1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/sched.c 4 * 5 * Scheduling for synchronous and asynchronous RPC requests. 6 * 7 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> 8 * 9 * TCP NFS related read + write fixes 10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 11 */ 12 13 #include <linux/module.h> 14 15 #include <linux/sched.h> 16 #include <linux/interrupt.h> 17 #include <linux/slab.h> 18 #include <linux/mempool.h> 19 #include <linux/smp.h> 20 #include <linux/spinlock.h> 21 #include <linux/mutex.h> 22 #include <linux/freezer.h> 23 #include <linux/sched/mm.h> 24 25 #include <linux/sunrpc/clnt.h> 26 #include <linux/sunrpc/metrics.h> 27 28 #include "sunrpc.h" 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/sunrpc.h> 32 33 /* 34 * RPC slabs and memory pools 35 */ 36 #define RPC_BUFFER_MAXSIZE (2048) 37 #define RPC_BUFFER_POOLSIZE (8) 38 #define RPC_TASK_POOLSIZE (8) 39 static struct kmem_cache *rpc_task_slabp __read_mostly; 40 static struct kmem_cache *rpc_buffer_slabp __read_mostly; 41 static mempool_t *rpc_task_mempool __read_mostly; 42 static mempool_t *rpc_buffer_mempool __read_mostly; 43 44 static void rpc_async_schedule(struct work_struct *); 45 static void rpc_release_task(struct rpc_task *task); 46 static void __rpc_queue_timer_fn(struct work_struct *); 47 48 /* 49 * RPC tasks sit here while waiting for conditions to improve. 50 */ 51 static struct rpc_wait_queue delay_queue; 52 53 /* 54 * rpciod-related stuff 55 */ 56 struct workqueue_struct *rpciod_workqueue __read_mostly; 57 struct workqueue_struct *xprtiod_workqueue __read_mostly; 58 EXPORT_SYMBOL_GPL(xprtiod_workqueue); 59 60 gfp_t rpc_task_gfp_mask(void) 61 { 62 if (current->flags & PF_WQ_WORKER) 63 return GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN; 64 return GFP_KERNEL; 65 } 66 EXPORT_SYMBOL_GPL(rpc_task_gfp_mask); 67 68 bool rpc_task_set_rpc_status(struct rpc_task *task, int rpc_status) 69 { 70 if (cmpxchg(&task->tk_rpc_status, 0, rpc_status) == 0) 71 return true; 72 return false; 73 } 74 75 unsigned long 76 rpc_task_timeout(const struct rpc_task *task) 77 { 78 unsigned long timeout = READ_ONCE(task->tk_timeout); 79 80 if (timeout != 0) { 81 unsigned long now = jiffies; 82 if (time_before(now, timeout)) 83 return timeout - now; 84 } 85 return 0; 86 } 87 EXPORT_SYMBOL_GPL(rpc_task_timeout); 88 89 /* 90 * Disable the timer for a given RPC task. Should be called with 91 * queue->lock and bh_disabled in order to avoid races within 92 * rpc_run_timer(). 93 */ 94 static void 95 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 96 { 97 if (list_empty(&task->u.tk_wait.timer_list)) 98 return; 99 task->tk_timeout = 0; 100 list_del(&task->u.tk_wait.timer_list); 101 if (list_empty(&queue->timer_list.list)) 102 cancel_delayed_work(&queue->timer_list.dwork); 103 } 104 105 static void 106 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires) 107 { 108 unsigned long now = jiffies; 109 queue->timer_list.expires = expires; 110 if (time_before_eq(expires, now)) 111 expires = 0; 112 else 113 expires -= now; 114 mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires); 115 } 116 117 /* 118 * Set up a timer for the current task. 119 */ 120 static void 121 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task, 122 unsigned long timeout) 123 { 124 task->tk_timeout = timeout; 125 if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires)) 126 rpc_set_queue_timer(queue, timeout); 127 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list); 128 } 129 130 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) 131 { 132 if (queue->priority != priority) { 133 queue->priority = priority; 134 queue->nr = 1U << priority; 135 } 136 } 137 138 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) 139 { 140 rpc_set_waitqueue_priority(queue, queue->maxpriority); 141 } 142 143 /* 144 * Add a request to a queue list 145 */ 146 static void 147 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task) 148 { 149 struct rpc_task *t; 150 151 list_for_each_entry(t, q, u.tk_wait.list) { 152 if (t->tk_owner == task->tk_owner) { 153 list_add_tail(&task->u.tk_wait.links, 154 &t->u.tk_wait.links); 155 /* Cache the queue head in task->u.tk_wait.list */ 156 task->u.tk_wait.list.next = q; 157 task->u.tk_wait.list.prev = NULL; 158 return; 159 } 160 } 161 INIT_LIST_HEAD(&task->u.tk_wait.links); 162 list_add_tail(&task->u.tk_wait.list, q); 163 } 164 165 /* 166 * Remove request from a queue list 167 */ 168 static void 169 __rpc_list_dequeue_task(struct rpc_task *task) 170 { 171 struct list_head *q; 172 struct rpc_task *t; 173 174 if (task->u.tk_wait.list.prev == NULL) { 175 list_del(&task->u.tk_wait.links); 176 return; 177 } 178 if (!list_empty(&task->u.tk_wait.links)) { 179 t = list_first_entry(&task->u.tk_wait.links, 180 struct rpc_task, 181 u.tk_wait.links); 182 /* Assume __rpc_list_enqueue_task() cached the queue head */ 183 q = t->u.tk_wait.list.next; 184 list_add_tail(&t->u.tk_wait.list, q); 185 list_del(&task->u.tk_wait.links); 186 } 187 list_del(&task->u.tk_wait.list); 188 } 189 190 /* 191 * Add new request to a priority queue. 192 */ 193 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, 194 struct rpc_task *task, 195 unsigned char queue_priority) 196 { 197 if (unlikely(queue_priority > queue->maxpriority)) 198 queue_priority = queue->maxpriority; 199 __rpc_list_enqueue_task(&queue->tasks[queue_priority], task); 200 } 201 202 /* 203 * Add new request to wait queue. 204 */ 205 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, 206 struct rpc_task *task, 207 unsigned char queue_priority) 208 { 209 INIT_LIST_HEAD(&task->u.tk_wait.timer_list); 210 if (RPC_IS_PRIORITY(queue)) 211 __rpc_add_wait_queue_priority(queue, task, queue_priority); 212 else 213 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); 214 task->tk_waitqueue = queue; 215 queue->qlen++; 216 /* barrier matches the read in rpc_wake_up_task_queue_locked() */ 217 smp_wmb(); 218 rpc_set_queued(task); 219 } 220 221 /* 222 * Remove request from a priority queue. 223 */ 224 static void __rpc_remove_wait_queue_priority(struct rpc_task *task) 225 { 226 __rpc_list_dequeue_task(task); 227 } 228 229 /* 230 * Remove request from queue. 231 * Note: must be called with spin lock held. 232 */ 233 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 234 { 235 __rpc_disable_timer(queue, task); 236 if (RPC_IS_PRIORITY(queue)) 237 __rpc_remove_wait_queue_priority(task); 238 else 239 list_del(&task->u.tk_wait.list); 240 queue->qlen--; 241 } 242 243 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues) 244 { 245 int i; 246 247 spin_lock_init(&queue->lock); 248 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) 249 INIT_LIST_HEAD(&queue->tasks[i]); 250 queue->maxpriority = nr_queues - 1; 251 rpc_reset_waitqueue_priority(queue); 252 queue->qlen = 0; 253 queue->timer_list.expires = 0; 254 INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn); 255 INIT_LIST_HEAD(&queue->timer_list.list); 256 rpc_assign_waitqueue_name(queue, qname); 257 } 258 259 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) 260 { 261 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY); 262 } 263 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue); 264 265 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) 266 { 267 __rpc_init_priority_wait_queue(queue, qname, 1); 268 } 269 EXPORT_SYMBOL_GPL(rpc_init_wait_queue); 270 271 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue) 272 { 273 cancel_delayed_work_sync(&queue->timer_list.dwork); 274 } 275 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue); 276 277 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode) 278 { 279 schedule(); 280 if (signal_pending_state(mode, current)) 281 return -ERESTARTSYS; 282 return 0; 283 } 284 285 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS) 286 static void rpc_task_set_debuginfo(struct rpc_task *task) 287 { 288 struct rpc_clnt *clnt = task->tk_client; 289 290 /* Might be a task carrying a reverse-direction operation */ 291 if (!clnt) { 292 static atomic_t rpc_pid; 293 294 task->tk_pid = atomic_inc_return(&rpc_pid); 295 return; 296 } 297 298 task->tk_pid = atomic_inc_return(&clnt->cl_pid); 299 } 300 #else 301 static inline void rpc_task_set_debuginfo(struct rpc_task *task) 302 { 303 } 304 #endif 305 306 static void rpc_set_active(struct rpc_task *task) 307 { 308 rpc_task_set_debuginfo(task); 309 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 310 trace_rpc_task_begin(task, NULL); 311 } 312 313 /* 314 * Mark an RPC call as having completed by clearing the 'active' bit 315 * and then waking up all tasks that were sleeping. 316 */ 317 static int rpc_complete_task(struct rpc_task *task) 318 { 319 void *m = &task->tk_runstate; 320 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE); 321 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE); 322 unsigned long flags; 323 int ret; 324 325 trace_rpc_task_complete(task, NULL); 326 327 spin_lock_irqsave(&wq->lock, flags); 328 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 329 ret = atomic_dec_and_test(&task->tk_count); 330 if (waitqueue_active(wq)) 331 __wake_up_locked_key(wq, TASK_NORMAL, &k); 332 spin_unlock_irqrestore(&wq->lock, flags); 333 return ret; 334 } 335 336 /* 337 * Allow callers to wait for completion of an RPC call 338 * 339 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit() 340 * to enforce taking of the wq->lock and hence avoid races with 341 * rpc_complete_task(). 342 */ 343 int rpc_wait_for_completion_task(struct rpc_task *task) 344 { 345 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, 346 rpc_wait_bit_killable, TASK_KILLABLE|TASK_FREEZABLE_UNSAFE); 347 } 348 EXPORT_SYMBOL_GPL(rpc_wait_for_completion_task); 349 350 /* 351 * Make an RPC task runnable. 352 * 353 * Note: If the task is ASYNC, and is being made runnable after sitting on an 354 * rpc_wait_queue, this must be called with the queue spinlock held to protect 355 * the wait queue operation. 356 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(), 357 * which is needed to ensure that __rpc_execute() doesn't loop (due to the 358 * lockless RPC_IS_QUEUED() test) before we've had a chance to test 359 * the RPC_TASK_RUNNING flag. 360 */ 361 static void rpc_make_runnable(struct workqueue_struct *wq, 362 struct rpc_task *task) 363 { 364 bool need_wakeup = !rpc_test_and_set_running(task); 365 366 rpc_clear_queued(task); 367 if (!need_wakeup) 368 return; 369 if (RPC_IS_ASYNC(task)) { 370 INIT_WORK(&task->u.tk_work, rpc_async_schedule); 371 queue_work(wq, &task->u.tk_work); 372 } else 373 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); 374 } 375 376 /* 377 * Prepare for sleeping on a wait queue. 378 * By always appending tasks to the list we ensure FIFO behavior. 379 * NB: An RPC task will only receive interrupt-driven events as long 380 * as it's on a wait queue. 381 */ 382 static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q, 383 struct rpc_task *task, 384 unsigned char queue_priority) 385 { 386 trace_rpc_task_sleep(task, q); 387 388 __rpc_add_wait_queue(q, task, queue_priority); 389 } 390 391 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q, 392 struct rpc_task *task, 393 unsigned char queue_priority) 394 { 395 if (WARN_ON_ONCE(RPC_IS_QUEUED(task))) 396 return; 397 __rpc_do_sleep_on_priority(q, task, queue_priority); 398 } 399 400 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q, 401 struct rpc_task *task, unsigned long timeout, 402 unsigned char queue_priority) 403 { 404 if (WARN_ON_ONCE(RPC_IS_QUEUED(task))) 405 return; 406 if (time_is_after_jiffies(timeout)) { 407 __rpc_do_sleep_on_priority(q, task, queue_priority); 408 __rpc_add_timer(q, task, timeout); 409 } else 410 task->tk_status = -ETIMEDOUT; 411 } 412 413 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action) 414 { 415 if (action && !WARN_ON_ONCE(task->tk_callback != NULL)) 416 task->tk_callback = action; 417 } 418 419 static bool rpc_sleep_check_activated(struct rpc_task *task) 420 { 421 /* We shouldn't ever put an inactive task to sleep */ 422 if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) { 423 task->tk_status = -EIO; 424 rpc_put_task_async(task); 425 return false; 426 } 427 return true; 428 } 429 430 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task, 431 rpc_action action, unsigned long timeout) 432 { 433 if (!rpc_sleep_check_activated(task)) 434 return; 435 436 rpc_set_tk_callback(task, action); 437 438 /* 439 * Protect the queue operations. 440 */ 441 spin_lock(&q->lock); 442 __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority); 443 spin_unlock(&q->lock); 444 } 445 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout); 446 447 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 448 rpc_action action) 449 { 450 if (!rpc_sleep_check_activated(task)) 451 return; 452 453 rpc_set_tk_callback(task, action); 454 455 WARN_ON_ONCE(task->tk_timeout != 0); 456 /* 457 * Protect the queue operations. 458 */ 459 spin_lock(&q->lock); 460 __rpc_sleep_on_priority(q, task, task->tk_priority); 461 spin_unlock(&q->lock); 462 } 463 EXPORT_SYMBOL_GPL(rpc_sleep_on); 464 465 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q, 466 struct rpc_task *task, unsigned long timeout, int priority) 467 { 468 if (!rpc_sleep_check_activated(task)) 469 return; 470 471 priority -= RPC_PRIORITY_LOW; 472 /* 473 * Protect the queue operations. 474 */ 475 spin_lock(&q->lock); 476 __rpc_sleep_on_priority_timeout(q, task, timeout, priority); 477 spin_unlock(&q->lock); 478 } 479 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout); 480 481 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task, 482 int priority) 483 { 484 if (!rpc_sleep_check_activated(task)) 485 return; 486 487 WARN_ON_ONCE(task->tk_timeout != 0); 488 priority -= RPC_PRIORITY_LOW; 489 /* 490 * Protect the queue operations. 491 */ 492 spin_lock(&q->lock); 493 __rpc_sleep_on_priority(q, task, priority); 494 spin_unlock(&q->lock); 495 } 496 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority); 497 498 /** 499 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task 500 * @wq: workqueue on which to run task 501 * @queue: wait queue 502 * @task: task to be woken up 503 * 504 * Caller must hold queue->lock, and have cleared the task queued flag. 505 */ 506 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq, 507 struct rpc_wait_queue *queue, 508 struct rpc_task *task) 509 { 510 /* Has the task been executed yet? If not, we cannot wake it up! */ 511 if (!RPC_IS_ACTIVATED(task)) { 512 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); 513 return; 514 } 515 516 trace_rpc_task_wakeup(task, queue); 517 518 __rpc_remove_wait_queue(queue, task); 519 520 rpc_make_runnable(wq, task); 521 } 522 523 /* 524 * Wake up a queued task while the queue lock is being held 525 */ 526 static struct rpc_task * 527 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq, 528 struct rpc_wait_queue *queue, struct rpc_task *task, 529 bool (*action)(struct rpc_task *, void *), void *data) 530 { 531 if (RPC_IS_QUEUED(task)) { 532 smp_rmb(); 533 if (task->tk_waitqueue == queue) { 534 if (action == NULL || action(task, data)) { 535 __rpc_do_wake_up_task_on_wq(wq, queue, task); 536 return task; 537 } 538 } 539 } 540 return NULL; 541 } 542 543 /* 544 * Wake up a queued task while the queue lock is being held 545 */ 546 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, 547 struct rpc_task *task) 548 { 549 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue, 550 task, NULL, NULL); 551 } 552 553 /* 554 * Wake up a task on a specific queue 555 */ 556 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task) 557 { 558 if (!RPC_IS_QUEUED(task)) 559 return; 560 spin_lock(&queue->lock); 561 rpc_wake_up_task_queue_locked(queue, task); 562 spin_unlock(&queue->lock); 563 } 564 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task); 565 566 static bool rpc_task_action_set_status(struct rpc_task *task, void *status) 567 { 568 task->tk_status = *(int *)status; 569 return true; 570 } 571 572 static void 573 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue, 574 struct rpc_task *task, int status) 575 { 576 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue, 577 task, rpc_task_action_set_status, &status); 578 } 579 580 /** 581 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status 582 * @queue: pointer to rpc_wait_queue 583 * @task: pointer to rpc_task 584 * @status: integer error value 585 * 586 * If @task is queued on @queue, then it is woken up, and @task->tk_status is 587 * set to the value of @status. 588 */ 589 void 590 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue, 591 struct rpc_task *task, int status) 592 { 593 if (!RPC_IS_QUEUED(task)) 594 return; 595 spin_lock(&queue->lock); 596 rpc_wake_up_task_queue_set_status_locked(queue, task, status); 597 spin_unlock(&queue->lock); 598 } 599 600 /* 601 * Wake up the next task on a priority queue. 602 */ 603 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue) 604 { 605 struct list_head *q; 606 struct rpc_task *task; 607 608 /* 609 * Service the privileged queue. 610 */ 611 q = &queue->tasks[RPC_NR_PRIORITY - 1]; 612 if (queue->maxpriority > RPC_PRIORITY_PRIVILEGED && !list_empty(q)) { 613 task = list_first_entry(q, struct rpc_task, u.tk_wait.list); 614 goto out; 615 } 616 617 /* 618 * Service a batch of tasks from a single owner. 619 */ 620 q = &queue->tasks[queue->priority]; 621 if (!list_empty(q) && queue->nr) { 622 queue->nr--; 623 task = list_first_entry(q, struct rpc_task, u.tk_wait.list); 624 goto out; 625 } 626 627 /* 628 * Service the next queue. 629 */ 630 do { 631 if (q == &queue->tasks[0]) 632 q = &queue->tasks[queue->maxpriority]; 633 else 634 q = q - 1; 635 if (!list_empty(q)) { 636 task = list_first_entry(q, struct rpc_task, u.tk_wait.list); 637 goto new_queue; 638 } 639 } while (q != &queue->tasks[queue->priority]); 640 641 rpc_reset_waitqueue_priority(queue); 642 return NULL; 643 644 new_queue: 645 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); 646 out: 647 return task; 648 } 649 650 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue) 651 { 652 if (RPC_IS_PRIORITY(queue)) 653 return __rpc_find_next_queued_priority(queue); 654 if (!list_empty(&queue->tasks[0])) 655 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list); 656 return NULL; 657 } 658 659 /* 660 * Wake up the first task on the wait queue. 661 */ 662 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq, 663 struct rpc_wait_queue *queue, 664 bool (*func)(struct rpc_task *, void *), void *data) 665 { 666 struct rpc_task *task = NULL; 667 668 spin_lock(&queue->lock); 669 task = __rpc_find_next_queued(queue); 670 if (task != NULL) 671 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue, 672 task, func, data); 673 spin_unlock(&queue->lock); 674 675 return task; 676 } 677 678 /* 679 * Wake up the first task on the wait queue. 680 */ 681 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue, 682 bool (*func)(struct rpc_task *, void *), void *data) 683 { 684 return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data); 685 } 686 EXPORT_SYMBOL_GPL(rpc_wake_up_first); 687 688 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data) 689 { 690 return true; 691 } 692 693 /* 694 * Wake up the next task on the wait queue. 695 */ 696 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue) 697 { 698 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL); 699 } 700 EXPORT_SYMBOL_GPL(rpc_wake_up_next); 701 702 /** 703 * rpc_wake_up_locked - wake up all rpc_tasks 704 * @queue: rpc_wait_queue on which the tasks are sleeping 705 * 706 */ 707 static void rpc_wake_up_locked(struct rpc_wait_queue *queue) 708 { 709 struct rpc_task *task; 710 711 for (;;) { 712 task = __rpc_find_next_queued(queue); 713 if (task == NULL) 714 break; 715 rpc_wake_up_task_queue_locked(queue, task); 716 } 717 } 718 719 /** 720 * rpc_wake_up - wake up all rpc_tasks 721 * @queue: rpc_wait_queue on which the tasks are sleeping 722 * 723 * Grabs queue->lock 724 */ 725 void rpc_wake_up(struct rpc_wait_queue *queue) 726 { 727 spin_lock(&queue->lock); 728 rpc_wake_up_locked(queue); 729 spin_unlock(&queue->lock); 730 } 731 EXPORT_SYMBOL_GPL(rpc_wake_up); 732 733 /** 734 * rpc_wake_up_status_locked - wake up all rpc_tasks and set their status value. 735 * @queue: rpc_wait_queue on which the tasks are sleeping 736 * @status: status value to set 737 */ 738 static void rpc_wake_up_status_locked(struct rpc_wait_queue *queue, int status) 739 { 740 struct rpc_task *task; 741 742 for (;;) { 743 task = __rpc_find_next_queued(queue); 744 if (task == NULL) 745 break; 746 rpc_wake_up_task_queue_set_status_locked(queue, task, status); 747 } 748 } 749 750 /** 751 * rpc_wake_up_status - wake up all rpc_tasks and set their status value. 752 * @queue: rpc_wait_queue on which the tasks are sleeping 753 * @status: status value to set 754 * 755 * Grabs queue->lock 756 */ 757 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) 758 { 759 spin_lock(&queue->lock); 760 rpc_wake_up_status_locked(queue, status); 761 spin_unlock(&queue->lock); 762 } 763 EXPORT_SYMBOL_GPL(rpc_wake_up_status); 764 765 static void __rpc_queue_timer_fn(struct work_struct *work) 766 { 767 struct rpc_wait_queue *queue = container_of(work, 768 struct rpc_wait_queue, 769 timer_list.dwork.work); 770 struct rpc_task *task, *n; 771 unsigned long expires, now, timeo; 772 773 spin_lock(&queue->lock); 774 expires = now = jiffies; 775 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) { 776 timeo = task->tk_timeout; 777 if (time_after_eq(now, timeo)) { 778 trace_rpc_task_timeout(task, task->tk_action); 779 task->tk_status = -ETIMEDOUT; 780 rpc_wake_up_task_queue_locked(queue, task); 781 continue; 782 } 783 if (expires == now || time_after(expires, timeo)) 784 expires = timeo; 785 } 786 if (!list_empty(&queue->timer_list.list)) 787 rpc_set_queue_timer(queue, expires); 788 spin_unlock(&queue->lock); 789 } 790 791 static void __rpc_atrun(struct rpc_task *task) 792 { 793 if (task->tk_status == -ETIMEDOUT) 794 task->tk_status = 0; 795 } 796 797 /* 798 * Run a task at a later time 799 */ 800 void rpc_delay(struct rpc_task *task, unsigned long delay) 801 { 802 rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay); 803 } 804 EXPORT_SYMBOL_GPL(rpc_delay); 805 806 /* 807 * Helper to call task->tk_ops->rpc_call_prepare 808 */ 809 void rpc_prepare_task(struct rpc_task *task) 810 { 811 task->tk_ops->rpc_call_prepare(task, task->tk_calldata); 812 } 813 814 static void 815 rpc_init_task_statistics(struct rpc_task *task) 816 { 817 /* Initialize retry counters */ 818 task->tk_garb_retry = 2; 819 task->tk_cred_retry = 2; 820 821 /* starting timestamp */ 822 task->tk_start = ktime_get(); 823 } 824 825 static void 826 rpc_reset_task_statistics(struct rpc_task *task) 827 { 828 task->tk_timeouts = 0; 829 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT); 830 rpc_init_task_statistics(task); 831 } 832 833 /* 834 * Helper that calls task->tk_ops->rpc_call_done if it exists 835 */ 836 void rpc_exit_task(struct rpc_task *task) 837 { 838 trace_rpc_task_end(task, task->tk_action); 839 task->tk_action = NULL; 840 if (task->tk_ops->rpc_count_stats) 841 task->tk_ops->rpc_count_stats(task, task->tk_calldata); 842 else if (task->tk_client) 843 rpc_count_iostats(task, task->tk_client->cl_metrics); 844 if (task->tk_ops->rpc_call_done != NULL) { 845 trace_rpc_task_call_done(task, task->tk_ops->rpc_call_done); 846 task->tk_ops->rpc_call_done(task, task->tk_calldata); 847 if (task->tk_action != NULL) { 848 /* Always release the RPC slot and buffer memory */ 849 xprt_release(task); 850 rpc_reset_task_statistics(task); 851 } 852 } 853 } 854 855 void rpc_signal_task(struct rpc_task *task) 856 { 857 struct rpc_wait_queue *queue; 858 859 if (!RPC_IS_ACTIVATED(task)) 860 return; 861 862 if (!rpc_task_set_rpc_status(task, -ERESTARTSYS)) 863 return; 864 trace_rpc_task_signalled(task, task->tk_action); 865 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate); 866 smp_mb__after_atomic(); 867 queue = READ_ONCE(task->tk_waitqueue); 868 if (queue) 869 rpc_wake_up_queued_task(queue, task); 870 } 871 872 void rpc_task_try_cancel(struct rpc_task *task, int error) 873 { 874 struct rpc_wait_queue *queue; 875 876 if (!rpc_task_set_rpc_status(task, error)) 877 return; 878 queue = READ_ONCE(task->tk_waitqueue); 879 if (queue) 880 rpc_wake_up_queued_task(queue, task); 881 } 882 883 void rpc_exit(struct rpc_task *task, int status) 884 { 885 task->tk_status = status; 886 task->tk_action = rpc_exit_task; 887 rpc_wake_up_queued_task(task->tk_waitqueue, task); 888 } 889 EXPORT_SYMBOL_GPL(rpc_exit); 890 891 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata) 892 { 893 if (ops->rpc_release != NULL) 894 ops->rpc_release(calldata); 895 } 896 897 static bool xprt_needs_memalloc(struct rpc_xprt *xprt, struct rpc_task *tk) 898 { 899 if (!xprt) 900 return false; 901 if (!atomic_read(&xprt->swapper)) 902 return false; 903 return test_bit(XPRT_LOCKED, &xprt->state) && xprt->snd_task == tk; 904 } 905 906 /* 907 * This is the RPC `scheduler' (or rather, the finite state machine). 908 */ 909 static void __rpc_execute(struct rpc_task *task) 910 { 911 struct rpc_wait_queue *queue; 912 int task_is_async = RPC_IS_ASYNC(task); 913 int status = 0; 914 unsigned long pflags = current->flags; 915 916 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 917 if (RPC_IS_QUEUED(task)) 918 return; 919 920 for (;;) { 921 void (*do_action)(struct rpc_task *); 922 923 /* 924 * Perform the next FSM step or a pending callback. 925 * 926 * tk_action may be NULL if the task has been killed. 927 */ 928 do_action = task->tk_action; 929 /* Tasks with an RPC error status should exit */ 930 if (do_action && do_action != rpc_exit_task && 931 (status = READ_ONCE(task->tk_rpc_status)) != 0) { 932 task->tk_status = status; 933 do_action = rpc_exit_task; 934 } 935 /* Callbacks override all actions */ 936 if (task->tk_callback) { 937 do_action = task->tk_callback; 938 task->tk_callback = NULL; 939 } 940 if (!do_action) 941 break; 942 if (RPC_IS_SWAPPER(task) || 943 xprt_needs_memalloc(task->tk_xprt, task)) 944 current->flags |= PF_MEMALLOC; 945 946 trace_rpc_task_run_action(task, do_action); 947 do_action(task); 948 949 /* 950 * Lockless check for whether task is sleeping or not. 951 */ 952 if (!RPC_IS_QUEUED(task)) { 953 cond_resched(); 954 continue; 955 } 956 957 /* 958 * The queue->lock protects against races with 959 * rpc_make_runnable(). 960 * 961 * Note that once we clear RPC_TASK_RUNNING on an asynchronous 962 * rpc_task, rpc_make_runnable() can assign it to a 963 * different workqueue. We therefore cannot assume that the 964 * rpc_task pointer may still be dereferenced. 965 */ 966 queue = task->tk_waitqueue; 967 spin_lock(&queue->lock); 968 if (!RPC_IS_QUEUED(task)) { 969 spin_unlock(&queue->lock); 970 continue; 971 } 972 /* Wake up any task that has an exit status */ 973 if (READ_ONCE(task->tk_rpc_status) != 0) { 974 rpc_wake_up_task_queue_locked(queue, task); 975 spin_unlock(&queue->lock); 976 continue; 977 } 978 rpc_clear_running(task); 979 spin_unlock(&queue->lock); 980 if (task_is_async) 981 goto out; 982 983 /* sync task: sleep here */ 984 trace_rpc_task_sync_sleep(task, task->tk_action); 985 status = out_of_line_wait_on_bit(&task->tk_runstate, 986 RPC_TASK_QUEUED, rpc_wait_bit_killable, 987 TASK_KILLABLE|TASK_FREEZABLE); 988 if (status < 0) { 989 /* 990 * When a sync task receives a signal, it exits with 991 * -ERESTARTSYS. In order to catch any callbacks that 992 * clean up after sleeping on some queue, we don't 993 * break the loop here, but go around once more. 994 */ 995 rpc_signal_task(task); 996 } 997 trace_rpc_task_sync_wake(task, task->tk_action); 998 } 999 1000 /* Release all resources associated with the task */ 1001 rpc_release_task(task); 1002 out: 1003 current_restore_flags(pflags, PF_MEMALLOC); 1004 } 1005 1006 /* 1007 * User-visible entry point to the scheduler. 1008 * 1009 * This may be called recursively if e.g. an async NFS task updates 1010 * the attributes and finds that dirty pages must be flushed. 1011 * NOTE: Upon exit of this function the task is guaranteed to be 1012 * released. In particular note that tk_release() will have 1013 * been called, so your task memory may have been freed. 1014 */ 1015 void rpc_execute(struct rpc_task *task) 1016 { 1017 bool is_async = RPC_IS_ASYNC(task); 1018 1019 rpc_set_active(task); 1020 rpc_make_runnable(rpciod_workqueue, task); 1021 if (!is_async) { 1022 unsigned int pflags = memalloc_nofs_save(); 1023 __rpc_execute(task); 1024 memalloc_nofs_restore(pflags); 1025 } 1026 } 1027 1028 static void rpc_async_schedule(struct work_struct *work) 1029 { 1030 unsigned int pflags = memalloc_nofs_save(); 1031 1032 __rpc_execute(container_of(work, struct rpc_task, u.tk_work)); 1033 memalloc_nofs_restore(pflags); 1034 } 1035 1036 /** 1037 * rpc_malloc - allocate RPC buffer resources 1038 * @task: RPC task 1039 * 1040 * A single memory region is allocated, which is split between the 1041 * RPC call and RPC reply that this task is being used for. When 1042 * this RPC is retired, the memory is released by calling rpc_free. 1043 * 1044 * To prevent rpciod from hanging, this allocator never sleeps, 1045 * returning -ENOMEM and suppressing warning if the request cannot 1046 * be serviced immediately. The caller can arrange to sleep in a 1047 * way that is safe for rpciod. 1048 * 1049 * Most requests are 'small' (under 2KiB) and can be serviced from a 1050 * mempool, ensuring that NFS reads and writes can always proceed, 1051 * and that there is good locality of reference for these buffers. 1052 */ 1053 int rpc_malloc(struct rpc_task *task) 1054 { 1055 struct rpc_rqst *rqst = task->tk_rqstp; 1056 size_t size = rqst->rq_callsize + rqst->rq_rcvsize; 1057 struct rpc_buffer *buf; 1058 gfp_t gfp = rpc_task_gfp_mask(); 1059 1060 size += sizeof(struct rpc_buffer); 1061 if (size <= RPC_BUFFER_MAXSIZE) { 1062 buf = kmem_cache_alloc(rpc_buffer_slabp, gfp); 1063 /* Reach for the mempool if dynamic allocation fails */ 1064 if (!buf && RPC_IS_ASYNC(task)) 1065 buf = mempool_alloc(rpc_buffer_mempool, GFP_NOWAIT); 1066 } else 1067 buf = kmalloc(size, gfp); 1068 1069 if (!buf) 1070 return -ENOMEM; 1071 1072 buf->len = size; 1073 rqst->rq_buffer = buf->data; 1074 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize; 1075 return 0; 1076 } 1077 EXPORT_SYMBOL_GPL(rpc_malloc); 1078 1079 /** 1080 * rpc_free - free RPC buffer resources allocated via rpc_malloc 1081 * @task: RPC task 1082 * 1083 */ 1084 void rpc_free(struct rpc_task *task) 1085 { 1086 void *buffer = task->tk_rqstp->rq_buffer; 1087 size_t size; 1088 struct rpc_buffer *buf; 1089 1090 buf = container_of(buffer, struct rpc_buffer, data); 1091 size = buf->len; 1092 1093 if (size <= RPC_BUFFER_MAXSIZE) 1094 mempool_free(buf, rpc_buffer_mempool); 1095 else 1096 kfree(buf); 1097 } 1098 EXPORT_SYMBOL_GPL(rpc_free); 1099 1100 /* 1101 * Creation and deletion of RPC task structures 1102 */ 1103 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data) 1104 { 1105 memset(task, 0, sizeof(*task)); 1106 atomic_set(&task->tk_count, 1); 1107 task->tk_flags = task_setup_data->flags; 1108 task->tk_ops = task_setup_data->callback_ops; 1109 task->tk_calldata = task_setup_data->callback_data; 1110 INIT_LIST_HEAD(&task->tk_task); 1111 1112 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW; 1113 task->tk_owner = current->tgid; 1114 1115 /* Initialize workqueue for async tasks */ 1116 task->tk_workqueue = task_setup_data->workqueue; 1117 1118 task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client, 1119 xprt_get(task_setup_data->rpc_xprt)); 1120 1121 task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred); 1122 1123 if (task->tk_ops->rpc_call_prepare != NULL) 1124 task->tk_action = rpc_prepare_task; 1125 1126 rpc_init_task_statistics(task); 1127 } 1128 1129 static struct rpc_task *rpc_alloc_task(void) 1130 { 1131 struct rpc_task *task; 1132 1133 task = kmem_cache_alloc(rpc_task_slabp, rpc_task_gfp_mask()); 1134 if (task) 1135 return task; 1136 return mempool_alloc(rpc_task_mempool, GFP_NOWAIT); 1137 } 1138 1139 /* 1140 * Create a new task for the specified client. 1141 */ 1142 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data) 1143 { 1144 struct rpc_task *task = setup_data->task; 1145 unsigned short flags = 0; 1146 1147 if (task == NULL) { 1148 task = rpc_alloc_task(); 1149 if (task == NULL) { 1150 rpc_release_calldata(setup_data->callback_ops, 1151 setup_data->callback_data); 1152 return ERR_PTR(-ENOMEM); 1153 } 1154 flags = RPC_TASK_DYNAMIC; 1155 } 1156 1157 rpc_init_task(task, setup_data); 1158 task->tk_flags |= flags; 1159 return task; 1160 } 1161 1162 /* 1163 * rpc_free_task - release rpc task and perform cleanups 1164 * 1165 * Note that we free up the rpc_task _after_ rpc_release_calldata() 1166 * in order to work around a workqueue dependency issue. 1167 * 1168 * Tejun Heo states: 1169 * "Workqueue currently considers two work items to be the same if they're 1170 * on the same address and won't execute them concurrently - ie. it 1171 * makes a work item which is queued again while being executed wait 1172 * for the previous execution to complete. 1173 * 1174 * If a work function frees the work item, and then waits for an event 1175 * which should be performed by another work item and *that* work item 1176 * recycles the freed work item, it can create a false dependency loop. 1177 * There really is no reliable way to detect this short of verifying 1178 * every memory free." 1179 * 1180 */ 1181 static void rpc_free_task(struct rpc_task *task) 1182 { 1183 unsigned short tk_flags = task->tk_flags; 1184 1185 put_rpccred(task->tk_op_cred); 1186 rpc_release_calldata(task->tk_ops, task->tk_calldata); 1187 1188 if (tk_flags & RPC_TASK_DYNAMIC) 1189 mempool_free(task, rpc_task_mempool); 1190 } 1191 1192 static void rpc_async_release(struct work_struct *work) 1193 { 1194 unsigned int pflags = memalloc_nofs_save(); 1195 1196 rpc_free_task(container_of(work, struct rpc_task, u.tk_work)); 1197 memalloc_nofs_restore(pflags); 1198 } 1199 1200 static void rpc_release_resources_task(struct rpc_task *task) 1201 { 1202 xprt_release(task); 1203 if (task->tk_msg.rpc_cred) { 1204 if (!(task->tk_flags & RPC_TASK_CRED_NOREF)) 1205 put_cred(task->tk_msg.rpc_cred); 1206 task->tk_msg.rpc_cred = NULL; 1207 } 1208 rpc_task_release_client(task); 1209 } 1210 1211 static void rpc_final_put_task(struct rpc_task *task, 1212 struct workqueue_struct *q) 1213 { 1214 if (q != NULL) { 1215 INIT_WORK(&task->u.tk_work, rpc_async_release); 1216 queue_work(q, &task->u.tk_work); 1217 } else 1218 rpc_free_task(task); 1219 } 1220 1221 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q) 1222 { 1223 if (atomic_dec_and_test(&task->tk_count)) { 1224 rpc_release_resources_task(task); 1225 rpc_final_put_task(task, q); 1226 } 1227 } 1228 1229 void rpc_put_task(struct rpc_task *task) 1230 { 1231 rpc_do_put_task(task, NULL); 1232 } 1233 EXPORT_SYMBOL_GPL(rpc_put_task); 1234 1235 void rpc_put_task_async(struct rpc_task *task) 1236 { 1237 rpc_do_put_task(task, task->tk_workqueue); 1238 } 1239 EXPORT_SYMBOL_GPL(rpc_put_task_async); 1240 1241 static void rpc_release_task(struct rpc_task *task) 1242 { 1243 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 1244 1245 rpc_release_resources_task(task); 1246 1247 /* 1248 * Note: at this point we have been removed from rpc_clnt->cl_tasks, 1249 * so it should be safe to use task->tk_count as a test for whether 1250 * or not any other processes still hold references to our rpc_task. 1251 */ 1252 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) { 1253 /* Wake up anyone who may be waiting for task completion */ 1254 if (!rpc_complete_task(task)) 1255 return; 1256 } else { 1257 if (!atomic_dec_and_test(&task->tk_count)) 1258 return; 1259 } 1260 rpc_final_put_task(task, task->tk_workqueue); 1261 } 1262 1263 int rpciod_up(void) 1264 { 1265 return try_module_get(THIS_MODULE) ? 0 : -EINVAL; 1266 } 1267 1268 void rpciod_down(void) 1269 { 1270 module_put(THIS_MODULE); 1271 } 1272 1273 /* 1274 * Start up the rpciod workqueue. 1275 */ 1276 static int rpciod_start(void) 1277 { 1278 struct workqueue_struct *wq; 1279 1280 /* 1281 * Create the rpciod thread and wait for it to start. 1282 */ 1283 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0); 1284 if (!wq) 1285 goto out_failed; 1286 rpciod_workqueue = wq; 1287 wq = alloc_workqueue("xprtiod", WQ_UNBOUND | WQ_MEM_RECLAIM, 0); 1288 if (!wq) 1289 goto free_rpciod; 1290 xprtiod_workqueue = wq; 1291 return 1; 1292 free_rpciod: 1293 wq = rpciod_workqueue; 1294 rpciod_workqueue = NULL; 1295 destroy_workqueue(wq); 1296 out_failed: 1297 return 0; 1298 } 1299 1300 static void rpciod_stop(void) 1301 { 1302 struct workqueue_struct *wq = NULL; 1303 1304 if (rpciod_workqueue == NULL) 1305 return; 1306 1307 wq = rpciod_workqueue; 1308 rpciod_workqueue = NULL; 1309 destroy_workqueue(wq); 1310 wq = xprtiod_workqueue; 1311 xprtiod_workqueue = NULL; 1312 destroy_workqueue(wq); 1313 } 1314 1315 void 1316 rpc_destroy_mempool(void) 1317 { 1318 rpciod_stop(); 1319 mempool_destroy(rpc_buffer_mempool); 1320 mempool_destroy(rpc_task_mempool); 1321 kmem_cache_destroy(rpc_task_slabp); 1322 kmem_cache_destroy(rpc_buffer_slabp); 1323 rpc_destroy_wait_queue(&delay_queue); 1324 } 1325 1326 int 1327 rpc_init_mempool(void) 1328 { 1329 /* 1330 * The following is not strictly a mempool initialisation, 1331 * but there is no harm in doing it here 1332 */ 1333 rpc_init_wait_queue(&delay_queue, "delayq"); 1334 if (!rpciod_start()) 1335 goto err_nomem; 1336 1337 rpc_task_slabp = kmem_cache_create("rpc_tasks", 1338 sizeof(struct rpc_task), 1339 0, SLAB_HWCACHE_ALIGN, 1340 NULL); 1341 if (!rpc_task_slabp) 1342 goto err_nomem; 1343 rpc_buffer_slabp = kmem_cache_create("rpc_buffers", 1344 RPC_BUFFER_MAXSIZE, 1345 0, SLAB_HWCACHE_ALIGN, 1346 NULL); 1347 if (!rpc_buffer_slabp) 1348 goto err_nomem; 1349 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE, 1350 rpc_task_slabp); 1351 if (!rpc_task_mempool) 1352 goto err_nomem; 1353 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE, 1354 rpc_buffer_slabp); 1355 if (!rpc_buffer_mempool) 1356 goto err_nomem; 1357 return 0; 1358 err_nomem: 1359 rpc_destroy_mempool(); 1360 return -ENOMEM; 1361 } 1362