xref: /linux/net/sunrpc/svc.c (revision 31af04cd60d3162a58213363fd740a2b0cf0a08e)
1 /*
2  * linux/net/sunrpc/svc.c
3  *
4  * High-level RPC service routines
5  *
6  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
7  *
8  * Multiple threads pools and NUMAisation
9  * Copyright (c) 2006 Silicon Graphics, Inc.
10  * by Greg Banks <gnb@melbourne.sgi.com>
11  */
12 
13 #include <linux/linkage.h>
14 #include <linux/sched/signal.h>
15 #include <linux/errno.h>
16 #include <linux/net.h>
17 #include <linux/in.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/kthread.h>
22 #include <linux/slab.h>
23 
24 #include <linux/sunrpc/types.h>
25 #include <linux/sunrpc/xdr.h>
26 #include <linux/sunrpc/stats.h>
27 #include <linux/sunrpc/svcsock.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/sunrpc/bc_xprt.h>
30 
31 #include <trace/events/sunrpc.h>
32 
33 #define RPCDBG_FACILITY	RPCDBG_SVCDSP
34 
35 static void svc_unregister(const struct svc_serv *serv, struct net *net);
36 
37 #define svc_serv_is_pooled(serv)    ((serv)->sv_ops->svo_function)
38 
39 #define SVC_POOL_DEFAULT	SVC_POOL_GLOBAL
40 
41 /*
42  * Structure for mapping cpus to pools and vice versa.
43  * Setup once during sunrpc initialisation.
44  */
45 struct svc_pool_map svc_pool_map = {
46 	.mode = SVC_POOL_DEFAULT
47 };
48 EXPORT_SYMBOL_GPL(svc_pool_map);
49 
50 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
51 
52 static int
53 param_set_pool_mode(const char *val, const struct kernel_param *kp)
54 {
55 	int *ip = (int *)kp->arg;
56 	struct svc_pool_map *m = &svc_pool_map;
57 	int err;
58 
59 	mutex_lock(&svc_pool_map_mutex);
60 
61 	err = -EBUSY;
62 	if (m->count)
63 		goto out;
64 
65 	err = 0;
66 	if (!strncmp(val, "auto", 4))
67 		*ip = SVC_POOL_AUTO;
68 	else if (!strncmp(val, "global", 6))
69 		*ip = SVC_POOL_GLOBAL;
70 	else if (!strncmp(val, "percpu", 6))
71 		*ip = SVC_POOL_PERCPU;
72 	else if (!strncmp(val, "pernode", 7))
73 		*ip = SVC_POOL_PERNODE;
74 	else
75 		err = -EINVAL;
76 
77 out:
78 	mutex_unlock(&svc_pool_map_mutex);
79 	return err;
80 }
81 
82 static int
83 param_get_pool_mode(char *buf, const struct kernel_param *kp)
84 {
85 	int *ip = (int *)kp->arg;
86 
87 	switch (*ip)
88 	{
89 	case SVC_POOL_AUTO:
90 		return strlcpy(buf, "auto", 20);
91 	case SVC_POOL_GLOBAL:
92 		return strlcpy(buf, "global", 20);
93 	case SVC_POOL_PERCPU:
94 		return strlcpy(buf, "percpu", 20);
95 	case SVC_POOL_PERNODE:
96 		return strlcpy(buf, "pernode", 20);
97 	default:
98 		return sprintf(buf, "%d", *ip);
99 	}
100 }
101 
102 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
103 		 &svc_pool_map.mode, 0644);
104 
105 /*
106  * Detect best pool mapping mode heuristically,
107  * according to the machine's topology.
108  */
109 static int
110 svc_pool_map_choose_mode(void)
111 {
112 	unsigned int node;
113 
114 	if (nr_online_nodes > 1) {
115 		/*
116 		 * Actually have multiple NUMA nodes,
117 		 * so split pools on NUMA node boundaries
118 		 */
119 		return SVC_POOL_PERNODE;
120 	}
121 
122 	node = first_online_node;
123 	if (nr_cpus_node(node) > 2) {
124 		/*
125 		 * Non-trivial SMP, or CONFIG_NUMA on
126 		 * non-NUMA hardware, e.g. with a generic
127 		 * x86_64 kernel on Xeons.  In this case we
128 		 * want to divide the pools on cpu boundaries.
129 		 */
130 		return SVC_POOL_PERCPU;
131 	}
132 
133 	/* default: one global pool */
134 	return SVC_POOL_GLOBAL;
135 }
136 
137 /*
138  * Allocate the to_pool[] and pool_to[] arrays.
139  * Returns 0 on success or an errno.
140  */
141 static int
142 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
143 {
144 	m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
145 	if (!m->to_pool)
146 		goto fail;
147 	m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
148 	if (!m->pool_to)
149 		goto fail_free;
150 
151 	return 0;
152 
153 fail_free:
154 	kfree(m->to_pool);
155 	m->to_pool = NULL;
156 fail:
157 	return -ENOMEM;
158 }
159 
160 /*
161  * Initialise the pool map for SVC_POOL_PERCPU mode.
162  * Returns number of pools or <0 on error.
163  */
164 static int
165 svc_pool_map_init_percpu(struct svc_pool_map *m)
166 {
167 	unsigned int maxpools = nr_cpu_ids;
168 	unsigned int pidx = 0;
169 	unsigned int cpu;
170 	int err;
171 
172 	err = svc_pool_map_alloc_arrays(m, maxpools);
173 	if (err)
174 		return err;
175 
176 	for_each_online_cpu(cpu) {
177 		BUG_ON(pidx >= maxpools);
178 		m->to_pool[cpu] = pidx;
179 		m->pool_to[pidx] = cpu;
180 		pidx++;
181 	}
182 	/* cpus brought online later all get mapped to pool0, sorry */
183 
184 	return pidx;
185 };
186 
187 
188 /*
189  * Initialise the pool map for SVC_POOL_PERNODE mode.
190  * Returns number of pools or <0 on error.
191  */
192 static int
193 svc_pool_map_init_pernode(struct svc_pool_map *m)
194 {
195 	unsigned int maxpools = nr_node_ids;
196 	unsigned int pidx = 0;
197 	unsigned int node;
198 	int err;
199 
200 	err = svc_pool_map_alloc_arrays(m, maxpools);
201 	if (err)
202 		return err;
203 
204 	for_each_node_with_cpus(node) {
205 		/* some architectures (e.g. SN2) have cpuless nodes */
206 		BUG_ON(pidx > maxpools);
207 		m->to_pool[node] = pidx;
208 		m->pool_to[pidx] = node;
209 		pidx++;
210 	}
211 	/* nodes brought online later all get mapped to pool0, sorry */
212 
213 	return pidx;
214 }
215 
216 
217 /*
218  * Add a reference to the global map of cpus to pools (and
219  * vice versa).  Initialise the map if we're the first user.
220  * Returns the number of pools.
221  */
222 unsigned int
223 svc_pool_map_get(void)
224 {
225 	struct svc_pool_map *m = &svc_pool_map;
226 	int npools = -1;
227 
228 	mutex_lock(&svc_pool_map_mutex);
229 
230 	if (m->count++) {
231 		mutex_unlock(&svc_pool_map_mutex);
232 		return m->npools;
233 	}
234 
235 	if (m->mode == SVC_POOL_AUTO)
236 		m->mode = svc_pool_map_choose_mode();
237 
238 	switch (m->mode) {
239 	case SVC_POOL_PERCPU:
240 		npools = svc_pool_map_init_percpu(m);
241 		break;
242 	case SVC_POOL_PERNODE:
243 		npools = svc_pool_map_init_pernode(m);
244 		break;
245 	}
246 
247 	if (npools < 0) {
248 		/* default, or memory allocation failure */
249 		npools = 1;
250 		m->mode = SVC_POOL_GLOBAL;
251 	}
252 	m->npools = npools;
253 
254 	mutex_unlock(&svc_pool_map_mutex);
255 	return m->npools;
256 }
257 EXPORT_SYMBOL_GPL(svc_pool_map_get);
258 
259 /*
260  * Drop a reference to the global map of cpus to pools.
261  * When the last reference is dropped, the map data is
262  * freed; this allows the sysadmin to change the pool
263  * mode using the pool_mode module option without
264  * rebooting or re-loading sunrpc.ko.
265  */
266 void
267 svc_pool_map_put(void)
268 {
269 	struct svc_pool_map *m = &svc_pool_map;
270 
271 	mutex_lock(&svc_pool_map_mutex);
272 
273 	if (!--m->count) {
274 		kfree(m->to_pool);
275 		m->to_pool = NULL;
276 		kfree(m->pool_to);
277 		m->pool_to = NULL;
278 		m->npools = 0;
279 	}
280 
281 	mutex_unlock(&svc_pool_map_mutex);
282 }
283 EXPORT_SYMBOL_GPL(svc_pool_map_put);
284 
285 static int svc_pool_map_get_node(unsigned int pidx)
286 {
287 	const struct svc_pool_map *m = &svc_pool_map;
288 
289 	if (m->count) {
290 		if (m->mode == SVC_POOL_PERCPU)
291 			return cpu_to_node(m->pool_to[pidx]);
292 		if (m->mode == SVC_POOL_PERNODE)
293 			return m->pool_to[pidx];
294 	}
295 	return NUMA_NO_NODE;
296 }
297 /*
298  * Set the given thread's cpus_allowed mask so that it
299  * will only run on cpus in the given pool.
300  */
301 static inline void
302 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
303 {
304 	struct svc_pool_map *m = &svc_pool_map;
305 	unsigned int node = m->pool_to[pidx];
306 
307 	/*
308 	 * The caller checks for sv_nrpools > 1, which
309 	 * implies that we've been initialized.
310 	 */
311 	WARN_ON_ONCE(m->count == 0);
312 	if (m->count == 0)
313 		return;
314 
315 	switch (m->mode) {
316 	case SVC_POOL_PERCPU:
317 	{
318 		set_cpus_allowed_ptr(task, cpumask_of(node));
319 		break;
320 	}
321 	case SVC_POOL_PERNODE:
322 	{
323 		set_cpus_allowed_ptr(task, cpumask_of_node(node));
324 		break;
325 	}
326 	}
327 }
328 
329 /*
330  * Use the mapping mode to choose a pool for a given CPU.
331  * Used when enqueueing an incoming RPC.  Always returns
332  * a non-NULL pool pointer.
333  */
334 struct svc_pool *
335 svc_pool_for_cpu(struct svc_serv *serv, int cpu)
336 {
337 	struct svc_pool_map *m = &svc_pool_map;
338 	unsigned int pidx = 0;
339 
340 	/*
341 	 * An uninitialised map happens in a pure client when
342 	 * lockd is brought up, so silently treat it the
343 	 * same as SVC_POOL_GLOBAL.
344 	 */
345 	if (svc_serv_is_pooled(serv)) {
346 		switch (m->mode) {
347 		case SVC_POOL_PERCPU:
348 			pidx = m->to_pool[cpu];
349 			break;
350 		case SVC_POOL_PERNODE:
351 			pidx = m->to_pool[cpu_to_node(cpu)];
352 			break;
353 		}
354 	}
355 	return &serv->sv_pools[pidx % serv->sv_nrpools];
356 }
357 
358 int svc_rpcb_setup(struct svc_serv *serv, struct net *net)
359 {
360 	int err;
361 
362 	err = rpcb_create_local(net);
363 	if (err)
364 		return err;
365 
366 	/* Remove any stale portmap registrations */
367 	svc_unregister(serv, net);
368 	return 0;
369 }
370 EXPORT_SYMBOL_GPL(svc_rpcb_setup);
371 
372 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net)
373 {
374 	svc_unregister(serv, net);
375 	rpcb_put_local(net);
376 }
377 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup);
378 
379 static int svc_uses_rpcbind(struct svc_serv *serv)
380 {
381 	struct svc_program	*progp;
382 	unsigned int		i;
383 
384 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
385 		for (i = 0; i < progp->pg_nvers; i++) {
386 			if (progp->pg_vers[i] == NULL)
387 				continue;
388 			if (!progp->pg_vers[i]->vs_hidden)
389 				return 1;
390 		}
391 	}
392 
393 	return 0;
394 }
395 
396 int svc_bind(struct svc_serv *serv, struct net *net)
397 {
398 	if (!svc_uses_rpcbind(serv))
399 		return 0;
400 	return svc_rpcb_setup(serv, net);
401 }
402 EXPORT_SYMBOL_GPL(svc_bind);
403 
404 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
405 static void
406 __svc_init_bc(struct svc_serv *serv)
407 {
408 	INIT_LIST_HEAD(&serv->sv_cb_list);
409 	spin_lock_init(&serv->sv_cb_lock);
410 	init_waitqueue_head(&serv->sv_cb_waitq);
411 }
412 #else
413 static void
414 __svc_init_bc(struct svc_serv *serv)
415 {
416 }
417 #endif
418 
419 /*
420  * Create an RPC service
421  */
422 static struct svc_serv *
423 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools,
424 	     const struct svc_serv_ops *ops)
425 {
426 	struct svc_serv	*serv;
427 	unsigned int vers;
428 	unsigned int xdrsize;
429 	unsigned int i;
430 
431 	if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
432 		return NULL;
433 	serv->sv_name      = prog->pg_name;
434 	serv->sv_program   = prog;
435 	serv->sv_nrthreads = 1;
436 	serv->sv_stats     = prog->pg_stats;
437 	if (bufsize > RPCSVC_MAXPAYLOAD)
438 		bufsize = RPCSVC_MAXPAYLOAD;
439 	serv->sv_max_payload = bufsize? bufsize : 4096;
440 	serv->sv_max_mesg  = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
441 	serv->sv_ops = ops;
442 	xdrsize = 0;
443 	while (prog) {
444 		prog->pg_lovers = prog->pg_nvers-1;
445 		for (vers=0; vers<prog->pg_nvers ; vers++)
446 			if (prog->pg_vers[vers]) {
447 				prog->pg_hivers = vers;
448 				if (prog->pg_lovers > vers)
449 					prog->pg_lovers = vers;
450 				if (prog->pg_vers[vers]->vs_xdrsize > xdrsize)
451 					xdrsize = prog->pg_vers[vers]->vs_xdrsize;
452 			}
453 		prog = prog->pg_next;
454 	}
455 	serv->sv_xdrsize   = xdrsize;
456 	INIT_LIST_HEAD(&serv->sv_tempsocks);
457 	INIT_LIST_HEAD(&serv->sv_permsocks);
458 	timer_setup(&serv->sv_temptimer, NULL, 0);
459 	spin_lock_init(&serv->sv_lock);
460 
461 	__svc_init_bc(serv);
462 
463 	serv->sv_nrpools = npools;
464 	serv->sv_pools =
465 		kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
466 			GFP_KERNEL);
467 	if (!serv->sv_pools) {
468 		kfree(serv);
469 		return NULL;
470 	}
471 
472 	for (i = 0; i < serv->sv_nrpools; i++) {
473 		struct svc_pool *pool = &serv->sv_pools[i];
474 
475 		dprintk("svc: initialising pool %u for %s\n",
476 				i, serv->sv_name);
477 
478 		pool->sp_id = i;
479 		INIT_LIST_HEAD(&pool->sp_sockets);
480 		INIT_LIST_HEAD(&pool->sp_all_threads);
481 		spin_lock_init(&pool->sp_lock);
482 	}
483 
484 	return serv;
485 }
486 
487 struct svc_serv *
488 svc_create(struct svc_program *prog, unsigned int bufsize,
489 	   const struct svc_serv_ops *ops)
490 {
491 	return __svc_create(prog, bufsize, /*npools*/1, ops);
492 }
493 EXPORT_SYMBOL_GPL(svc_create);
494 
495 struct svc_serv *
496 svc_create_pooled(struct svc_program *prog, unsigned int bufsize,
497 		  const struct svc_serv_ops *ops)
498 {
499 	struct svc_serv *serv;
500 	unsigned int npools = svc_pool_map_get();
501 
502 	serv = __svc_create(prog, bufsize, npools, ops);
503 	if (!serv)
504 		goto out_err;
505 	return serv;
506 out_err:
507 	svc_pool_map_put();
508 	return NULL;
509 }
510 EXPORT_SYMBOL_GPL(svc_create_pooled);
511 
512 void svc_shutdown_net(struct svc_serv *serv, struct net *net)
513 {
514 	svc_close_net(serv, net);
515 
516 	if (serv->sv_ops->svo_shutdown)
517 		serv->sv_ops->svo_shutdown(serv, net);
518 }
519 EXPORT_SYMBOL_GPL(svc_shutdown_net);
520 
521 /*
522  * Destroy an RPC service. Should be called with appropriate locking to
523  * protect the sv_nrthreads, sv_permsocks and sv_tempsocks.
524  */
525 void
526 svc_destroy(struct svc_serv *serv)
527 {
528 	dprintk("svc: svc_destroy(%s, %d)\n",
529 				serv->sv_program->pg_name,
530 				serv->sv_nrthreads);
531 
532 	if (serv->sv_nrthreads) {
533 		if (--(serv->sv_nrthreads) != 0) {
534 			svc_sock_update_bufs(serv);
535 			return;
536 		}
537 	} else
538 		printk("svc_destroy: no threads for serv=%p!\n", serv);
539 
540 	del_timer_sync(&serv->sv_temptimer);
541 
542 	/*
543 	 * The last user is gone and thus all sockets have to be destroyed to
544 	 * the point. Check this.
545 	 */
546 	BUG_ON(!list_empty(&serv->sv_permsocks));
547 	BUG_ON(!list_empty(&serv->sv_tempsocks));
548 
549 	cache_clean_deferred(serv);
550 
551 	if (svc_serv_is_pooled(serv))
552 		svc_pool_map_put();
553 
554 	kfree(serv->sv_pools);
555 	kfree(serv);
556 }
557 EXPORT_SYMBOL_GPL(svc_destroy);
558 
559 /*
560  * Allocate an RPC server's buffer space.
561  * We allocate pages and place them in rq_argpages.
562  */
563 static int
564 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node)
565 {
566 	unsigned int pages, arghi;
567 
568 	/* bc_xprt uses fore channel allocated buffers */
569 	if (svc_is_backchannel(rqstp))
570 		return 1;
571 
572 	pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
573 				       * We assume one is at most one page
574 				       */
575 	arghi = 0;
576 	WARN_ON_ONCE(pages > RPCSVC_MAXPAGES);
577 	if (pages > RPCSVC_MAXPAGES)
578 		pages = RPCSVC_MAXPAGES;
579 	while (pages) {
580 		struct page *p = alloc_pages_node(node, GFP_KERNEL, 0);
581 		if (!p)
582 			break;
583 		rqstp->rq_pages[arghi++] = p;
584 		pages--;
585 	}
586 	return pages == 0;
587 }
588 
589 /*
590  * Release an RPC server buffer
591  */
592 static void
593 svc_release_buffer(struct svc_rqst *rqstp)
594 {
595 	unsigned int i;
596 
597 	for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++)
598 		if (rqstp->rq_pages[i])
599 			put_page(rqstp->rq_pages[i]);
600 }
601 
602 struct svc_rqst *
603 svc_rqst_alloc(struct svc_serv *serv, struct svc_pool *pool, int node)
604 {
605 	struct svc_rqst	*rqstp;
606 
607 	rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node);
608 	if (!rqstp)
609 		return rqstp;
610 
611 	__set_bit(RQ_BUSY, &rqstp->rq_flags);
612 	spin_lock_init(&rqstp->rq_lock);
613 	rqstp->rq_server = serv;
614 	rqstp->rq_pool = pool;
615 
616 	rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
617 	if (!rqstp->rq_argp)
618 		goto out_enomem;
619 
620 	rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
621 	if (!rqstp->rq_resp)
622 		goto out_enomem;
623 
624 	if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node))
625 		goto out_enomem;
626 
627 	return rqstp;
628 out_enomem:
629 	svc_rqst_free(rqstp);
630 	return NULL;
631 }
632 EXPORT_SYMBOL_GPL(svc_rqst_alloc);
633 
634 struct svc_rqst *
635 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node)
636 {
637 	struct svc_rqst	*rqstp;
638 
639 	rqstp = svc_rqst_alloc(serv, pool, node);
640 	if (!rqstp)
641 		return ERR_PTR(-ENOMEM);
642 
643 	serv->sv_nrthreads++;
644 	spin_lock_bh(&pool->sp_lock);
645 	pool->sp_nrthreads++;
646 	list_add_rcu(&rqstp->rq_all, &pool->sp_all_threads);
647 	spin_unlock_bh(&pool->sp_lock);
648 	return rqstp;
649 }
650 EXPORT_SYMBOL_GPL(svc_prepare_thread);
651 
652 /*
653  * Choose a pool in which to create a new thread, for svc_set_num_threads
654  */
655 static inline struct svc_pool *
656 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
657 {
658 	if (pool != NULL)
659 		return pool;
660 
661 	return &serv->sv_pools[(*state)++ % serv->sv_nrpools];
662 }
663 
664 /*
665  * Choose a thread to kill, for svc_set_num_threads
666  */
667 static inline struct task_struct *
668 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
669 {
670 	unsigned int i;
671 	struct task_struct *task = NULL;
672 
673 	if (pool != NULL) {
674 		spin_lock_bh(&pool->sp_lock);
675 	} else {
676 		/* choose a pool in round-robin fashion */
677 		for (i = 0; i < serv->sv_nrpools; i++) {
678 			pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
679 			spin_lock_bh(&pool->sp_lock);
680 			if (!list_empty(&pool->sp_all_threads))
681 				goto found_pool;
682 			spin_unlock_bh(&pool->sp_lock);
683 		}
684 		return NULL;
685 	}
686 
687 found_pool:
688 	if (!list_empty(&pool->sp_all_threads)) {
689 		struct svc_rqst *rqstp;
690 
691 		/*
692 		 * Remove from the pool->sp_all_threads list
693 		 * so we don't try to kill it again.
694 		 */
695 		rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all);
696 		set_bit(RQ_VICTIM, &rqstp->rq_flags);
697 		list_del_rcu(&rqstp->rq_all);
698 		task = rqstp->rq_task;
699 	}
700 	spin_unlock_bh(&pool->sp_lock);
701 
702 	return task;
703 }
704 
705 /* create new threads */
706 static int
707 svc_start_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
708 {
709 	struct svc_rqst	*rqstp;
710 	struct task_struct *task;
711 	struct svc_pool *chosen_pool;
712 	unsigned int state = serv->sv_nrthreads-1;
713 	int node;
714 
715 	do {
716 		nrservs--;
717 		chosen_pool = choose_pool(serv, pool, &state);
718 
719 		node = svc_pool_map_get_node(chosen_pool->sp_id);
720 		rqstp = svc_prepare_thread(serv, chosen_pool, node);
721 		if (IS_ERR(rqstp))
722 			return PTR_ERR(rqstp);
723 
724 		__module_get(serv->sv_ops->svo_module);
725 		task = kthread_create_on_node(serv->sv_ops->svo_function, rqstp,
726 					      node, "%s", serv->sv_name);
727 		if (IS_ERR(task)) {
728 			module_put(serv->sv_ops->svo_module);
729 			svc_exit_thread(rqstp);
730 			return PTR_ERR(task);
731 		}
732 
733 		rqstp->rq_task = task;
734 		if (serv->sv_nrpools > 1)
735 			svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
736 
737 		svc_sock_update_bufs(serv);
738 		wake_up_process(task);
739 	} while (nrservs > 0);
740 
741 	return 0;
742 }
743 
744 
745 /* destroy old threads */
746 static int
747 svc_signal_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
748 {
749 	struct task_struct *task;
750 	unsigned int state = serv->sv_nrthreads-1;
751 
752 	/* destroy old threads */
753 	do {
754 		task = choose_victim(serv, pool, &state);
755 		if (task == NULL)
756 			break;
757 		send_sig(SIGINT, task, 1);
758 		nrservs++;
759 	} while (nrservs < 0);
760 
761 	return 0;
762 }
763 
764 /*
765  * Create or destroy enough new threads to make the number
766  * of threads the given number.  If `pool' is non-NULL, applies
767  * only to threads in that pool, otherwise round-robins between
768  * all pools.  Caller must ensure that mutual exclusion between this and
769  * server startup or shutdown.
770  *
771  * Destroying threads relies on the service threads filling in
772  * rqstp->rq_task, which only the nfs ones do.  Assumes the serv
773  * has been created using svc_create_pooled().
774  *
775  * Based on code that used to be in nfsd_svc() but tweaked
776  * to be pool-aware.
777  */
778 int
779 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
780 {
781 	if (pool == NULL) {
782 		/* The -1 assumes caller has done a svc_get() */
783 		nrservs -= (serv->sv_nrthreads-1);
784 	} else {
785 		spin_lock_bh(&pool->sp_lock);
786 		nrservs -= pool->sp_nrthreads;
787 		spin_unlock_bh(&pool->sp_lock);
788 	}
789 
790 	if (nrservs > 0)
791 		return svc_start_kthreads(serv, pool, nrservs);
792 	if (nrservs < 0)
793 		return svc_signal_kthreads(serv, pool, nrservs);
794 	return 0;
795 }
796 EXPORT_SYMBOL_GPL(svc_set_num_threads);
797 
798 /* destroy old threads */
799 static int
800 svc_stop_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
801 {
802 	struct task_struct *task;
803 	unsigned int state = serv->sv_nrthreads-1;
804 
805 	/* destroy old threads */
806 	do {
807 		task = choose_victim(serv, pool, &state);
808 		if (task == NULL)
809 			break;
810 		kthread_stop(task);
811 		nrservs++;
812 	} while (nrservs < 0);
813 	return 0;
814 }
815 
816 int
817 svc_set_num_threads_sync(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
818 {
819 	if (pool == NULL) {
820 		/* The -1 assumes caller has done a svc_get() */
821 		nrservs -= (serv->sv_nrthreads-1);
822 	} else {
823 		spin_lock_bh(&pool->sp_lock);
824 		nrservs -= pool->sp_nrthreads;
825 		spin_unlock_bh(&pool->sp_lock);
826 	}
827 
828 	if (nrservs > 0)
829 		return svc_start_kthreads(serv, pool, nrservs);
830 	if (nrservs < 0)
831 		return svc_stop_kthreads(serv, pool, nrservs);
832 	return 0;
833 }
834 EXPORT_SYMBOL_GPL(svc_set_num_threads_sync);
835 
836 /*
837  * Called from a server thread as it's exiting. Caller must hold the "service
838  * mutex" for the service.
839  */
840 void
841 svc_rqst_free(struct svc_rqst *rqstp)
842 {
843 	svc_release_buffer(rqstp);
844 	kfree(rqstp->rq_resp);
845 	kfree(rqstp->rq_argp);
846 	kfree(rqstp->rq_auth_data);
847 	kfree_rcu(rqstp, rq_rcu_head);
848 }
849 EXPORT_SYMBOL_GPL(svc_rqst_free);
850 
851 void
852 svc_exit_thread(struct svc_rqst *rqstp)
853 {
854 	struct svc_serv	*serv = rqstp->rq_server;
855 	struct svc_pool	*pool = rqstp->rq_pool;
856 
857 	spin_lock_bh(&pool->sp_lock);
858 	pool->sp_nrthreads--;
859 	if (!test_and_set_bit(RQ_VICTIM, &rqstp->rq_flags))
860 		list_del_rcu(&rqstp->rq_all);
861 	spin_unlock_bh(&pool->sp_lock);
862 
863 	svc_rqst_free(rqstp);
864 
865 	/* Release the server */
866 	if (serv)
867 		svc_destroy(serv);
868 }
869 EXPORT_SYMBOL_GPL(svc_exit_thread);
870 
871 /*
872  * Register an "inet" protocol family netid with the local
873  * rpcbind daemon via an rpcbind v4 SET request.
874  *
875  * No netconfig infrastructure is available in the kernel, so
876  * we map IP_ protocol numbers to netids by hand.
877  *
878  * Returns zero on success; a negative errno value is returned
879  * if any error occurs.
880  */
881 static int __svc_rpcb_register4(struct net *net, const u32 program,
882 				const u32 version,
883 				const unsigned short protocol,
884 				const unsigned short port)
885 {
886 	const struct sockaddr_in sin = {
887 		.sin_family		= AF_INET,
888 		.sin_addr.s_addr	= htonl(INADDR_ANY),
889 		.sin_port		= htons(port),
890 	};
891 	const char *netid;
892 	int error;
893 
894 	switch (protocol) {
895 	case IPPROTO_UDP:
896 		netid = RPCBIND_NETID_UDP;
897 		break;
898 	case IPPROTO_TCP:
899 		netid = RPCBIND_NETID_TCP;
900 		break;
901 	default:
902 		return -ENOPROTOOPT;
903 	}
904 
905 	error = rpcb_v4_register(net, program, version,
906 					(const struct sockaddr *)&sin, netid);
907 
908 	/*
909 	 * User space didn't support rpcbind v4, so retry this
910 	 * registration request with the legacy rpcbind v2 protocol.
911 	 */
912 	if (error == -EPROTONOSUPPORT)
913 		error = rpcb_register(net, program, version, protocol, port);
914 
915 	return error;
916 }
917 
918 #if IS_ENABLED(CONFIG_IPV6)
919 /*
920  * Register an "inet6" protocol family netid with the local
921  * rpcbind daemon via an rpcbind v4 SET request.
922  *
923  * No netconfig infrastructure is available in the kernel, so
924  * we map IP_ protocol numbers to netids by hand.
925  *
926  * Returns zero on success; a negative errno value is returned
927  * if any error occurs.
928  */
929 static int __svc_rpcb_register6(struct net *net, const u32 program,
930 				const u32 version,
931 				const unsigned short protocol,
932 				const unsigned short port)
933 {
934 	const struct sockaddr_in6 sin6 = {
935 		.sin6_family		= AF_INET6,
936 		.sin6_addr		= IN6ADDR_ANY_INIT,
937 		.sin6_port		= htons(port),
938 	};
939 	const char *netid;
940 	int error;
941 
942 	switch (protocol) {
943 	case IPPROTO_UDP:
944 		netid = RPCBIND_NETID_UDP6;
945 		break;
946 	case IPPROTO_TCP:
947 		netid = RPCBIND_NETID_TCP6;
948 		break;
949 	default:
950 		return -ENOPROTOOPT;
951 	}
952 
953 	error = rpcb_v4_register(net, program, version,
954 					(const struct sockaddr *)&sin6, netid);
955 
956 	/*
957 	 * User space didn't support rpcbind version 4, so we won't
958 	 * use a PF_INET6 listener.
959 	 */
960 	if (error == -EPROTONOSUPPORT)
961 		error = -EAFNOSUPPORT;
962 
963 	return error;
964 }
965 #endif	/* IS_ENABLED(CONFIG_IPV6) */
966 
967 /*
968  * Register a kernel RPC service via rpcbind version 4.
969  *
970  * Returns zero on success; a negative errno value is returned
971  * if any error occurs.
972  */
973 static int __svc_register(struct net *net, const char *progname,
974 			  const u32 program, const u32 version,
975 			  const int family,
976 			  const unsigned short protocol,
977 			  const unsigned short port)
978 {
979 	int error = -EAFNOSUPPORT;
980 
981 	switch (family) {
982 	case PF_INET:
983 		error = __svc_rpcb_register4(net, program, version,
984 						protocol, port);
985 		break;
986 #if IS_ENABLED(CONFIG_IPV6)
987 	case PF_INET6:
988 		error = __svc_rpcb_register6(net, program, version,
989 						protocol, port);
990 #endif
991 	}
992 
993 	return error;
994 }
995 
996 /**
997  * svc_register - register an RPC service with the local portmapper
998  * @serv: svc_serv struct for the service to register
999  * @net: net namespace for the service to register
1000  * @family: protocol family of service's listener socket
1001  * @proto: transport protocol number to advertise
1002  * @port: port to advertise
1003  *
1004  * Service is registered for any address in the passed-in protocol family
1005  */
1006 int svc_register(const struct svc_serv *serv, struct net *net,
1007 		 const int family, const unsigned short proto,
1008 		 const unsigned short port)
1009 {
1010 	struct svc_program	*progp;
1011 	const struct svc_version *vers;
1012 	unsigned int		i;
1013 	int			error = 0;
1014 
1015 	WARN_ON_ONCE(proto == 0 && port == 0);
1016 	if (proto == 0 && port == 0)
1017 		return -EINVAL;
1018 
1019 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1020 		for (i = 0; i < progp->pg_nvers; i++) {
1021 			vers = progp->pg_vers[i];
1022 			if (vers == NULL)
1023 				continue;
1024 
1025 			dprintk("svc: svc_register(%sv%d, %s, %u, %u)%s\n",
1026 					progp->pg_name,
1027 					i,
1028 					proto == IPPROTO_UDP?  "udp" : "tcp",
1029 					port,
1030 					family,
1031 					vers->vs_hidden ?
1032 					" (but not telling portmap)" : "");
1033 
1034 			if (vers->vs_hidden)
1035 				continue;
1036 
1037 			/*
1038 			 * Don't register a UDP port if we need congestion
1039 			 * control.
1040 			 */
1041 			if (vers->vs_need_cong_ctrl && proto == IPPROTO_UDP)
1042 				continue;
1043 
1044 			error = __svc_register(net, progp->pg_name, progp->pg_prog,
1045 						i, family, proto, port);
1046 
1047 			if (vers->vs_rpcb_optnl) {
1048 				error = 0;
1049 				continue;
1050 			}
1051 
1052 			if (error < 0) {
1053 				printk(KERN_WARNING "svc: failed to register "
1054 					"%sv%u RPC service (errno %d).\n",
1055 					progp->pg_name, i, -error);
1056 				break;
1057 			}
1058 		}
1059 	}
1060 
1061 	return error;
1062 }
1063 
1064 /*
1065  * If user space is running rpcbind, it should take the v4 UNSET
1066  * and clear everything for this [program, version].  If user space
1067  * is running portmap, it will reject the v4 UNSET, but won't have
1068  * any "inet6" entries anyway.  So a PMAP_UNSET should be sufficient
1069  * in this case to clear all existing entries for [program, version].
1070  */
1071 static void __svc_unregister(struct net *net, const u32 program, const u32 version,
1072 			     const char *progname)
1073 {
1074 	int error;
1075 
1076 	error = rpcb_v4_register(net, program, version, NULL, "");
1077 
1078 	/*
1079 	 * User space didn't support rpcbind v4, so retry this
1080 	 * request with the legacy rpcbind v2 protocol.
1081 	 */
1082 	if (error == -EPROTONOSUPPORT)
1083 		error = rpcb_register(net, program, version, 0, 0);
1084 
1085 	dprintk("svc: %s(%sv%u), error %d\n",
1086 			__func__, progname, version, error);
1087 }
1088 
1089 /*
1090  * All netids, bind addresses and ports registered for [program, version]
1091  * are removed from the local rpcbind database (if the service is not
1092  * hidden) to make way for a new instance of the service.
1093  *
1094  * The result of unregistration is reported via dprintk for those who want
1095  * verification of the result, but is otherwise not important.
1096  */
1097 static void svc_unregister(const struct svc_serv *serv, struct net *net)
1098 {
1099 	struct svc_program *progp;
1100 	unsigned long flags;
1101 	unsigned int i;
1102 
1103 	clear_thread_flag(TIF_SIGPENDING);
1104 
1105 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1106 		for (i = 0; i < progp->pg_nvers; i++) {
1107 			if (progp->pg_vers[i] == NULL)
1108 				continue;
1109 			if (progp->pg_vers[i]->vs_hidden)
1110 				continue;
1111 
1112 			dprintk("svc: attempting to unregister %sv%u\n",
1113 				progp->pg_name, i);
1114 			__svc_unregister(net, progp->pg_prog, i, progp->pg_name);
1115 		}
1116 	}
1117 
1118 	spin_lock_irqsave(&current->sighand->siglock, flags);
1119 	recalc_sigpending();
1120 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
1121 }
1122 
1123 /*
1124  * dprintk the given error with the address of the client that caused it.
1125  */
1126 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
1127 static __printf(2, 3)
1128 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
1129 {
1130 	struct va_format vaf;
1131 	va_list args;
1132 	char 	buf[RPC_MAX_ADDRBUFLEN];
1133 
1134 	va_start(args, fmt);
1135 
1136 	vaf.fmt = fmt;
1137 	vaf.va = &args;
1138 
1139 	dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf);
1140 
1141 	va_end(args);
1142 }
1143 #else
1144 static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {}
1145 #endif
1146 
1147 /*
1148  * Setup response header for TCP, it has a 4B record length field.
1149  */
1150 static void svc_tcp_prep_reply_hdr(struct svc_rqst *rqstp)
1151 {
1152 	struct kvec *resv = &rqstp->rq_res.head[0];
1153 
1154 	/* tcp needs a space for the record length... */
1155 	svc_putnl(resv, 0);
1156 }
1157 
1158 /*
1159  * Common routine for processing the RPC request.
1160  */
1161 static int
1162 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv)
1163 {
1164 	struct svc_program	*progp;
1165 	const struct svc_version *versp = NULL;	/* compiler food */
1166 	const struct svc_procedure *procp = NULL;
1167 	struct svc_serv		*serv = rqstp->rq_server;
1168 	__be32			*statp;
1169 	u32			prog, vers, proc;
1170 	__be32			auth_stat, rpc_stat;
1171 	int			auth_res;
1172 	__be32			*reply_statp;
1173 
1174 	rpc_stat = rpc_success;
1175 
1176 	if (argv->iov_len < 6*4)
1177 		goto err_short_len;
1178 
1179 	/* Will be turned off by GSS integrity and privacy services */
1180 	set_bit(RQ_SPLICE_OK, &rqstp->rq_flags);
1181 	/* Will be turned off only when NFSv4 Sessions are used */
1182 	set_bit(RQ_USEDEFERRAL, &rqstp->rq_flags);
1183 	clear_bit(RQ_DROPME, &rqstp->rq_flags);
1184 
1185 	/* Setup reply header */
1186 	if (rqstp->rq_prot == IPPROTO_TCP)
1187 		svc_tcp_prep_reply_hdr(rqstp);
1188 
1189 	svc_putu32(resv, rqstp->rq_xid);
1190 
1191 	vers = svc_getnl(argv);
1192 
1193 	/* First words of reply: */
1194 	svc_putnl(resv, 1);		/* REPLY */
1195 
1196 	if (vers != 2)		/* RPC version number */
1197 		goto err_bad_rpc;
1198 
1199 	/* Save position in case we later decide to reject: */
1200 	reply_statp = resv->iov_base + resv->iov_len;
1201 
1202 	svc_putnl(resv, 0);		/* ACCEPT */
1203 
1204 	rqstp->rq_prog = prog = svc_getnl(argv);	/* program number */
1205 	rqstp->rq_vers = vers = svc_getnl(argv);	/* version number */
1206 	rqstp->rq_proc = proc = svc_getnl(argv);	/* procedure number */
1207 
1208 	for (progp = serv->sv_program; progp; progp = progp->pg_next)
1209 		if (prog == progp->pg_prog)
1210 			break;
1211 
1212 	/*
1213 	 * Decode auth data, and add verifier to reply buffer.
1214 	 * We do this before anything else in order to get a decent
1215 	 * auth verifier.
1216 	 */
1217 	auth_res = svc_authenticate(rqstp, &auth_stat);
1218 	/* Also give the program a chance to reject this call: */
1219 	if (auth_res == SVC_OK && progp) {
1220 		auth_stat = rpc_autherr_badcred;
1221 		auth_res = progp->pg_authenticate(rqstp);
1222 	}
1223 	switch (auth_res) {
1224 	case SVC_OK:
1225 		break;
1226 	case SVC_GARBAGE:
1227 		goto err_garbage;
1228 	case SVC_SYSERR:
1229 		rpc_stat = rpc_system_err;
1230 		goto err_bad;
1231 	case SVC_DENIED:
1232 		goto err_bad_auth;
1233 	case SVC_CLOSE:
1234 		goto close;
1235 	case SVC_DROP:
1236 		goto dropit;
1237 	case SVC_COMPLETE:
1238 		goto sendit;
1239 	}
1240 
1241 	if (progp == NULL)
1242 		goto err_bad_prog;
1243 
1244 	if (vers >= progp->pg_nvers ||
1245 	  !(versp = progp->pg_vers[vers]))
1246 		goto err_bad_vers;
1247 
1248 	/*
1249 	 * Some protocol versions (namely NFSv4) require some form of
1250 	 * congestion control.  (See RFC 7530 section 3.1 paragraph 2)
1251 	 * In other words, UDP is not allowed. We mark those when setting
1252 	 * up the svc_xprt, and verify that here.
1253 	 *
1254 	 * The spec is not very clear about what error should be returned
1255 	 * when someone tries to access a server that is listening on UDP
1256 	 * for lower versions. RPC_PROG_MISMATCH seems to be the closest
1257 	 * fit.
1258 	 */
1259 	if (versp->vs_need_cong_ctrl && rqstp->rq_xprt &&
1260 	    !test_bit(XPT_CONG_CTRL, &rqstp->rq_xprt->xpt_flags))
1261 		goto err_bad_vers;
1262 
1263 	procp = versp->vs_proc + proc;
1264 	if (proc >= versp->vs_nproc || !procp->pc_func)
1265 		goto err_bad_proc;
1266 	rqstp->rq_procinfo = procp;
1267 
1268 	/* Syntactic check complete */
1269 	serv->sv_stats->rpccnt++;
1270 	trace_svc_process(rqstp, progp->pg_name);
1271 
1272 	/* Build the reply header. */
1273 	statp = resv->iov_base +resv->iov_len;
1274 	svc_putnl(resv, RPC_SUCCESS);
1275 
1276 	/* Bump per-procedure stats counter */
1277 	versp->vs_count[proc]++;
1278 
1279 	/* Initialize storage for argp and resp */
1280 	memset(rqstp->rq_argp, 0, procp->pc_argsize);
1281 	memset(rqstp->rq_resp, 0, procp->pc_ressize);
1282 
1283 	/* un-reserve some of the out-queue now that we have a
1284 	 * better idea of reply size
1285 	 */
1286 	if (procp->pc_xdrressize)
1287 		svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1288 
1289 	/* Call the function that processes the request. */
1290 	if (!versp->vs_dispatch) {
1291 		/*
1292 		 * Decode arguments
1293 		 * XXX: why do we ignore the return value?
1294 		 */
1295 		if (procp->pc_decode &&
1296 		    !procp->pc_decode(rqstp, argv->iov_base))
1297 			goto err_garbage;
1298 
1299 		*statp = procp->pc_func(rqstp);
1300 
1301 		/* Encode reply */
1302 		if (*statp == rpc_drop_reply ||
1303 		    test_bit(RQ_DROPME, &rqstp->rq_flags)) {
1304 			if (procp->pc_release)
1305 				procp->pc_release(rqstp);
1306 			goto dropit;
1307 		}
1308 		if (*statp == rpc_autherr_badcred) {
1309 			if (procp->pc_release)
1310 				procp->pc_release(rqstp);
1311 			goto err_bad_auth;
1312 		}
1313 		if (*statp == rpc_success && procp->pc_encode &&
1314 		    !procp->pc_encode(rqstp, resv->iov_base + resv->iov_len)) {
1315 			dprintk("svc: failed to encode reply\n");
1316 			/* serv->sv_stats->rpcsystemerr++; */
1317 			*statp = rpc_system_err;
1318 		}
1319 	} else {
1320 		dprintk("svc: calling dispatcher\n");
1321 		if (!versp->vs_dispatch(rqstp, statp)) {
1322 			/* Release reply info */
1323 			if (procp->pc_release)
1324 				procp->pc_release(rqstp);
1325 			goto dropit;
1326 		}
1327 	}
1328 
1329 	/* Check RPC status result */
1330 	if (*statp != rpc_success)
1331 		resv->iov_len = ((void*)statp)  - resv->iov_base + 4;
1332 
1333 	/* Release reply info */
1334 	if (procp->pc_release)
1335 		procp->pc_release(rqstp);
1336 
1337 	if (procp->pc_encode == NULL)
1338 		goto dropit;
1339 
1340  sendit:
1341 	if (svc_authorise(rqstp))
1342 		goto close;
1343 	return 1;		/* Caller can now send it */
1344 
1345  dropit:
1346 	svc_authorise(rqstp);	/* doesn't hurt to call this twice */
1347 	dprintk("svc: svc_process dropit\n");
1348 	return 0;
1349 
1350  close:
1351 	if (rqstp->rq_xprt && test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags))
1352 		svc_close_xprt(rqstp->rq_xprt);
1353 	dprintk("svc: svc_process close\n");
1354 	return 0;
1355 
1356 err_short_len:
1357 	svc_printk(rqstp, "short len %zd, dropping request\n",
1358 			argv->iov_len);
1359 	goto close;
1360 
1361 err_bad_rpc:
1362 	serv->sv_stats->rpcbadfmt++;
1363 	svc_putnl(resv, 1);	/* REJECT */
1364 	svc_putnl(resv, 0);	/* RPC_MISMATCH */
1365 	svc_putnl(resv, 2);	/* Only RPCv2 supported */
1366 	svc_putnl(resv, 2);
1367 	goto sendit;
1368 
1369 err_bad_auth:
1370 	dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat));
1371 	serv->sv_stats->rpcbadauth++;
1372 	/* Restore write pointer to location of accept status: */
1373 	xdr_ressize_check(rqstp, reply_statp);
1374 	svc_putnl(resv, 1);	/* REJECT */
1375 	svc_putnl(resv, 1);	/* AUTH_ERROR */
1376 	svc_putnl(resv, ntohl(auth_stat));	/* status */
1377 	goto sendit;
1378 
1379 err_bad_prog:
1380 	dprintk("svc: unknown program %d\n", prog);
1381 	serv->sv_stats->rpcbadfmt++;
1382 	svc_putnl(resv, RPC_PROG_UNAVAIL);
1383 	goto sendit;
1384 
1385 err_bad_vers:
1386 	svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1387 		       vers, prog, progp->pg_name);
1388 
1389 	serv->sv_stats->rpcbadfmt++;
1390 	svc_putnl(resv, RPC_PROG_MISMATCH);
1391 	svc_putnl(resv, progp->pg_lovers);
1392 	svc_putnl(resv, progp->pg_hivers);
1393 	goto sendit;
1394 
1395 err_bad_proc:
1396 	svc_printk(rqstp, "unknown procedure (%d)\n", proc);
1397 
1398 	serv->sv_stats->rpcbadfmt++;
1399 	svc_putnl(resv, RPC_PROC_UNAVAIL);
1400 	goto sendit;
1401 
1402 err_garbage:
1403 	svc_printk(rqstp, "failed to decode args\n");
1404 
1405 	rpc_stat = rpc_garbage_args;
1406 err_bad:
1407 	serv->sv_stats->rpcbadfmt++;
1408 	svc_putnl(resv, ntohl(rpc_stat));
1409 	goto sendit;
1410 }
1411 
1412 /*
1413  * Process the RPC request.
1414  */
1415 int
1416 svc_process(struct svc_rqst *rqstp)
1417 {
1418 	struct kvec		*argv = &rqstp->rq_arg.head[0];
1419 	struct kvec		*resv = &rqstp->rq_res.head[0];
1420 	struct svc_serv		*serv = rqstp->rq_server;
1421 	u32			dir;
1422 
1423 	/*
1424 	 * Setup response xdr_buf.
1425 	 * Initially it has just one page
1426 	 */
1427 	rqstp->rq_next_page = &rqstp->rq_respages[1];
1428 	resv->iov_base = page_address(rqstp->rq_respages[0]);
1429 	resv->iov_len = 0;
1430 	rqstp->rq_res.pages = rqstp->rq_respages + 1;
1431 	rqstp->rq_res.len = 0;
1432 	rqstp->rq_res.page_base = 0;
1433 	rqstp->rq_res.page_len = 0;
1434 	rqstp->rq_res.buflen = PAGE_SIZE;
1435 	rqstp->rq_res.tail[0].iov_base = NULL;
1436 	rqstp->rq_res.tail[0].iov_len = 0;
1437 
1438 	dir  = svc_getnl(argv);
1439 	if (dir != 0) {
1440 		/* direction != CALL */
1441 		svc_printk(rqstp, "bad direction %d, dropping request\n", dir);
1442 		serv->sv_stats->rpcbadfmt++;
1443 		goto out_drop;
1444 	}
1445 
1446 	/* Returns 1 for send, 0 for drop */
1447 	if (likely(svc_process_common(rqstp, argv, resv)))
1448 		return svc_send(rqstp);
1449 
1450 out_drop:
1451 	svc_drop(rqstp);
1452 	return 0;
1453 }
1454 EXPORT_SYMBOL_GPL(svc_process);
1455 
1456 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1457 /*
1458  * Process a backchannel RPC request that arrived over an existing
1459  * outbound connection
1460  */
1461 int
1462 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req,
1463 	       struct svc_rqst *rqstp)
1464 {
1465 	struct kvec	*argv = &rqstp->rq_arg.head[0];
1466 	struct kvec	*resv = &rqstp->rq_res.head[0];
1467 	struct rpc_task *task;
1468 	int proc_error;
1469 	int error;
1470 
1471 	dprintk("svc: %s(%p)\n", __func__, req);
1472 
1473 	/* Build the svc_rqst used by the common processing routine */
1474 	rqstp->rq_xid = req->rq_xid;
1475 	rqstp->rq_prot = req->rq_xprt->prot;
1476 	rqstp->rq_server = serv;
1477 	rqstp->rq_bc_net = req->rq_xprt->xprt_net;
1478 
1479 	rqstp->rq_addrlen = sizeof(req->rq_xprt->addr);
1480 	memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen);
1481 	memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg));
1482 	memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res));
1483 
1484 	/* Adjust the argument buffer length */
1485 	rqstp->rq_arg.len = req->rq_private_buf.len;
1486 	if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
1487 		rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
1488 		rqstp->rq_arg.page_len = 0;
1489 	} else if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len +
1490 			rqstp->rq_arg.page_len)
1491 		rqstp->rq_arg.page_len = rqstp->rq_arg.len -
1492 			rqstp->rq_arg.head[0].iov_len;
1493 	else
1494 		rqstp->rq_arg.len = rqstp->rq_arg.head[0].iov_len +
1495 			rqstp->rq_arg.page_len;
1496 
1497 	/* reset result send buffer "put" position */
1498 	resv->iov_len = 0;
1499 
1500 	/*
1501 	 * Skip the next two words because they've already been
1502 	 * processed in the transport
1503 	 */
1504 	svc_getu32(argv);	/* XID */
1505 	svc_getnl(argv);	/* CALLDIR */
1506 
1507 	/* Parse and execute the bc call */
1508 	proc_error = svc_process_common(rqstp, argv, resv);
1509 
1510 	atomic_inc(&req->rq_xprt->bc_free_slots);
1511 	if (!proc_error) {
1512 		/* Processing error: drop the request */
1513 		xprt_free_bc_request(req);
1514 		error = -EINVAL;
1515 		goto out;
1516 	}
1517 	/* Finally, send the reply synchronously */
1518 	memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf));
1519 	task = rpc_run_bc_task(req);
1520 	if (IS_ERR(task)) {
1521 		error = PTR_ERR(task);
1522 		goto out;
1523 	}
1524 
1525 	WARN_ON_ONCE(atomic_read(&task->tk_count) != 1);
1526 	error = task->tk_status;
1527 	rpc_put_task(task);
1528 
1529 out:
1530 	dprintk("svc: %s(), error=%d\n", __func__, error);
1531 	return error;
1532 }
1533 EXPORT_SYMBOL_GPL(bc_svc_process);
1534 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1535 
1536 /*
1537  * Return (transport-specific) limit on the rpc payload.
1538  */
1539 u32 svc_max_payload(const struct svc_rqst *rqstp)
1540 {
1541 	u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1542 
1543 	if (rqstp->rq_server->sv_max_payload < max)
1544 		max = rqstp->rq_server->sv_max_payload;
1545 	return max;
1546 }
1547 EXPORT_SYMBOL_GPL(svc_max_payload);
1548 
1549 /**
1550  * svc_fill_write_vector - Construct data argument for VFS write call
1551  * @rqstp: svc_rqst to operate on
1552  * @pages: list of pages containing data payload
1553  * @first: buffer containing first section of write payload
1554  * @total: total number of bytes of write payload
1555  *
1556  * Fills in rqstp::rq_vec, and returns the number of elements.
1557  */
1558 unsigned int svc_fill_write_vector(struct svc_rqst *rqstp, struct page **pages,
1559 				   struct kvec *first, size_t total)
1560 {
1561 	struct kvec *vec = rqstp->rq_vec;
1562 	unsigned int i;
1563 
1564 	/* Some types of transport can present the write payload
1565 	 * entirely in rq_arg.pages. In this case, @first is empty.
1566 	 */
1567 	i = 0;
1568 	if (first->iov_len) {
1569 		vec[i].iov_base = first->iov_base;
1570 		vec[i].iov_len = min_t(size_t, total, first->iov_len);
1571 		total -= vec[i].iov_len;
1572 		++i;
1573 	}
1574 
1575 	while (total) {
1576 		vec[i].iov_base = page_address(*pages);
1577 		vec[i].iov_len = min_t(size_t, total, PAGE_SIZE);
1578 		total -= vec[i].iov_len;
1579 		++i;
1580 		++pages;
1581 	}
1582 
1583 	WARN_ON_ONCE(i > ARRAY_SIZE(rqstp->rq_vec));
1584 	return i;
1585 }
1586 EXPORT_SYMBOL_GPL(svc_fill_write_vector);
1587 
1588 /**
1589  * svc_fill_symlink_pathname - Construct pathname argument for VFS symlink call
1590  * @rqstp: svc_rqst to operate on
1591  * @first: buffer containing first section of pathname
1592  * @p: buffer containing remaining section of pathname
1593  * @total: total length of the pathname argument
1594  *
1595  * The VFS symlink API demands a NUL-terminated pathname in mapped memory.
1596  * Returns pointer to a NUL-terminated string, or an ERR_PTR. Caller must free
1597  * the returned string.
1598  */
1599 char *svc_fill_symlink_pathname(struct svc_rqst *rqstp, struct kvec *first,
1600 				void *p, size_t total)
1601 {
1602 	size_t len, remaining;
1603 	char *result, *dst;
1604 
1605 	result = kmalloc(total + 1, GFP_KERNEL);
1606 	if (!result)
1607 		return ERR_PTR(-ESERVERFAULT);
1608 
1609 	dst = result;
1610 	remaining = total;
1611 
1612 	len = min_t(size_t, total, first->iov_len);
1613 	if (len) {
1614 		memcpy(dst, first->iov_base, len);
1615 		dst += len;
1616 		remaining -= len;
1617 	}
1618 
1619 	if (remaining) {
1620 		len = min_t(size_t, remaining, PAGE_SIZE);
1621 		memcpy(dst, p, len);
1622 		dst += len;
1623 	}
1624 
1625 	*dst = '\0';
1626 
1627 	/* Sanity check: Linux doesn't allow the pathname argument to
1628 	 * contain a NUL byte.
1629 	 */
1630 	if (strlen(result) != total) {
1631 		kfree(result);
1632 		return ERR_PTR(-EINVAL);
1633 	}
1634 	return result;
1635 }
1636 EXPORT_SYMBOL_GPL(svc_fill_symlink_pathname);
1637