1 /* 2 * linux/net/sunrpc/sched.c 3 * 4 * Scheduling for synchronous and asynchronous RPC requests. 5 * 6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> 7 * 8 * TCP NFS related read + write fixes 9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 10 */ 11 12 #include <linux/module.h> 13 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/mempool.h> 18 #include <linux/smp.h> 19 #include <linux/smp_lock.h> 20 #include <linux/spinlock.h> 21 #include <linux/mutex.h> 22 23 #include <linux/sunrpc/clnt.h> 24 #include <linux/sunrpc/xprt.h> 25 26 #ifdef RPC_DEBUG 27 #define RPCDBG_FACILITY RPCDBG_SCHED 28 #define RPC_TASK_MAGIC_ID 0xf00baa 29 static int rpc_task_id; 30 #endif 31 32 /* 33 * RPC slabs and memory pools 34 */ 35 #define RPC_BUFFER_MAXSIZE (2048) 36 #define RPC_BUFFER_POOLSIZE (8) 37 #define RPC_TASK_POOLSIZE (8) 38 static kmem_cache_t *rpc_task_slabp __read_mostly; 39 static kmem_cache_t *rpc_buffer_slabp __read_mostly; 40 static mempool_t *rpc_task_mempool __read_mostly; 41 static mempool_t *rpc_buffer_mempool __read_mostly; 42 43 static void __rpc_default_timer(struct rpc_task *task); 44 static void rpciod_killall(void); 45 static void rpc_async_schedule(void *); 46 47 /* 48 * RPC tasks that create another task (e.g. for contacting the portmapper) 49 * will wait on this queue for their child's completion 50 */ 51 static RPC_WAITQ(childq, "childq"); 52 53 /* 54 * RPC tasks sit here while waiting for conditions to improve. 55 */ 56 static RPC_WAITQ(delay_queue, "delayq"); 57 58 /* 59 * All RPC tasks are linked into this list 60 */ 61 static LIST_HEAD(all_tasks); 62 63 /* 64 * rpciod-related stuff 65 */ 66 static DEFINE_MUTEX(rpciod_mutex); 67 static unsigned int rpciod_users; 68 struct workqueue_struct *rpciod_workqueue; 69 70 /* 71 * Spinlock for other critical sections of code. 72 */ 73 static DEFINE_SPINLOCK(rpc_sched_lock); 74 75 /* 76 * Disable the timer for a given RPC task. Should be called with 77 * queue->lock and bh_disabled in order to avoid races within 78 * rpc_run_timer(). 79 */ 80 static inline void 81 __rpc_disable_timer(struct rpc_task *task) 82 { 83 dprintk("RPC: %4d disabling timer\n", task->tk_pid); 84 task->tk_timeout_fn = NULL; 85 task->tk_timeout = 0; 86 } 87 88 /* 89 * Run a timeout function. 90 * We use the callback in order to allow __rpc_wake_up_task() 91 * and friends to disable the timer synchronously on SMP systems 92 * without calling del_timer_sync(). The latter could cause a 93 * deadlock if called while we're holding spinlocks... 94 */ 95 static void rpc_run_timer(struct rpc_task *task) 96 { 97 void (*callback)(struct rpc_task *); 98 99 callback = task->tk_timeout_fn; 100 task->tk_timeout_fn = NULL; 101 if (callback && RPC_IS_QUEUED(task)) { 102 dprintk("RPC: %4d running timer\n", task->tk_pid); 103 callback(task); 104 } 105 smp_mb__before_clear_bit(); 106 clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate); 107 smp_mb__after_clear_bit(); 108 } 109 110 /* 111 * Set up a timer for the current task. 112 */ 113 static inline void 114 __rpc_add_timer(struct rpc_task *task, rpc_action timer) 115 { 116 if (!task->tk_timeout) 117 return; 118 119 dprintk("RPC: %4d setting alarm for %lu ms\n", 120 task->tk_pid, task->tk_timeout * 1000 / HZ); 121 122 if (timer) 123 task->tk_timeout_fn = timer; 124 else 125 task->tk_timeout_fn = __rpc_default_timer; 126 set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate); 127 mod_timer(&task->tk_timer, jiffies + task->tk_timeout); 128 } 129 130 /* 131 * Delete any timer for the current task. Because we use del_timer_sync(), 132 * this function should never be called while holding queue->lock. 133 */ 134 static void 135 rpc_delete_timer(struct rpc_task *task) 136 { 137 if (RPC_IS_QUEUED(task)) 138 return; 139 if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) { 140 del_singleshot_timer_sync(&task->tk_timer); 141 dprintk("RPC: %4d deleting timer\n", task->tk_pid); 142 } 143 } 144 145 /* 146 * Add new request to a priority queue. 147 */ 148 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task) 149 { 150 struct list_head *q; 151 struct rpc_task *t; 152 153 INIT_LIST_HEAD(&task->u.tk_wait.links); 154 q = &queue->tasks[task->tk_priority]; 155 if (unlikely(task->tk_priority > queue->maxpriority)) 156 q = &queue->tasks[queue->maxpriority]; 157 list_for_each_entry(t, q, u.tk_wait.list) { 158 if (t->tk_cookie == task->tk_cookie) { 159 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links); 160 return; 161 } 162 } 163 list_add_tail(&task->u.tk_wait.list, q); 164 } 165 166 /* 167 * Add new request to wait queue. 168 * 169 * Swapper tasks always get inserted at the head of the queue. 170 * This should avoid many nasty memory deadlocks and hopefully 171 * improve overall performance. 172 * Everyone else gets appended to the queue to ensure proper FIFO behavior. 173 */ 174 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 175 { 176 BUG_ON (RPC_IS_QUEUED(task)); 177 178 if (RPC_IS_PRIORITY(queue)) 179 __rpc_add_wait_queue_priority(queue, task); 180 else if (RPC_IS_SWAPPER(task)) 181 list_add(&task->u.tk_wait.list, &queue->tasks[0]); 182 else 183 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); 184 task->u.tk_wait.rpc_waitq = queue; 185 queue->qlen++; 186 rpc_set_queued(task); 187 188 dprintk("RPC: %4d added to queue %p \"%s\"\n", 189 task->tk_pid, queue, rpc_qname(queue)); 190 } 191 192 /* 193 * Remove request from a priority queue. 194 */ 195 static void __rpc_remove_wait_queue_priority(struct rpc_task *task) 196 { 197 struct rpc_task *t; 198 199 if (!list_empty(&task->u.tk_wait.links)) { 200 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list); 201 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list); 202 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links); 203 } 204 list_del(&task->u.tk_wait.list); 205 } 206 207 /* 208 * Remove request from queue. 209 * Note: must be called with spin lock held. 210 */ 211 static void __rpc_remove_wait_queue(struct rpc_task *task) 212 { 213 struct rpc_wait_queue *queue; 214 queue = task->u.tk_wait.rpc_waitq; 215 216 if (RPC_IS_PRIORITY(queue)) 217 __rpc_remove_wait_queue_priority(task); 218 else 219 list_del(&task->u.tk_wait.list); 220 queue->qlen--; 221 dprintk("RPC: %4d removed from queue %p \"%s\"\n", 222 task->tk_pid, queue, rpc_qname(queue)); 223 } 224 225 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) 226 { 227 queue->priority = priority; 228 queue->count = 1 << (priority * 2); 229 } 230 231 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie) 232 { 233 queue->cookie = cookie; 234 queue->nr = RPC_BATCH_COUNT; 235 } 236 237 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) 238 { 239 rpc_set_waitqueue_priority(queue, queue->maxpriority); 240 rpc_set_waitqueue_cookie(queue, 0); 241 } 242 243 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio) 244 { 245 int i; 246 247 spin_lock_init(&queue->lock); 248 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) 249 INIT_LIST_HEAD(&queue->tasks[i]); 250 queue->maxpriority = maxprio; 251 rpc_reset_waitqueue_priority(queue); 252 #ifdef RPC_DEBUG 253 queue->name = qname; 254 #endif 255 } 256 257 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) 258 { 259 __rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH); 260 } 261 262 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) 263 { 264 __rpc_init_priority_wait_queue(queue, qname, 0); 265 } 266 EXPORT_SYMBOL(rpc_init_wait_queue); 267 268 static int rpc_wait_bit_interruptible(void *word) 269 { 270 if (signal_pending(current)) 271 return -ERESTARTSYS; 272 schedule(); 273 return 0; 274 } 275 276 /* 277 * Mark an RPC call as having completed by clearing the 'active' bit 278 */ 279 static inline void rpc_mark_complete_task(struct rpc_task *task) 280 { 281 rpc_clear_active(task); 282 wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE); 283 } 284 285 /* 286 * Allow callers to wait for completion of an RPC call 287 */ 288 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *)) 289 { 290 if (action == NULL) 291 action = rpc_wait_bit_interruptible; 292 return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, 293 action, TASK_INTERRUPTIBLE); 294 } 295 EXPORT_SYMBOL(__rpc_wait_for_completion_task); 296 297 /* 298 * Make an RPC task runnable. 299 * 300 * Note: If the task is ASYNC, this must be called with 301 * the spinlock held to protect the wait queue operation. 302 */ 303 static void rpc_make_runnable(struct rpc_task *task) 304 { 305 int do_ret; 306 307 BUG_ON(task->tk_timeout_fn); 308 do_ret = rpc_test_and_set_running(task); 309 rpc_clear_queued(task); 310 if (do_ret) 311 return; 312 if (RPC_IS_ASYNC(task)) { 313 int status; 314 315 INIT_WORK(&task->u.tk_work, rpc_async_schedule, (void *)task); 316 status = queue_work(task->tk_workqueue, &task->u.tk_work); 317 if (status < 0) { 318 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status); 319 task->tk_status = status; 320 return; 321 } 322 } else 323 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); 324 } 325 326 /* 327 * Place a newly initialized task on the workqueue. 328 */ 329 static inline void 330 rpc_schedule_run(struct rpc_task *task) 331 { 332 rpc_set_active(task); 333 rpc_make_runnable(task); 334 } 335 336 /* 337 * Prepare for sleeping on a wait queue. 338 * By always appending tasks to the list we ensure FIFO behavior. 339 * NB: An RPC task will only receive interrupt-driven events as long 340 * as it's on a wait queue. 341 */ 342 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 343 rpc_action action, rpc_action timer) 344 { 345 dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task->tk_pid, 346 rpc_qname(q), jiffies); 347 348 if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) { 349 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n"); 350 return; 351 } 352 353 /* Mark the task as being activated if so needed */ 354 rpc_set_active(task); 355 356 __rpc_add_wait_queue(q, task); 357 358 BUG_ON(task->tk_callback != NULL); 359 task->tk_callback = action; 360 __rpc_add_timer(task, timer); 361 } 362 363 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 364 rpc_action action, rpc_action timer) 365 { 366 /* 367 * Protect the queue operations. 368 */ 369 spin_lock_bh(&q->lock); 370 __rpc_sleep_on(q, task, action, timer); 371 spin_unlock_bh(&q->lock); 372 } 373 374 /** 375 * __rpc_do_wake_up_task - wake up a single rpc_task 376 * @task: task to be woken up 377 * 378 * Caller must hold queue->lock, and have cleared the task queued flag. 379 */ 380 static void __rpc_do_wake_up_task(struct rpc_task *task) 381 { 382 dprintk("RPC: %4d __rpc_wake_up_task (now %ld)\n", task->tk_pid, jiffies); 383 384 #ifdef RPC_DEBUG 385 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID); 386 #endif 387 /* Has the task been executed yet? If not, we cannot wake it up! */ 388 if (!RPC_IS_ACTIVATED(task)) { 389 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); 390 return; 391 } 392 393 __rpc_disable_timer(task); 394 __rpc_remove_wait_queue(task); 395 396 rpc_make_runnable(task); 397 398 dprintk("RPC: __rpc_wake_up_task done\n"); 399 } 400 401 /* 402 * Wake up the specified task 403 */ 404 static void __rpc_wake_up_task(struct rpc_task *task) 405 { 406 if (rpc_start_wakeup(task)) { 407 if (RPC_IS_QUEUED(task)) 408 __rpc_do_wake_up_task(task); 409 rpc_finish_wakeup(task); 410 } 411 } 412 413 /* 414 * Default timeout handler if none specified by user 415 */ 416 static void 417 __rpc_default_timer(struct rpc_task *task) 418 { 419 dprintk("RPC: %d timeout (default timer)\n", task->tk_pid); 420 task->tk_status = -ETIMEDOUT; 421 rpc_wake_up_task(task); 422 } 423 424 /* 425 * Wake up the specified task 426 */ 427 void rpc_wake_up_task(struct rpc_task *task) 428 { 429 if (rpc_start_wakeup(task)) { 430 if (RPC_IS_QUEUED(task)) { 431 struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq; 432 433 spin_lock_bh(&queue->lock); 434 __rpc_do_wake_up_task(task); 435 spin_unlock_bh(&queue->lock); 436 } 437 rpc_finish_wakeup(task); 438 } 439 } 440 441 /* 442 * Wake up the next task on a priority queue. 443 */ 444 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue) 445 { 446 struct list_head *q; 447 struct rpc_task *task; 448 449 /* 450 * Service a batch of tasks from a single cookie. 451 */ 452 q = &queue->tasks[queue->priority]; 453 if (!list_empty(q)) { 454 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 455 if (queue->cookie == task->tk_cookie) { 456 if (--queue->nr) 457 goto out; 458 list_move_tail(&task->u.tk_wait.list, q); 459 } 460 /* 461 * Check if we need to switch queues. 462 */ 463 if (--queue->count) 464 goto new_cookie; 465 } 466 467 /* 468 * Service the next queue. 469 */ 470 do { 471 if (q == &queue->tasks[0]) 472 q = &queue->tasks[queue->maxpriority]; 473 else 474 q = q - 1; 475 if (!list_empty(q)) { 476 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 477 goto new_queue; 478 } 479 } while (q != &queue->tasks[queue->priority]); 480 481 rpc_reset_waitqueue_priority(queue); 482 return NULL; 483 484 new_queue: 485 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); 486 new_cookie: 487 rpc_set_waitqueue_cookie(queue, task->tk_cookie); 488 out: 489 __rpc_wake_up_task(task); 490 return task; 491 } 492 493 /* 494 * Wake up the next task on the wait queue. 495 */ 496 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue) 497 { 498 struct rpc_task *task = NULL; 499 500 dprintk("RPC: wake_up_next(%p \"%s\")\n", queue, rpc_qname(queue)); 501 spin_lock_bh(&queue->lock); 502 if (RPC_IS_PRIORITY(queue)) 503 task = __rpc_wake_up_next_priority(queue); 504 else { 505 task_for_first(task, &queue->tasks[0]) 506 __rpc_wake_up_task(task); 507 } 508 spin_unlock_bh(&queue->lock); 509 510 return task; 511 } 512 513 /** 514 * rpc_wake_up - wake up all rpc_tasks 515 * @queue: rpc_wait_queue on which the tasks are sleeping 516 * 517 * Grabs queue->lock 518 */ 519 void rpc_wake_up(struct rpc_wait_queue *queue) 520 { 521 struct rpc_task *task, *next; 522 struct list_head *head; 523 524 spin_lock_bh(&queue->lock); 525 head = &queue->tasks[queue->maxpriority]; 526 for (;;) { 527 list_for_each_entry_safe(task, next, head, u.tk_wait.list) 528 __rpc_wake_up_task(task); 529 if (head == &queue->tasks[0]) 530 break; 531 head--; 532 } 533 spin_unlock_bh(&queue->lock); 534 } 535 536 /** 537 * rpc_wake_up_status - wake up all rpc_tasks and set their status value. 538 * @queue: rpc_wait_queue on which the tasks are sleeping 539 * @status: status value to set 540 * 541 * Grabs queue->lock 542 */ 543 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) 544 { 545 struct rpc_task *task, *next; 546 struct list_head *head; 547 548 spin_lock_bh(&queue->lock); 549 head = &queue->tasks[queue->maxpriority]; 550 for (;;) { 551 list_for_each_entry_safe(task, next, head, u.tk_wait.list) { 552 task->tk_status = status; 553 __rpc_wake_up_task(task); 554 } 555 if (head == &queue->tasks[0]) 556 break; 557 head--; 558 } 559 spin_unlock_bh(&queue->lock); 560 } 561 562 /* 563 * Run a task at a later time 564 */ 565 static void __rpc_atrun(struct rpc_task *); 566 void 567 rpc_delay(struct rpc_task *task, unsigned long delay) 568 { 569 task->tk_timeout = delay; 570 rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun); 571 } 572 573 static void 574 __rpc_atrun(struct rpc_task *task) 575 { 576 task->tk_status = 0; 577 rpc_wake_up_task(task); 578 } 579 580 /* 581 * Helper to call task->tk_ops->rpc_call_prepare 582 */ 583 static void rpc_prepare_task(struct rpc_task *task) 584 { 585 task->tk_ops->rpc_call_prepare(task, task->tk_calldata); 586 } 587 588 /* 589 * Helper that calls task->tk_ops->rpc_call_done if it exists 590 */ 591 void rpc_exit_task(struct rpc_task *task) 592 { 593 task->tk_action = NULL; 594 if (task->tk_ops->rpc_call_done != NULL) { 595 task->tk_ops->rpc_call_done(task, task->tk_calldata); 596 if (task->tk_action != NULL) { 597 WARN_ON(RPC_ASSASSINATED(task)); 598 /* Always release the RPC slot and buffer memory */ 599 xprt_release(task); 600 } 601 } 602 } 603 EXPORT_SYMBOL(rpc_exit_task); 604 605 /* 606 * This is the RPC `scheduler' (or rather, the finite state machine). 607 */ 608 static int __rpc_execute(struct rpc_task *task) 609 { 610 int status = 0; 611 612 dprintk("RPC: %4d rpc_execute flgs %x\n", 613 task->tk_pid, task->tk_flags); 614 615 BUG_ON(RPC_IS_QUEUED(task)); 616 617 for (;;) { 618 /* 619 * Garbage collection of pending timers... 620 */ 621 rpc_delete_timer(task); 622 623 /* 624 * Execute any pending callback. 625 */ 626 if (RPC_DO_CALLBACK(task)) { 627 /* Define a callback save pointer */ 628 void (*save_callback)(struct rpc_task *); 629 630 /* 631 * If a callback exists, save it, reset it, 632 * call it. 633 * The save is needed to stop from resetting 634 * another callback set within the callback handler 635 * - Dave 636 */ 637 save_callback=task->tk_callback; 638 task->tk_callback=NULL; 639 lock_kernel(); 640 save_callback(task); 641 unlock_kernel(); 642 } 643 644 /* 645 * Perform the next FSM step. 646 * tk_action may be NULL when the task has been killed 647 * by someone else. 648 */ 649 if (!RPC_IS_QUEUED(task)) { 650 if (task->tk_action == NULL) 651 break; 652 lock_kernel(); 653 task->tk_action(task); 654 unlock_kernel(); 655 } 656 657 /* 658 * Lockless check for whether task is sleeping or not. 659 */ 660 if (!RPC_IS_QUEUED(task)) 661 continue; 662 rpc_clear_running(task); 663 if (RPC_IS_ASYNC(task)) { 664 /* Careful! we may have raced... */ 665 if (RPC_IS_QUEUED(task)) 666 return 0; 667 if (rpc_test_and_set_running(task)) 668 return 0; 669 continue; 670 } 671 672 /* sync task: sleep here */ 673 dprintk("RPC: %4d sync task going to sleep\n", task->tk_pid); 674 /* Note: Caller should be using rpc_clnt_sigmask() */ 675 status = out_of_line_wait_on_bit(&task->tk_runstate, 676 RPC_TASK_QUEUED, rpc_wait_bit_interruptible, 677 TASK_INTERRUPTIBLE); 678 if (status == -ERESTARTSYS) { 679 /* 680 * When a sync task receives a signal, it exits with 681 * -ERESTARTSYS. In order to catch any callbacks that 682 * clean up after sleeping on some queue, we don't 683 * break the loop here, but go around once more. 684 */ 685 dprintk("RPC: %4d got signal\n", task->tk_pid); 686 task->tk_flags |= RPC_TASK_KILLED; 687 rpc_exit(task, -ERESTARTSYS); 688 rpc_wake_up_task(task); 689 } 690 rpc_set_running(task); 691 dprintk("RPC: %4d sync task resuming\n", task->tk_pid); 692 } 693 694 dprintk("RPC: %4d, return %d, status %d\n", task->tk_pid, status, task->tk_status); 695 /* Wake up anyone who is waiting for task completion */ 696 rpc_mark_complete_task(task); 697 /* Release all resources associated with the task */ 698 rpc_release_task(task); 699 return status; 700 } 701 702 /* 703 * User-visible entry point to the scheduler. 704 * 705 * This may be called recursively if e.g. an async NFS task updates 706 * the attributes and finds that dirty pages must be flushed. 707 * NOTE: Upon exit of this function the task is guaranteed to be 708 * released. In particular note that tk_release() will have 709 * been called, so your task memory may have been freed. 710 */ 711 int 712 rpc_execute(struct rpc_task *task) 713 { 714 rpc_set_active(task); 715 rpc_set_running(task); 716 return __rpc_execute(task); 717 } 718 719 static void rpc_async_schedule(void *arg) 720 { 721 __rpc_execute((struct rpc_task *)arg); 722 } 723 724 /** 725 * rpc_malloc - allocate an RPC buffer 726 * @task: RPC task that will use this buffer 727 * @size: requested byte size 728 * 729 * We try to ensure that some NFS reads and writes can always proceed 730 * by using a mempool when allocating 'small' buffers. 731 * In order to avoid memory starvation triggering more writebacks of 732 * NFS requests, we use GFP_NOFS rather than GFP_KERNEL. 733 */ 734 void * rpc_malloc(struct rpc_task *task, size_t size) 735 { 736 struct rpc_rqst *req = task->tk_rqstp; 737 gfp_t gfp; 738 739 if (task->tk_flags & RPC_TASK_SWAPPER) 740 gfp = GFP_ATOMIC; 741 else 742 gfp = GFP_NOFS; 743 744 if (size > RPC_BUFFER_MAXSIZE) { 745 req->rq_buffer = kmalloc(size, gfp); 746 if (req->rq_buffer) 747 req->rq_bufsize = size; 748 } else { 749 req->rq_buffer = mempool_alloc(rpc_buffer_mempool, gfp); 750 if (req->rq_buffer) 751 req->rq_bufsize = RPC_BUFFER_MAXSIZE; 752 } 753 return req->rq_buffer; 754 } 755 756 /** 757 * rpc_free - free buffer allocated via rpc_malloc 758 * @task: RPC task with a buffer to be freed 759 * 760 */ 761 void rpc_free(struct rpc_task *task) 762 { 763 struct rpc_rqst *req = task->tk_rqstp; 764 765 if (req->rq_buffer) { 766 if (req->rq_bufsize == RPC_BUFFER_MAXSIZE) 767 mempool_free(req->rq_buffer, rpc_buffer_mempool); 768 else 769 kfree(req->rq_buffer); 770 req->rq_buffer = NULL; 771 req->rq_bufsize = 0; 772 } 773 } 774 775 /* 776 * Creation and deletion of RPC task structures 777 */ 778 void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata) 779 { 780 memset(task, 0, sizeof(*task)); 781 init_timer(&task->tk_timer); 782 task->tk_timer.data = (unsigned long) task; 783 task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer; 784 atomic_set(&task->tk_count, 1); 785 task->tk_client = clnt; 786 task->tk_flags = flags; 787 task->tk_ops = tk_ops; 788 if (tk_ops->rpc_call_prepare != NULL) 789 task->tk_action = rpc_prepare_task; 790 task->tk_calldata = calldata; 791 792 /* Initialize retry counters */ 793 task->tk_garb_retry = 2; 794 task->tk_cred_retry = 2; 795 796 task->tk_priority = RPC_PRIORITY_NORMAL; 797 task->tk_cookie = (unsigned long)current; 798 799 /* Initialize workqueue for async tasks */ 800 task->tk_workqueue = rpciod_workqueue; 801 802 if (clnt) { 803 atomic_inc(&clnt->cl_users); 804 if (clnt->cl_softrtry) 805 task->tk_flags |= RPC_TASK_SOFT; 806 if (!clnt->cl_intr) 807 task->tk_flags |= RPC_TASK_NOINTR; 808 } 809 810 #ifdef RPC_DEBUG 811 task->tk_magic = RPC_TASK_MAGIC_ID; 812 task->tk_pid = rpc_task_id++; 813 #endif 814 /* Add to global list of all tasks */ 815 spin_lock(&rpc_sched_lock); 816 list_add_tail(&task->tk_task, &all_tasks); 817 spin_unlock(&rpc_sched_lock); 818 819 BUG_ON(task->tk_ops == NULL); 820 821 /* starting timestamp */ 822 task->tk_start = jiffies; 823 824 dprintk("RPC: %4d new task procpid %d\n", task->tk_pid, 825 current->pid); 826 } 827 828 static struct rpc_task * 829 rpc_alloc_task(void) 830 { 831 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS); 832 } 833 834 static void rpc_free_task(struct rpc_task *task) 835 { 836 dprintk("RPC: %4d freeing task\n", task->tk_pid); 837 mempool_free(task, rpc_task_mempool); 838 } 839 840 /* 841 * Create a new task for the specified client. We have to 842 * clean up after an allocation failure, as the client may 843 * have specified "oneshot". 844 */ 845 struct rpc_task *rpc_new_task(struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata) 846 { 847 struct rpc_task *task; 848 849 task = rpc_alloc_task(); 850 if (!task) 851 goto cleanup; 852 853 rpc_init_task(task, clnt, flags, tk_ops, calldata); 854 855 dprintk("RPC: %4d allocated task\n", task->tk_pid); 856 task->tk_flags |= RPC_TASK_DYNAMIC; 857 out: 858 return task; 859 860 cleanup: 861 /* Check whether to release the client */ 862 if (clnt) { 863 printk("rpc_new_task: failed, users=%d, oneshot=%d\n", 864 atomic_read(&clnt->cl_users), clnt->cl_oneshot); 865 atomic_inc(&clnt->cl_users); /* pretend we were used ... */ 866 rpc_release_client(clnt); 867 } 868 goto out; 869 } 870 871 void rpc_release_task(struct rpc_task *task) 872 { 873 const struct rpc_call_ops *tk_ops = task->tk_ops; 874 void *calldata = task->tk_calldata; 875 876 #ifdef RPC_DEBUG 877 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID); 878 #endif 879 if (!atomic_dec_and_test(&task->tk_count)) 880 return; 881 dprintk("RPC: %4d release task\n", task->tk_pid); 882 883 /* Remove from global task list */ 884 spin_lock(&rpc_sched_lock); 885 list_del(&task->tk_task); 886 spin_unlock(&rpc_sched_lock); 887 888 BUG_ON (RPC_IS_QUEUED(task)); 889 890 /* Synchronously delete any running timer */ 891 rpc_delete_timer(task); 892 893 /* Release resources */ 894 if (task->tk_rqstp) 895 xprt_release(task); 896 if (task->tk_msg.rpc_cred) 897 rpcauth_unbindcred(task); 898 if (task->tk_client) { 899 rpc_release_client(task->tk_client); 900 task->tk_client = NULL; 901 } 902 903 #ifdef RPC_DEBUG 904 task->tk_magic = 0; 905 #endif 906 if (task->tk_flags & RPC_TASK_DYNAMIC) 907 rpc_free_task(task); 908 if (tk_ops->rpc_release) 909 tk_ops->rpc_release(calldata); 910 } 911 912 /** 913 * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it 914 * @clnt: pointer to RPC client 915 * @flags: RPC flags 916 * @ops: RPC call ops 917 * @data: user call data 918 */ 919 struct rpc_task *rpc_run_task(struct rpc_clnt *clnt, int flags, 920 const struct rpc_call_ops *ops, 921 void *data) 922 { 923 struct rpc_task *task; 924 task = rpc_new_task(clnt, flags, ops, data); 925 if (task == NULL) { 926 if (ops->rpc_release != NULL) 927 ops->rpc_release(data); 928 return ERR_PTR(-ENOMEM); 929 } 930 atomic_inc(&task->tk_count); 931 rpc_execute(task); 932 return task; 933 } 934 EXPORT_SYMBOL(rpc_run_task); 935 936 /** 937 * rpc_find_parent - find the parent of a child task. 938 * @child: child task 939 * @parent: parent task 940 * 941 * Checks that the parent task is still sleeping on the 942 * queue 'childq'. If so returns a pointer to the parent. 943 * Upon failure returns NULL. 944 * 945 * Caller must hold childq.lock 946 */ 947 static inline struct rpc_task *rpc_find_parent(struct rpc_task *child, struct rpc_task *parent) 948 { 949 struct rpc_task *task; 950 struct list_head *le; 951 952 task_for_each(task, le, &childq.tasks[0]) 953 if (task == parent) 954 return parent; 955 956 return NULL; 957 } 958 959 static void rpc_child_exit(struct rpc_task *child, void *calldata) 960 { 961 struct rpc_task *parent; 962 963 spin_lock_bh(&childq.lock); 964 if ((parent = rpc_find_parent(child, calldata)) != NULL) { 965 parent->tk_status = child->tk_status; 966 __rpc_wake_up_task(parent); 967 } 968 spin_unlock_bh(&childq.lock); 969 } 970 971 static const struct rpc_call_ops rpc_child_ops = { 972 .rpc_call_done = rpc_child_exit, 973 }; 974 975 /* 976 * Note: rpc_new_task releases the client after a failure. 977 */ 978 struct rpc_task * 979 rpc_new_child(struct rpc_clnt *clnt, struct rpc_task *parent) 980 { 981 struct rpc_task *task; 982 983 task = rpc_new_task(clnt, RPC_TASK_ASYNC | RPC_TASK_CHILD, &rpc_child_ops, parent); 984 if (!task) 985 goto fail; 986 return task; 987 988 fail: 989 parent->tk_status = -ENOMEM; 990 return NULL; 991 } 992 993 void rpc_run_child(struct rpc_task *task, struct rpc_task *child, rpc_action func) 994 { 995 spin_lock_bh(&childq.lock); 996 /* N.B. Is it possible for the child to have already finished? */ 997 __rpc_sleep_on(&childq, task, func, NULL); 998 rpc_schedule_run(child); 999 spin_unlock_bh(&childq.lock); 1000 } 1001 1002 /* 1003 * Kill all tasks for the given client. 1004 * XXX: kill their descendants as well? 1005 */ 1006 void rpc_killall_tasks(struct rpc_clnt *clnt) 1007 { 1008 struct rpc_task *rovr; 1009 struct list_head *le; 1010 1011 dprintk("RPC: killing all tasks for client %p\n", clnt); 1012 1013 /* 1014 * Spin lock all_tasks to prevent changes... 1015 */ 1016 spin_lock(&rpc_sched_lock); 1017 alltask_for_each(rovr, le, &all_tasks) { 1018 if (! RPC_IS_ACTIVATED(rovr)) 1019 continue; 1020 if (!clnt || rovr->tk_client == clnt) { 1021 rovr->tk_flags |= RPC_TASK_KILLED; 1022 rpc_exit(rovr, -EIO); 1023 rpc_wake_up_task(rovr); 1024 } 1025 } 1026 spin_unlock(&rpc_sched_lock); 1027 } 1028 1029 static DECLARE_MUTEX_LOCKED(rpciod_running); 1030 1031 static void rpciod_killall(void) 1032 { 1033 unsigned long flags; 1034 1035 while (!list_empty(&all_tasks)) { 1036 clear_thread_flag(TIF_SIGPENDING); 1037 rpc_killall_tasks(NULL); 1038 flush_workqueue(rpciod_workqueue); 1039 if (!list_empty(&all_tasks)) { 1040 dprintk("rpciod_killall: waiting for tasks to exit\n"); 1041 yield(); 1042 } 1043 } 1044 1045 spin_lock_irqsave(¤t->sighand->siglock, flags); 1046 recalc_sigpending(); 1047 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 1048 } 1049 1050 /* 1051 * Start up the rpciod process if it's not already running. 1052 */ 1053 int 1054 rpciod_up(void) 1055 { 1056 struct workqueue_struct *wq; 1057 int error = 0; 1058 1059 mutex_lock(&rpciod_mutex); 1060 dprintk("rpciod_up: users %d\n", rpciod_users); 1061 rpciod_users++; 1062 if (rpciod_workqueue) 1063 goto out; 1064 /* 1065 * If there's no pid, we should be the first user. 1066 */ 1067 if (rpciod_users > 1) 1068 printk(KERN_WARNING "rpciod_up: no workqueue, %d users??\n", rpciod_users); 1069 /* 1070 * Create the rpciod thread and wait for it to start. 1071 */ 1072 error = -ENOMEM; 1073 wq = create_workqueue("rpciod"); 1074 if (wq == NULL) { 1075 printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error); 1076 rpciod_users--; 1077 goto out; 1078 } 1079 rpciod_workqueue = wq; 1080 error = 0; 1081 out: 1082 mutex_unlock(&rpciod_mutex); 1083 return error; 1084 } 1085 1086 void 1087 rpciod_down(void) 1088 { 1089 mutex_lock(&rpciod_mutex); 1090 dprintk("rpciod_down sema %d\n", rpciod_users); 1091 if (rpciod_users) { 1092 if (--rpciod_users) 1093 goto out; 1094 } else 1095 printk(KERN_WARNING "rpciod_down: no users??\n"); 1096 1097 if (!rpciod_workqueue) { 1098 dprintk("rpciod_down: Nothing to do!\n"); 1099 goto out; 1100 } 1101 rpciod_killall(); 1102 1103 destroy_workqueue(rpciod_workqueue); 1104 rpciod_workqueue = NULL; 1105 out: 1106 mutex_unlock(&rpciod_mutex); 1107 } 1108 1109 #ifdef RPC_DEBUG 1110 void rpc_show_tasks(void) 1111 { 1112 struct list_head *le; 1113 struct rpc_task *t; 1114 1115 spin_lock(&rpc_sched_lock); 1116 if (list_empty(&all_tasks)) { 1117 spin_unlock(&rpc_sched_lock); 1118 return; 1119 } 1120 printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout " 1121 "-rpcwait -action- ---ops--\n"); 1122 alltask_for_each(t, le, &all_tasks) { 1123 const char *rpc_waitq = "none"; 1124 1125 if (RPC_IS_QUEUED(t)) 1126 rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq); 1127 1128 printk("%05d %04d %04x %06d %8p %6d %8p %08ld %8s %8p %8p\n", 1129 t->tk_pid, 1130 (t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1), 1131 t->tk_flags, t->tk_status, 1132 t->tk_client, 1133 (t->tk_client ? t->tk_client->cl_prog : 0), 1134 t->tk_rqstp, t->tk_timeout, 1135 rpc_waitq, 1136 t->tk_action, t->tk_ops); 1137 } 1138 spin_unlock(&rpc_sched_lock); 1139 } 1140 #endif 1141 1142 void 1143 rpc_destroy_mempool(void) 1144 { 1145 if (rpc_buffer_mempool) 1146 mempool_destroy(rpc_buffer_mempool); 1147 if (rpc_task_mempool) 1148 mempool_destroy(rpc_task_mempool); 1149 if (rpc_task_slabp && kmem_cache_destroy(rpc_task_slabp)) 1150 printk(KERN_INFO "rpc_task: not all structures were freed\n"); 1151 if (rpc_buffer_slabp && kmem_cache_destroy(rpc_buffer_slabp)) 1152 printk(KERN_INFO "rpc_buffers: not all structures were freed\n"); 1153 } 1154 1155 int 1156 rpc_init_mempool(void) 1157 { 1158 rpc_task_slabp = kmem_cache_create("rpc_tasks", 1159 sizeof(struct rpc_task), 1160 0, SLAB_HWCACHE_ALIGN, 1161 NULL, NULL); 1162 if (!rpc_task_slabp) 1163 goto err_nomem; 1164 rpc_buffer_slabp = kmem_cache_create("rpc_buffers", 1165 RPC_BUFFER_MAXSIZE, 1166 0, SLAB_HWCACHE_ALIGN, 1167 NULL, NULL); 1168 if (!rpc_buffer_slabp) 1169 goto err_nomem; 1170 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE, 1171 rpc_task_slabp); 1172 if (!rpc_task_mempool) 1173 goto err_nomem; 1174 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE, 1175 rpc_buffer_slabp); 1176 if (!rpc_buffer_mempool) 1177 goto err_nomem; 1178 return 0; 1179 err_nomem: 1180 rpc_destroy_mempool(); 1181 return -ENOMEM; 1182 } 1183