1 /* 2 * linux/net/sunrpc/svc.c 3 * 4 * High-level RPC service routines 5 * 6 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 7 * 8 * Multiple threads pools and NUMAisation 9 * Copyright (c) 2006 Silicon Graphics, Inc. 10 * by Greg Banks <gnb@melbourne.sgi.com> 11 */ 12 13 #include <linux/linkage.h> 14 #include <linux/sched.h> 15 #include <linux/errno.h> 16 #include <linux/net.h> 17 #include <linux/in.h> 18 #include <linux/mm.h> 19 #include <linux/interrupt.h> 20 #include <linux/module.h> 21 #include <linux/kthread.h> 22 #include <linux/slab.h> 23 24 #include <linux/sunrpc/types.h> 25 #include <linux/sunrpc/xdr.h> 26 #include <linux/sunrpc/stats.h> 27 #include <linux/sunrpc/svcsock.h> 28 #include <linux/sunrpc/clnt.h> 29 #include <linux/sunrpc/bc_xprt.h> 30 31 #define RPCDBG_FACILITY RPCDBG_SVCDSP 32 33 static void svc_unregister(const struct svc_serv *serv); 34 35 #define svc_serv_is_pooled(serv) ((serv)->sv_function) 36 37 /* 38 * Mode for mapping cpus to pools. 39 */ 40 enum { 41 SVC_POOL_AUTO = -1, /* choose one of the others */ 42 SVC_POOL_GLOBAL, /* no mapping, just a single global pool 43 * (legacy & UP mode) */ 44 SVC_POOL_PERCPU, /* one pool per cpu */ 45 SVC_POOL_PERNODE /* one pool per numa node */ 46 }; 47 #define SVC_POOL_DEFAULT SVC_POOL_GLOBAL 48 49 /* 50 * Structure for mapping cpus to pools and vice versa. 51 * Setup once during sunrpc initialisation. 52 */ 53 static struct svc_pool_map { 54 int count; /* How many svc_servs use us */ 55 int mode; /* Note: int not enum to avoid 56 * warnings about "enumeration value 57 * not handled in switch" */ 58 unsigned int npools; 59 unsigned int *pool_to; /* maps pool id to cpu or node */ 60 unsigned int *to_pool; /* maps cpu or node to pool id */ 61 } svc_pool_map = { 62 .count = 0, 63 .mode = SVC_POOL_DEFAULT 64 }; 65 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */ 66 67 static int 68 param_set_pool_mode(const char *val, struct kernel_param *kp) 69 { 70 int *ip = (int *)kp->arg; 71 struct svc_pool_map *m = &svc_pool_map; 72 int err; 73 74 mutex_lock(&svc_pool_map_mutex); 75 76 err = -EBUSY; 77 if (m->count) 78 goto out; 79 80 err = 0; 81 if (!strncmp(val, "auto", 4)) 82 *ip = SVC_POOL_AUTO; 83 else if (!strncmp(val, "global", 6)) 84 *ip = SVC_POOL_GLOBAL; 85 else if (!strncmp(val, "percpu", 6)) 86 *ip = SVC_POOL_PERCPU; 87 else if (!strncmp(val, "pernode", 7)) 88 *ip = SVC_POOL_PERNODE; 89 else 90 err = -EINVAL; 91 92 out: 93 mutex_unlock(&svc_pool_map_mutex); 94 return err; 95 } 96 97 static int 98 param_get_pool_mode(char *buf, struct kernel_param *kp) 99 { 100 int *ip = (int *)kp->arg; 101 102 switch (*ip) 103 { 104 case SVC_POOL_AUTO: 105 return strlcpy(buf, "auto", 20); 106 case SVC_POOL_GLOBAL: 107 return strlcpy(buf, "global", 20); 108 case SVC_POOL_PERCPU: 109 return strlcpy(buf, "percpu", 20); 110 case SVC_POOL_PERNODE: 111 return strlcpy(buf, "pernode", 20); 112 default: 113 return sprintf(buf, "%d", *ip); 114 } 115 } 116 117 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode, 118 &svc_pool_map.mode, 0644); 119 120 /* 121 * Detect best pool mapping mode heuristically, 122 * according to the machine's topology. 123 */ 124 static int 125 svc_pool_map_choose_mode(void) 126 { 127 unsigned int node; 128 129 if (nr_online_nodes > 1) { 130 /* 131 * Actually have multiple NUMA nodes, 132 * so split pools on NUMA node boundaries 133 */ 134 return SVC_POOL_PERNODE; 135 } 136 137 node = first_online_node; 138 if (nr_cpus_node(node) > 2) { 139 /* 140 * Non-trivial SMP, or CONFIG_NUMA on 141 * non-NUMA hardware, e.g. with a generic 142 * x86_64 kernel on Xeons. In this case we 143 * want to divide the pools on cpu boundaries. 144 */ 145 return SVC_POOL_PERCPU; 146 } 147 148 /* default: one global pool */ 149 return SVC_POOL_GLOBAL; 150 } 151 152 /* 153 * Allocate the to_pool[] and pool_to[] arrays. 154 * Returns 0 on success or an errno. 155 */ 156 static int 157 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools) 158 { 159 m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 160 if (!m->to_pool) 161 goto fail; 162 m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 163 if (!m->pool_to) 164 goto fail_free; 165 166 return 0; 167 168 fail_free: 169 kfree(m->to_pool); 170 fail: 171 return -ENOMEM; 172 } 173 174 /* 175 * Initialise the pool map for SVC_POOL_PERCPU mode. 176 * Returns number of pools or <0 on error. 177 */ 178 static int 179 svc_pool_map_init_percpu(struct svc_pool_map *m) 180 { 181 unsigned int maxpools = nr_cpu_ids; 182 unsigned int pidx = 0; 183 unsigned int cpu; 184 int err; 185 186 err = svc_pool_map_alloc_arrays(m, maxpools); 187 if (err) 188 return err; 189 190 for_each_online_cpu(cpu) { 191 BUG_ON(pidx > maxpools); 192 m->to_pool[cpu] = pidx; 193 m->pool_to[pidx] = cpu; 194 pidx++; 195 } 196 /* cpus brought online later all get mapped to pool0, sorry */ 197 198 return pidx; 199 }; 200 201 202 /* 203 * Initialise the pool map for SVC_POOL_PERNODE mode. 204 * Returns number of pools or <0 on error. 205 */ 206 static int 207 svc_pool_map_init_pernode(struct svc_pool_map *m) 208 { 209 unsigned int maxpools = nr_node_ids; 210 unsigned int pidx = 0; 211 unsigned int node; 212 int err; 213 214 err = svc_pool_map_alloc_arrays(m, maxpools); 215 if (err) 216 return err; 217 218 for_each_node_with_cpus(node) { 219 /* some architectures (e.g. SN2) have cpuless nodes */ 220 BUG_ON(pidx > maxpools); 221 m->to_pool[node] = pidx; 222 m->pool_to[pidx] = node; 223 pidx++; 224 } 225 /* nodes brought online later all get mapped to pool0, sorry */ 226 227 return pidx; 228 } 229 230 231 /* 232 * Add a reference to the global map of cpus to pools (and 233 * vice versa). Initialise the map if we're the first user. 234 * Returns the number of pools. 235 */ 236 static unsigned int 237 svc_pool_map_get(void) 238 { 239 struct svc_pool_map *m = &svc_pool_map; 240 int npools = -1; 241 242 mutex_lock(&svc_pool_map_mutex); 243 244 if (m->count++) { 245 mutex_unlock(&svc_pool_map_mutex); 246 return m->npools; 247 } 248 249 if (m->mode == SVC_POOL_AUTO) 250 m->mode = svc_pool_map_choose_mode(); 251 252 switch (m->mode) { 253 case SVC_POOL_PERCPU: 254 npools = svc_pool_map_init_percpu(m); 255 break; 256 case SVC_POOL_PERNODE: 257 npools = svc_pool_map_init_pernode(m); 258 break; 259 } 260 261 if (npools < 0) { 262 /* default, or memory allocation failure */ 263 npools = 1; 264 m->mode = SVC_POOL_GLOBAL; 265 } 266 m->npools = npools; 267 268 mutex_unlock(&svc_pool_map_mutex); 269 return m->npools; 270 } 271 272 273 /* 274 * Drop a reference to the global map of cpus to pools. 275 * When the last reference is dropped, the map data is 276 * freed; this allows the sysadmin to change the pool 277 * mode using the pool_mode module option without 278 * rebooting or re-loading sunrpc.ko. 279 */ 280 static void 281 svc_pool_map_put(void) 282 { 283 struct svc_pool_map *m = &svc_pool_map; 284 285 mutex_lock(&svc_pool_map_mutex); 286 287 if (!--m->count) { 288 m->mode = SVC_POOL_DEFAULT; 289 kfree(m->to_pool); 290 kfree(m->pool_to); 291 m->npools = 0; 292 } 293 294 mutex_unlock(&svc_pool_map_mutex); 295 } 296 297 298 static int svc_pool_map_get_node(unsigned int pidx) 299 { 300 const struct svc_pool_map *m = &svc_pool_map; 301 302 if (m->count) { 303 if (m->mode == SVC_POOL_PERCPU) 304 return cpu_to_node(m->pool_to[pidx]); 305 if (m->mode == SVC_POOL_PERNODE) 306 return m->pool_to[pidx]; 307 } 308 return NUMA_NO_NODE; 309 } 310 /* 311 * Set the given thread's cpus_allowed mask so that it 312 * will only run on cpus in the given pool. 313 */ 314 static inline void 315 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx) 316 { 317 struct svc_pool_map *m = &svc_pool_map; 318 unsigned int node = m->pool_to[pidx]; 319 320 /* 321 * The caller checks for sv_nrpools > 1, which 322 * implies that we've been initialized. 323 */ 324 BUG_ON(m->count == 0); 325 326 switch (m->mode) { 327 case SVC_POOL_PERCPU: 328 { 329 set_cpus_allowed_ptr(task, cpumask_of(node)); 330 break; 331 } 332 case SVC_POOL_PERNODE: 333 { 334 set_cpus_allowed_ptr(task, cpumask_of_node(node)); 335 break; 336 } 337 } 338 } 339 340 /* 341 * Use the mapping mode to choose a pool for a given CPU. 342 * Used when enqueueing an incoming RPC. Always returns 343 * a non-NULL pool pointer. 344 */ 345 struct svc_pool * 346 svc_pool_for_cpu(struct svc_serv *serv, int cpu) 347 { 348 struct svc_pool_map *m = &svc_pool_map; 349 unsigned int pidx = 0; 350 351 /* 352 * An uninitialised map happens in a pure client when 353 * lockd is brought up, so silently treat it the 354 * same as SVC_POOL_GLOBAL. 355 */ 356 if (svc_serv_is_pooled(serv)) { 357 switch (m->mode) { 358 case SVC_POOL_PERCPU: 359 pidx = m->to_pool[cpu]; 360 break; 361 case SVC_POOL_PERNODE: 362 pidx = m->to_pool[cpu_to_node(cpu)]; 363 break; 364 } 365 } 366 return &serv->sv_pools[pidx % serv->sv_nrpools]; 367 } 368 369 static int svc_rpcb_setup(struct svc_serv *serv) 370 { 371 int err; 372 373 err = rpcb_create_local(); 374 if (err) 375 return err; 376 377 /* Remove any stale portmap registrations */ 378 svc_unregister(serv); 379 return 0; 380 } 381 382 void svc_rpcb_cleanup(struct svc_serv *serv) 383 { 384 svc_unregister(serv); 385 rpcb_put_local(); 386 } 387 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup); 388 389 static int svc_uses_rpcbind(struct svc_serv *serv) 390 { 391 struct svc_program *progp; 392 unsigned int i; 393 394 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 395 for (i = 0; i < progp->pg_nvers; i++) { 396 if (progp->pg_vers[i] == NULL) 397 continue; 398 if (progp->pg_vers[i]->vs_hidden == 0) 399 return 1; 400 } 401 } 402 403 return 0; 404 } 405 406 /* 407 * Create an RPC service 408 */ 409 static struct svc_serv * 410 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools, 411 void (*shutdown)(struct svc_serv *serv)) 412 { 413 struct svc_serv *serv; 414 unsigned int vers; 415 unsigned int xdrsize; 416 unsigned int i; 417 418 if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL))) 419 return NULL; 420 serv->sv_name = prog->pg_name; 421 serv->sv_program = prog; 422 serv->sv_nrthreads = 1; 423 serv->sv_stats = prog->pg_stats; 424 if (bufsize > RPCSVC_MAXPAYLOAD) 425 bufsize = RPCSVC_MAXPAYLOAD; 426 serv->sv_max_payload = bufsize? bufsize : 4096; 427 serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE); 428 serv->sv_shutdown = shutdown; 429 xdrsize = 0; 430 while (prog) { 431 prog->pg_lovers = prog->pg_nvers-1; 432 for (vers=0; vers<prog->pg_nvers ; vers++) 433 if (prog->pg_vers[vers]) { 434 prog->pg_hivers = vers; 435 if (prog->pg_lovers > vers) 436 prog->pg_lovers = vers; 437 if (prog->pg_vers[vers]->vs_xdrsize > xdrsize) 438 xdrsize = prog->pg_vers[vers]->vs_xdrsize; 439 } 440 prog = prog->pg_next; 441 } 442 serv->sv_xdrsize = xdrsize; 443 INIT_LIST_HEAD(&serv->sv_tempsocks); 444 INIT_LIST_HEAD(&serv->sv_permsocks); 445 init_timer(&serv->sv_temptimer); 446 spin_lock_init(&serv->sv_lock); 447 448 serv->sv_nrpools = npools; 449 serv->sv_pools = 450 kcalloc(serv->sv_nrpools, sizeof(struct svc_pool), 451 GFP_KERNEL); 452 if (!serv->sv_pools) { 453 kfree(serv); 454 return NULL; 455 } 456 457 for (i = 0; i < serv->sv_nrpools; i++) { 458 struct svc_pool *pool = &serv->sv_pools[i]; 459 460 dprintk("svc: initialising pool %u for %s\n", 461 i, serv->sv_name); 462 463 pool->sp_id = i; 464 INIT_LIST_HEAD(&pool->sp_threads); 465 INIT_LIST_HEAD(&pool->sp_sockets); 466 INIT_LIST_HEAD(&pool->sp_all_threads); 467 spin_lock_init(&pool->sp_lock); 468 } 469 470 if (svc_uses_rpcbind(serv)) { 471 if (svc_rpcb_setup(serv) < 0) { 472 kfree(serv->sv_pools); 473 kfree(serv); 474 return NULL; 475 } 476 if (!serv->sv_shutdown) 477 serv->sv_shutdown = svc_rpcb_cleanup; 478 } 479 480 return serv; 481 } 482 483 struct svc_serv * 484 svc_create(struct svc_program *prog, unsigned int bufsize, 485 void (*shutdown)(struct svc_serv *serv)) 486 { 487 return __svc_create(prog, bufsize, /*npools*/1, shutdown); 488 } 489 EXPORT_SYMBOL_GPL(svc_create); 490 491 struct svc_serv * 492 svc_create_pooled(struct svc_program *prog, unsigned int bufsize, 493 void (*shutdown)(struct svc_serv *serv), 494 svc_thread_fn func, struct module *mod) 495 { 496 struct svc_serv *serv; 497 unsigned int npools = svc_pool_map_get(); 498 499 serv = __svc_create(prog, bufsize, npools, shutdown); 500 501 if (serv != NULL) { 502 serv->sv_function = func; 503 serv->sv_module = mod; 504 } 505 506 return serv; 507 } 508 EXPORT_SYMBOL_GPL(svc_create_pooled); 509 510 /* 511 * Destroy an RPC service. Should be called with appropriate locking to 512 * protect the sv_nrthreads, sv_permsocks and sv_tempsocks. 513 */ 514 void 515 svc_destroy(struct svc_serv *serv) 516 { 517 dprintk("svc: svc_destroy(%s, %d)\n", 518 serv->sv_program->pg_name, 519 serv->sv_nrthreads); 520 521 if (serv->sv_nrthreads) { 522 if (--(serv->sv_nrthreads) != 0) { 523 svc_sock_update_bufs(serv); 524 return; 525 } 526 } else 527 printk("svc_destroy: no threads for serv=%p!\n", serv); 528 529 del_timer_sync(&serv->sv_temptimer); 530 531 svc_close_all(&serv->sv_tempsocks); 532 533 if (serv->sv_shutdown) 534 serv->sv_shutdown(serv); 535 536 svc_close_all(&serv->sv_permsocks); 537 538 BUG_ON(!list_empty(&serv->sv_permsocks)); 539 BUG_ON(!list_empty(&serv->sv_tempsocks)); 540 541 cache_clean_deferred(serv); 542 543 if (svc_serv_is_pooled(serv)) 544 svc_pool_map_put(); 545 546 kfree(serv->sv_pools); 547 kfree(serv); 548 } 549 EXPORT_SYMBOL_GPL(svc_destroy); 550 551 /* 552 * Allocate an RPC server's buffer space. 553 * We allocate pages and place them in rq_argpages. 554 */ 555 static int 556 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node) 557 { 558 unsigned int pages, arghi; 559 560 /* bc_xprt uses fore channel allocated buffers */ 561 if (svc_is_backchannel(rqstp)) 562 return 1; 563 564 pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply. 565 * We assume one is at most one page 566 */ 567 arghi = 0; 568 BUG_ON(pages > RPCSVC_MAXPAGES); 569 while (pages) { 570 struct page *p = alloc_pages_node(node, GFP_KERNEL, 0); 571 if (!p) 572 break; 573 rqstp->rq_pages[arghi++] = p; 574 pages--; 575 } 576 return pages == 0; 577 } 578 579 /* 580 * Release an RPC server buffer 581 */ 582 static void 583 svc_release_buffer(struct svc_rqst *rqstp) 584 { 585 unsigned int i; 586 587 for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++) 588 if (rqstp->rq_pages[i]) 589 put_page(rqstp->rq_pages[i]); 590 } 591 592 struct svc_rqst * 593 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node) 594 { 595 struct svc_rqst *rqstp; 596 597 rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node); 598 if (!rqstp) 599 goto out_enomem; 600 601 init_waitqueue_head(&rqstp->rq_wait); 602 603 serv->sv_nrthreads++; 604 spin_lock_bh(&pool->sp_lock); 605 pool->sp_nrthreads++; 606 list_add(&rqstp->rq_all, &pool->sp_all_threads); 607 spin_unlock_bh(&pool->sp_lock); 608 rqstp->rq_server = serv; 609 rqstp->rq_pool = pool; 610 611 rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 612 if (!rqstp->rq_argp) 613 goto out_thread; 614 615 rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 616 if (!rqstp->rq_resp) 617 goto out_thread; 618 619 if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node)) 620 goto out_thread; 621 622 return rqstp; 623 out_thread: 624 svc_exit_thread(rqstp); 625 out_enomem: 626 return ERR_PTR(-ENOMEM); 627 } 628 EXPORT_SYMBOL_GPL(svc_prepare_thread); 629 630 /* 631 * Choose a pool in which to create a new thread, for svc_set_num_threads 632 */ 633 static inline struct svc_pool * 634 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 635 { 636 if (pool != NULL) 637 return pool; 638 639 return &serv->sv_pools[(*state)++ % serv->sv_nrpools]; 640 } 641 642 /* 643 * Choose a thread to kill, for svc_set_num_threads 644 */ 645 static inline struct task_struct * 646 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 647 { 648 unsigned int i; 649 struct task_struct *task = NULL; 650 651 if (pool != NULL) { 652 spin_lock_bh(&pool->sp_lock); 653 } else { 654 /* choose a pool in round-robin fashion */ 655 for (i = 0; i < serv->sv_nrpools; i++) { 656 pool = &serv->sv_pools[--(*state) % serv->sv_nrpools]; 657 spin_lock_bh(&pool->sp_lock); 658 if (!list_empty(&pool->sp_all_threads)) 659 goto found_pool; 660 spin_unlock_bh(&pool->sp_lock); 661 } 662 return NULL; 663 } 664 665 found_pool: 666 if (!list_empty(&pool->sp_all_threads)) { 667 struct svc_rqst *rqstp; 668 669 /* 670 * Remove from the pool->sp_all_threads list 671 * so we don't try to kill it again. 672 */ 673 rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all); 674 list_del_init(&rqstp->rq_all); 675 task = rqstp->rq_task; 676 } 677 spin_unlock_bh(&pool->sp_lock); 678 679 return task; 680 } 681 682 /* 683 * Create or destroy enough new threads to make the number 684 * of threads the given number. If `pool' is non-NULL, applies 685 * only to threads in that pool, otherwise round-robins between 686 * all pools. Must be called with a svc_get() reference and 687 * the BKL or another lock to protect access to svc_serv fields. 688 * 689 * Destroying threads relies on the service threads filling in 690 * rqstp->rq_task, which only the nfs ones do. Assumes the serv 691 * has been created using svc_create_pooled(). 692 * 693 * Based on code that used to be in nfsd_svc() but tweaked 694 * to be pool-aware. 695 */ 696 int 697 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 698 { 699 struct svc_rqst *rqstp; 700 struct task_struct *task; 701 struct svc_pool *chosen_pool; 702 int error = 0; 703 unsigned int state = serv->sv_nrthreads-1; 704 int node; 705 706 if (pool == NULL) { 707 /* The -1 assumes caller has done a svc_get() */ 708 nrservs -= (serv->sv_nrthreads-1); 709 } else { 710 spin_lock_bh(&pool->sp_lock); 711 nrservs -= pool->sp_nrthreads; 712 spin_unlock_bh(&pool->sp_lock); 713 } 714 715 /* create new threads */ 716 while (nrservs > 0) { 717 nrservs--; 718 chosen_pool = choose_pool(serv, pool, &state); 719 720 node = svc_pool_map_get_node(chosen_pool->sp_id); 721 rqstp = svc_prepare_thread(serv, chosen_pool, node); 722 if (IS_ERR(rqstp)) { 723 error = PTR_ERR(rqstp); 724 break; 725 } 726 727 __module_get(serv->sv_module); 728 task = kthread_create_on_node(serv->sv_function, rqstp, 729 node, serv->sv_name); 730 if (IS_ERR(task)) { 731 error = PTR_ERR(task); 732 module_put(serv->sv_module); 733 svc_exit_thread(rqstp); 734 break; 735 } 736 737 rqstp->rq_task = task; 738 if (serv->sv_nrpools > 1) 739 svc_pool_map_set_cpumask(task, chosen_pool->sp_id); 740 741 svc_sock_update_bufs(serv); 742 wake_up_process(task); 743 } 744 /* destroy old threads */ 745 while (nrservs < 0 && 746 (task = choose_victim(serv, pool, &state)) != NULL) { 747 send_sig(SIGINT, task, 1); 748 nrservs++; 749 } 750 751 return error; 752 } 753 EXPORT_SYMBOL_GPL(svc_set_num_threads); 754 755 /* 756 * Called from a server thread as it's exiting. Caller must hold the BKL or 757 * the "service mutex", whichever is appropriate for the service. 758 */ 759 void 760 svc_exit_thread(struct svc_rqst *rqstp) 761 { 762 struct svc_serv *serv = rqstp->rq_server; 763 struct svc_pool *pool = rqstp->rq_pool; 764 765 svc_release_buffer(rqstp); 766 kfree(rqstp->rq_resp); 767 kfree(rqstp->rq_argp); 768 kfree(rqstp->rq_auth_data); 769 770 spin_lock_bh(&pool->sp_lock); 771 pool->sp_nrthreads--; 772 list_del(&rqstp->rq_all); 773 spin_unlock_bh(&pool->sp_lock); 774 775 kfree(rqstp); 776 777 /* Release the server */ 778 if (serv) 779 svc_destroy(serv); 780 } 781 EXPORT_SYMBOL_GPL(svc_exit_thread); 782 783 /* 784 * Register an "inet" protocol family netid with the local 785 * rpcbind daemon via an rpcbind v4 SET request. 786 * 787 * No netconfig infrastructure is available in the kernel, so 788 * we map IP_ protocol numbers to netids by hand. 789 * 790 * Returns zero on success; a negative errno value is returned 791 * if any error occurs. 792 */ 793 static int __svc_rpcb_register4(const u32 program, const u32 version, 794 const unsigned short protocol, 795 const unsigned short port) 796 { 797 const struct sockaddr_in sin = { 798 .sin_family = AF_INET, 799 .sin_addr.s_addr = htonl(INADDR_ANY), 800 .sin_port = htons(port), 801 }; 802 const char *netid; 803 int error; 804 805 switch (protocol) { 806 case IPPROTO_UDP: 807 netid = RPCBIND_NETID_UDP; 808 break; 809 case IPPROTO_TCP: 810 netid = RPCBIND_NETID_TCP; 811 break; 812 default: 813 return -ENOPROTOOPT; 814 } 815 816 error = rpcb_v4_register(program, version, 817 (const struct sockaddr *)&sin, netid); 818 819 /* 820 * User space didn't support rpcbind v4, so retry this 821 * registration request with the legacy rpcbind v2 protocol. 822 */ 823 if (error == -EPROTONOSUPPORT) 824 error = rpcb_register(program, version, protocol, port); 825 826 return error; 827 } 828 829 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 830 /* 831 * Register an "inet6" protocol family netid with the local 832 * rpcbind daemon via an rpcbind v4 SET request. 833 * 834 * No netconfig infrastructure is available in the kernel, so 835 * we map IP_ protocol numbers to netids by hand. 836 * 837 * Returns zero on success; a negative errno value is returned 838 * if any error occurs. 839 */ 840 static int __svc_rpcb_register6(const u32 program, const u32 version, 841 const unsigned short protocol, 842 const unsigned short port) 843 { 844 const struct sockaddr_in6 sin6 = { 845 .sin6_family = AF_INET6, 846 .sin6_addr = IN6ADDR_ANY_INIT, 847 .sin6_port = htons(port), 848 }; 849 const char *netid; 850 int error; 851 852 switch (protocol) { 853 case IPPROTO_UDP: 854 netid = RPCBIND_NETID_UDP6; 855 break; 856 case IPPROTO_TCP: 857 netid = RPCBIND_NETID_TCP6; 858 break; 859 default: 860 return -ENOPROTOOPT; 861 } 862 863 error = rpcb_v4_register(program, version, 864 (const struct sockaddr *)&sin6, netid); 865 866 /* 867 * User space didn't support rpcbind version 4, so we won't 868 * use a PF_INET6 listener. 869 */ 870 if (error == -EPROTONOSUPPORT) 871 error = -EAFNOSUPPORT; 872 873 return error; 874 } 875 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 876 877 /* 878 * Register a kernel RPC service via rpcbind version 4. 879 * 880 * Returns zero on success; a negative errno value is returned 881 * if any error occurs. 882 */ 883 static int __svc_register(const char *progname, 884 const u32 program, const u32 version, 885 const int family, 886 const unsigned short protocol, 887 const unsigned short port) 888 { 889 int error = -EAFNOSUPPORT; 890 891 switch (family) { 892 case PF_INET: 893 error = __svc_rpcb_register4(program, version, 894 protocol, port); 895 break; 896 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 897 case PF_INET6: 898 error = __svc_rpcb_register6(program, version, 899 protocol, port); 900 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 901 } 902 903 if (error < 0) 904 printk(KERN_WARNING "svc: failed to register %sv%u RPC " 905 "service (errno %d).\n", progname, version, -error); 906 return error; 907 } 908 909 /** 910 * svc_register - register an RPC service with the local portmapper 911 * @serv: svc_serv struct for the service to register 912 * @family: protocol family of service's listener socket 913 * @proto: transport protocol number to advertise 914 * @port: port to advertise 915 * 916 * Service is registered for any address in the passed-in protocol family 917 */ 918 int svc_register(const struct svc_serv *serv, const int family, 919 const unsigned short proto, const unsigned short port) 920 { 921 struct svc_program *progp; 922 unsigned int i; 923 int error = 0; 924 925 BUG_ON(proto == 0 && port == 0); 926 927 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 928 for (i = 0; i < progp->pg_nvers; i++) { 929 if (progp->pg_vers[i] == NULL) 930 continue; 931 932 dprintk("svc: svc_register(%sv%d, %s, %u, %u)%s\n", 933 progp->pg_name, 934 i, 935 proto == IPPROTO_UDP? "udp" : "tcp", 936 port, 937 family, 938 progp->pg_vers[i]->vs_hidden? 939 " (but not telling portmap)" : ""); 940 941 if (progp->pg_vers[i]->vs_hidden) 942 continue; 943 944 error = __svc_register(progp->pg_name, progp->pg_prog, 945 i, family, proto, port); 946 if (error < 0) 947 break; 948 } 949 } 950 951 return error; 952 } 953 954 /* 955 * If user space is running rpcbind, it should take the v4 UNSET 956 * and clear everything for this [program, version]. If user space 957 * is running portmap, it will reject the v4 UNSET, but won't have 958 * any "inet6" entries anyway. So a PMAP_UNSET should be sufficient 959 * in this case to clear all existing entries for [program, version]. 960 */ 961 static void __svc_unregister(const u32 program, const u32 version, 962 const char *progname) 963 { 964 int error; 965 966 error = rpcb_v4_register(program, version, NULL, ""); 967 968 /* 969 * User space didn't support rpcbind v4, so retry this 970 * request with the legacy rpcbind v2 protocol. 971 */ 972 if (error == -EPROTONOSUPPORT) 973 error = rpcb_register(program, version, 0, 0); 974 975 dprintk("svc: %s(%sv%u), error %d\n", 976 __func__, progname, version, error); 977 } 978 979 /* 980 * All netids, bind addresses and ports registered for [program, version] 981 * are removed from the local rpcbind database (if the service is not 982 * hidden) to make way for a new instance of the service. 983 * 984 * The result of unregistration is reported via dprintk for those who want 985 * verification of the result, but is otherwise not important. 986 */ 987 static void svc_unregister(const struct svc_serv *serv) 988 { 989 struct svc_program *progp; 990 unsigned long flags; 991 unsigned int i; 992 993 clear_thread_flag(TIF_SIGPENDING); 994 995 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 996 for (i = 0; i < progp->pg_nvers; i++) { 997 if (progp->pg_vers[i] == NULL) 998 continue; 999 if (progp->pg_vers[i]->vs_hidden) 1000 continue; 1001 1002 dprintk("svc: attempting to unregister %sv%u\n", 1003 progp->pg_name, i); 1004 __svc_unregister(progp->pg_prog, i, progp->pg_name); 1005 } 1006 } 1007 1008 spin_lock_irqsave(¤t->sighand->siglock, flags); 1009 recalc_sigpending(); 1010 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 1011 } 1012 1013 /* 1014 * Printk the given error with the address of the client that caused it. 1015 */ 1016 static __printf(2, 3) 1017 int svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) 1018 { 1019 va_list args; 1020 int r; 1021 char buf[RPC_MAX_ADDRBUFLEN]; 1022 1023 if (!net_ratelimit()) 1024 return 0; 1025 1026 printk(KERN_WARNING "svc: %s: ", 1027 svc_print_addr(rqstp, buf, sizeof(buf))); 1028 1029 va_start(args, fmt); 1030 r = vprintk(fmt, args); 1031 va_end(args); 1032 1033 return r; 1034 } 1035 1036 /* 1037 * Common routine for processing the RPC request. 1038 */ 1039 static int 1040 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv) 1041 { 1042 struct svc_program *progp; 1043 struct svc_version *versp = NULL; /* compiler food */ 1044 struct svc_procedure *procp = NULL; 1045 struct svc_serv *serv = rqstp->rq_server; 1046 kxdrproc_t xdr; 1047 __be32 *statp; 1048 u32 prog, vers, proc; 1049 __be32 auth_stat, rpc_stat; 1050 int auth_res; 1051 __be32 *reply_statp; 1052 1053 rpc_stat = rpc_success; 1054 1055 if (argv->iov_len < 6*4) 1056 goto err_short_len; 1057 1058 /* Will be turned off only in gss privacy case: */ 1059 rqstp->rq_splice_ok = 1; 1060 /* Will be turned off only when NFSv4 Sessions are used */ 1061 rqstp->rq_usedeferral = 1; 1062 rqstp->rq_dropme = false; 1063 1064 /* Setup reply header */ 1065 rqstp->rq_xprt->xpt_ops->xpo_prep_reply_hdr(rqstp); 1066 1067 svc_putu32(resv, rqstp->rq_xid); 1068 1069 vers = svc_getnl(argv); 1070 1071 /* First words of reply: */ 1072 svc_putnl(resv, 1); /* REPLY */ 1073 1074 if (vers != 2) /* RPC version number */ 1075 goto err_bad_rpc; 1076 1077 /* Save position in case we later decide to reject: */ 1078 reply_statp = resv->iov_base + resv->iov_len; 1079 1080 svc_putnl(resv, 0); /* ACCEPT */ 1081 1082 rqstp->rq_prog = prog = svc_getnl(argv); /* program number */ 1083 rqstp->rq_vers = vers = svc_getnl(argv); /* version number */ 1084 rqstp->rq_proc = proc = svc_getnl(argv); /* procedure number */ 1085 1086 progp = serv->sv_program; 1087 1088 for (progp = serv->sv_program; progp; progp = progp->pg_next) 1089 if (prog == progp->pg_prog) 1090 break; 1091 1092 /* 1093 * Decode auth data, and add verifier to reply buffer. 1094 * We do this before anything else in order to get a decent 1095 * auth verifier. 1096 */ 1097 auth_res = svc_authenticate(rqstp, &auth_stat); 1098 /* Also give the program a chance to reject this call: */ 1099 if (auth_res == SVC_OK && progp) { 1100 auth_stat = rpc_autherr_badcred; 1101 auth_res = progp->pg_authenticate(rqstp); 1102 } 1103 switch (auth_res) { 1104 case SVC_OK: 1105 break; 1106 case SVC_GARBAGE: 1107 goto err_garbage; 1108 case SVC_SYSERR: 1109 rpc_stat = rpc_system_err; 1110 goto err_bad; 1111 case SVC_DENIED: 1112 goto err_bad_auth; 1113 case SVC_CLOSE: 1114 if (test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags)) 1115 svc_close_xprt(rqstp->rq_xprt); 1116 case SVC_DROP: 1117 goto dropit; 1118 case SVC_COMPLETE: 1119 goto sendit; 1120 } 1121 1122 if (progp == NULL) 1123 goto err_bad_prog; 1124 1125 if (vers >= progp->pg_nvers || 1126 !(versp = progp->pg_vers[vers])) 1127 goto err_bad_vers; 1128 1129 procp = versp->vs_proc + proc; 1130 if (proc >= versp->vs_nproc || !procp->pc_func) 1131 goto err_bad_proc; 1132 rqstp->rq_procinfo = procp; 1133 1134 /* Syntactic check complete */ 1135 serv->sv_stats->rpccnt++; 1136 1137 /* Build the reply header. */ 1138 statp = resv->iov_base +resv->iov_len; 1139 svc_putnl(resv, RPC_SUCCESS); 1140 1141 /* Bump per-procedure stats counter */ 1142 procp->pc_count++; 1143 1144 /* Initialize storage for argp and resp */ 1145 memset(rqstp->rq_argp, 0, procp->pc_argsize); 1146 memset(rqstp->rq_resp, 0, procp->pc_ressize); 1147 1148 /* un-reserve some of the out-queue now that we have a 1149 * better idea of reply size 1150 */ 1151 if (procp->pc_xdrressize) 1152 svc_reserve_auth(rqstp, procp->pc_xdrressize<<2); 1153 1154 /* Call the function that processes the request. */ 1155 if (!versp->vs_dispatch) { 1156 /* Decode arguments */ 1157 xdr = procp->pc_decode; 1158 if (xdr && !xdr(rqstp, argv->iov_base, rqstp->rq_argp)) 1159 goto err_garbage; 1160 1161 *statp = procp->pc_func(rqstp, rqstp->rq_argp, rqstp->rq_resp); 1162 1163 /* Encode reply */ 1164 if (rqstp->rq_dropme) { 1165 if (procp->pc_release) 1166 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1167 goto dropit; 1168 } 1169 if (*statp == rpc_success && 1170 (xdr = procp->pc_encode) && 1171 !xdr(rqstp, resv->iov_base+resv->iov_len, rqstp->rq_resp)) { 1172 dprintk("svc: failed to encode reply\n"); 1173 /* serv->sv_stats->rpcsystemerr++; */ 1174 *statp = rpc_system_err; 1175 } 1176 } else { 1177 dprintk("svc: calling dispatcher\n"); 1178 if (!versp->vs_dispatch(rqstp, statp)) { 1179 /* Release reply info */ 1180 if (procp->pc_release) 1181 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1182 goto dropit; 1183 } 1184 } 1185 1186 /* Check RPC status result */ 1187 if (*statp != rpc_success) 1188 resv->iov_len = ((void*)statp) - resv->iov_base + 4; 1189 1190 /* Release reply info */ 1191 if (procp->pc_release) 1192 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1193 1194 if (procp->pc_encode == NULL) 1195 goto dropit; 1196 1197 sendit: 1198 if (svc_authorise(rqstp)) 1199 goto dropit; 1200 return 1; /* Caller can now send it */ 1201 1202 dropit: 1203 svc_authorise(rqstp); /* doesn't hurt to call this twice */ 1204 dprintk("svc: svc_process dropit\n"); 1205 return 0; 1206 1207 err_short_len: 1208 svc_printk(rqstp, "short len %Zd, dropping request\n", 1209 argv->iov_len); 1210 1211 goto dropit; /* drop request */ 1212 1213 err_bad_rpc: 1214 serv->sv_stats->rpcbadfmt++; 1215 svc_putnl(resv, 1); /* REJECT */ 1216 svc_putnl(resv, 0); /* RPC_MISMATCH */ 1217 svc_putnl(resv, 2); /* Only RPCv2 supported */ 1218 svc_putnl(resv, 2); 1219 goto sendit; 1220 1221 err_bad_auth: 1222 dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat)); 1223 serv->sv_stats->rpcbadauth++; 1224 /* Restore write pointer to location of accept status: */ 1225 xdr_ressize_check(rqstp, reply_statp); 1226 svc_putnl(resv, 1); /* REJECT */ 1227 svc_putnl(resv, 1); /* AUTH_ERROR */ 1228 svc_putnl(resv, ntohl(auth_stat)); /* status */ 1229 goto sendit; 1230 1231 err_bad_prog: 1232 dprintk("svc: unknown program %d\n", prog); 1233 serv->sv_stats->rpcbadfmt++; 1234 svc_putnl(resv, RPC_PROG_UNAVAIL); 1235 goto sendit; 1236 1237 err_bad_vers: 1238 svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n", 1239 vers, prog, progp->pg_name); 1240 1241 serv->sv_stats->rpcbadfmt++; 1242 svc_putnl(resv, RPC_PROG_MISMATCH); 1243 svc_putnl(resv, progp->pg_lovers); 1244 svc_putnl(resv, progp->pg_hivers); 1245 goto sendit; 1246 1247 err_bad_proc: 1248 svc_printk(rqstp, "unknown procedure (%d)\n", proc); 1249 1250 serv->sv_stats->rpcbadfmt++; 1251 svc_putnl(resv, RPC_PROC_UNAVAIL); 1252 goto sendit; 1253 1254 err_garbage: 1255 svc_printk(rqstp, "failed to decode args\n"); 1256 1257 rpc_stat = rpc_garbage_args; 1258 err_bad: 1259 serv->sv_stats->rpcbadfmt++; 1260 svc_putnl(resv, ntohl(rpc_stat)); 1261 goto sendit; 1262 } 1263 EXPORT_SYMBOL_GPL(svc_process); 1264 1265 /* 1266 * Process the RPC request. 1267 */ 1268 int 1269 svc_process(struct svc_rqst *rqstp) 1270 { 1271 struct kvec *argv = &rqstp->rq_arg.head[0]; 1272 struct kvec *resv = &rqstp->rq_res.head[0]; 1273 struct svc_serv *serv = rqstp->rq_server; 1274 u32 dir; 1275 1276 /* 1277 * Setup response xdr_buf. 1278 * Initially it has just one page 1279 */ 1280 rqstp->rq_resused = 1; 1281 resv->iov_base = page_address(rqstp->rq_respages[0]); 1282 resv->iov_len = 0; 1283 rqstp->rq_res.pages = rqstp->rq_respages + 1; 1284 rqstp->rq_res.len = 0; 1285 rqstp->rq_res.page_base = 0; 1286 rqstp->rq_res.page_len = 0; 1287 rqstp->rq_res.buflen = PAGE_SIZE; 1288 rqstp->rq_res.tail[0].iov_base = NULL; 1289 rqstp->rq_res.tail[0].iov_len = 0; 1290 1291 rqstp->rq_xid = svc_getu32(argv); 1292 1293 dir = svc_getnl(argv); 1294 if (dir != 0) { 1295 /* direction != CALL */ 1296 svc_printk(rqstp, "bad direction %d, dropping request\n", dir); 1297 serv->sv_stats->rpcbadfmt++; 1298 svc_drop(rqstp); 1299 return 0; 1300 } 1301 1302 /* Returns 1 for send, 0 for drop */ 1303 if (svc_process_common(rqstp, argv, resv)) 1304 return svc_send(rqstp); 1305 else { 1306 svc_drop(rqstp); 1307 return 0; 1308 } 1309 } 1310 1311 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1312 /* 1313 * Process a backchannel RPC request that arrived over an existing 1314 * outbound connection 1315 */ 1316 int 1317 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req, 1318 struct svc_rqst *rqstp) 1319 { 1320 struct kvec *argv = &rqstp->rq_arg.head[0]; 1321 struct kvec *resv = &rqstp->rq_res.head[0]; 1322 1323 /* Build the svc_rqst used by the common processing routine */ 1324 rqstp->rq_xprt = serv->sv_bc_xprt; 1325 rqstp->rq_xid = req->rq_xid; 1326 rqstp->rq_prot = req->rq_xprt->prot; 1327 rqstp->rq_server = serv; 1328 1329 rqstp->rq_addrlen = sizeof(req->rq_xprt->addr); 1330 memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen); 1331 memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg)); 1332 memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res)); 1333 1334 /* reset result send buffer "put" position */ 1335 resv->iov_len = 0; 1336 1337 if (rqstp->rq_prot != IPPROTO_TCP) { 1338 printk(KERN_ERR "No support for Non-TCP transports!\n"); 1339 BUG(); 1340 } 1341 1342 /* 1343 * Skip the next two words because they've already been 1344 * processed in the trasport 1345 */ 1346 svc_getu32(argv); /* XID */ 1347 svc_getnl(argv); /* CALLDIR */ 1348 1349 /* Returns 1 for send, 0 for drop */ 1350 if (svc_process_common(rqstp, argv, resv)) { 1351 memcpy(&req->rq_snd_buf, &rqstp->rq_res, 1352 sizeof(req->rq_snd_buf)); 1353 return bc_send(req); 1354 } else { 1355 /* Nothing to do to drop request */ 1356 return 0; 1357 } 1358 } 1359 EXPORT_SYMBOL_GPL(bc_svc_process); 1360 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1361 1362 /* 1363 * Return (transport-specific) limit on the rpc payload. 1364 */ 1365 u32 svc_max_payload(const struct svc_rqst *rqstp) 1366 { 1367 u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload; 1368 1369 if (rqstp->rq_server->sv_max_payload < max) 1370 max = rqstp->rq_server->sv_max_payload; 1371 return max; 1372 } 1373 EXPORT_SYMBOL_GPL(svc_max_payload); 1374