xref: /linux/net/sunrpc/svc.c (revision 1e123fd73deb16cb362ecefb55c90c9196f4a6c2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/svc.c
4  *
5  * High-level RPC service routines
6  *
7  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
8  *
9  * Multiple threads pools and NUMAisation
10  * Copyright (c) 2006 Silicon Graphics, Inc.
11  * by Greg Banks <gnb@melbourne.sgi.com>
12  */
13 
14 #include <linux/linkage.h>
15 #include <linux/sched/signal.h>
16 #include <linux/errno.h>
17 #include <linux/net.h>
18 #include <linux/in.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/kthread.h>
23 #include <linux/slab.h>
24 
25 #include <linux/sunrpc/types.h>
26 #include <linux/sunrpc/xdr.h>
27 #include <linux/sunrpc/stats.h>
28 #include <linux/sunrpc/svcsock.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/sunrpc/bc_xprt.h>
31 
32 #include <trace/events/sunrpc.h>
33 
34 #include "fail.h"
35 #include "sunrpc.h"
36 
37 #define RPCDBG_FACILITY	RPCDBG_SVCDSP
38 
39 static void svc_unregister(const struct svc_serv *serv, struct net *net);
40 
41 #define SVC_POOL_DEFAULT	SVC_POOL_GLOBAL
42 
43 /*
44  * Mode for mapping cpus to pools.
45  */
46 enum {
47 	SVC_POOL_AUTO = -1,	/* choose one of the others */
48 	SVC_POOL_GLOBAL,	/* no mapping, just a single global pool
49 				 * (legacy & UP mode) */
50 	SVC_POOL_PERCPU,	/* one pool per cpu */
51 	SVC_POOL_PERNODE	/* one pool per numa node */
52 };
53 
54 /*
55  * Structure for mapping cpus to pools and vice versa.
56  * Setup once during sunrpc initialisation.
57  */
58 
59 struct svc_pool_map {
60 	int count;			/* How many svc_servs use us */
61 	int mode;			/* Note: int not enum to avoid
62 					 * warnings about "enumeration value
63 					 * not handled in switch" */
64 	unsigned int npools;
65 	unsigned int *pool_to;		/* maps pool id to cpu or node */
66 	unsigned int *to_pool;		/* maps cpu or node to pool id */
67 };
68 
69 static struct svc_pool_map svc_pool_map = {
70 	.mode = SVC_POOL_DEFAULT
71 };
72 
73 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
74 
75 static int
76 __param_set_pool_mode(const char *val, struct svc_pool_map *m)
77 {
78 	int err, mode;
79 
80 	mutex_lock(&svc_pool_map_mutex);
81 
82 	err = 0;
83 	if (!strncmp(val, "auto", 4))
84 		mode = SVC_POOL_AUTO;
85 	else if (!strncmp(val, "global", 6))
86 		mode = SVC_POOL_GLOBAL;
87 	else if (!strncmp(val, "percpu", 6))
88 		mode = SVC_POOL_PERCPU;
89 	else if (!strncmp(val, "pernode", 7))
90 		mode = SVC_POOL_PERNODE;
91 	else
92 		err = -EINVAL;
93 
94 	if (err)
95 		goto out;
96 
97 	if (m->count == 0)
98 		m->mode = mode;
99 	else if (mode != m->mode)
100 		err = -EBUSY;
101 out:
102 	mutex_unlock(&svc_pool_map_mutex);
103 	return err;
104 }
105 
106 static int
107 param_set_pool_mode(const char *val, const struct kernel_param *kp)
108 {
109 	struct svc_pool_map *m = kp->arg;
110 
111 	return __param_set_pool_mode(val, m);
112 }
113 
114 int sunrpc_set_pool_mode(const char *val)
115 {
116 	return __param_set_pool_mode(val, &svc_pool_map);
117 }
118 EXPORT_SYMBOL(sunrpc_set_pool_mode);
119 
120 /**
121  * sunrpc_get_pool_mode - get the current pool_mode for the host
122  * @buf: where to write the current pool_mode
123  * @size: size of @buf
124  *
125  * Grab the current pool_mode from the svc_pool_map and write
126  * the resulting string to @buf. Returns the number of characters
127  * written to @buf (a'la snprintf()).
128  */
129 int
130 sunrpc_get_pool_mode(char *buf, size_t size)
131 {
132 	struct svc_pool_map *m = &svc_pool_map;
133 
134 	switch (m->mode)
135 	{
136 	case SVC_POOL_AUTO:
137 		return snprintf(buf, size, "auto");
138 	case SVC_POOL_GLOBAL:
139 		return snprintf(buf, size, "global");
140 	case SVC_POOL_PERCPU:
141 		return snprintf(buf, size, "percpu");
142 	case SVC_POOL_PERNODE:
143 		return snprintf(buf, size, "pernode");
144 	default:
145 		return snprintf(buf, size, "%d", m->mode);
146 	}
147 }
148 EXPORT_SYMBOL(sunrpc_get_pool_mode);
149 
150 static int
151 param_get_pool_mode(char *buf, const struct kernel_param *kp)
152 {
153 	char str[16];
154 	int len;
155 
156 	len = sunrpc_get_pool_mode(str, ARRAY_SIZE(str));
157 
158 	/* Ensure we have room for newline and NUL */
159 	len = min_t(int, len, ARRAY_SIZE(str) - 2);
160 
161 	/* tack on the newline */
162 	str[len] = '\n';
163 	str[len + 1] = '\0';
164 
165 	return sysfs_emit(buf, "%s", str);
166 }
167 
168 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
169 		  &svc_pool_map, 0644);
170 
171 /*
172  * Detect best pool mapping mode heuristically,
173  * according to the machine's topology.
174  */
175 static int
176 svc_pool_map_choose_mode(void)
177 {
178 	unsigned int node;
179 
180 	if (nr_online_nodes > 1) {
181 		/*
182 		 * Actually have multiple NUMA nodes,
183 		 * so split pools on NUMA node boundaries
184 		 */
185 		return SVC_POOL_PERNODE;
186 	}
187 
188 	node = first_online_node;
189 	if (nr_cpus_node(node) > 2) {
190 		/*
191 		 * Non-trivial SMP, or CONFIG_NUMA on
192 		 * non-NUMA hardware, e.g. with a generic
193 		 * x86_64 kernel on Xeons.  In this case we
194 		 * want to divide the pools on cpu boundaries.
195 		 */
196 		return SVC_POOL_PERCPU;
197 	}
198 
199 	/* default: one global pool */
200 	return SVC_POOL_GLOBAL;
201 }
202 
203 /*
204  * Allocate the to_pool[] and pool_to[] arrays.
205  * Returns 0 on success or an errno.
206  */
207 static int
208 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
209 {
210 	m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
211 	if (!m->to_pool)
212 		goto fail;
213 	m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
214 	if (!m->pool_to)
215 		goto fail_free;
216 
217 	return 0;
218 
219 fail_free:
220 	kfree(m->to_pool);
221 	m->to_pool = NULL;
222 fail:
223 	return -ENOMEM;
224 }
225 
226 /*
227  * Initialise the pool map for SVC_POOL_PERCPU mode.
228  * Returns number of pools or <0 on error.
229  */
230 static int
231 svc_pool_map_init_percpu(struct svc_pool_map *m)
232 {
233 	unsigned int maxpools = nr_cpu_ids;
234 	unsigned int pidx = 0;
235 	unsigned int cpu;
236 	int err;
237 
238 	err = svc_pool_map_alloc_arrays(m, maxpools);
239 	if (err)
240 		return err;
241 
242 	for_each_online_cpu(cpu) {
243 		BUG_ON(pidx >= maxpools);
244 		m->to_pool[cpu] = pidx;
245 		m->pool_to[pidx] = cpu;
246 		pidx++;
247 	}
248 	/* cpus brought online later all get mapped to pool0, sorry */
249 
250 	return pidx;
251 };
252 
253 
254 /*
255  * Initialise the pool map for SVC_POOL_PERNODE mode.
256  * Returns number of pools or <0 on error.
257  */
258 static int
259 svc_pool_map_init_pernode(struct svc_pool_map *m)
260 {
261 	unsigned int maxpools = nr_node_ids;
262 	unsigned int pidx = 0;
263 	unsigned int node;
264 	int err;
265 
266 	err = svc_pool_map_alloc_arrays(m, maxpools);
267 	if (err)
268 		return err;
269 
270 	for_each_node_with_cpus(node) {
271 		/* some architectures (e.g. SN2) have cpuless nodes */
272 		BUG_ON(pidx > maxpools);
273 		m->to_pool[node] = pidx;
274 		m->pool_to[pidx] = node;
275 		pidx++;
276 	}
277 	/* nodes brought online later all get mapped to pool0, sorry */
278 
279 	return pidx;
280 }
281 
282 
283 /*
284  * Add a reference to the global map of cpus to pools (and
285  * vice versa) if pools are in use.
286  * Initialise the map if we're the first user.
287  * Returns the number of pools. If this is '1', no reference
288  * was taken.
289  */
290 static unsigned int
291 svc_pool_map_get(void)
292 {
293 	struct svc_pool_map *m = &svc_pool_map;
294 	int npools = -1;
295 
296 	mutex_lock(&svc_pool_map_mutex);
297 	if (m->count++) {
298 		mutex_unlock(&svc_pool_map_mutex);
299 		return m->npools;
300 	}
301 
302 	if (m->mode == SVC_POOL_AUTO)
303 		m->mode = svc_pool_map_choose_mode();
304 
305 	switch (m->mode) {
306 	case SVC_POOL_PERCPU:
307 		npools = svc_pool_map_init_percpu(m);
308 		break;
309 	case SVC_POOL_PERNODE:
310 		npools = svc_pool_map_init_pernode(m);
311 		break;
312 	}
313 
314 	if (npools <= 0) {
315 		/* default, or memory allocation failure */
316 		npools = 1;
317 		m->mode = SVC_POOL_GLOBAL;
318 	}
319 	m->npools = npools;
320 	mutex_unlock(&svc_pool_map_mutex);
321 	return npools;
322 }
323 
324 /*
325  * Drop a reference to the global map of cpus to pools.
326  * When the last reference is dropped, the map data is
327  * freed; this allows the sysadmin to change the pool.
328  */
329 static void
330 svc_pool_map_put(void)
331 {
332 	struct svc_pool_map *m = &svc_pool_map;
333 
334 	mutex_lock(&svc_pool_map_mutex);
335 	if (!--m->count) {
336 		kfree(m->to_pool);
337 		m->to_pool = NULL;
338 		kfree(m->pool_to);
339 		m->pool_to = NULL;
340 		m->npools = 0;
341 	}
342 	mutex_unlock(&svc_pool_map_mutex);
343 }
344 
345 static int svc_pool_map_get_node(unsigned int pidx)
346 {
347 	const struct svc_pool_map *m = &svc_pool_map;
348 
349 	if (m->count) {
350 		if (m->mode == SVC_POOL_PERCPU)
351 			return cpu_to_node(m->pool_to[pidx]);
352 		if (m->mode == SVC_POOL_PERNODE)
353 			return m->pool_to[pidx];
354 	}
355 	return NUMA_NO_NODE;
356 }
357 /*
358  * Set the given thread's cpus_allowed mask so that it
359  * will only run on cpus in the given pool.
360  */
361 static inline void
362 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
363 {
364 	struct svc_pool_map *m = &svc_pool_map;
365 	unsigned int node = m->pool_to[pidx];
366 
367 	/*
368 	 * The caller checks for sv_nrpools > 1, which
369 	 * implies that we've been initialized.
370 	 */
371 	WARN_ON_ONCE(m->count == 0);
372 	if (m->count == 0)
373 		return;
374 
375 	switch (m->mode) {
376 	case SVC_POOL_PERCPU:
377 	{
378 		set_cpus_allowed_ptr(task, cpumask_of(node));
379 		break;
380 	}
381 	case SVC_POOL_PERNODE:
382 	{
383 		set_cpus_allowed_ptr(task, cpumask_of_node(node));
384 		break;
385 	}
386 	}
387 }
388 
389 /**
390  * svc_pool_for_cpu - Select pool to run a thread on this cpu
391  * @serv: An RPC service
392  *
393  * Use the active CPU and the svc_pool_map's mode setting to
394  * select the svc thread pool to use. Once initialized, the
395  * svc_pool_map does not change.
396  *
397  * Return value:
398  *   A pointer to an svc_pool
399  */
400 struct svc_pool *svc_pool_for_cpu(struct svc_serv *serv)
401 {
402 	struct svc_pool_map *m = &svc_pool_map;
403 	int cpu = raw_smp_processor_id();
404 	unsigned int pidx = 0;
405 
406 	if (serv->sv_nrpools <= 1)
407 		return serv->sv_pools;
408 
409 	switch (m->mode) {
410 	case SVC_POOL_PERCPU:
411 		pidx = m->to_pool[cpu];
412 		break;
413 	case SVC_POOL_PERNODE:
414 		pidx = m->to_pool[cpu_to_node(cpu)];
415 		break;
416 	}
417 
418 	return &serv->sv_pools[pidx % serv->sv_nrpools];
419 }
420 
421 static int svc_rpcb_setup(struct svc_serv *serv, struct net *net)
422 {
423 	int err;
424 
425 	err = rpcb_create_local(net);
426 	if (err)
427 		return err;
428 
429 	/* Remove any stale portmap registrations */
430 	svc_unregister(serv, net);
431 	return 0;
432 }
433 
434 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net)
435 {
436 	svc_unregister(serv, net);
437 	rpcb_put_local(net);
438 }
439 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup);
440 
441 static int svc_uses_rpcbind(struct svc_serv *serv)
442 {
443 	struct svc_program	*progp;
444 	unsigned int		i;
445 
446 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
447 		for (i = 0; i < progp->pg_nvers; i++) {
448 			if (progp->pg_vers[i] == NULL)
449 				continue;
450 			if (!progp->pg_vers[i]->vs_hidden)
451 				return 1;
452 		}
453 	}
454 
455 	return 0;
456 }
457 
458 int svc_bind(struct svc_serv *serv, struct net *net)
459 {
460 	if (!svc_uses_rpcbind(serv))
461 		return 0;
462 	return svc_rpcb_setup(serv, net);
463 }
464 EXPORT_SYMBOL_GPL(svc_bind);
465 
466 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
467 static void
468 __svc_init_bc(struct svc_serv *serv)
469 {
470 	lwq_init(&serv->sv_cb_list);
471 }
472 #else
473 static void
474 __svc_init_bc(struct svc_serv *serv)
475 {
476 }
477 #endif
478 
479 /*
480  * Create an RPC service
481  */
482 static struct svc_serv *
483 __svc_create(struct svc_program *prog, struct svc_stat *stats,
484 	     unsigned int bufsize, int npools, int (*threadfn)(void *data))
485 {
486 	struct svc_serv	*serv;
487 	unsigned int vers;
488 	unsigned int xdrsize;
489 	unsigned int i;
490 
491 	if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
492 		return NULL;
493 	serv->sv_name      = prog->pg_name;
494 	serv->sv_program   = prog;
495 	serv->sv_stats     = stats;
496 	if (bufsize > RPCSVC_MAXPAYLOAD)
497 		bufsize = RPCSVC_MAXPAYLOAD;
498 	serv->sv_max_payload = bufsize? bufsize : 4096;
499 	serv->sv_max_mesg  = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
500 	serv->sv_threadfn = threadfn;
501 	xdrsize = 0;
502 	while (prog) {
503 		prog->pg_lovers = prog->pg_nvers-1;
504 		for (vers=0; vers<prog->pg_nvers ; vers++)
505 			if (prog->pg_vers[vers]) {
506 				prog->pg_hivers = vers;
507 				if (prog->pg_lovers > vers)
508 					prog->pg_lovers = vers;
509 				if (prog->pg_vers[vers]->vs_xdrsize > xdrsize)
510 					xdrsize = prog->pg_vers[vers]->vs_xdrsize;
511 			}
512 		prog = prog->pg_next;
513 	}
514 	serv->sv_xdrsize   = xdrsize;
515 	INIT_LIST_HEAD(&serv->sv_tempsocks);
516 	INIT_LIST_HEAD(&serv->sv_permsocks);
517 	timer_setup(&serv->sv_temptimer, NULL, 0);
518 	spin_lock_init(&serv->sv_lock);
519 
520 	__svc_init_bc(serv);
521 
522 	serv->sv_nrpools = npools;
523 	serv->sv_pools =
524 		kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
525 			GFP_KERNEL);
526 	if (!serv->sv_pools) {
527 		kfree(serv);
528 		return NULL;
529 	}
530 
531 	for (i = 0; i < serv->sv_nrpools; i++) {
532 		struct svc_pool *pool = &serv->sv_pools[i];
533 
534 		dprintk("svc: initialising pool %u for %s\n",
535 				i, serv->sv_name);
536 
537 		pool->sp_id = i;
538 		lwq_init(&pool->sp_xprts);
539 		INIT_LIST_HEAD(&pool->sp_all_threads);
540 		init_llist_head(&pool->sp_idle_threads);
541 
542 		percpu_counter_init(&pool->sp_messages_arrived, 0, GFP_KERNEL);
543 		percpu_counter_init(&pool->sp_sockets_queued, 0, GFP_KERNEL);
544 		percpu_counter_init(&pool->sp_threads_woken, 0, GFP_KERNEL);
545 	}
546 
547 	return serv;
548 }
549 
550 /**
551  * svc_create - Create an RPC service
552  * @prog: the RPC program the new service will handle
553  * @bufsize: maximum message size for @prog
554  * @threadfn: a function to service RPC requests for @prog
555  *
556  * Returns an instantiated struct svc_serv object or NULL.
557  */
558 struct svc_serv *svc_create(struct svc_program *prog, unsigned int bufsize,
559 			    int (*threadfn)(void *data))
560 {
561 	return __svc_create(prog, NULL, bufsize, 1, threadfn);
562 }
563 EXPORT_SYMBOL_GPL(svc_create);
564 
565 /**
566  * svc_create_pooled - Create an RPC service with pooled threads
567  * @prog: the RPC program the new service will handle
568  * @stats: the stats struct if desired
569  * @bufsize: maximum message size for @prog
570  * @threadfn: a function to service RPC requests for @prog
571  *
572  * Returns an instantiated struct svc_serv object or NULL.
573  */
574 struct svc_serv *svc_create_pooled(struct svc_program *prog,
575 				   struct svc_stat *stats,
576 				   unsigned int bufsize,
577 				   int (*threadfn)(void *data))
578 {
579 	struct svc_serv *serv;
580 	unsigned int npools = svc_pool_map_get();
581 
582 	serv = __svc_create(prog, stats, bufsize, npools, threadfn);
583 	if (!serv)
584 		goto out_err;
585 	serv->sv_is_pooled = true;
586 	return serv;
587 out_err:
588 	svc_pool_map_put();
589 	return NULL;
590 }
591 EXPORT_SYMBOL_GPL(svc_create_pooled);
592 
593 /*
594  * Destroy an RPC service. Should be called with appropriate locking to
595  * protect sv_permsocks and sv_tempsocks.
596  */
597 void
598 svc_destroy(struct svc_serv **servp)
599 {
600 	struct svc_serv *serv = *servp;
601 	unsigned int i;
602 
603 	*servp = NULL;
604 
605 	dprintk("svc: svc_destroy(%s)\n", serv->sv_program->pg_name);
606 	timer_shutdown_sync(&serv->sv_temptimer);
607 
608 	/*
609 	 * Remaining transports at this point are not expected.
610 	 */
611 	WARN_ONCE(!list_empty(&serv->sv_permsocks),
612 		  "SVC: permsocks remain for %s\n", serv->sv_program->pg_name);
613 	WARN_ONCE(!list_empty(&serv->sv_tempsocks),
614 		  "SVC: tempsocks remain for %s\n", serv->sv_program->pg_name);
615 
616 	cache_clean_deferred(serv);
617 
618 	if (serv->sv_is_pooled)
619 		svc_pool_map_put();
620 
621 	for (i = 0; i < serv->sv_nrpools; i++) {
622 		struct svc_pool *pool = &serv->sv_pools[i];
623 
624 		percpu_counter_destroy(&pool->sp_messages_arrived);
625 		percpu_counter_destroy(&pool->sp_sockets_queued);
626 		percpu_counter_destroy(&pool->sp_threads_woken);
627 	}
628 	kfree(serv->sv_pools);
629 	kfree(serv);
630 }
631 EXPORT_SYMBOL_GPL(svc_destroy);
632 
633 static bool
634 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node)
635 {
636 	unsigned long pages, ret;
637 
638 	/* bc_xprt uses fore channel allocated buffers */
639 	if (svc_is_backchannel(rqstp))
640 		return true;
641 
642 	pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
643 				       * We assume one is at most one page
644 				       */
645 	WARN_ON_ONCE(pages > RPCSVC_MAXPAGES);
646 	if (pages > RPCSVC_MAXPAGES)
647 		pages = RPCSVC_MAXPAGES;
648 
649 	ret = alloc_pages_bulk_array_node(GFP_KERNEL, node, pages,
650 					  rqstp->rq_pages);
651 	return ret == pages;
652 }
653 
654 /*
655  * Release an RPC server buffer
656  */
657 static void
658 svc_release_buffer(struct svc_rqst *rqstp)
659 {
660 	unsigned int i;
661 
662 	for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++)
663 		if (rqstp->rq_pages[i])
664 			put_page(rqstp->rq_pages[i]);
665 }
666 
667 static void
668 svc_rqst_free(struct svc_rqst *rqstp)
669 {
670 	folio_batch_release(&rqstp->rq_fbatch);
671 	svc_release_buffer(rqstp);
672 	if (rqstp->rq_scratch_page)
673 		put_page(rqstp->rq_scratch_page);
674 	kfree(rqstp->rq_resp);
675 	kfree(rqstp->rq_argp);
676 	kfree(rqstp->rq_auth_data);
677 	kfree_rcu(rqstp, rq_rcu_head);
678 }
679 
680 static struct svc_rqst *
681 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node)
682 {
683 	struct svc_rqst	*rqstp;
684 
685 	rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node);
686 	if (!rqstp)
687 		return rqstp;
688 
689 	folio_batch_init(&rqstp->rq_fbatch);
690 
691 	rqstp->rq_server = serv;
692 	rqstp->rq_pool = pool;
693 
694 	rqstp->rq_scratch_page = alloc_pages_node(node, GFP_KERNEL, 0);
695 	if (!rqstp->rq_scratch_page)
696 		goto out_enomem;
697 
698 	rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
699 	if (!rqstp->rq_argp)
700 		goto out_enomem;
701 
702 	rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
703 	if (!rqstp->rq_resp)
704 		goto out_enomem;
705 
706 	if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node))
707 		goto out_enomem;
708 
709 	rqstp->rq_err = -EAGAIN; /* No error yet */
710 
711 	serv->sv_nrthreads += 1;
712 	pool->sp_nrthreads += 1;
713 
714 	/* Protected by whatever lock the service uses when calling
715 	 * svc_set_num_threads()
716 	 */
717 	list_add_rcu(&rqstp->rq_all, &pool->sp_all_threads);
718 
719 	return rqstp;
720 
721 out_enomem:
722 	svc_rqst_free(rqstp);
723 	return NULL;
724 }
725 
726 /**
727  * svc_pool_wake_idle_thread - Awaken an idle thread in @pool
728  * @pool: service thread pool
729  *
730  * Can be called from soft IRQ or process context. Finding an idle
731  * service thread and marking it BUSY is atomic with respect to
732  * other calls to svc_pool_wake_idle_thread().
733  *
734  */
735 void svc_pool_wake_idle_thread(struct svc_pool *pool)
736 {
737 	struct svc_rqst	*rqstp;
738 	struct llist_node *ln;
739 
740 	rcu_read_lock();
741 	ln = READ_ONCE(pool->sp_idle_threads.first);
742 	if (ln) {
743 		rqstp = llist_entry(ln, struct svc_rqst, rq_idle);
744 		WRITE_ONCE(rqstp->rq_qtime, ktime_get());
745 		if (!task_is_running(rqstp->rq_task)) {
746 			wake_up_process(rqstp->rq_task);
747 			trace_svc_wake_up(rqstp->rq_task->pid);
748 			percpu_counter_inc(&pool->sp_threads_woken);
749 		}
750 		rcu_read_unlock();
751 		return;
752 	}
753 	rcu_read_unlock();
754 
755 }
756 EXPORT_SYMBOL_GPL(svc_pool_wake_idle_thread);
757 
758 static struct svc_pool *
759 svc_pool_next(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
760 {
761 	return pool ? pool : &serv->sv_pools[(*state)++ % serv->sv_nrpools];
762 }
763 
764 static struct svc_pool *
765 svc_pool_victim(struct svc_serv *serv, struct svc_pool *target_pool,
766 		unsigned int *state)
767 {
768 	struct svc_pool *pool;
769 	unsigned int i;
770 
771 	pool = target_pool;
772 
773 	if (!pool) {
774 		for (i = 0; i < serv->sv_nrpools; i++) {
775 			pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
776 			if (pool->sp_nrthreads)
777 				break;
778 		}
779 	}
780 
781 	if (pool && pool->sp_nrthreads) {
782 		set_bit(SP_VICTIM_REMAINS, &pool->sp_flags);
783 		set_bit(SP_NEED_VICTIM, &pool->sp_flags);
784 		return pool;
785 	}
786 	return NULL;
787 }
788 
789 static int
790 svc_start_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
791 {
792 	struct svc_rqst	*rqstp;
793 	struct task_struct *task;
794 	struct svc_pool *chosen_pool;
795 	unsigned int state = serv->sv_nrthreads-1;
796 	int node;
797 	int err;
798 
799 	do {
800 		nrservs--;
801 		chosen_pool = svc_pool_next(serv, pool, &state);
802 		node = svc_pool_map_get_node(chosen_pool->sp_id);
803 
804 		rqstp = svc_prepare_thread(serv, chosen_pool, node);
805 		if (!rqstp)
806 			return -ENOMEM;
807 		task = kthread_create_on_node(serv->sv_threadfn, rqstp,
808 					      node, "%s", serv->sv_name);
809 		if (IS_ERR(task)) {
810 			svc_exit_thread(rqstp);
811 			return PTR_ERR(task);
812 		}
813 
814 		rqstp->rq_task = task;
815 		if (serv->sv_nrpools > 1)
816 			svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
817 
818 		svc_sock_update_bufs(serv);
819 		wake_up_process(task);
820 
821 		wait_var_event(&rqstp->rq_err, rqstp->rq_err != -EAGAIN);
822 		err = rqstp->rq_err;
823 		if (err) {
824 			svc_exit_thread(rqstp);
825 			return err;
826 		}
827 	} while (nrservs > 0);
828 
829 	return 0;
830 }
831 
832 static int
833 svc_stop_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
834 {
835 	unsigned int state = serv->sv_nrthreads-1;
836 	struct svc_pool *victim;
837 
838 	do {
839 		victim = svc_pool_victim(serv, pool, &state);
840 		if (!victim)
841 			break;
842 		svc_pool_wake_idle_thread(victim);
843 		wait_on_bit(&victim->sp_flags, SP_VICTIM_REMAINS,
844 			    TASK_IDLE);
845 		nrservs++;
846 	} while (nrservs < 0);
847 	return 0;
848 }
849 
850 /**
851  * svc_set_num_threads - adjust number of threads per RPC service
852  * @serv: RPC service to adjust
853  * @pool: Specific pool from which to choose threads, or NULL
854  * @nrservs: New number of threads for @serv (0 or less means kill all threads)
855  *
856  * Create or destroy threads to make the number of threads for @serv the
857  * given number. If @pool is non-NULL, change only threads in that pool;
858  * otherwise, round-robin between all pools for @serv. @serv's
859  * sv_nrthreads is adjusted for each thread created or destroyed.
860  *
861  * Caller must ensure mutual exclusion between this and server startup or
862  * shutdown.
863  *
864  * Returns zero on success or a negative errno if an error occurred while
865  * starting a thread.
866  */
867 int
868 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
869 {
870 	if (!pool)
871 		nrservs -= serv->sv_nrthreads;
872 	else
873 		nrservs -= pool->sp_nrthreads;
874 
875 	if (nrservs > 0)
876 		return svc_start_kthreads(serv, pool, nrservs);
877 	if (nrservs < 0)
878 		return svc_stop_kthreads(serv, pool, nrservs);
879 	return 0;
880 }
881 EXPORT_SYMBOL_GPL(svc_set_num_threads);
882 
883 /**
884  * svc_rqst_replace_page - Replace one page in rq_pages[]
885  * @rqstp: svc_rqst with pages to replace
886  * @page: replacement page
887  *
888  * When replacing a page in rq_pages, batch the release of the
889  * replaced pages to avoid hammering the page allocator.
890  *
891  * Return values:
892  *   %true: page replaced
893  *   %false: array bounds checking failed
894  */
895 bool svc_rqst_replace_page(struct svc_rqst *rqstp, struct page *page)
896 {
897 	struct page **begin = rqstp->rq_pages;
898 	struct page **end = &rqstp->rq_pages[RPCSVC_MAXPAGES];
899 
900 	if (unlikely(rqstp->rq_next_page < begin || rqstp->rq_next_page > end)) {
901 		trace_svc_replace_page_err(rqstp);
902 		return false;
903 	}
904 
905 	if (*rqstp->rq_next_page) {
906 		if (!folio_batch_add(&rqstp->rq_fbatch,
907 				page_folio(*rqstp->rq_next_page)))
908 			__folio_batch_release(&rqstp->rq_fbatch);
909 	}
910 
911 	get_page(page);
912 	*(rqstp->rq_next_page++) = page;
913 	return true;
914 }
915 EXPORT_SYMBOL_GPL(svc_rqst_replace_page);
916 
917 /**
918  * svc_rqst_release_pages - Release Reply buffer pages
919  * @rqstp: RPC transaction context
920  *
921  * Release response pages that might still be in flight after
922  * svc_send, and any spliced filesystem-owned pages.
923  */
924 void svc_rqst_release_pages(struct svc_rqst *rqstp)
925 {
926 	int i, count = rqstp->rq_next_page - rqstp->rq_respages;
927 
928 	if (count) {
929 		release_pages(rqstp->rq_respages, count);
930 		for (i = 0; i < count; i++)
931 			rqstp->rq_respages[i] = NULL;
932 	}
933 }
934 
935 /**
936  * svc_exit_thread - finalise the termination of a sunrpc server thread
937  * @rqstp: the svc_rqst which represents the thread.
938  *
939  * When a thread started with svc_new_thread() exits it must call
940  * svc_exit_thread() as its last act.  This must be done with the
941  * service mutex held.  Normally this is held by a DIFFERENT thread, the
942  * one that is calling svc_set_num_threads() and which will wait for
943  * SP_VICTIM_REMAINS to be cleared before dropping the mutex.  If the
944  * thread exits for any reason other than svc_thread_should_stop()
945  * returning %true (which indicated that svc_set_num_threads() is
946  * waiting for it to exit), then it must take the service mutex itself,
947  * which can only safely be done using mutex_try_lock().
948  */
949 void
950 svc_exit_thread(struct svc_rqst *rqstp)
951 {
952 	struct svc_serv	*serv = rqstp->rq_server;
953 	struct svc_pool	*pool = rqstp->rq_pool;
954 
955 	list_del_rcu(&rqstp->rq_all);
956 
957 	pool->sp_nrthreads -= 1;
958 	serv->sv_nrthreads -= 1;
959 	svc_sock_update_bufs(serv);
960 
961 	svc_rqst_free(rqstp);
962 
963 	clear_and_wake_up_bit(SP_VICTIM_REMAINS, &pool->sp_flags);
964 }
965 EXPORT_SYMBOL_GPL(svc_exit_thread);
966 
967 /*
968  * Register an "inet" protocol family netid with the local
969  * rpcbind daemon via an rpcbind v4 SET request.
970  *
971  * No netconfig infrastructure is available in the kernel, so
972  * we map IP_ protocol numbers to netids by hand.
973  *
974  * Returns zero on success; a negative errno value is returned
975  * if any error occurs.
976  */
977 static int __svc_rpcb_register4(struct net *net, const u32 program,
978 				const u32 version,
979 				const unsigned short protocol,
980 				const unsigned short port)
981 {
982 	const struct sockaddr_in sin = {
983 		.sin_family		= AF_INET,
984 		.sin_addr.s_addr	= htonl(INADDR_ANY),
985 		.sin_port		= htons(port),
986 	};
987 	const char *netid;
988 	int error;
989 
990 	switch (protocol) {
991 	case IPPROTO_UDP:
992 		netid = RPCBIND_NETID_UDP;
993 		break;
994 	case IPPROTO_TCP:
995 		netid = RPCBIND_NETID_TCP;
996 		break;
997 	default:
998 		return -ENOPROTOOPT;
999 	}
1000 
1001 	error = rpcb_v4_register(net, program, version,
1002 					(const struct sockaddr *)&sin, netid);
1003 
1004 	/*
1005 	 * User space didn't support rpcbind v4, so retry this
1006 	 * registration request with the legacy rpcbind v2 protocol.
1007 	 */
1008 	if (error == -EPROTONOSUPPORT)
1009 		error = rpcb_register(net, program, version, protocol, port);
1010 
1011 	return error;
1012 }
1013 
1014 #if IS_ENABLED(CONFIG_IPV6)
1015 /*
1016  * Register an "inet6" protocol family netid with the local
1017  * rpcbind daemon via an rpcbind v4 SET request.
1018  *
1019  * No netconfig infrastructure is available in the kernel, so
1020  * we map IP_ protocol numbers to netids by hand.
1021  *
1022  * Returns zero on success; a negative errno value is returned
1023  * if any error occurs.
1024  */
1025 static int __svc_rpcb_register6(struct net *net, const u32 program,
1026 				const u32 version,
1027 				const unsigned short protocol,
1028 				const unsigned short port)
1029 {
1030 	const struct sockaddr_in6 sin6 = {
1031 		.sin6_family		= AF_INET6,
1032 		.sin6_addr		= IN6ADDR_ANY_INIT,
1033 		.sin6_port		= htons(port),
1034 	};
1035 	const char *netid;
1036 	int error;
1037 
1038 	switch (protocol) {
1039 	case IPPROTO_UDP:
1040 		netid = RPCBIND_NETID_UDP6;
1041 		break;
1042 	case IPPROTO_TCP:
1043 		netid = RPCBIND_NETID_TCP6;
1044 		break;
1045 	default:
1046 		return -ENOPROTOOPT;
1047 	}
1048 
1049 	error = rpcb_v4_register(net, program, version,
1050 					(const struct sockaddr *)&sin6, netid);
1051 
1052 	/*
1053 	 * User space didn't support rpcbind version 4, so we won't
1054 	 * use a PF_INET6 listener.
1055 	 */
1056 	if (error == -EPROTONOSUPPORT)
1057 		error = -EAFNOSUPPORT;
1058 
1059 	return error;
1060 }
1061 #endif	/* IS_ENABLED(CONFIG_IPV6) */
1062 
1063 /*
1064  * Register a kernel RPC service via rpcbind version 4.
1065  *
1066  * Returns zero on success; a negative errno value is returned
1067  * if any error occurs.
1068  */
1069 static int __svc_register(struct net *net, const char *progname,
1070 			  const u32 program, const u32 version,
1071 			  const int family,
1072 			  const unsigned short protocol,
1073 			  const unsigned short port)
1074 {
1075 	int error = -EAFNOSUPPORT;
1076 
1077 	switch (family) {
1078 	case PF_INET:
1079 		error = __svc_rpcb_register4(net, program, version,
1080 						protocol, port);
1081 		break;
1082 #if IS_ENABLED(CONFIG_IPV6)
1083 	case PF_INET6:
1084 		error = __svc_rpcb_register6(net, program, version,
1085 						protocol, port);
1086 #endif
1087 	}
1088 
1089 	trace_svc_register(progname, version, family, protocol, port, error);
1090 	return error;
1091 }
1092 
1093 static
1094 int svc_rpcbind_set_version(struct net *net,
1095 			    const struct svc_program *progp,
1096 			    u32 version, int family,
1097 			    unsigned short proto,
1098 			    unsigned short port)
1099 {
1100 	return __svc_register(net, progp->pg_name, progp->pg_prog,
1101 				version, family, proto, port);
1102 
1103 }
1104 
1105 int svc_generic_rpcbind_set(struct net *net,
1106 			    const struct svc_program *progp,
1107 			    u32 version, int family,
1108 			    unsigned short proto,
1109 			    unsigned short port)
1110 {
1111 	const struct svc_version *vers = progp->pg_vers[version];
1112 	int error;
1113 
1114 	if (vers == NULL)
1115 		return 0;
1116 
1117 	if (vers->vs_hidden) {
1118 		trace_svc_noregister(progp->pg_name, version, proto,
1119 				     port, family, 0);
1120 		return 0;
1121 	}
1122 
1123 	/*
1124 	 * Don't register a UDP port if we need congestion
1125 	 * control.
1126 	 */
1127 	if (vers->vs_need_cong_ctrl && proto == IPPROTO_UDP)
1128 		return 0;
1129 
1130 	error = svc_rpcbind_set_version(net, progp, version,
1131 					family, proto, port);
1132 
1133 	return (vers->vs_rpcb_optnl) ? 0 : error;
1134 }
1135 EXPORT_SYMBOL_GPL(svc_generic_rpcbind_set);
1136 
1137 /**
1138  * svc_register - register an RPC service with the local portmapper
1139  * @serv: svc_serv struct for the service to register
1140  * @net: net namespace for the service to register
1141  * @family: protocol family of service's listener socket
1142  * @proto: transport protocol number to advertise
1143  * @port: port to advertise
1144  *
1145  * Service is registered for any address in the passed-in protocol family
1146  */
1147 int svc_register(const struct svc_serv *serv, struct net *net,
1148 		 const int family, const unsigned short proto,
1149 		 const unsigned short port)
1150 {
1151 	struct svc_program	*progp;
1152 	unsigned int		i;
1153 	int			error = 0;
1154 
1155 	WARN_ON_ONCE(proto == 0 && port == 0);
1156 	if (proto == 0 && port == 0)
1157 		return -EINVAL;
1158 
1159 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1160 		for (i = 0; i < progp->pg_nvers; i++) {
1161 
1162 			error = progp->pg_rpcbind_set(net, progp, i,
1163 					family, proto, port);
1164 			if (error < 0) {
1165 				printk(KERN_WARNING "svc: failed to register "
1166 					"%sv%u RPC service (errno %d).\n",
1167 					progp->pg_name, i, -error);
1168 				break;
1169 			}
1170 		}
1171 	}
1172 
1173 	return error;
1174 }
1175 
1176 /*
1177  * If user space is running rpcbind, it should take the v4 UNSET
1178  * and clear everything for this [program, version].  If user space
1179  * is running portmap, it will reject the v4 UNSET, but won't have
1180  * any "inet6" entries anyway.  So a PMAP_UNSET should be sufficient
1181  * in this case to clear all existing entries for [program, version].
1182  */
1183 static void __svc_unregister(struct net *net, const u32 program, const u32 version,
1184 			     const char *progname)
1185 {
1186 	int error;
1187 
1188 	error = rpcb_v4_register(net, program, version, NULL, "");
1189 
1190 	/*
1191 	 * User space didn't support rpcbind v4, so retry this
1192 	 * request with the legacy rpcbind v2 protocol.
1193 	 */
1194 	if (error == -EPROTONOSUPPORT)
1195 		error = rpcb_register(net, program, version, 0, 0);
1196 
1197 	trace_svc_unregister(progname, version, error);
1198 }
1199 
1200 /*
1201  * All netids, bind addresses and ports registered for [program, version]
1202  * are removed from the local rpcbind database (if the service is not
1203  * hidden) to make way for a new instance of the service.
1204  *
1205  * The result of unregistration is reported via dprintk for those who want
1206  * verification of the result, but is otherwise not important.
1207  */
1208 static void svc_unregister(const struct svc_serv *serv, struct net *net)
1209 {
1210 	struct sighand_struct *sighand;
1211 	struct svc_program *progp;
1212 	unsigned long flags;
1213 	unsigned int i;
1214 
1215 	clear_thread_flag(TIF_SIGPENDING);
1216 
1217 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1218 		for (i = 0; i < progp->pg_nvers; i++) {
1219 			if (progp->pg_vers[i] == NULL)
1220 				continue;
1221 			if (progp->pg_vers[i]->vs_hidden)
1222 				continue;
1223 			__svc_unregister(net, progp->pg_prog, i, progp->pg_name);
1224 		}
1225 	}
1226 
1227 	rcu_read_lock();
1228 	sighand = rcu_dereference(current->sighand);
1229 	spin_lock_irqsave(&sighand->siglock, flags);
1230 	recalc_sigpending();
1231 	spin_unlock_irqrestore(&sighand->siglock, flags);
1232 	rcu_read_unlock();
1233 }
1234 
1235 /*
1236  * dprintk the given error with the address of the client that caused it.
1237  */
1238 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
1239 static __printf(2, 3)
1240 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
1241 {
1242 	struct va_format vaf;
1243 	va_list args;
1244 	char 	buf[RPC_MAX_ADDRBUFLEN];
1245 
1246 	va_start(args, fmt);
1247 
1248 	vaf.fmt = fmt;
1249 	vaf.va = &args;
1250 
1251 	dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf);
1252 
1253 	va_end(args);
1254 }
1255 #else
1256 static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {}
1257 #endif
1258 
1259 __be32
1260 svc_generic_init_request(struct svc_rqst *rqstp,
1261 		const struct svc_program *progp,
1262 		struct svc_process_info *ret)
1263 {
1264 	const struct svc_version *versp = NULL;	/* compiler food */
1265 	const struct svc_procedure *procp = NULL;
1266 
1267 	if (rqstp->rq_vers >= progp->pg_nvers )
1268 		goto err_bad_vers;
1269 	versp = progp->pg_vers[rqstp->rq_vers];
1270 	if (!versp)
1271 		goto err_bad_vers;
1272 
1273 	/*
1274 	 * Some protocol versions (namely NFSv4) require some form of
1275 	 * congestion control.  (See RFC 7530 section 3.1 paragraph 2)
1276 	 * In other words, UDP is not allowed. We mark those when setting
1277 	 * up the svc_xprt, and verify that here.
1278 	 *
1279 	 * The spec is not very clear about what error should be returned
1280 	 * when someone tries to access a server that is listening on UDP
1281 	 * for lower versions. RPC_PROG_MISMATCH seems to be the closest
1282 	 * fit.
1283 	 */
1284 	if (versp->vs_need_cong_ctrl && rqstp->rq_xprt &&
1285 	    !test_bit(XPT_CONG_CTRL, &rqstp->rq_xprt->xpt_flags))
1286 		goto err_bad_vers;
1287 
1288 	if (rqstp->rq_proc >= versp->vs_nproc)
1289 		goto err_bad_proc;
1290 	rqstp->rq_procinfo = procp = &versp->vs_proc[rqstp->rq_proc];
1291 
1292 	/* Initialize storage for argp and resp */
1293 	memset(rqstp->rq_argp, 0, procp->pc_argzero);
1294 	memset(rqstp->rq_resp, 0, procp->pc_ressize);
1295 
1296 	/* Bump per-procedure stats counter */
1297 	this_cpu_inc(versp->vs_count[rqstp->rq_proc]);
1298 
1299 	ret->dispatch = versp->vs_dispatch;
1300 	return rpc_success;
1301 err_bad_vers:
1302 	ret->mismatch.lovers = progp->pg_lovers;
1303 	ret->mismatch.hivers = progp->pg_hivers;
1304 	return rpc_prog_mismatch;
1305 err_bad_proc:
1306 	return rpc_proc_unavail;
1307 }
1308 EXPORT_SYMBOL_GPL(svc_generic_init_request);
1309 
1310 /*
1311  * Common routine for processing the RPC request.
1312  */
1313 static int
1314 svc_process_common(struct svc_rqst *rqstp)
1315 {
1316 	struct xdr_stream	*xdr = &rqstp->rq_res_stream;
1317 	struct svc_program	*progp;
1318 	const struct svc_procedure *procp = NULL;
1319 	struct svc_serv		*serv = rqstp->rq_server;
1320 	struct svc_process_info process;
1321 	enum svc_auth_status	auth_res;
1322 	unsigned int		aoffset;
1323 	int			rc;
1324 	__be32			*p;
1325 
1326 	/* Will be turned off only when NFSv4 Sessions are used */
1327 	set_bit(RQ_USEDEFERRAL, &rqstp->rq_flags);
1328 	clear_bit(RQ_DROPME, &rqstp->rq_flags);
1329 
1330 	/* Construct the first words of the reply: */
1331 	svcxdr_init_encode(rqstp);
1332 	xdr_stream_encode_be32(xdr, rqstp->rq_xid);
1333 	xdr_stream_encode_be32(xdr, rpc_reply);
1334 
1335 	p = xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 4);
1336 	if (unlikely(!p))
1337 		goto err_short_len;
1338 	if (*p++ != cpu_to_be32(RPC_VERSION))
1339 		goto err_bad_rpc;
1340 
1341 	xdr_stream_encode_be32(xdr, rpc_msg_accepted);
1342 
1343 	rqstp->rq_prog = be32_to_cpup(p++);
1344 	rqstp->rq_vers = be32_to_cpup(p++);
1345 	rqstp->rq_proc = be32_to_cpup(p);
1346 
1347 	for (progp = serv->sv_program; progp; progp = progp->pg_next)
1348 		if (rqstp->rq_prog == progp->pg_prog)
1349 			break;
1350 
1351 	/*
1352 	 * Decode auth data, and add verifier to reply buffer.
1353 	 * We do this before anything else in order to get a decent
1354 	 * auth verifier.
1355 	 */
1356 	auth_res = svc_authenticate(rqstp);
1357 	/* Also give the program a chance to reject this call: */
1358 	if (auth_res == SVC_OK && progp)
1359 		auth_res = progp->pg_authenticate(rqstp);
1360 	trace_svc_authenticate(rqstp, auth_res);
1361 	switch (auth_res) {
1362 	case SVC_OK:
1363 		break;
1364 	case SVC_GARBAGE:
1365 		goto err_garbage_args;
1366 	case SVC_SYSERR:
1367 		goto err_system_err;
1368 	case SVC_DENIED:
1369 		goto err_bad_auth;
1370 	case SVC_CLOSE:
1371 		goto close;
1372 	case SVC_DROP:
1373 		goto dropit;
1374 	case SVC_COMPLETE:
1375 		goto sendit;
1376 	default:
1377 		pr_warn_once("Unexpected svc_auth_status (%d)\n", auth_res);
1378 		goto err_system_err;
1379 	}
1380 
1381 	if (progp == NULL)
1382 		goto err_bad_prog;
1383 
1384 	switch (progp->pg_init_request(rqstp, progp, &process)) {
1385 	case rpc_success:
1386 		break;
1387 	case rpc_prog_unavail:
1388 		goto err_bad_prog;
1389 	case rpc_prog_mismatch:
1390 		goto err_bad_vers;
1391 	case rpc_proc_unavail:
1392 		goto err_bad_proc;
1393 	}
1394 
1395 	procp = rqstp->rq_procinfo;
1396 	/* Should this check go into the dispatcher? */
1397 	if (!procp || !procp->pc_func)
1398 		goto err_bad_proc;
1399 
1400 	/* Syntactic check complete */
1401 	if (serv->sv_stats)
1402 		serv->sv_stats->rpccnt++;
1403 	trace_svc_process(rqstp, progp->pg_name);
1404 
1405 	aoffset = xdr_stream_pos(xdr);
1406 
1407 	/* un-reserve some of the out-queue now that we have a
1408 	 * better idea of reply size
1409 	 */
1410 	if (procp->pc_xdrressize)
1411 		svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1412 
1413 	/* Call the function that processes the request. */
1414 	rc = process.dispatch(rqstp);
1415 	if (procp->pc_release)
1416 		procp->pc_release(rqstp);
1417 	xdr_finish_decode(xdr);
1418 
1419 	if (!rc)
1420 		goto dropit;
1421 	if (rqstp->rq_auth_stat != rpc_auth_ok)
1422 		goto err_bad_auth;
1423 
1424 	if (*rqstp->rq_accept_statp != rpc_success)
1425 		xdr_truncate_encode(xdr, aoffset);
1426 
1427 	if (procp->pc_encode == NULL)
1428 		goto dropit;
1429 
1430  sendit:
1431 	if (svc_authorise(rqstp))
1432 		goto close_xprt;
1433 	return 1;		/* Caller can now send it */
1434 
1435  dropit:
1436 	svc_authorise(rqstp);	/* doesn't hurt to call this twice */
1437 	dprintk("svc: svc_process dropit\n");
1438 	return 0;
1439 
1440  close:
1441 	svc_authorise(rqstp);
1442 close_xprt:
1443 	if (rqstp->rq_xprt && test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags))
1444 		svc_xprt_close(rqstp->rq_xprt);
1445 	dprintk("svc: svc_process close\n");
1446 	return 0;
1447 
1448 err_short_len:
1449 	svc_printk(rqstp, "short len %u, dropping request\n",
1450 		   rqstp->rq_arg.len);
1451 	goto close_xprt;
1452 
1453 err_bad_rpc:
1454 	if (serv->sv_stats)
1455 		serv->sv_stats->rpcbadfmt++;
1456 	xdr_stream_encode_u32(xdr, RPC_MSG_DENIED);
1457 	xdr_stream_encode_u32(xdr, RPC_MISMATCH);
1458 	/* Only RPCv2 supported */
1459 	xdr_stream_encode_u32(xdr, RPC_VERSION);
1460 	xdr_stream_encode_u32(xdr, RPC_VERSION);
1461 	return 1;	/* don't wrap */
1462 
1463 err_bad_auth:
1464 	dprintk("svc: authentication failed (%d)\n",
1465 		be32_to_cpu(rqstp->rq_auth_stat));
1466 	if (serv->sv_stats)
1467 		serv->sv_stats->rpcbadauth++;
1468 	/* Restore write pointer to location of reply status: */
1469 	xdr_truncate_encode(xdr, XDR_UNIT * 2);
1470 	xdr_stream_encode_u32(xdr, RPC_MSG_DENIED);
1471 	xdr_stream_encode_u32(xdr, RPC_AUTH_ERROR);
1472 	xdr_stream_encode_be32(xdr, rqstp->rq_auth_stat);
1473 	goto sendit;
1474 
1475 err_bad_prog:
1476 	dprintk("svc: unknown program %d\n", rqstp->rq_prog);
1477 	if (serv->sv_stats)
1478 		serv->sv_stats->rpcbadfmt++;
1479 	*rqstp->rq_accept_statp = rpc_prog_unavail;
1480 	goto sendit;
1481 
1482 err_bad_vers:
1483 	svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1484 		       rqstp->rq_vers, rqstp->rq_prog, progp->pg_name);
1485 
1486 	if (serv->sv_stats)
1487 		serv->sv_stats->rpcbadfmt++;
1488 	*rqstp->rq_accept_statp = rpc_prog_mismatch;
1489 
1490 	/*
1491 	 * svc_authenticate() has already added the verifier and
1492 	 * advanced the stream just past rq_accept_statp.
1493 	 */
1494 	xdr_stream_encode_u32(xdr, process.mismatch.lovers);
1495 	xdr_stream_encode_u32(xdr, process.mismatch.hivers);
1496 	goto sendit;
1497 
1498 err_bad_proc:
1499 	svc_printk(rqstp, "unknown procedure (%d)\n", rqstp->rq_proc);
1500 
1501 	if (serv->sv_stats)
1502 		serv->sv_stats->rpcbadfmt++;
1503 	*rqstp->rq_accept_statp = rpc_proc_unavail;
1504 	goto sendit;
1505 
1506 err_garbage_args:
1507 	svc_printk(rqstp, "failed to decode RPC header\n");
1508 
1509 	if (serv->sv_stats)
1510 		serv->sv_stats->rpcbadfmt++;
1511 	*rqstp->rq_accept_statp = rpc_garbage_args;
1512 	goto sendit;
1513 
1514 err_system_err:
1515 	if (serv->sv_stats)
1516 		serv->sv_stats->rpcbadfmt++;
1517 	*rqstp->rq_accept_statp = rpc_system_err;
1518 	goto sendit;
1519 }
1520 
1521 /*
1522  * Drop request
1523  */
1524 static void svc_drop(struct svc_rqst *rqstp)
1525 {
1526 	trace_svc_drop(rqstp);
1527 }
1528 
1529 /**
1530  * svc_process - Execute one RPC transaction
1531  * @rqstp: RPC transaction context
1532  *
1533  */
1534 void svc_process(struct svc_rqst *rqstp)
1535 {
1536 	struct kvec		*resv = &rqstp->rq_res.head[0];
1537 	__be32 *p;
1538 
1539 #if IS_ENABLED(CONFIG_FAIL_SUNRPC)
1540 	if (!fail_sunrpc.ignore_server_disconnect &&
1541 	    should_fail(&fail_sunrpc.attr, 1))
1542 		svc_xprt_deferred_close(rqstp->rq_xprt);
1543 #endif
1544 
1545 	/*
1546 	 * Setup response xdr_buf.
1547 	 * Initially it has just one page
1548 	 */
1549 	rqstp->rq_next_page = &rqstp->rq_respages[1];
1550 	resv->iov_base = page_address(rqstp->rq_respages[0]);
1551 	resv->iov_len = 0;
1552 	rqstp->rq_res.pages = rqstp->rq_next_page;
1553 	rqstp->rq_res.len = 0;
1554 	rqstp->rq_res.page_base = 0;
1555 	rqstp->rq_res.page_len = 0;
1556 	rqstp->rq_res.buflen = PAGE_SIZE;
1557 	rqstp->rq_res.tail[0].iov_base = NULL;
1558 	rqstp->rq_res.tail[0].iov_len = 0;
1559 
1560 	svcxdr_init_decode(rqstp);
1561 	p = xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 2);
1562 	if (unlikely(!p))
1563 		goto out_drop;
1564 	rqstp->rq_xid = *p++;
1565 	if (unlikely(*p != rpc_call))
1566 		goto out_baddir;
1567 
1568 	if (!svc_process_common(rqstp))
1569 		goto out_drop;
1570 	svc_send(rqstp);
1571 	return;
1572 
1573 out_baddir:
1574 	svc_printk(rqstp, "bad direction 0x%08x, dropping request\n",
1575 		   be32_to_cpu(*p));
1576 	if (rqstp->rq_server->sv_stats)
1577 		rqstp->rq_server->sv_stats->rpcbadfmt++;
1578 out_drop:
1579 	svc_drop(rqstp);
1580 }
1581 
1582 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1583 /**
1584  * svc_process_bc - process a reverse-direction RPC request
1585  * @req: RPC request to be used for client-side processing
1586  * @rqstp: server-side execution context
1587  *
1588  */
1589 void svc_process_bc(struct rpc_rqst *req, struct svc_rqst *rqstp)
1590 {
1591 	struct rpc_timeout timeout = {
1592 		.to_increment		= 0,
1593 	};
1594 	struct rpc_task *task;
1595 	int proc_error;
1596 
1597 	/* Build the svc_rqst used by the common processing routine */
1598 	rqstp->rq_xid = req->rq_xid;
1599 	rqstp->rq_prot = req->rq_xprt->prot;
1600 	rqstp->rq_bc_net = req->rq_xprt->xprt_net;
1601 
1602 	rqstp->rq_addrlen = sizeof(req->rq_xprt->addr);
1603 	memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen);
1604 	memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg));
1605 	memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res));
1606 
1607 	/* Adjust the argument buffer length */
1608 	rqstp->rq_arg.len = req->rq_private_buf.len;
1609 	if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
1610 		rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
1611 		rqstp->rq_arg.page_len = 0;
1612 	} else if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len +
1613 			rqstp->rq_arg.page_len)
1614 		rqstp->rq_arg.page_len = rqstp->rq_arg.len -
1615 			rqstp->rq_arg.head[0].iov_len;
1616 	else
1617 		rqstp->rq_arg.len = rqstp->rq_arg.head[0].iov_len +
1618 			rqstp->rq_arg.page_len;
1619 
1620 	/* Reset the response buffer */
1621 	rqstp->rq_res.head[0].iov_len = 0;
1622 
1623 	/*
1624 	 * Skip the XID and calldir fields because they've already
1625 	 * been processed by the caller.
1626 	 */
1627 	svcxdr_init_decode(rqstp);
1628 	if (!xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 2))
1629 		return;
1630 
1631 	/* Parse and execute the bc call */
1632 	proc_error = svc_process_common(rqstp);
1633 
1634 	atomic_dec(&req->rq_xprt->bc_slot_count);
1635 	if (!proc_error) {
1636 		/* Processing error: drop the request */
1637 		xprt_free_bc_request(req);
1638 		return;
1639 	}
1640 	/* Finally, send the reply synchronously */
1641 	if (rqstp->bc_to_initval > 0) {
1642 		timeout.to_initval = rqstp->bc_to_initval;
1643 		timeout.to_retries = rqstp->bc_to_retries;
1644 	} else {
1645 		timeout.to_initval = req->rq_xprt->timeout->to_initval;
1646 		timeout.to_retries = req->rq_xprt->timeout->to_retries;
1647 	}
1648 	timeout.to_maxval = timeout.to_initval;
1649 	memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf));
1650 	task = rpc_run_bc_task(req, &timeout);
1651 
1652 	if (IS_ERR(task))
1653 		return;
1654 
1655 	WARN_ON_ONCE(atomic_read(&task->tk_count) != 1);
1656 	rpc_put_task(task);
1657 }
1658 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1659 
1660 /**
1661  * svc_max_payload - Return transport-specific limit on the RPC payload
1662  * @rqstp: RPC transaction context
1663  *
1664  * Returns the maximum number of payload bytes the current transport
1665  * allows.
1666  */
1667 u32 svc_max_payload(const struct svc_rqst *rqstp)
1668 {
1669 	u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1670 
1671 	if (rqstp->rq_server->sv_max_payload < max)
1672 		max = rqstp->rq_server->sv_max_payload;
1673 	return max;
1674 }
1675 EXPORT_SYMBOL_GPL(svc_max_payload);
1676 
1677 /**
1678  * svc_proc_name - Return RPC procedure name in string form
1679  * @rqstp: svc_rqst to operate on
1680  *
1681  * Return value:
1682  *   Pointer to a NUL-terminated string
1683  */
1684 const char *svc_proc_name(const struct svc_rqst *rqstp)
1685 {
1686 	if (rqstp && rqstp->rq_procinfo)
1687 		return rqstp->rq_procinfo->pc_name;
1688 	return "unknown";
1689 }
1690 
1691 
1692 /**
1693  * svc_encode_result_payload - mark a range of bytes as a result payload
1694  * @rqstp: svc_rqst to operate on
1695  * @offset: payload's byte offset in rqstp->rq_res
1696  * @length: size of payload, in bytes
1697  *
1698  * Returns zero on success, or a negative errno if a permanent
1699  * error occurred.
1700  */
1701 int svc_encode_result_payload(struct svc_rqst *rqstp, unsigned int offset,
1702 			      unsigned int length)
1703 {
1704 	return rqstp->rq_xprt->xpt_ops->xpo_result_payload(rqstp, offset,
1705 							   length);
1706 }
1707 EXPORT_SYMBOL_GPL(svc_encode_result_payload);
1708 
1709 /**
1710  * svc_fill_write_vector - Construct data argument for VFS write call
1711  * @rqstp: svc_rqst to operate on
1712  * @payload: xdr_buf containing only the write data payload
1713  *
1714  * Fills in rqstp::rq_vec, and returns the number of elements.
1715  */
1716 unsigned int svc_fill_write_vector(struct svc_rqst *rqstp,
1717 				   struct xdr_buf *payload)
1718 {
1719 	struct page **pages = payload->pages;
1720 	struct kvec *first = payload->head;
1721 	struct kvec *vec = rqstp->rq_vec;
1722 	size_t total = payload->len;
1723 	unsigned int i;
1724 
1725 	/* Some types of transport can present the write payload
1726 	 * entirely in rq_arg.pages. In this case, @first is empty.
1727 	 */
1728 	i = 0;
1729 	if (first->iov_len) {
1730 		vec[i].iov_base = first->iov_base;
1731 		vec[i].iov_len = min_t(size_t, total, first->iov_len);
1732 		total -= vec[i].iov_len;
1733 		++i;
1734 	}
1735 
1736 	while (total) {
1737 		vec[i].iov_base = page_address(*pages);
1738 		vec[i].iov_len = min_t(size_t, total, PAGE_SIZE);
1739 		total -= vec[i].iov_len;
1740 		++i;
1741 		++pages;
1742 	}
1743 
1744 	WARN_ON_ONCE(i > ARRAY_SIZE(rqstp->rq_vec));
1745 	return i;
1746 }
1747 EXPORT_SYMBOL_GPL(svc_fill_write_vector);
1748 
1749 /**
1750  * svc_fill_symlink_pathname - Construct pathname argument for VFS symlink call
1751  * @rqstp: svc_rqst to operate on
1752  * @first: buffer containing first section of pathname
1753  * @p: buffer containing remaining section of pathname
1754  * @total: total length of the pathname argument
1755  *
1756  * The VFS symlink API demands a NUL-terminated pathname in mapped memory.
1757  * Returns pointer to a NUL-terminated string, or an ERR_PTR. Caller must free
1758  * the returned string.
1759  */
1760 char *svc_fill_symlink_pathname(struct svc_rqst *rqstp, struct kvec *first,
1761 				void *p, size_t total)
1762 {
1763 	size_t len, remaining;
1764 	char *result, *dst;
1765 
1766 	result = kmalloc(total + 1, GFP_KERNEL);
1767 	if (!result)
1768 		return ERR_PTR(-ESERVERFAULT);
1769 
1770 	dst = result;
1771 	remaining = total;
1772 
1773 	len = min_t(size_t, total, first->iov_len);
1774 	if (len) {
1775 		memcpy(dst, first->iov_base, len);
1776 		dst += len;
1777 		remaining -= len;
1778 	}
1779 
1780 	if (remaining) {
1781 		len = min_t(size_t, remaining, PAGE_SIZE);
1782 		memcpy(dst, p, len);
1783 		dst += len;
1784 	}
1785 
1786 	*dst = '\0';
1787 
1788 	/* Sanity check: Linux doesn't allow the pathname argument to
1789 	 * contain a NUL byte.
1790 	 */
1791 	if (strlen(result) != total) {
1792 		kfree(result);
1793 		return ERR_PTR(-EINVAL);
1794 	}
1795 	return result;
1796 }
1797 EXPORT_SYMBOL_GPL(svc_fill_symlink_pathname);
1798