xref: /linux/net/sunrpc/svc.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * linux/net/sunrpc/svc.c
3  *
4  * High-level RPC service routines
5  *
6  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
7  *
8  * Multiple threads pools and NUMAisation
9  * Copyright (c) 2006 Silicon Graphics, Inc.
10  * by Greg Banks <gnb@melbourne.sgi.com>
11  */
12 
13 #include <linux/linkage.h>
14 #include <linux/sched.h>
15 #include <linux/errno.h>
16 #include <linux/net.h>
17 #include <linux/in.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/kthread.h>
22 #include <linux/slab.h>
23 
24 #include <linux/sunrpc/types.h>
25 #include <linux/sunrpc/xdr.h>
26 #include <linux/sunrpc/stats.h>
27 #include <linux/sunrpc/svcsock.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/sunrpc/bc_xprt.h>
30 
31 #include <trace/events/sunrpc.h>
32 
33 #define RPCDBG_FACILITY	RPCDBG_SVCDSP
34 
35 static void svc_unregister(const struct svc_serv *serv, struct net *net);
36 
37 #define svc_serv_is_pooled(serv)    ((serv)->sv_ops->svo_function)
38 
39 #define SVC_POOL_DEFAULT	SVC_POOL_GLOBAL
40 
41 /*
42  * Structure for mapping cpus to pools and vice versa.
43  * Setup once during sunrpc initialisation.
44  */
45 struct svc_pool_map svc_pool_map = {
46 	.mode = SVC_POOL_DEFAULT
47 };
48 EXPORT_SYMBOL_GPL(svc_pool_map);
49 
50 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
51 
52 static int
53 param_set_pool_mode(const char *val, struct kernel_param *kp)
54 {
55 	int *ip = (int *)kp->arg;
56 	struct svc_pool_map *m = &svc_pool_map;
57 	int err;
58 
59 	mutex_lock(&svc_pool_map_mutex);
60 
61 	err = -EBUSY;
62 	if (m->count)
63 		goto out;
64 
65 	err = 0;
66 	if (!strncmp(val, "auto", 4))
67 		*ip = SVC_POOL_AUTO;
68 	else if (!strncmp(val, "global", 6))
69 		*ip = SVC_POOL_GLOBAL;
70 	else if (!strncmp(val, "percpu", 6))
71 		*ip = SVC_POOL_PERCPU;
72 	else if (!strncmp(val, "pernode", 7))
73 		*ip = SVC_POOL_PERNODE;
74 	else
75 		err = -EINVAL;
76 
77 out:
78 	mutex_unlock(&svc_pool_map_mutex);
79 	return err;
80 }
81 
82 static int
83 param_get_pool_mode(char *buf, struct kernel_param *kp)
84 {
85 	int *ip = (int *)kp->arg;
86 
87 	switch (*ip)
88 	{
89 	case SVC_POOL_AUTO:
90 		return strlcpy(buf, "auto", 20);
91 	case SVC_POOL_GLOBAL:
92 		return strlcpy(buf, "global", 20);
93 	case SVC_POOL_PERCPU:
94 		return strlcpy(buf, "percpu", 20);
95 	case SVC_POOL_PERNODE:
96 		return strlcpy(buf, "pernode", 20);
97 	default:
98 		return sprintf(buf, "%d", *ip);
99 	}
100 }
101 
102 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
103 		 &svc_pool_map.mode, 0644);
104 
105 /*
106  * Detect best pool mapping mode heuristically,
107  * according to the machine's topology.
108  */
109 static int
110 svc_pool_map_choose_mode(void)
111 {
112 	unsigned int node;
113 
114 	if (nr_online_nodes > 1) {
115 		/*
116 		 * Actually have multiple NUMA nodes,
117 		 * so split pools on NUMA node boundaries
118 		 */
119 		return SVC_POOL_PERNODE;
120 	}
121 
122 	node = first_online_node;
123 	if (nr_cpus_node(node) > 2) {
124 		/*
125 		 * Non-trivial SMP, or CONFIG_NUMA on
126 		 * non-NUMA hardware, e.g. with a generic
127 		 * x86_64 kernel on Xeons.  In this case we
128 		 * want to divide the pools on cpu boundaries.
129 		 */
130 		return SVC_POOL_PERCPU;
131 	}
132 
133 	/* default: one global pool */
134 	return SVC_POOL_GLOBAL;
135 }
136 
137 /*
138  * Allocate the to_pool[] and pool_to[] arrays.
139  * Returns 0 on success or an errno.
140  */
141 static int
142 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
143 {
144 	m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
145 	if (!m->to_pool)
146 		goto fail;
147 	m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
148 	if (!m->pool_to)
149 		goto fail_free;
150 
151 	return 0;
152 
153 fail_free:
154 	kfree(m->to_pool);
155 	m->to_pool = NULL;
156 fail:
157 	return -ENOMEM;
158 }
159 
160 /*
161  * Initialise the pool map for SVC_POOL_PERCPU mode.
162  * Returns number of pools or <0 on error.
163  */
164 static int
165 svc_pool_map_init_percpu(struct svc_pool_map *m)
166 {
167 	unsigned int maxpools = nr_cpu_ids;
168 	unsigned int pidx = 0;
169 	unsigned int cpu;
170 	int err;
171 
172 	err = svc_pool_map_alloc_arrays(m, maxpools);
173 	if (err)
174 		return err;
175 
176 	for_each_online_cpu(cpu) {
177 		BUG_ON(pidx >= maxpools);
178 		m->to_pool[cpu] = pidx;
179 		m->pool_to[pidx] = cpu;
180 		pidx++;
181 	}
182 	/* cpus brought online later all get mapped to pool0, sorry */
183 
184 	return pidx;
185 };
186 
187 
188 /*
189  * Initialise the pool map for SVC_POOL_PERNODE mode.
190  * Returns number of pools or <0 on error.
191  */
192 static int
193 svc_pool_map_init_pernode(struct svc_pool_map *m)
194 {
195 	unsigned int maxpools = nr_node_ids;
196 	unsigned int pidx = 0;
197 	unsigned int node;
198 	int err;
199 
200 	err = svc_pool_map_alloc_arrays(m, maxpools);
201 	if (err)
202 		return err;
203 
204 	for_each_node_with_cpus(node) {
205 		/* some architectures (e.g. SN2) have cpuless nodes */
206 		BUG_ON(pidx > maxpools);
207 		m->to_pool[node] = pidx;
208 		m->pool_to[pidx] = node;
209 		pidx++;
210 	}
211 	/* nodes brought online later all get mapped to pool0, sorry */
212 
213 	return pidx;
214 }
215 
216 
217 /*
218  * Add a reference to the global map of cpus to pools (and
219  * vice versa).  Initialise the map if we're the first user.
220  * Returns the number of pools.
221  */
222 unsigned int
223 svc_pool_map_get(void)
224 {
225 	struct svc_pool_map *m = &svc_pool_map;
226 	int npools = -1;
227 
228 	mutex_lock(&svc_pool_map_mutex);
229 
230 	if (m->count++) {
231 		mutex_unlock(&svc_pool_map_mutex);
232 		return m->npools;
233 	}
234 
235 	if (m->mode == SVC_POOL_AUTO)
236 		m->mode = svc_pool_map_choose_mode();
237 
238 	switch (m->mode) {
239 	case SVC_POOL_PERCPU:
240 		npools = svc_pool_map_init_percpu(m);
241 		break;
242 	case SVC_POOL_PERNODE:
243 		npools = svc_pool_map_init_pernode(m);
244 		break;
245 	}
246 
247 	if (npools < 0) {
248 		/* default, or memory allocation failure */
249 		npools = 1;
250 		m->mode = SVC_POOL_GLOBAL;
251 	}
252 	m->npools = npools;
253 
254 	mutex_unlock(&svc_pool_map_mutex);
255 	return m->npools;
256 }
257 EXPORT_SYMBOL_GPL(svc_pool_map_get);
258 
259 /*
260  * Drop a reference to the global map of cpus to pools.
261  * When the last reference is dropped, the map data is
262  * freed; this allows the sysadmin to change the pool
263  * mode using the pool_mode module option without
264  * rebooting or re-loading sunrpc.ko.
265  */
266 void
267 svc_pool_map_put(void)
268 {
269 	struct svc_pool_map *m = &svc_pool_map;
270 
271 	mutex_lock(&svc_pool_map_mutex);
272 
273 	if (!--m->count) {
274 		kfree(m->to_pool);
275 		m->to_pool = NULL;
276 		kfree(m->pool_to);
277 		m->pool_to = NULL;
278 		m->npools = 0;
279 	}
280 
281 	mutex_unlock(&svc_pool_map_mutex);
282 }
283 EXPORT_SYMBOL_GPL(svc_pool_map_put);
284 
285 static int svc_pool_map_get_node(unsigned int pidx)
286 {
287 	const struct svc_pool_map *m = &svc_pool_map;
288 
289 	if (m->count) {
290 		if (m->mode == SVC_POOL_PERCPU)
291 			return cpu_to_node(m->pool_to[pidx]);
292 		if (m->mode == SVC_POOL_PERNODE)
293 			return m->pool_to[pidx];
294 	}
295 	return NUMA_NO_NODE;
296 }
297 /*
298  * Set the given thread's cpus_allowed mask so that it
299  * will only run on cpus in the given pool.
300  */
301 static inline void
302 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
303 {
304 	struct svc_pool_map *m = &svc_pool_map;
305 	unsigned int node = m->pool_to[pidx];
306 
307 	/*
308 	 * The caller checks for sv_nrpools > 1, which
309 	 * implies that we've been initialized.
310 	 */
311 	WARN_ON_ONCE(m->count == 0);
312 	if (m->count == 0)
313 		return;
314 
315 	switch (m->mode) {
316 	case SVC_POOL_PERCPU:
317 	{
318 		set_cpus_allowed_ptr(task, cpumask_of(node));
319 		break;
320 	}
321 	case SVC_POOL_PERNODE:
322 	{
323 		set_cpus_allowed_ptr(task, cpumask_of_node(node));
324 		break;
325 	}
326 	}
327 }
328 
329 /*
330  * Use the mapping mode to choose a pool for a given CPU.
331  * Used when enqueueing an incoming RPC.  Always returns
332  * a non-NULL pool pointer.
333  */
334 struct svc_pool *
335 svc_pool_for_cpu(struct svc_serv *serv, int cpu)
336 {
337 	struct svc_pool_map *m = &svc_pool_map;
338 	unsigned int pidx = 0;
339 
340 	/*
341 	 * An uninitialised map happens in a pure client when
342 	 * lockd is brought up, so silently treat it the
343 	 * same as SVC_POOL_GLOBAL.
344 	 */
345 	if (svc_serv_is_pooled(serv)) {
346 		switch (m->mode) {
347 		case SVC_POOL_PERCPU:
348 			pidx = m->to_pool[cpu];
349 			break;
350 		case SVC_POOL_PERNODE:
351 			pidx = m->to_pool[cpu_to_node(cpu)];
352 			break;
353 		}
354 	}
355 	return &serv->sv_pools[pidx % serv->sv_nrpools];
356 }
357 
358 int svc_rpcb_setup(struct svc_serv *serv, struct net *net)
359 {
360 	int err;
361 
362 	err = rpcb_create_local(net);
363 	if (err)
364 		return err;
365 
366 	/* Remove any stale portmap registrations */
367 	svc_unregister(serv, net);
368 	return 0;
369 }
370 EXPORT_SYMBOL_GPL(svc_rpcb_setup);
371 
372 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net)
373 {
374 	svc_unregister(serv, net);
375 	rpcb_put_local(net);
376 }
377 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup);
378 
379 static int svc_uses_rpcbind(struct svc_serv *serv)
380 {
381 	struct svc_program	*progp;
382 	unsigned int		i;
383 
384 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
385 		for (i = 0; i < progp->pg_nvers; i++) {
386 			if (progp->pg_vers[i] == NULL)
387 				continue;
388 			if (progp->pg_vers[i]->vs_hidden == 0)
389 				return 1;
390 		}
391 	}
392 
393 	return 0;
394 }
395 
396 int svc_bind(struct svc_serv *serv, struct net *net)
397 {
398 	if (!svc_uses_rpcbind(serv))
399 		return 0;
400 	return svc_rpcb_setup(serv, net);
401 }
402 EXPORT_SYMBOL_GPL(svc_bind);
403 
404 /*
405  * Create an RPC service
406  */
407 static struct svc_serv *
408 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools,
409 	     struct svc_serv_ops *ops)
410 {
411 	struct svc_serv	*serv;
412 	unsigned int vers;
413 	unsigned int xdrsize;
414 	unsigned int i;
415 
416 	if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
417 		return NULL;
418 	serv->sv_name      = prog->pg_name;
419 	serv->sv_program   = prog;
420 	serv->sv_nrthreads = 1;
421 	serv->sv_stats     = prog->pg_stats;
422 	if (bufsize > RPCSVC_MAXPAYLOAD)
423 		bufsize = RPCSVC_MAXPAYLOAD;
424 	serv->sv_max_payload = bufsize? bufsize : 4096;
425 	serv->sv_max_mesg  = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
426 	serv->sv_ops = ops;
427 	xdrsize = 0;
428 	while (prog) {
429 		prog->pg_lovers = prog->pg_nvers-1;
430 		for (vers=0; vers<prog->pg_nvers ; vers++)
431 			if (prog->pg_vers[vers]) {
432 				prog->pg_hivers = vers;
433 				if (prog->pg_lovers > vers)
434 					prog->pg_lovers = vers;
435 				if (prog->pg_vers[vers]->vs_xdrsize > xdrsize)
436 					xdrsize = prog->pg_vers[vers]->vs_xdrsize;
437 			}
438 		prog = prog->pg_next;
439 	}
440 	serv->sv_xdrsize   = xdrsize;
441 	INIT_LIST_HEAD(&serv->sv_tempsocks);
442 	INIT_LIST_HEAD(&serv->sv_permsocks);
443 	init_timer(&serv->sv_temptimer);
444 	spin_lock_init(&serv->sv_lock);
445 
446 	serv->sv_nrpools = npools;
447 	serv->sv_pools =
448 		kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
449 			GFP_KERNEL);
450 	if (!serv->sv_pools) {
451 		kfree(serv);
452 		return NULL;
453 	}
454 
455 	for (i = 0; i < serv->sv_nrpools; i++) {
456 		struct svc_pool *pool = &serv->sv_pools[i];
457 
458 		dprintk("svc: initialising pool %u for %s\n",
459 				i, serv->sv_name);
460 
461 		pool->sp_id = i;
462 		INIT_LIST_HEAD(&pool->sp_sockets);
463 		INIT_LIST_HEAD(&pool->sp_all_threads);
464 		spin_lock_init(&pool->sp_lock);
465 	}
466 
467 	return serv;
468 }
469 
470 struct svc_serv *
471 svc_create(struct svc_program *prog, unsigned int bufsize,
472 	   struct svc_serv_ops *ops)
473 {
474 	return __svc_create(prog, bufsize, /*npools*/1, ops);
475 }
476 EXPORT_SYMBOL_GPL(svc_create);
477 
478 struct svc_serv *
479 svc_create_pooled(struct svc_program *prog, unsigned int bufsize,
480 		  struct svc_serv_ops *ops)
481 {
482 	struct svc_serv *serv;
483 	unsigned int npools = svc_pool_map_get();
484 
485 	serv = __svc_create(prog, bufsize, npools, ops);
486 	if (!serv)
487 		goto out_err;
488 	return serv;
489 out_err:
490 	svc_pool_map_put();
491 	return NULL;
492 }
493 EXPORT_SYMBOL_GPL(svc_create_pooled);
494 
495 void svc_shutdown_net(struct svc_serv *serv, struct net *net)
496 {
497 	svc_close_net(serv, net);
498 
499 	if (serv->sv_ops->svo_shutdown)
500 		serv->sv_ops->svo_shutdown(serv, net);
501 }
502 EXPORT_SYMBOL_GPL(svc_shutdown_net);
503 
504 /*
505  * Destroy an RPC service. Should be called with appropriate locking to
506  * protect the sv_nrthreads, sv_permsocks and sv_tempsocks.
507  */
508 void
509 svc_destroy(struct svc_serv *serv)
510 {
511 	dprintk("svc: svc_destroy(%s, %d)\n",
512 				serv->sv_program->pg_name,
513 				serv->sv_nrthreads);
514 
515 	if (serv->sv_nrthreads) {
516 		if (--(serv->sv_nrthreads) != 0) {
517 			svc_sock_update_bufs(serv);
518 			return;
519 		}
520 	} else
521 		printk("svc_destroy: no threads for serv=%p!\n", serv);
522 
523 	del_timer_sync(&serv->sv_temptimer);
524 
525 	/*
526 	 * The last user is gone and thus all sockets have to be destroyed to
527 	 * the point. Check this.
528 	 */
529 	BUG_ON(!list_empty(&serv->sv_permsocks));
530 	BUG_ON(!list_empty(&serv->sv_tempsocks));
531 
532 	cache_clean_deferred(serv);
533 
534 	if (svc_serv_is_pooled(serv))
535 		svc_pool_map_put();
536 
537 	kfree(serv->sv_pools);
538 	kfree(serv);
539 }
540 EXPORT_SYMBOL_GPL(svc_destroy);
541 
542 /*
543  * Allocate an RPC server's buffer space.
544  * We allocate pages and place them in rq_argpages.
545  */
546 static int
547 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node)
548 {
549 	unsigned int pages, arghi;
550 
551 	/* bc_xprt uses fore channel allocated buffers */
552 	if (svc_is_backchannel(rqstp))
553 		return 1;
554 
555 	pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
556 				       * We assume one is at most one page
557 				       */
558 	arghi = 0;
559 	WARN_ON_ONCE(pages > RPCSVC_MAXPAGES);
560 	if (pages > RPCSVC_MAXPAGES)
561 		pages = RPCSVC_MAXPAGES;
562 	while (pages) {
563 		struct page *p = alloc_pages_node(node, GFP_KERNEL, 0);
564 		if (!p)
565 			break;
566 		rqstp->rq_pages[arghi++] = p;
567 		pages--;
568 	}
569 	return pages == 0;
570 }
571 
572 /*
573  * Release an RPC server buffer
574  */
575 static void
576 svc_release_buffer(struct svc_rqst *rqstp)
577 {
578 	unsigned int i;
579 
580 	for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++)
581 		if (rqstp->rq_pages[i])
582 			put_page(rqstp->rq_pages[i]);
583 }
584 
585 struct svc_rqst *
586 svc_rqst_alloc(struct svc_serv *serv, struct svc_pool *pool, int node)
587 {
588 	struct svc_rqst	*rqstp;
589 
590 	rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node);
591 	if (!rqstp)
592 		return rqstp;
593 
594 	__set_bit(RQ_BUSY, &rqstp->rq_flags);
595 	spin_lock_init(&rqstp->rq_lock);
596 	rqstp->rq_server = serv;
597 	rqstp->rq_pool = pool;
598 
599 	rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
600 	if (!rqstp->rq_argp)
601 		goto out_enomem;
602 
603 	rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
604 	if (!rqstp->rq_resp)
605 		goto out_enomem;
606 
607 	if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node))
608 		goto out_enomem;
609 
610 	return rqstp;
611 out_enomem:
612 	svc_rqst_free(rqstp);
613 	return NULL;
614 }
615 EXPORT_SYMBOL_GPL(svc_rqst_alloc);
616 
617 struct svc_rqst *
618 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node)
619 {
620 	struct svc_rqst	*rqstp;
621 
622 	rqstp = svc_rqst_alloc(serv, pool, node);
623 	if (!rqstp)
624 		return ERR_PTR(-ENOMEM);
625 
626 	serv->sv_nrthreads++;
627 	spin_lock_bh(&pool->sp_lock);
628 	pool->sp_nrthreads++;
629 	list_add_rcu(&rqstp->rq_all, &pool->sp_all_threads);
630 	spin_unlock_bh(&pool->sp_lock);
631 	return rqstp;
632 }
633 EXPORT_SYMBOL_GPL(svc_prepare_thread);
634 
635 /*
636  * Choose a pool in which to create a new thread, for svc_set_num_threads
637  */
638 static inline struct svc_pool *
639 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
640 {
641 	if (pool != NULL)
642 		return pool;
643 
644 	return &serv->sv_pools[(*state)++ % serv->sv_nrpools];
645 }
646 
647 /*
648  * Choose a thread to kill, for svc_set_num_threads
649  */
650 static inline struct task_struct *
651 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
652 {
653 	unsigned int i;
654 	struct task_struct *task = NULL;
655 
656 	if (pool != NULL) {
657 		spin_lock_bh(&pool->sp_lock);
658 	} else {
659 		/* choose a pool in round-robin fashion */
660 		for (i = 0; i < serv->sv_nrpools; i++) {
661 			pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
662 			spin_lock_bh(&pool->sp_lock);
663 			if (!list_empty(&pool->sp_all_threads))
664 				goto found_pool;
665 			spin_unlock_bh(&pool->sp_lock);
666 		}
667 		return NULL;
668 	}
669 
670 found_pool:
671 	if (!list_empty(&pool->sp_all_threads)) {
672 		struct svc_rqst *rqstp;
673 
674 		/*
675 		 * Remove from the pool->sp_all_threads list
676 		 * so we don't try to kill it again.
677 		 */
678 		rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all);
679 		set_bit(RQ_VICTIM, &rqstp->rq_flags);
680 		list_del_rcu(&rqstp->rq_all);
681 		task = rqstp->rq_task;
682 	}
683 	spin_unlock_bh(&pool->sp_lock);
684 
685 	return task;
686 }
687 
688 /*
689  * Create or destroy enough new threads to make the number
690  * of threads the given number.  If `pool' is non-NULL, applies
691  * only to threads in that pool, otherwise round-robins between
692  * all pools.  Caller must ensure that mutual exclusion between this and
693  * server startup or shutdown.
694  *
695  * Destroying threads relies on the service threads filling in
696  * rqstp->rq_task, which only the nfs ones do.  Assumes the serv
697  * has been created using svc_create_pooled().
698  *
699  * Based on code that used to be in nfsd_svc() but tweaked
700  * to be pool-aware.
701  */
702 int
703 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
704 {
705 	struct svc_rqst	*rqstp;
706 	struct task_struct *task;
707 	struct svc_pool *chosen_pool;
708 	int error = 0;
709 	unsigned int state = serv->sv_nrthreads-1;
710 	int node;
711 
712 	if (pool == NULL) {
713 		/* The -1 assumes caller has done a svc_get() */
714 		nrservs -= (serv->sv_nrthreads-1);
715 	} else {
716 		spin_lock_bh(&pool->sp_lock);
717 		nrservs -= pool->sp_nrthreads;
718 		spin_unlock_bh(&pool->sp_lock);
719 	}
720 
721 	/* create new threads */
722 	while (nrservs > 0) {
723 		nrservs--;
724 		chosen_pool = choose_pool(serv, pool, &state);
725 
726 		node = svc_pool_map_get_node(chosen_pool->sp_id);
727 		rqstp = svc_prepare_thread(serv, chosen_pool, node);
728 		if (IS_ERR(rqstp)) {
729 			error = PTR_ERR(rqstp);
730 			break;
731 		}
732 
733 		__module_get(serv->sv_ops->svo_module);
734 		task = kthread_create_on_node(serv->sv_ops->svo_function, rqstp,
735 					      node, "%s", serv->sv_name);
736 		if (IS_ERR(task)) {
737 			error = PTR_ERR(task);
738 			module_put(serv->sv_ops->svo_module);
739 			svc_exit_thread(rqstp);
740 			break;
741 		}
742 
743 		rqstp->rq_task = task;
744 		if (serv->sv_nrpools > 1)
745 			svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
746 
747 		svc_sock_update_bufs(serv);
748 		wake_up_process(task);
749 	}
750 	/* destroy old threads */
751 	while (nrservs < 0 &&
752 	       (task = choose_victim(serv, pool, &state)) != NULL) {
753 		send_sig(SIGINT, task, 1);
754 		nrservs++;
755 	}
756 
757 	return error;
758 }
759 EXPORT_SYMBOL_GPL(svc_set_num_threads);
760 
761 /*
762  * Called from a server thread as it's exiting. Caller must hold the "service
763  * mutex" for the service.
764  */
765 void
766 svc_rqst_free(struct svc_rqst *rqstp)
767 {
768 	svc_release_buffer(rqstp);
769 	kfree(rqstp->rq_resp);
770 	kfree(rqstp->rq_argp);
771 	kfree(rqstp->rq_auth_data);
772 	kfree_rcu(rqstp, rq_rcu_head);
773 }
774 EXPORT_SYMBOL_GPL(svc_rqst_free);
775 
776 void
777 svc_exit_thread(struct svc_rqst *rqstp)
778 {
779 	struct svc_serv	*serv = rqstp->rq_server;
780 	struct svc_pool	*pool = rqstp->rq_pool;
781 
782 	spin_lock_bh(&pool->sp_lock);
783 	pool->sp_nrthreads--;
784 	if (!test_and_set_bit(RQ_VICTIM, &rqstp->rq_flags))
785 		list_del_rcu(&rqstp->rq_all);
786 	spin_unlock_bh(&pool->sp_lock);
787 
788 	svc_rqst_free(rqstp);
789 
790 	/* Release the server */
791 	if (serv)
792 		svc_destroy(serv);
793 }
794 EXPORT_SYMBOL_GPL(svc_exit_thread);
795 
796 /*
797  * Register an "inet" protocol family netid with the local
798  * rpcbind daemon via an rpcbind v4 SET request.
799  *
800  * No netconfig infrastructure is available in the kernel, so
801  * we map IP_ protocol numbers to netids by hand.
802  *
803  * Returns zero on success; a negative errno value is returned
804  * if any error occurs.
805  */
806 static int __svc_rpcb_register4(struct net *net, const u32 program,
807 				const u32 version,
808 				const unsigned short protocol,
809 				const unsigned short port)
810 {
811 	const struct sockaddr_in sin = {
812 		.sin_family		= AF_INET,
813 		.sin_addr.s_addr	= htonl(INADDR_ANY),
814 		.sin_port		= htons(port),
815 	};
816 	const char *netid;
817 	int error;
818 
819 	switch (protocol) {
820 	case IPPROTO_UDP:
821 		netid = RPCBIND_NETID_UDP;
822 		break;
823 	case IPPROTO_TCP:
824 		netid = RPCBIND_NETID_TCP;
825 		break;
826 	default:
827 		return -ENOPROTOOPT;
828 	}
829 
830 	error = rpcb_v4_register(net, program, version,
831 					(const struct sockaddr *)&sin, netid);
832 
833 	/*
834 	 * User space didn't support rpcbind v4, so retry this
835 	 * registration request with the legacy rpcbind v2 protocol.
836 	 */
837 	if (error == -EPROTONOSUPPORT)
838 		error = rpcb_register(net, program, version, protocol, port);
839 
840 	return error;
841 }
842 
843 #if IS_ENABLED(CONFIG_IPV6)
844 /*
845  * Register an "inet6" protocol family netid with the local
846  * rpcbind daemon via an rpcbind v4 SET request.
847  *
848  * No netconfig infrastructure is available in the kernel, so
849  * we map IP_ protocol numbers to netids by hand.
850  *
851  * Returns zero on success; a negative errno value is returned
852  * if any error occurs.
853  */
854 static int __svc_rpcb_register6(struct net *net, const u32 program,
855 				const u32 version,
856 				const unsigned short protocol,
857 				const unsigned short port)
858 {
859 	const struct sockaddr_in6 sin6 = {
860 		.sin6_family		= AF_INET6,
861 		.sin6_addr		= IN6ADDR_ANY_INIT,
862 		.sin6_port		= htons(port),
863 	};
864 	const char *netid;
865 	int error;
866 
867 	switch (protocol) {
868 	case IPPROTO_UDP:
869 		netid = RPCBIND_NETID_UDP6;
870 		break;
871 	case IPPROTO_TCP:
872 		netid = RPCBIND_NETID_TCP6;
873 		break;
874 	default:
875 		return -ENOPROTOOPT;
876 	}
877 
878 	error = rpcb_v4_register(net, program, version,
879 					(const struct sockaddr *)&sin6, netid);
880 
881 	/*
882 	 * User space didn't support rpcbind version 4, so we won't
883 	 * use a PF_INET6 listener.
884 	 */
885 	if (error == -EPROTONOSUPPORT)
886 		error = -EAFNOSUPPORT;
887 
888 	return error;
889 }
890 #endif	/* IS_ENABLED(CONFIG_IPV6) */
891 
892 /*
893  * Register a kernel RPC service via rpcbind version 4.
894  *
895  * Returns zero on success; a negative errno value is returned
896  * if any error occurs.
897  */
898 static int __svc_register(struct net *net, const char *progname,
899 			  const u32 program, const u32 version,
900 			  const int family,
901 			  const unsigned short protocol,
902 			  const unsigned short port)
903 {
904 	int error = -EAFNOSUPPORT;
905 
906 	switch (family) {
907 	case PF_INET:
908 		error = __svc_rpcb_register4(net, program, version,
909 						protocol, port);
910 		break;
911 #if IS_ENABLED(CONFIG_IPV6)
912 	case PF_INET6:
913 		error = __svc_rpcb_register6(net, program, version,
914 						protocol, port);
915 #endif
916 	}
917 
918 	return error;
919 }
920 
921 /**
922  * svc_register - register an RPC service with the local portmapper
923  * @serv: svc_serv struct for the service to register
924  * @net: net namespace for the service to register
925  * @family: protocol family of service's listener socket
926  * @proto: transport protocol number to advertise
927  * @port: port to advertise
928  *
929  * Service is registered for any address in the passed-in protocol family
930  */
931 int svc_register(const struct svc_serv *serv, struct net *net,
932 		 const int family, const unsigned short proto,
933 		 const unsigned short port)
934 {
935 	struct svc_program	*progp;
936 	struct svc_version	*vers;
937 	unsigned int		i;
938 	int			error = 0;
939 
940 	WARN_ON_ONCE(proto == 0 && port == 0);
941 	if (proto == 0 && port == 0)
942 		return -EINVAL;
943 
944 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
945 		for (i = 0; i < progp->pg_nvers; i++) {
946 			vers = progp->pg_vers[i];
947 			if (vers == NULL)
948 				continue;
949 
950 			dprintk("svc: svc_register(%sv%d, %s, %u, %u)%s\n",
951 					progp->pg_name,
952 					i,
953 					proto == IPPROTO_UDP?  "udp" : "tcp",
954 					port,
955 					family,
956 					vers->vs_hidden ?
957 					" (but not telling portmap)" : "");
958 
959 			if (vers->vs_hidden)
960 				continue;
961 
962 			error = __svc_register(net, progp->pg_name, progp->pg_prog,
963 						i, family, proto, port);
964 
965 			if (vers->vs_rpcb_optnl) {
966 				error = 0;
967 				continue;
968 			}
969 
970 			if (error < 0) {
971 				printk(KERN_WARNING "svc: failed to register "
972 					"%sv%u RPC service (errno %d).\n",
973 					progp->pg_name, i, -error);
974 				break;
975 			}
976 		}
977 	}
978 
979 	return error;
980 }
981 
982 /*
983  * If user space is running rpcbind, it should take the v4 UNSET
984  * and clear everything for this [program, version].  If user space
985  * is running portmap, it will reject the v4 UNSET, but won't have
986  * any "inet6" entries anyway.  So a PMAP_UNSET should be sufficient
987  * in this case to clear all existing entries for [program, version].
988  */
989 static void __svc_unregister(struct net *net, const u32 program, const u32 version,
990 			     const char *progname)
991 {
992 	int error;
993 
994 	error = rpcb_v4_register(net, program, version, NULL, "");
995 
996 	/*
997 	 * User space didn't support rpcbind v4, so retry this
998 	 * request with the legacy rpcbind v2 protocol.
999 	 */
1000 	if (error == -EPROTONOSUPPORT)
1001 		error = rpcb_register(net, program, version, 0, 0);
1002 
1003 	dprintk("svc: %s(%sv%u), error %d\n",
1004 			__func__, progname, version, error);
1005 }
1006 
1007 /*
1008  * All netids, bind addresses and ports registered for [program, version]
1009  * are removed from the local rpcbind database (if the service is not
1010  * hidden) to make way for a new instance of the service.
1011  *
1012  * The result of unregistration is reported via dprintk for those who want
1013  * verification of the result, but is otherwise not important.
1014  */
1015 static void svc_unregister(const struct svc_serv *serv, struct net *net)
1016 {
1017 	struct svc_program *progp;
1018 	unsigned long flags;
1019 	unsigned int i;
1020 
1021 	clear_thread_flag(TIF_SIGPENDING);
1022 
1023 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1024 		for (i = 0; i < progp->pg_nvers; i++) {
1025 			if (progp->pg_vers[i] == NULL)
1026 				continue;
1027 			if (progp->pg_vers[i]->vs_hidden)
1028 				continue;
1029 
1030 			dprintk("svc: attempting to unregister %sv%u\n",
1031 				progp->pg_name, i);
1032 			__svc_unregister(net, progp->pg_prog, i, progp->pg_name);
1033 		}
1034 	}
1035 
1036 	spin_lock_irqsave(&current->sighand->siglock, flags);
1037 	recalc_sigpending();
1038 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
1039 }
1040 
1041 /*
1042  * dprintk the given error with the address of the client that caused it.
1043  */
1044 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
1045 static __printf(2, 3)
1046 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
1047 {
1048 	struct va_format vaf;
1049 	va_list args;
1050 	char 	buf[RPC_MAX_ADDRBUFLEN];
1051 
1052 	va_start(args, fmt);
1053 
1054 	vaf.fmt = fmt;
1055 	vaf.va = &args;
1056 
1057 	dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf);
1058 
1059 	va_end(args);
1060 }
1061 #else
1062 static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {}
1063 #endif
1064 
1065 /*
1066  * Common routine for processing the RPC request.
1067  */
1068 static int
1069 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv)
1070 {
1071 	struct svc_program	*progp;
1072 	struct svc_version	*versp = NULL;	/* compiler food */
1073 	struct svc_procedure	*procp = NULL;
1074 	struct svc_serv		*serv = rqstp->rq_server;
1075 	kxdrproc_t		xdr;
1076 	__be32			*statp;
1077 	u32			prog, vers, proc;
1078 	__be32			auth_stat, rpc_stat;
1079 	int			auth_res;
1080 	__be32			*reply_statp;
1081 
1082 	rpc_stat = rpc_success;
1083 
1084 	if (argv->iov_len < 6*4)
1085 		goto err_short_len;
1086 
1087 	/* Will be turned off only in gss privacy case: */
1088 	set_bit(RQ_SPLICE_OK, &rqstp->rq_flags);
1089 	/* Will be turned off only when NFSv4 Sessions are used */
1090 	set_bit(RQ_USEDEFERRAL, &rqstp->rq_flags);
1091 	clear_bit(RQ_DROPME, &rqstp->rq_flags);
1092 
1093 	/* Setup reply header */
1094 	rqstp->rq_xprt->xpt_ops->xpo_prep_reply_hdr(rqstp);
1095 
1096 	svc_putu32(resv, rqstp->rq_xid);
1097 
1098 	vers = svc_getnl(argv);
1099 
1100 	/* First words of reply: */
1101 	svc_putnl(resv, 1);		/* REPLY */
1102 
1103 	if (vers != 2)		/* RPC version number */
1104 		goto err_bad_rpc;
1105 
1106 	/* Save position in case we later decide to reject: */
1107 	reply_statp = resv->iov_base + resv->iov_len;
1108 
1109 	svc_putnl(resv, 0);		/* ACCEPT */
1110 
1111 	rqstp->rq_prog = prog = svc_getnl(argv);	/* program number */
1112 	rqstp->rq_vers = vers = svc_getnl(argv);	/* version number */
1113 	rqstp->rq_proc = proc = svc_getnl(argv);	/* procedure number */
1114 
1115 	for (progp = serv->sv_program; progp; progp = progp->pg_next)
1116 		if (prog == progp->pg_prog)
1117 			break;
1118 
1119 	/*
1120 	 * Decode auth data, and add verifier to reply buffer.
1121 	 * We do this before anything else in order to get a decent
1122 	 * auth verifier.
1123 	 */
1124 	auth_res = svc_authenticate(rqstp, &auth_stat);
1125 	/* Also give the program a chance to reject this call: */
1126 	if (auth_res == SVC_OK && progp) {
1127 		auth_stat = rpc_autherr_badcred;
1128 		auth_res = progp->pg_authenticate(rqstp);
1129 	}
1130 	switch (auth_res) {
1131 	case SVC_OK:
1132 		break;
1133 	case SVC_GARBAGE:
1134 		goto err_garbage;
1135 	case SVC_SYSERR:
1136 		rpc_stat = rpc_system_err;
1137 		goto err_bad;
1138 	case SVC_DENIED:
1139 		goto err_bad_auth;
1140 	case SVC_CLOSE:
1141 		if (test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags))
1142 			svc_close_xprt(rqstp->rq_xprt);
1143 	case SVC_DROP:
1144 		goto dropit;
1145 	case SVC_COMPLETE:
1146 		goto sendit;
1147 	}
1148 
1149 	if (progp == NULL)
1150 		goto err_bad_prog;
1151 
1152 	if (vers >= progp->pg_nvers ||
1153 	  !(versp = progp->pg_vers[vers]))
1154 		goto err_bad_vers;
1155 
1156 	procp = versp->vs_proc + proc;
1157 	if (proc >= versp->vs_nproc || !procp->pc_func)
1158 		goto err_bad_proc;
1159 	rqstp->rq_procinfo = procp;
1160 
1161 	/* Syntactic check complete */
1162 	serv->sv_stats->rpccnt++;
1163 
1164 	/* Build the reply header. */
1165 	statp = resv->iov_base +resv->iov_len;
1166 	svc_putnl(resv, RPC_SUCCESS);
1167 
1168 	/* Bump per-procedure stats counter */
1169 	procp->pc_count++;
1170 
1171 	/* Initialize storage for argp and resp */
1172 	memset(rqstp->rq_argp, 0, procp->pc_argsize);
1173 	memset(rqstp->rq_resp, 0, procp->pc_ressize);
1174 
1175 	/* un-reserve some of the out-queue now that we have a
1176 	 * better idea of reply size
1177 	 */
1178 	if (procp->pc_xdrressize)
1179 		svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1180 
1181 	/* Call the function that processes the request. */
1182 	if (!versp->vs_dispatch) {
1183 		/* Decode arguments */
1184 		xdr = procp->pc_decode;
1185 		if (xdr && !xdr(rqstp, argv->iov_base, rqstp->rq_argp))
1186 			goto err_garbage;
1187 
1188 		*statp = procp->pc_func(rqstp, rqstp->rq_argp, rqstp->rq_resp);
1189 
1190 		/* Encode reply */
1191 		if (test_bit(RQ_DROPME, &rqstp->rq_flags)) {
1192 			if (procp->pc_release)
1193 				procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1194 			goto dropit;
1195 		}
1196 		if (*statp == rpc_success &&
1197 		    (xdr = procp->pc_encode) &&
1198 		    !xdr(rqstp, resv->iov_base+resv->iov_len, rqstp->rq_resp)) {
1199 			dprintk("svc: failed to encode reply\n");
1200 			/* serv->sv_stats->rpcsystemerr++; */
1201 			*statp = rpc_system_err;
1202 		}
1203 	} else {
1204 		dprintk("svc: calling dispatcher\n");
1205 		if (!versp->vs_dispatch(rqstp, statp)) {
1206 			/* Release reply info */
1207 			if (procp->pc_release)
1208 				procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1209 			goto dropit;
1210 		}
1211 	}
1212 
1213 	/* Check RPC status result */
1214 	if (*statp != rpc_success)
1215 		resv->iov_len = ((void*)statp)  - resv->iov_base + 4;
1216 
1217 	/* Release reply info */
1218 	if (procp->pc_release)
1219 		procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1220 
1221 	if (procp->pc_encode == NULL)
1222 		goto dropit;
1223 
1224  sendit:
1225 	if (svc_authorise(rqstp))
1226 		goto dropit;
1227 	return 1;		/* Caller can now send it */
1228 
1229  dropit:
1230 	svc_authorise(rqstp);	/* doesn't hurt to call this twice */
1231 	dprintk("svc: svc_process dropit\n");
1232 	return 0;
1233 
1234 err_short_len:
1235 	svc_printk(rqstp, "short len %Zd, dropping request\n",
1236 			argv->iov_len);
1237 
1238 	goto dropit;			/* drop request */
1239 
1240 err_bad_rpc:
1241 	serv->sv_stats->rpcbadfmt++;
1242 	svc_putnl(resv, 1);	/* REJECT */
1243 	svc_putnl(resv, 0);	/* RPC_MISMATCH */
1244 	svc_putnl(resv, 2);	/* Only RPCv2 supported */
1245 	svc_putnl(resv, 2);
1246 	goto sendit;
1247 
1248 err_bad_auth:
1249 	dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat));
1250 	serv->sv_stats->rpcbadauth++;
1251 	/* Restore write pointer to location of accept status: */
1252 	xdr_ressize_check(rqstp, reply_statp);
1253 	svc_putnl(resv, 1);	/* REJECT */
1254 	svc_putnl(resv, 1);	/* AUTH_ERROR */
1255 	svc_putnl(resv, ntohl(auth_stat));	/* status */
1256 	goto sendit;
1257 
1258 err_bad_prog:
1259 	dprintk("svc: unknown program %d\n", prog);
1260 	serv->sv_stats->rpcbadfmt++;
1261 	svc_putnl(resv, RPC_PROG_UNAVAIL);
1262 	goto sendit;
1263 
1264 err_bad_vers:
1265 	svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1266 		       vers, prog, progp->pg_name);
1267 
1268 	serv->sv_stats->rpcbadfmt++;
1269 	svc_putnl(resv, RPC_PROG_MISMATCH);
1270 	svc_putnl(resv, progp->pg_lovers);
1271 	svc_putnl(resv, progp->pg_hivers);
1272 	goto sendit;
1273 
1274 err_bad_proc:
1275 	svc_printk(rqstp, "unknown procedure (%d)\n", proc);
1276 
1277 	serv->sv_stats->rpcbadfmt++;
1278 	svc_putnl(resv, RPC_PROC_UNAVAIL);
1279 	goto sendit;
1280 
1281 err_garbage:
1282 	svc_printk(rqstp, "failed to decode args\n");
1283 
1284 	rpc_stat = rpc_garbage_args;
1285 err_bad:
1286 	serv->sv_stats->rpcbadfmt++;
1287 	svc_putnl(resv, ntohl(rpc_stat));
1288 	goto sendit;
1289 }
1290 
1291 /*
1292  * Process the RPC request.
1293  */
1294 int
1295 svc_process(struct svc_rqst *rqstp)
1296 {
1297 	struct kvec		*argv = &rqstp->rq_arg.head[0];
1298 	struct kvec		*resv = &rqstp->rq_res.head[0];
1299 	struct svc_serv		*serv = rqstp->rq_server;
1300 	u32			dir;
1301 
1302 	/*
1303 	 * Setup response xdr_buf.
1304 	 * Initially it has just one page
1305 	 */
1306 	rqstp->rq_next_page = &rqstp->rq_respages[1];
1307 	resv->iov_base = page_address(rqstp->rq_respages[0]);
1308 	resv->iov_len = 0;
1309 	rqstp->rq_res.pages = rqstp->rq_respages + 1;
1310 	rqstp->rq_res.len = 0;
1311 	rqstp->rq_res.page_base = 0;
1312 	rqstp->rq_res.page_len = 0;
1313 	rqstp->rq_res.buflen = PAGE_SIZE;
1314 	rqstp->rq_res.tail[0].iov_base = NULL;
1315 	rqstp->rq_res.tail[0].iov_len = 0;
1316 
1317 	dir  = svc_getnl(argv);
1318 	if (dir != 0) {
1319 		/* direction != CALL */
1320 		svc_printk(rqstp, "bad direction %d, dropping request\n", dir);
1321 		serv->sv_stats->rpcbadfmt++;
1322 		goto out_drop;
1323 	}
1324 
1325 	/* Returns 1 for send, 0 for drop */
1326 	if (likely(svc_process_common(rqstp, argv, resv))) {
1327 		int ret = svc_send(rqstp);
1328 
1329 		trace_svc_process(rqstp, ret);
1330 		return ret;
1331 	}
1332 out_drop:
1333 	trace_svc_process(rqstp, 0);
1334 	svc_drop(rqstp);
1335 	return 0;
1336 }
1337 EXPORT_SYMBOL_GPL(svc_process);
1338 
1339 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1340 /*
1341  * Process a backchannel RPC request that arrived over an existing
1342  * outbound connection
1343  */
1344 int
1345 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req,
1346 	       struct svc_rqst *rqstp)
1347 {
1348 	struct kvec	*argv = &rqstp->rq_arg.head[0];
1349 	struct kvec	*resv = &rqstp->rq_res.head[0];
1350 	struct rpc_task *task;
1351 	int proc_error;
1352 	int error;
1353 
1354 	dprintk("svc: %s(%p)\n", __func__, req);
1355 
1356 	/* Build the svc_rqst used by the common processing routine */
1357 	rqstp->rq_xprt = serv->sv_bc_xprt;
1358 	rqstp->rq_xid = req->rq_xid;
1359 	rqstp->rq_prot = req->rq_xprt->prot;
1360 	rqstp->rq_server = serv;
1361 
1362 	rqstp->rq_addrlen = sizeof(req->rq_xprt->addr);
1363 	memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen);
1364 	memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg));
1365 	memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res));
1366 
1367 	/* Adjust the argument buffer length */
1368 	rqstp->rq_arg.len = req->rq_private_buf.len;
1369 	if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
1370 		rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
1371 		rqstp->rq_arg.page_len = 0;
1372 	} else if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len +
1373 			rqstp->rq_arg.page_len)
1374 		rqstp->rq_arg.page_len = rqstp->rq_arg.len -
1375 			rqstp->rq_arg.head[0].iov_len;
1376 	else
1377 		rqstp->rq_arg.len = rqstp->rq_arg.head[0].iov_len +
1378 			rqstp->rq_arg.page_len;
1379 
1380 	/* reset result send buffer "put" position */
1381 	resv->iov_len = 0;
1382 
1383 	/*
1384 	 * Skip the next two words because they've already been
1385 	 * processed in the transport
1386 	 */
1387 	svc_getu32(argv);	/* XID */
1388 	svc_getnl(argv);	/* CALLDIR */
1389 
1390 	/* Parse and execute the bc call */
1391 	proc_error = svc_process_common(rqstp, argv, resv);
1392 
1393 	atomic_inc(&req->rq_xprt->bc_free_slots);
1394 	if (!proc_error) {
1395 		/* Processing error: drop the request */
1396 		xprt_free_bc_request(req);
1397 		return 0;
1398 	}
1399 
1400 	/* Finally, send the reply synchronously */
1401 	memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf));
1402 	task = rpc_run_bc_task(req);
1403 	if (IS_ERR(task)) {
1404 		error = PTR_ERR(task);
1405 		goto out;
1406 	}
1407 
1408 	WARN_ON_ONCE(atomic_read(&task->tk_count) != 1);
1409 	error = task->tk_status;
1410 	rpc_put_task(task);
1411 
1412 out:
1413 	dprintk("svc: %s(), error=%d\n", __func__, error);
1414 	return error;
1415 }
1416 EXPORT_SYMBOL_GPL(bc_svc_process);
1417 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1418 
1419 /*
1420  * Return (transport-specific) limit on the rpc payload.
1421  */
1422 u32 svc_max_payload(const struct svc_rqst *rqstp)
1423 {
1424 	u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1425 
1426 	if (rqstp->rq_server->sv_max_payload < max)
1427 		max = rqstp->rq_server->sv_max_payload;
1428 	return max;
1429 }
1430 EXPORT_SYMBOL_GPL(svc_max_payload);
1431