 static int __svc_rpcb_register4(const u32 program, const u32 version, 799 const unsigned short protocol, 800 const unsigned short port) 801 { 802 const struct sockaddr_in sin = { 803 .sin_family = AF_INET, 804 .sin_addr.s_addr = htonl(INADDR_ANY), 805 .sin_port = htons(port), 806 }; 807 const char *netid; 808 int error; 809 810 switch (protocol) { 811 case IPPROTO_UDP: 812 netid = RPCBIND_NETID_UDP; 813 break; 814 case IPPROTO_TCP: 815 netid = RPCBIND_NETID_TCP; 816 break; 817 default: 818 return -ENOPROTOOPT; 819 } 820 821 error = rpcb_v4_register(program, version, 822 (const struct sockaddr *)&sin, netid); 823 824 /* 825 * User space didn't support rpcbind v4, so retry this 826 * registration request with the legacy rpcbind v2 protocol. 827 */ 828 if (error == -EPROTONOSUPPORT) 829 error = rpcb_register(program, version, protocol, port); 830 831 return error; 832 } 833 834 #if IS_ENABLED(CONFIG_IPV6) 835 /* 836 * Register an "inet6" protocol family netid with the local 837 * rpcbind daemon via an rpcbind v4 SET request. 838 * 839 * No netconfig infrastructure is available in the kernel, so 840 * we map IP_ protocol numbers to netids by hand. 841 * 842 * Returns zero on success; a negative errno value is returned 843 * if any error occurs. 844 */ 845 static int __svc_rpcb_register6(const u32 program, const u32 version, 846 const unsigned short protocol, 847 const unsigned short port) 848 { 849 const struct sockaddr_in6 sin6 = { 850 .sin6_family = AF_INET6, 851 .sin6_addr = IN6ADDR_ANY_INIT, 852 .sin6_port = htons(port), 853 }; 854 const char *netid; 855 int error; 856 857 switch (protocol) { 858 case IPPROTO_UDP: 859 netid = RPCBIND_NETID_UDP6; 860 break; 861 case IPPROTO_TCP: 862 netid = RPCBIND_NETID_TCP6; 863 break; 864 default: 865 return -ENOPROTOOPT; 866 } 867 868 error = rpcb_v4_register(program, version, 869 (const struct sockaddr *)&sin6, netid); 870 871 /* 872 * User space didn't support rpcbind version 4, so we won't 873 * use a PF_INET6 listener. 874 */ 875 if (error == -EPROTONOSUPPORT) 876 error = -EAFNOSUPPORT; 877 878 return error; 879 } 880 #endif /* IS_ENABLED(CONFIG_IPV6) */ 881 882 /* 883 * Register a kernel RPC service via rpcbind version 4. 884 * 885 * Returns zero on success; a negative errno value is returned 886 * if any error occurs. 887 */ 888 static int __svc_register(const char *progname, 889 const u32 program, const u32 version, 890 const int family, 891 const unsigned short protocol, 892 const unsigned short port) 893 { 894 int error = -EAFNOSUPPORT; 895 896 switch (family) { 897 case PF_INET: 898 error = __svc_rpcb_register4(program, version, 899 protocol, port); 900 break; 901 #if IS_ENABLED(CONFIG_IPV6) 902 case PF_INET6: 903 error = __svc_rpcb_register6(program, version, 904 protocol, port); 905 #endif 906 } 907 908 if (error < 0) 909 printk(KERN_WARNING "svc: failed to register %sv%u RPC " 910 "service (errno %d).\n", progname, version, -error); 911 return error; 912 } 913 914 /** 915 * svc_register - register an RPC service with the local portmapper 916 * @serv: svc_serv struct for the service to register 917 * @family: protocol family of service's listener socket 918 * @proto: transport protocol number to advertise 919 * @port: port to advertise 920 * 921 * Service is registered for any address in the passed-in protocol family 922 */ 923 int svc_register(const struct svc_serv *serv, const int family, 924 const unsigned short proto, const unsigned short port) 925 { 926 struct svc_program *progp; 927 unsigned int i; 928 int error = 0; 929 930 BUG_ON(proto == 0 && port == 0); 931 932 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 933 for (i = 0; i < progp->pg_nvers; i++) { 934 if (progp->pg_vers[i] == NULL) 935 continue; 936 937 dprintk("svc: svc_register(%sv%d, %s, %u, %u)%s\n", 938 progp->pg_name, 939 i, 940 proto == IPPROTO_UDP? "udp" : "tcp", 941 port, 942 family, 943 progp->pg_vers[i]->vs_hidden? 944 " (but not telling portmap)" : ""); 945 946 if (progp->pg_vers[i]->vs_hidden) 947 continue; 948 949 error = __svc_register(progp->pg_name, progp->pg_prog, 950 i, family, proto, port); 951 if (error < 0) 952 break; 953 } 954 } 955 956 return error; 957 } 958 959 /* 960 * If user space is running rpcbind, it should take the v4 UNSET 961 * and clear everything for this [program, version]. If user space 962 * is running portmap, it will reject the v4 UNSET, but won't have 963 * any "inet6" entries anyway. So a PMAP_UNSET should be sufficient 964 * in this case to clear all existing entries for [program, version]. 965 */ 966 static void __svc_unregister(const u32 program, const u32 version, 967 const char *progname) 968 { 969 int error; 970 971 error = rpcb_v4_register(program, version, NULL, ""); 972 973 /* 974 * User space didn't support rpcbind v4, so retry this 975 * request with the legacy rpcbind v2 protocol. 976 */ 977 if (error == -EPROTONOSUPPORT) 978 error = rpcb_register(program, version, 0, 0); 979 980 dprintk("svc: %s(%sv%u), error %d\n", 981 __func__, progname, version, error); 982 } 983 984 /* 985 * All netids, bind addresses and ports registered for [program, version] 986 * are removed from the local rpcbind database (if the service is not 987 * hidden) to make way for a new instance of the service. 988 * 989 * The result of unregistration is reported via dprintk for those who want 990 * verification of the result, but is otherwise not important. 991 */ 992 static void svc_unregister(const struct svc_serv *serv) 993 { 994 struct svc_program *progp; 995 unsigned long flags; 996 unsigned int i; 997 998 clear_thread_flag(TIF_SIGPENDING); 999 1000 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 1001 for (i = 0; i < progp->pg_nvers; i++) { 1002 if (progp->pg_vers[i] == NULL) 1003 continue; 1004 if (progp->pg_vers[i]->vs_hidden) 1005 continue; 1006 1007 dprintk("svc: attempting to unregister %sv%u\n", 1008 progp->pg_name, i); 1009 __svc_unregister(progp->pg_prog, i, progp->pg_name); 1010 } 1011 } 1012 1013 spin_lock_irqsave(¤t->sighand->siglock, flags); 1014 recalc_sigpending(); 1015 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 1016 } 1017 1018 /* 1019 * Printk the given error with the address of the client that caused it. 1020 */ 1021 static __printf(2, 3) 1022 int svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) 1023 { 1024 va_list args; 1025 int r; 1026 char buf[RPC_MAX_ADDRBUFLEN]; 1027 1028 if (!net_ratelimit()) 1029 return 0; 1030 1031 printk(KERN_WARNING "svc: %s: ", 1032 svc_print_addr(rqstp, buf, sizeof(buf))); 1033 1034 va_start(args, fmt); 1035 r = vprintk(fmt, args); 1036 va_end(args); 1037 1038 return r; 1039 } 1040 1041 /* 1042 * Common routine for processing the RPC request. 1043 */ 1044 static int 1045 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv) 1046 { 1047 struct svc_program *progp; 1048 struct svc_version *versp = NULL; /* compiler food */ 1049 struct svc_procedure *procp = NULL; 1050 struct svc_serv *serv = rqstp->rq_server; 1051 kxdrproc_t xdr; 1052 __be32 *statp; 1053 u32 prog, vers, proc; 1054 __be32 auth_stat, rpc_stat; 1055 int auth_res; 1056 __be32 *reply_statp; 1057 1058 rpc_stat = rpc_success; 1059 1060 if (argv->iov_len < 6*4) 1061 goto err_short_len; 1062 1063 /* Will be turned off only in gss privacy case: */ 1064 rqstp->rq_splice_ok = 1; 1065 /* Will be turned off only when NFSv4 Sessions are used */ 1066 rqstp->rq_usedeferral = 1; 1067 rqstp->rq_dropme = false; 1068 1069 /* Setup reply header */ 1070 rqstp->rq_xprt->xpt_ops->xpo_prep_reply_hdr(rqstp); 1071 1072 svc_putu32(resv, rqstp->rq_xid); 1073 1074 vers = svc_getnl(argv); 1075 1076 /* First words of reply: */ 1077 svc_putnl(resv, 1); /* REPLY */ 1078 1079 if (vers != 2) /* RPC version number */ 1080 goto err_bad_rpc; 1081 1082 /* Save position in case we later decide to reject: */ 1083 reply_statp = resv->iov_base + resv->iov_len; 1084 1085 svc_putnl(resv, 0); /* ACCEPT */ 1086 1087 rqstp->rq_prog = prog = svc_getnl(argv); /* program number */ 1088 rqstp->rq_vers = vers = svc_getnl(argv); /* version number */ 1089 rqstp->rq_proc = proc = svc_getnl(argv); /* procedure number */ 1090 1091 progp = serv->sv_program; 1092 1093 for (progp = serv->sv_program; progp; progp = progp->pg_next) 1094 if (prog == progp->pg_prog) 1095 break; 1096 1097 /* 1098 * Decode auth data, and add verifier to reply buffer. 1099 * We do this before anything else in order to get a decent 1100 * auth verifier. 1101 */ 1102 auth_res = svc_authenticate(rqstp, &auth_stat); 1103 /* Also give the program a chance to reject this call: */ 1104 if (auth_res == SVC_OK && progp) { 1105 auth_stat = rpc_autherr_badcred; 1106 auth_res = progp->pg_authenticate(rqstp); 1107 } 1108 switch (auth_res) { 1109 case SVC_OK: 1110 break; 1111 case SVC_GARBAGE: 1112 goto err_garbage; 1113 case SVC_SYSERR: 1114 rpc_stat = rpc_system_err; 1115 goto err_bad; 1116 case SVC_DENIED: 1117 goto err_bad_auth; 1118 case SVC_CLOSE: 1119 if (test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags)) 1120 svc_close_xprt(rqstp->rq_xprt); 1121 case SVC_DROP: 1122 goto dropit; 1123 case SVC_COMPLETE: 1124 goto sendit; 1125 } 1126 1127 if (progp == NULL) 1128 goto err_bad_prog; 1129 1130 if (vers >= progp->pg_nvers || 1131 !(versp = progp->pg_vers[vers])) 1132 goto err_bad_vers; 1133 1134 procp = versp->vs_proc + proc; 1135 if (proc >= versp->vs_nproc || !procp->pc_func) 1136 goto err_bad_proc; 1137 rqstp->rq_procinfo = procp; 1138 1139 /* Syntactic check complete */ 1140 serv->sv_stats->rpccnt++; 1141 1142 /* Build the reply header. */ 1143 statp = resv->iov_base +resv->iov_len; 1144 svc_putnl(resv, RPC_SUCCESS); 1145 1146 /* Bump per-procedure stats counter */ 1147 procp->pc_count++; 1148 1149 /* Initialize storage for argp and resp */ 1150 memset(rqstp->rq_argp, 0, procp->pc_argsize); 1151 memset(rqstp->rq_resp, 0, procp->pc_ressize); 1152 1153 /* un-reserve some of the out-queue now that we have a 1154 * better idea of reply size 1155 */ 1156 if (procp->pc_xdrressize) 1157 svc_reserve_auth(rqstp, procp->pc_xdrressize<<2); 1158 1159 /* Call the function that processes the request. */ 1160 if (!versp->vs_dispatch) { 1161 /* Decode arguments */ 1162 xdr = procp->pc_decode; 1163 if (xdr && !xdr(rqstp, argv->iov_base, rqstp->rq_argp)) 1164 goto err_garbage; 1165 1166 *statp = procp->pc_func(rqstp, rqstp->rq_argp, rqstp->rq_resp); 1167 1168 /* Encode reply */ 1169 if (rqstp->rq_dropme) { 1170 if (procp->pc_release) 1171 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1172 goto dropit; 1173 } 1174 if (*statp == rpc_success && 1175 (xdr = procp->pc_encode) && 1176 !xdr(rqstp, resv->iov_base+resv->iov_len, rqstp->rq_resp)) { 1177 dprintk("svc: failed to encode reply\n"); 1178 /* serv->sv_stats->rpcsystemerr++; */ 1179 *statp = rpc_system_err; 1180 } 1181 } else { 1182 dprintk("svc: calling dispatcher\n"); 1183 if (!versp->vs_dispatch(rqstp, statp)) { 1184 /* Release reply info */ 1185 if (procp->pc_release) 1186 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1187 goto dropit; 1188 } 1189 } 1190 1191 /* Check RPC status result */ 1192 if (*statp != rpc_success) 1193 resv->iov_len = ((void*)statp) - resv->iov_base + 4; 1194 1195 /* Release reply info */ 1196 if (procp->pc_release) 1197 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1198 1199 if (procp->pc_encode == NULL) 1200 goto dropit; 1201 1202 sendit: 1203 if (svc_authorise(rqstp)) 1204 goto dropit; 1205 return 1; /* Caller can now send it */ 1206 1207 dropit: 1208 svc_authorise(rqstp); /* doesn't hurt to call this twice */ 1209 dprintk("svc: svc_process dropit\n"); 1210 return 0; 1211 1212 err_short_len: 1213 svc_printk(rqstp, "short len %Zd, dropping request\n", 1214 argv->iov_len); 1215 1216 goto dropit; /* drop request */ 1217 1218 err_bad_rpc: 1219 serv->sv_stats->rpcbadfmt++; 1220 svc_putnl(resv, 1); /* REJECT */ 1221 svc_putnl(resv, 0); /* RPC_MISMATCH */ 1222 svc_putnl(resv, 2); /* Only RPCv2 supported */ 1223 svc_putnl(resv, 2); 1224 goto sendit; 1225 1226 err_bad_auth: 1227 dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat)); 1228 serv->sv_stats->rpcbadauth++; 1229 /* Restore write pointer to location of accept status: */ 1230 xdr_ressize_check(rqstp, reply_statp); 1231 svc_putnl(resv, 1); /* REJECT */ 1232 svc_putnl(resv, 1); /* AUTH_ERROR */ 1233 svc_putnl(resv, ntohl(auth_stat)); /* status */ 1234 goto sendit; 1235 1236 err_bad_prog: 1237 dprintk("svc: unknown program %d\n", prog); 1238 serv->sv_stats->rpcbadfmt++; 1239 svc_putnl(resv, RPC_PROG_UNAVAIL); 1240 goto sendit; 1241 1242 err_bad_vers: 1243 svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n", 1244 vers, prog, progp->pg_name); 1245 1246 serv->sv_stats->rpcbadfmt++; 1247 svc_putnl(resv, RPC_PROG_MISMATCH); 1248 svc_putnl(resv, progp->pg_lovers); 1249 svc_putnl(resv, progp->pg_hivers); 1250 goto sendit; 1251 1252 err_bad_proc: 1253 svc_printk(rqstp, "unknown procedure (%d)\n", proc); 1254 1255 serv->sv_stats->rpcbadfmt++; 1256 svc_putnl(resv, RPC_PROC_UNAVAIL); 1257 goto sendit; 1258 1259 err_garbage: 1260 svc_printk(rqstp, "failed to decode args\n"); 1261 1262 rpc_stat = rpc_garbage_args; 1263 err_bad: 1264 serv->sv_stats->rpcbadfmt++; 1265 svc_putnl(resv, ntohl(rpc_stat)); 1266 goto sendit; 1267 } 1268 EXPORT_SYMBOL_GPL(svc_process); 1269 1270 /* 1271 * Process the RPC request. 1272 */ 1273 int 1274 svc_process(struct svc_rqst *rqstp) 1275 { 1276 struct kvec *argv = &rqstp->rq_arg.head[0]; 1277 struct kvec *resv = &rqstp->rq_res.head[0]; 1278 struct svc_serv *serv = rqstp->rq_server; 1279 u32 dir; 1280 1281 /* 1282 * Setup response xdr_buf. 1283 * Initially it has just one page 1284 */ 1285 rqstp->rq_resused = 1; 1286 resv->iov_base = page_address(rqstp->rq_respages[0]); 1287 resv->iov_len = 0; 1288 rqstp->rq_res.pages = rqstp->rq_respages + 1; 1289 rqstp->rq_res.len = 0; 1290 rqstp->rq_res.page_base = 0; 1291 rqstp->rq_res.page_len = 0; 1292 rqstp->rq_res.buflen = PAGE_SIZE; 1293 rqstp->rq_res.tail[0].iov_base = NULL; 1294 rqstp->rq_res.tail[0].iov_len = 0; 1295 1296 rqstp->rq_xid = svc_getu32(argv); 1297 1298 dir = svc_getnl(argv); 1299 if (dir != 0) { 1300 /* direction != CALL */ 1301 svc_printk(rqstp, "bad direction %d, dropping request\n", dir); 1302 serv->sv_stats->rpcbadfmt++; 1303 svc_drop(rqstp); 1304 return 0; 1305 } 1306 1307 /* Returns 1 for send, 0 for drop */ 1308 if (svc_process_common(rqstp, argv, resv)) 1309 return svc_send(rqstp); 1310 else { 1311 svc_drop(rqstp); 1312 return 0; 1313 } 1314 } 1315 1316 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1317 /* 1318 * Process a backchannel RPC request that arrived over an existing 1319 * outbound connection 1320 */ 1321 int 1322 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req, 1323 struct svc_rqst *rqstp) 1324 { 1325 struct kvec *argv = &rqstp->rq_arg.head[0]; 1326 struct kvec *resv = &rqstp->rq_res.head[0]; 1327 1328 /* Build the svc_rqst used by the common processing routine */ 1329 rqstp->rq_xprt = serv->sv_bc_xprt; 1330 rqstp->rq_xid = req->rq_xid; 1331 rqstp->rq_prot = req->rq_xprt->prot; 1332 rqstp->rq_server = serv; 1333 1334 rqstp->rq_addrlen = sizeof(req->rq_xprt->addr); 1335 memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen); 1336 memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg)); 1337 memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res)); 1338 1339 /* reset result send buffer "put" position */ 1340 resv->iov_len = 0; 1341 1342 if (rqstp->rq_prot != IPPROTO_TCP) { 1343 printk(KERN_ERR "No support for Non-TCP transports!\n"); 1344 BUG(); 1345 } 1346 1347 /* 1348 * Skip the next two words because they've already been 1349 * processed in the trasport 1350 */ 1351 svc_getu32(argv); /* XID */ 1352 svc_getnl(argv); /* CALLDIR */ 1353 1354 /* Returns 1 for send, 0 for drop */ 1355 if (svc_process_common(rqstp, argv, resv)) { 1356 memcpy(&req->rq_snd_buf, &rqstp->rq_res, 1357 sizeof(req->rq_snd_buf)); 1358 return bc_send(req); 1359 } else { 1360 /* Nothing to do to drop request */ 1361 return 0; 1362 } 1363 } 1364 EXPORT_SYMBOL_GPL(bc_svc_process); 1365 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1366 1367 /* 1368 * Return (transport-specific) limit on the rpc payload. 1369 */ 1370 u32 svc_max_payload(const struct svc_rqst *rqstp) 1371 { 1372 u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload; 1373 1374 if (rqstp->rq_server->sv_max_payload < max) 1375 max = rqstp->rq_server->sv_max_payload; 1376 return max; 1377 } 1378 EXPORT_SYMBOL_GPL(svc_max_payload); 1379