xref: /linux/net/sunrpc/sched.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11 
12 #include <linux/module.h>
13 
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 
23 #include <linux/sunrpc/clnt.h>
24 #include <linux/sunrpc/xprt.h>
25 
26 #ifdef RPC_DEBUG
27 #define RPCDBG_FACILITY		RPCDBG_SCHED
28 #define RPC_TASK_MAGIC_ID	0xf00baa
29 static int			rpc_task_id;
30 #endif
31 
32 /*
33  * RPC slabs and memory pools
34  */
35 #define RPC_BUFFER_MAXSIZE	(2048)
36 #define RPC_BUFFER_POOLSIZE	(8)
37 #define RPC_TASK_POOLSIZE	(8)
38 static kmem_cache_t	*rpc_task_slabp __read_mostly;
39 static kmem_cache_t	*rpc_buffer_slabp __read_mostly;
40 static mempool_t	*rpc_task_mempool __read_mostly;
41 static mempool_t	*rpc_buffer_mempool __read_mostly;
42 
43 static void			__rpc_default_timer(struct rpc_task *task);
44 static void			rpciod_killall(void);
45 static void			rpc_async_schedule(void *);
46 
47 /*
48  * RPC tasks that create another task (e.g. for contacting the portmapper)
49  * will wait on this queue for their child's completion
50  */
51 static RPC_WAITQ(childq, "childq");
52 
53 /*
54  * RPC tasks sit here while waiting for conditions to improve.
55  */
56 static RPC_WAITQ(delay_queue, "delayq");
57 
58 /*
59  * All RPC tasks are linked into this list
60  */
61 static LIST_HEAD(all_tasks);
62 
63 /*
64  * rpciod-related stuff
65  */
66 static DEFINE_MUTEX(rpciod_mutex);
67 static unsigned int		rpciod_users;
68 struct workqueue_struct *rpciod_workqueue;
69 
70 /*
71  * Spinlock for other critical sections of code.
72  */
73 static DEFINE_SPINLOCK(rpc_sched_lock);
74 
75 /*
76  * Disable the timer for a given RPC task. Should be called with
77  * queue->lock and bh_disabled in order to avoid races within
78  * rpc_run_timer().
79  */
80 static inline void
81 __rpc_disable_timer(struct rpc_task *task)
82 {
83 	dprintk("RPC: %4d disabling timer\n", task->tk_pid);
84 	task->tk_timeout_fn = NULL;
85 	task->tk_timeout = 0;
86 }
87 
88 /*
89  * Run a timeout function.
90  * We use the callback in order to allow __rpc_wake_up_task()
91  * and friends to disable the timer synchronously on SMP systems
92  * without calling del_timer_sync(). The latter could cause a
93  * deadlock if called while we're holding spinlocks...
94  */
95 static void rpc_run_timer(struct rpc_task *task)
96 {
97 	void (*callback)(struct rpc_task *);
98 
99 	callback = task->tk_timeout_fn;
100 	task->tk_timeout_fn = NULL;
101 	if (callback && RPC_IS_QUEUED(task)) {
102 		dprintk("RPC: %4d running timer\n", task->tk_pid);
103 		callback(task);
104 	}
105 	smp_mb__before_clear_bit();
106 	clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
107 	smp_mb__after_clear_bit();
108 }
109 
110 /*
111  * Set up a timer for the current task.
112  */
113 static inline void
114 __rpc_add_timer(struct rpc_task *task, rpc_action timer)
115 {
116 	if (!task->tk_timeout)
117 		return;
118 
119 	dprintk("RPC: %4d setting alarm for %lu ms\n",
120 			task->tk_pid, task->tk_timeout * 1000 / HZ);
121 
122 	if (timer)
123 		task->tk_timeout_fn = timer;
124 	else
125 		task->tk_timeout_fn = __rpc_default_timer;
126 	set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
127 	mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
128 }
129 
130 /*
131  * Delete any timer for the current task. Because we use del_timer_sync(),
132  * this function should never be called while holding queue->lock.
133  */
134 static void
135 rpc_delete_timer(struct rpc_task *task)
136 {
137 	if (RPC_IS_QUEUED(task))
138 		return;
139 	if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
140 		del_singleshot_timer_sync(&task->tk_timer);
141 		dprintk("RPC: %4d deleting timer\n", task->tk_pid);
142 	}
143 }
144 
145 /*
146  * Add new request to a priority queue.
147  */
148 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
149 {
150 	struct list_head *q;
151 	struct rpc_task *t;
152 
153 	INIT_LIST_HEAD(&task->u.tk_wait.links);
154 	q = &queue->tasks[task->tk_priority];
155 	if (unlikely(task->tk_priority > queue->maxpriority))
156 		q = &queue->tasks[queue->maxpriority];
157 	list_for_each_entry(t, q, u.tk_wait.list) {
158 		if (t->tk_cookie == task->tk_cookie) {
159 			list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
160 			return;
161 		}
162 	}
163 	list_add_tail(&task->u.tk_wait.list, q);
164 }
165 
166 /*
167  * Add new request to wait queue.
168  *
169  * Swapper tasks always get inserted at the head of the queue.
170  * This should avoid many nasty memory deadlocks and hopefully
171  * improve overall performance.
172  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
173  */
174 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
175 {
176 	BUG_ON (RPC_IS_QUEUED(task));
177 
178 	if (RPC_IS_PRIORITY(queue))
179 		__rpc_add_wait_queue_priority(queue, task);
180 	else if (RPC_IS_SWAPPER(task))
181 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
182 	else
183 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
184 	task->u.tk_wait.rpc_waitq = queue;
185 	queue->qlen++;
186 	rpc_set_queued(task);
187 
188 	dprintk("RPC: %4d added to queue %p \"%s\"\n",
189 				task->tk_pid, queue, rpc_qname(queue));
190 }
191 
192 /*
193  * Remove request from a priority queue.
194  */
195 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
196 {
197 	struct rpc_task *t;
198 
199 	if (!list_empty(&task->u.tk_wait.links)) {
200 		t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
201 		list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
202 		list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
203 	}
204 	list_del(&task->u.tk_wait.list);
205 }
206 
207 /*
208  * Remove request from queue.
209  * Note: must be called with spin lock held.
210  */
211 static void __rpc_remove_wait_queue(struct rpc_task *task)
212 {
213 	struct rpc_wait_queue *queue;
214 	queue = task->u.tk_wait.rpc_waitq;
215 
216 	if (RPC_IS_PRIORITY(queue))
217 		__rpc_remove_wait_queue_priority(task);
218 	else
219 		list_del(&task->u.tk_wait.list);
220 	queue->qlen--;
221 	dprintk("RPC: %4d removed from queue %p \"%s\"\n",
222 				task->tk_pid, queue, rpc_qname(queue));
223 }
224 
225 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
226 {
227 	queue->priority = priority;
228 	queue->count = 1 << (priority * 2);
229 }
230 
231 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie)
232 {
233 	queue->cookie = cookie;
234 	queue->nr = RPC_BATCH_COUNT;
235 }
236 
237 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
238 {
239 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
240 	rpc_set_waitqueue_cookie(queue, 0);
241 }
242 
243 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio)
244 {
245 	int i;
246 
247 	spin_lock_init(&queue->lock);
248 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
249 		INIT_LIST_HEAD(&queue->tasks[i]);
250 	queue->maxpriority = maxprio;
251 	rpc_reset_waitqueue_priority(queue);
252 #ifdef RPC_DEBUG
253 	queue->name = qname;
254 #endif
255 }
256 
257 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
258 {
259 	__rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH);
260 }
261 
262 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
263 {
264 	__rpc_init_priority_wait_queue(queue, qname, 0);
265 }
266 EXPORT_SYMBOL(rpc_init_wait_queue);
267 
268 static int rpc_wait_bit_interruptible(void *word)
269 {
270 	if (signal_pending(current))
271 		return -ERESTARTSYS;
272 	schedule();
273 	return 0;
274 }
275 
276 /*
277  * Mark an RPC call as having completed by clearing the 'active' bit
278  */
279 static inline void rpc_mark_complete_task(struct rpc_task *task)
280 {
281 	rpc_clear_active(task);
282 	wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
283 }
284 
285 /*
286  * Allow callers to wait for completion of an RPC call
287  */
288 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
289 {
290 	if (action == NULL)
291 		action = rpc_wait_bit_interruptible;
292 	return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
293 			action, TASK_INTERRUPTIBLE);
294 }
295 EXPORT_SYMBOL(__rpc_wait_for_completion_task);
296 
297 /*
298  * Make an RPC task runnable.
299  *
300  * Note: If the task is ASYNC, this must be called with
301  * the spinlock held to protect the wait queue operation.
302  */
303 static void rpc_make_runnable(struct rpc_task *task)
304 {
305 	int do_ret;
306 
307 	BUG_ON(task->tk_timeout_fn);
308 	do_ret = rpc_test_and_set_running(task);
309 	rpc_clear_queued(task);
310 	if (do_ret)
311 		return;
312 	if (RPC_IS_ASYNC(task)) {
313 		int status;
314 
315 		INIT_WORK(&task->u.tk_work, rpc_async_schedule, (void *)task);
316 		status = queue_work(task->tk_workqueue, &task->u.tk_work);
317 		if (status < 0) {
318 			printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
319 			task->tk_status = status;
320 			return;
321 		}
322 	} else
323 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
324 }
325 
326 /*
327  * Place a newly initialized task on the workqueue.
328  */
329 static inline void
330 rpc_schedule_run(struct rpc_task *task)
331 {
332 	rpc_set_active(task);
333 	rpc_make_runnable(task);
334 }
335 
336 /*
337  * Prepare for sleeping on a wait queue.
338  * By always appending tasks to the list we ensure FIFO behavior.
339  * NB: An RPC task will only receive interrupt-driven events as long
340  * as it's on a wait queue.
341  */
342 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
343 			rpc_action action, rpc_action timer)
344 {
345 	dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task->tk_pid,
346 				rpc_qname(q), jiffies);
347 
348 	if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
349 		printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
350 		return;
351 	}
352 
353 	/* Mark the task as being activated if so needed */
354 	rpc_set_active(task);
355 
356 	__rpc_add_wait_queue(q, task);
357 
358 	BUG_ON(task->tk_callback != NULL);
359 	task->tk_callback = action;
360 	__rpc_add_timer(task, timer);
361 }
362 
363 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
364 				rpc_action action, rpc_action timer)
365 {
366 	/*
367 	 * Protect the queue operations.
368 	 */
369 	spin_lock_bh(&q->lock);
370 	__rpc_sleep_on(q, task, action, timer);
371 	spin_unlock_bh(&q->lock);
372 }
373 
374 /**
375  * __rpc_do_wake_up_task - wake up a single rpc_task
376  * @task: task to be woken up
377  *
378  * Caller must hold queue->lock, and have cleared the task queued flag.
379  */
380 static void __rpc_do_wake_up_task(struct rpc_task *task)
381 {
382 	dprintk("RPC: %4d __rpc_wake_up_task (now %ld)\n", task->tk_pid, jiffies);
383 
384 #ifdef RPC_DEBUG
385 	BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
386 #endif
387 	/* Has the task been executed yet? If not, we cannot wake it up! */
388 	if (!RPC_IS_ACTIVATED(task)) {
389 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
390 		return;
391 	}
392 
393 	__rpc_disable_timer(task);
394 	__rpc_remove_wait_queue(task);
395 
396 	rpc_make_runnable(task);
397 
398 	dprintk("RPC:      __rpc_wake_up_task done\n");
399 }
400 
401 /*
402  * Wake up the specified task
403  */
404 static void __rpc_wake_up_task(struct rpc_task *task)
405 {
406 	if (rpc_start_wakeup(task)) {
407 		if (RPC_IS_QUEUED(task))
408 			__rpc_do_wake_up_task(task);
409 		rpc_finish_wakeup(task);
410 	}
411 }
412 
413 /*
414  * Default timeout handler if none specified by user
415  */
416 static void
417 __rpc_default_timer(struct rpc_task *task)
418 {
419 	dprintk("RPC: %d timeout (default timer)\n", task->tk_pid);
420 	task->tk_status = -ETIMEDOUT;
421 	rpc_wake_up_task(task);
422 }
423 
424 /*
425  * Wake up the specified task
426  */
427 void rpc_wake_up_task(struct rpc_task *task)
428 {
429 	if (rpc_start_wakeup(task)) {
430 		if (RPC_IS_QUEUED(task)) {
431 			struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq;
432 
433 			spin_lock_bh(&queue->lock);
434 			__rpc_do_wake_up_task(task);
435 			spin_unlock_bh(&queue->lock);
436 		}
437 		rpc_finish_wakeup(task);
438 	}
439 }
440 
441 /*
442  * Wake up the next task on a priority queue.
443  */
444 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
445 {
446 	struct list_head *q;
447 	struct rpc_task *task;
448 
449 	/*
450 	 * Service a batch of tasks from a single cookie.
451 	 */
452 	q = &queue->tasks[queue->priority];
453 	if (!list_empty(q)) {
454 		task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
455 		if (queue->cookie == task->tk_cookie) {
456 			if (--queue->nr)
457 				goto out;
458 			list_move_tail(&task->u.tk_wait.list, q);
459 		}
460 		/*
461 		 * Check if we need to switch queues.
462 		 */
463 		if (--queue->count)
464 			goto new_cookie;
465 	}
466 
467 	/*
468 	 * Service the next queue.
469 	 */
470 	do {
471 		if (q == &queue->tasks[0])
472 			q = &queue->tasks[queue->maxpriority];
473 		else
474 			q = q - 1;
475 		if (!list_empty(q)) {
476 			task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
477 			goto new_queue;
478 		}
479 	} while (q != &queue->tasks[queue->priority]);
480 
481 	rpc_reset_waitqueue_priority(queue);
482 	return NULL;
483 
484 new_queue:
485 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
486 new_cookie:
487 	rpc_set_waitqueue_cookie(queue, task->tk_cookie);
488 out:
489 	__rpc_wake_up_task(task);
490 	return task;
491 }
492 
493 /*
494  * Wake up the next task on the wait queue.
495  */
496 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
497 {
498 	struct rpc_task	*task = NULL;
499 
500 	dprintk("RPC:      wake_up_next(%p \"%s\")\n", queue, rpc_qname(queue));
501 	spin_lock_bh(&queue->lock);
502 	if (RPC_IS_PRIORITY(queue))
503 		task = __rpc_wake_up_next_priority(queue);
504 	else {
505 		task_for_first(task, &queue->tasks[0])
506 			__rpc_wake_up_task(task);
507 	}
508 	spin_unlock_bh(&queue->lock);
509 
510 	return task;
511 }
512 
513 /**
514  * rpc_wake_up - wake up all rpc_tasks
515  * @queue: rpc_wait_queue on which the tasks are sleeping
516  *
517  * Grabs queue->lock
518  */
519 void rpc_wake_up(struct rpc_wait_queue *queue)
520 {
521 	struct rpc_task *task, *next;
522 	struct list_head *head;
523 
524 	spin_lock_bh(&queue->lock);
525 	head = &queue->tasks[queue->maxpriority];
526 	for (;;) {
527 		list_for_each_entry_safe(task, next, head, u.tk_wait.list)
528 			__rpc_wake_up_task(task);
529 		if (head == &queue->tasks[0])
530 			break;
531 		head--;
532 	}
533 	spin_unlock_bh(&queue->lock);
534 }
535 
536 /**
537  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
538  * @queue: rpc_wait_queue on which the tasks are sleeping
539  * @status: status value to set
540  *
541  * Grabs queue->lock
542  */
543 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
544 {
545 	struct rpc_task *task, *next;
546 	struct list_head *head;
547 
548 	spin_lock_bh(&queue->lock);
549 	head = &queue->tasks[queue->maxpriority];
550 	for (;;) {
551 		list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
552 			task->tk_status = status;
553 			__rpc_wake_up_task(task);
554 		}
555 		if (head == &queue->tasks[0])
556 			break;
557 		head--;
558 	}
559 	spin_unlock_bh(&queue->lock);
560 }
561 
562 /*
563  * Run a task at a later time
564  */
565 static void	__rpc_atrun(struct rpc_task *);
566 void
567 rpc_delay(struct rpc_task *task, unsigned long delay)
568 {
569 	task->tk_timeout = delay;
570 	rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
571 }
572 
573 static void
574 __rpc_atrun(struct rpc_task *task)
575 {
576 	task->tk_status = 0;
577 	rpc_wake_up_task(task);
578 }
579 
580 /*
581  * Helper to call task->tk_ops->rpc_call_prepare
582  */
583 static void rpc_prepare_task(struct rpc_task *task)
584 {
585 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
586 }
587 
588 /*
589  * Helper that calls task->tk_ops->rpc_call_done if it exists
590  */
591 void rpc_exit_task(struct rpc_task *task)
592 {
593 	task->tk_action = NULL;
594 	if (task->tk_ops->rpc_call_done != NULL) {
595 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
596 		if (task->tk_action != NULL) {
597 			WARN_ON(RPC_ASSASSINATED(task));
598 			/* Always release the RPC slot and buffer memory */
599 			xprt_release(task);
600 		}
601 	}
602 }
603 EXPORT_SYMBOL(rpc_exit_task);
604 
605 /*
606  * This is the RPC `scheduler' (or rather, the finite state machine).
607  */
608 static int __rpc_execute(struct rpc_task *task)
609 {
610 	int		status = 0;
611 
612 	dprintk("RPC: %4d rpc_execute flgs %x\n",
613 				task->tk_pid, task->tk_flags);
614 
615 	BUG_ON(RPC_IS_QUEUED(task));
616 
617 	for (;;) {
618 		/*
619 		 * Garbage collection of pending timers...
620 		 */
621 		rpc_delete_timer(task);
622 
623 		/*
624 		 * Execute any pending callback.
625 		 */
626 		if (RPC_DO_CALLBACK(task)) {
627 			/* Define a callback save pointer */
628 			void (*save_callback)(struct rpc_task *);
629 
630 			/*
631 			 * If a callback exists, save it, reset it,
632 			 * call it.
633 			 * The save is needed to stop from resetting
634 			 * another callback set within the callback handler
635 			 * - Dave
636 			 */
637 			save_callback=task->tk_callback;
638 			task->tk_callback=NULL;
639 			lock_kernel();
640 			save_callback(task);
641 			unlock_kernel();
642 		}
643 
644 		/*
645 		 * Perform the next FSM step.
646 		 * tk_action may be NULL when the task has been killed
647 		 * by someone else.
648 		 */
649 		if (!RPC_IS_QUEUED(task)) {
650 			if (task->tk_action == NULL)
651 				break;
652 			lock_kernel();
653 			task->tk_action(task);
654 			unlock_kernel();
655 		}
656 
657 		/*
658 		 * Lockless check for whether task is sleeping or not.
659 		 */
660 		if (!RPC_IS_QUEUED(task))
661 			continue;
662 		rpc_clear_running(task);
663 		if (RPC_IS_ASYNC(task)) {
664 			/* Careful! we may have raced... */
665 			if (RPC_IS_QUEUED(task))
666 				return 0;
667 			if (rpc_test_and_set_running(task))
668 				return 0;
669 			continue;
670 		}
671 
672 		/* sync task: sleep here */
673 		dprintk("RPC: %4d sync task going to sleep\n", task->tk_pid);
674 		/* Note: Caller should be using rpc_clnt_sigmask() */
675 		status = out_of_line_wait_on_bit(&task->tk_runstate,
676 				RPC_TASK_QUEUED, rpc_wait_bit_interruptible,
677 				TASK_INTERRUPTIBLE);
678 		if (status == -ERESTARTSYS) {
679 			/*
680 			 * When a sync task receives a signal, it exits with
681 			 * -ERESTARTSYS. In order to catch any callbacks that
682 			 * clean up after sleeping on some queue, we don't
683 			 * break the loop here, but go around once more.
684 			 */
685 			dprintk("RPC: %4d got signal\n", task->tk_pid);
686 			task->tk_flags |= RPC_TASK_KILLED;
687 			rpc_exit(task, -ERESTARTSYS);
688 			rpc_wake_up_task(task);
689 		}
690 		rpc_set_running(task);
691 		dprintk("RPC: %4d sync task resuming\n", task->tk_pid);
692 	}
693 
694 	dprintk("RPC: %4d, return %d, status %d\n", task->tk_pid, status, task->tk_status);
695 	/* Wake up anyone who is waiting for task completion */
696 	rpc_mark_complete_task(task);
697 	/* Release all resources associated with the task */
698 	rpc_release_task(task);
699 	return status;
700 }
701 
702 /*
703  * User-visible entry point to the scheduler.
704  *
705  * This may be called recursively if e.g. an async NFS task updates
706  * the attributes and finds that dirty pages must be flushed.
707  * NOTE: Upon exit of this function the task is guaranteed to be
708  *	 released. In particular note that tk_release() will have
709  *	 been called, so your task memory may have been freed.
710  */
711 int
712 rpc_execute(struct rpc_task *task)
713 {
714 	rpc_set_active(task);
715 	rpc_set_running(task);
716 	return __rpc_execute(task);
717 }
718 
719 static void rpc_async_schedule(void *arg)
720 {
721 	__rpc_execute((struct rpc_task *)arg);
722 }
723 
724 /**
725  * rpc_malloc - allocate an RPC buffer
726  * @task: RPC task that will use this buffer
727  * @size: requested byte size
728  *
729  * We try to ensure that some NFS reads and writes can always proceed
730  * by using a mempool when allocating 'small' buffers.
731  * In order to avoid memory starvation triggering more writebacks of
732  * NFS requests, we use GFP_NOFS rather than GFP_KERNEL.
733  */
734 void * rpc_malloc(struct rpc_task *task, size_t size)
735 {
736 	struct rpc_rqst *req = task->tk_rqstp;
737 	gfp_t	gfp;
738 
739 	if (task->tk_flags & RPC_TASK_SWAPPER)
740 		gfp = GFP_ATOMIC;
741 	else
742 		gfp = GFP_NOFS;
743 
744 	if (size > RPC_BUFFER_MAXSIZE) {
745 		req->rq_buffer = kmalloc(size, gfp);
746 		if (req->rq_buffer)
747 			req->rq_bufsize = size;
748 	} else {
749 		req->rq_buffer = mempool_alloc(rpc_buffer_mempool, gfp);
750 		if (req->rq_buffer)
751 			req->rq_bufsize = RPC_BUFFER_MAXSIZE;
752 	}
753 	return req->rq_buffer;
754 }
755 
756 /**
757  * rpc_free - free buffer allocated via rpc_malloc
758  * @task: RPC task with a buffer to be freed
759  *
760  */
761 void rpc_free(struct rpc_task *task)
762 {
763 	struct rpc_rqst *req = task->tk_rqstp;
764 
765 	if (req->rq_buffer) {
766 		if (req->rq_bufsize == RPC_BUFFER_MAXSIZE)
767 			mempool_free(req->rq_buffer, rpc_buffer_mempool);
768 		else
769 			kfree(req->rq_buffer);
770 		req->rq_buffer = NULL;
771 		req->rq_bufsize = 0;
772 	}
773 }
774 
775 /*
776  * Creation and deletion of RPC task structures
777  */
778 void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
779 {
780 	memset(task, 0, sizeof(*task));
781 	init_timer(&task->tk_timer);
782 	task->tk_timer.data     = (unsigned long) task;
783 	task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer;
784 	atomic_set(&task->tk_count, 1);
785 	task->tk_client = clnt;
786 	task->tk_flags  = flags;
787 	task->tk_ops = tk_ops;
788 	if (tk_ops->rpc_call_prepare != NULL)
789 		task->tk_action = rpc_prepare_task;
790 	task->tk_calldata = calldata;
791 
792 	/* Initialize retry counters */
793 	task->tk_garb_retry = 2;
794 	task->tk_cred_retry = 2;
795 
796 	task->tk_priority = RPC_PRIORITY_NORMAL;
797 	task->tk_cookie = (unsigned long)current;
798 
799 	/* Initialize workqueue for async tasks */
800 	task->tk_workqueue = rpciod_workqueue;
801 
802 	if (clnt) {
803 		atomic_inc(&clnt->cl_users);
804 		if (clnt->cl_softrtry)
805 			task->tk_flags |= RPC_TASK_SOFT;
806 		if (!clnt->cl_intr)
807 			task->tk_flags |= RPC_TASK_NOINTR;
808 	}
809 
810 #ifdef RPC_DEBUG
811 	task->tk_magic = RPC_TASK_MAGIC_ID;
812 	task->tk_pid = rpc_task_id++;
813 #endif
814 	/* Add to global list of all tasks */
815 	spin_lock(&rpc_sched_lock);
816 	list_add_tail(&task->tk_task, &all_tasks);
817 	spin_unlock(&rpc_sched_lock);
818 
819 	BUG_ON(task->tk_ops == NULL);
820 
821 	/* starting timestamp */
822 	task->tk_start = jiffies;
823 
824 	dprintk("RPC: %4d new task procpid %d\n", task->tk_pid,
825 				current->pid);
826 }
827 
828 static struct rpc_task *
829 rpc_alloc_task(void)
830 {
831 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
832 }
833 
834 static void rpc_free_task(struct rpc_task *task)
835 {
836 	dprintk("RPC: %4d freeing task\n", task->tk_pid);
837 	mempool_free(task, rpc_task_mempool);
838 }
839 
840 /*
841  * Create a new task for the specified client.  We have to
842  * clean up after an allocation failure, as the client may
843  * have specified "oneshot".
844  */
845 struct rpc_task *rpc_new_task(struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
846 {
847 	struct rpc_task	*task;
848 
849 	task = rpc_alloc_task();
850 	if (!task)
851 		goto cleanup;
852 
853 	rpc_init_task(task, clnt, flags, tk_ops, calldata);
854 
855 	dprintk("RPC: %4d allocated task\n", task->tk_pid);
856 	task->tk_flags |= RPC_TASK_DYNAMIC;
857 out:
858 	return task;
859 
860 cleanup:
861 	/* Check whether to release the client */
862 	if (clnt) {
863 		printk("rpc_new_task: failed, users=%d, oneshot=%d\n",
864 			atomic_read(&clnt->cl_users), clnt->cl_oneshot);
865 		atomic_inc(&clnt->cl_users); /* pretend we were used ... */
866 		rpc_release_client(clnt);
867 	}
868 	goto out;
869 }
870 
871 void rpc_release_task(struct rpc_task *task)
872 {
873 	const struct rpc_call_ops *tk_ops = task->tk_ops;
874 	void *calldata = task->tk_calldata;
875 
876 #ifdef RPC_DEBUG
877 	BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
878 #endif
879 	if (!atomic_dec_and_test(&task->tk_count))
880 		return;
881 	dprintk("RPC: %4d release task\n", task->tk_pid);
882 
883 	/* Remove from global task list */
884 	spin_lock(&rpc_sched_lock);
885 	list_del(&task->tk_task);
886 	spin_unlock(&rpc_sched_lock);
887 
888 	BUG_ON (RPC_IS_QUEUED(task));
889 
890 	/* Synchronously delete any running timer */
891 	rpc_delete_timer(task);
892 
893 	/* Release resources */
894 	if (task->tk_rqstp)
895 		xprt_release(task);
896 	if (task->tk_msg.rpc_cred)
897 		rpcauth_unbindcred(task);
898 	if (task->tk_client) {
899 		rpc_release_client(task->tk_client);
900 		task->tk_client = NULL;
901 	}
902 
903 #ifdef RPC_DEBUG
904 	task->tk_magic = 0;
905 #endif
906 	if (task->tk_flags & RPC_TASK_DYNAMIC)
907 		rpc_free_task(task);
908 	if (tk_ops->rpc_release)
909 		tk_ops->rpc_release(calldata);
910 }
911 
912 /**
913  * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it
914  * @clnt: pointer to RPC client
915  * @flags: RPC flags
916  * @ops: RPC call ops
917  * @data: user call data
918  */
919 struct rpc_task *rpc_run_task(struct rpc_clnt *clnt, int flags,
920 					const struct rpc_call_ops *ops,
921 					void *data)
922 {
923 	struct rpc_task *task;
924 	task = rpc_new_task(clnt, flags, ops, data);
925 	if (task == NULL) {
926 		if (ops->rpc_release != NULL)
927 			ops->rpc_release(data);
928 		return ERR_PTR(-ENOMEM);
929 	}
930 	atomic_inc(&task->tk_count);
931 	rpc_execute(task);
932 	return task;
933 }
934 EXPORT_SYMBOL(rpc_run_task);
935 
936 /**
937  * rpc_find_parent - find the parent of a child task.
938  * @child: child task
939  * @parent: parent task
940  *
941  * Checks that the parent task is still sleeping on the
942  * queue 'childq'. If so returns a pointer to the parent.
943  * Upon failure returns NULL.
944  *
945  * Caller must hold childq.lock
946  */
947 static inline struct rpc_task *rpc_find_parent(struct rpc_task *child, struct rpc_task *parent)
948 {
949 	struct rpc_task	*task;
950 	struct list_head *le;
951 
952 	task_for_each(task, le, &childq.tasks[0])
953 		if (task == parent)
954 			return parent;
955 
956 	return NULL;
957 }
958 
959 static void rpc_child_exit(struct rpc_task *child, void *calldata)
960 {
961 	struct rpc_task	*parent;
962 
963 	spin_lock_bh(&childq.lock);
964 	if ((parent = rpc_find_parent(child, calldata)) != NULL) {
965 		parent->tk_status = child->tk_status;
966 		__rpc_wake_up_task(parent);
967 	}
968 	spin_unlock_bh(&childq.lock);
969 }
970 
971 static const struct rpc_call_ops rpc_child_ops = {
972 	.rpc_call_done = rpc_child_exit,
973 };
974 
975 /*
976  * Note: rpc_new_task releases the client after a failure.
977  */
978 struct rpc_task *
979 rpc_new_child(struct rpc_clnt *clnt, struct rpc_task *parent)
980 {
981 	struct rpc_task	*task;
982 
983 	task = rpc_new_task(clnt, RPC_TASK_ASYNC | RPC_TASK_CHILD, &rpc_child_ops, parent);
984 	if (!task)
985 		goto fail;
986 	return task;
987 
988 fail:
989 	parent->tk_status = -ENOMEM;
990 	return NULL;
991 }
992 
993 void rpc_run_child(struct rpc_task *task, struct rpc_task *child, rpc_action func)
994 {
995 	spin_lock_bh(&childq.lock);
996 	/* N.B. Is it possible for the child to have already finished? */
997 	__rpc_sleep_on(&childq, task, func, NULL);
998 	rpc_schedule_run(child);
999 	spin_unlock_bh(&childq.lock);
1000 }
1001 
1002 /*
1003  * Kill all tasks for the given client.
1004  * XXX: kill their descendants as well?
1005  */
1006 void rpc_killall_tasks(struct rpc_clnt *clnt)
1007 {
1008 	struct rpc_task	*rovr;
1009 	struct list_head *le;
1010 
1011 	dprintk("RPC:      killing all tasks for client %p\n", clnt);
1012 
1013 	/*
1014 	 * Spin lock all_tasks to prevent changes...
1015 	 */
1016 	spin_lock(&rpc_sched_lock);
1017 	alltask_for_each(rovr, le, &all_tasks) {
1018 		if (! RPC_IS_ACTIVATED(rovr))
1019 			continue;
1020 		if (!clnt || rovr->tk_client == clnt) {
1021 			rovr->tk_flags |= RPC_TASK_KILLED;
1022 			rpc_exit(rovr, -EIO);
1023 			rpc_wake_up_task(rovr);
1024 		}
1025 	}
1026 	spin_unlock(&rpc_sched_lock);
1027 }
1028 
1029 static DECLARE_MUTEX_LOCKED(rpciod_running);
1030 
1031 static void rpciod_killall(void)
1032 {
1033 	unsigned long flags;
1034 
1035 	while (!list_empty(&all_tasks)) {
1036 		clear_thread_flag(TIF_SIGPENDING);
1037 		rpc_killall_tasks(NULL);
1038 		flush_workqueue(rpciod_workqueue);
1039 		if (!list_empty(&all_tasks)) {
1040 			dprintk("rpciod_killall: waiting for tasks to exit\n");
1041 			yield();
1042 		}
1043 	}
1044 
1045 	spin_lock_irqsave(&current->sighand->siglock, flags);
1046 	recalc_sigpending();
1047 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
1048 }
1049 
1050 /*
1051  * Start up the rpciod process if it's not already running.
1052  */
1053 int
1054 rpciod_up(void)
1055 {
1056 	struct workqueue_struct *wq;
1057 	int error = 0;
1058 
1059 	mutex_lock(&rpciod_mutex);
1060 	dprintk("rpciod_up: users %d\n", rpciod_users);
1061 	rpciod_users++;
1062 	if (rpciod_workqueue)
1063 		goto out;
1064 	/*
1065 	 * If there's no pid, we should be the first user.
1066 	 */
1067 	if (rpciod_users > 1)
1068 		printk(KERN_WARNING "rpciod_up: no workqueue, %d users??\n", rpciod_users);
1069 	/*
1070 	 * Create the rpciod thread and wait for it to start.
1071 	 */
1072 	error = -ENOMEM;
1073 	wq = create_workqueue("rpciod");
1074 	if (wq == NULL) {
1075 		printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error);
1076 		rpciod_users--;
1077 		goto out;
1078 	}
1079 	rpciod_workqueue = wq;
1080 	error = 0;
1081 out:
1082 	mutex_unlock(&rpciod_mutex);
1083 	return error;
1084 }
1085 
1086 void
1087 rpciod_down(void)
1088 {
1089 	mutex_lock(&rpciod_mutex);
1090 	dprintk("rpciod_down sema %d\n", rpciod_users);
1091 	if (rpciod_users) {
1092 		if (--rpciod_users)
1093 			goto out;
1094 	} else
1095 		printk(KERN_WARNING "rpciod_down: no users??\n");
1096 
1097 	if (!rpciod_workqueue) {
1098 		dprintk("rpciod_down: Nothing to do!\n");
1099 		goto out;
1100 	}
1101 	rpciod_killall();
1102 
1103 	destroy_workqueue(rpciod_workqueue);
1104 	rpciod_workqueue = NULL;
1105  out:
1106 	mutex_unlock(&rpciod_mutex);
1107 }
1108 
1109 #ifdef RPC_DEBUG
1110 void rpc_show_tasks(void)
1111 {
1112 	struct list_head *le;
1113 	struct rpc_task *t;
1114 
1115 	spin_lock(&rpc_sched_lock);
1116 	if (list_empty(&all_tasks)) {
1117 		spin_unlock(&rpc_sched_lock);
1118 		return;
1119 	}
1120 	printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
1121 		"-rpcwait -action- ---ops--\n");
1122 	alltask_for_each(t, le, &all_tasks) {
1123 		const char *rpc_waitq = "none";
1124 
1125 		if (RPC_IS_QUEUED(t))
1126 			rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq);
1127 
1128 		printk("%05d %04d %04x %06d %8p %6d %8p %08ld %8s %8p %8p\n",
1129 			t->tk_pid,
1130 			(t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1),
1131 			t->tk_flags, t->tk_status,
1132 			t->tk_client,
1133 			(t->tk_client ? t->tk_client->cl_prog : 0),
1134 			t->tk_rqstp, t->tk_timeout,
1135 			rpc_waitq,
1136 			t->tk_action, t->tk_ops);
1137 	}
1138 	spin_unlock(&rpc_sched_lock);
1139 }
1140 #endif
1141 
1142 void
1143 rpc_destroy_mempool(void)
1144 {
1145 	if (rpc_buffer_mempool)
1146 		mempool_destroy(rpc_buffer_mempool);
1147 	if (rpc_task_mempool)
1148 		mempool_destroy(rpc_task_mempool);
1149 	if (rpc_task_slabp && kmem_cache_destroy(rpc_task_slabp))
1150 		printk(KERN_INFO "rpc_task: not all structures were freed\n");
1151 	if (rpc_buffer_slabp && kmem_cache_destroy(rpc_buffer_slabp))
1152 		printk(KERN_INFO "rpc_buffers: not all structures were freed\n");
1153 }
1154 
1155 int
1156 rpc_init_mempool(void)
1157 {
1158 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1159 					     sizeof(struct rpc_task),
1160 					     0, SLAB_HWCACHE_ALIGN,
1161 					     NULL, NULL);
1162 	if (!rpc_task_slabp)
1163 		goto err_nomem;
1164 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1165 					     RPC_BUFFER_MAXSIZE,
1166 					     0, SLAB_HWCACHE_ALIGN,
1167 					     NULL, NULL);
1168 	if (!rpc_buffer_slabp)
1169 		goto err_nomem;
1170 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1171 						    rpc_task_slabp);
1172 	if (!rpc_task_mempool)
1173 		goto err_nomem;
1174 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1175 						      rpc_buffer_slabp);
1176 	if (!rpc_buffer_mempool)
1177 		goto err_nomem;
1178 	return 0;
1179 err_nomem:
1180 	rpc_destroy_mempool();
1181 	return -ENOMEM;
1182 }
1183