xref: /linux/net/sunrpc/sched.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11 
12 #include <linux/module.h>
13 
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22 
23 #include <linux/sunrpc/clnt.h>
24 
25 #include "sunrpc.h"
26 
27 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
28 #define RPCDBG_FACILITY		RPCDBG_SCHED
29 #endif
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
33 
34 /*
35  * RPC slabs and memory pools
36  */
37 #define RPC_BUFFER_MAXSIZE	(2048)
38 #define RPC_BUFFER_POOLSIZE	(8)
39 #define RPC_TASK_POOLSIZE	(8)
40 static struct kmem_cache	*rpc_task_slabp __read_mostly;
41 static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
42 static mempool_t	*rpc_task_mempool __read_mostly;
43 static mempool_t	*rpc_buffer_mempool __read_mostly;
44 
45 static void			rpc_async_schedule(struct work_struct *);
46 static void			 rpc_release_task(struct rpc_task *task);
47 static void __rpc_queue_timer_fn(unsigned long ptr);
48 
49 /*
50  * RPC tasks sit here while waiting for conditions to improve.
51  */
52 static struct rpc_wait_queue delay_queue;
53 
54 /*
55  * rpciod-related stuff
56  */
57 struct workqueue_struct *rpciod_workqueue __read_mostly;
58 struct workqueue_struct *xprtiod_workqueue __read_mostly;
59 
60 /*
61  * Disable the timer for a given RPC task. Should be called with
62  * queue->lock and bh_disabled in order to avoid races within
63  * rpc_run_timer().
64  */
65 static void
66 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
67 {
68 	if (task->tk_timeout == 0)
69 		return;
70 	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
71 	task->tk_timeout = 0;
72 	list_del(&task->u.tk_wait.timer_list);
73 	if (list_empty(&queue->timer_list.list))
74 		del_timer(&queue->timer_list.timer);
75 }
76 
77 static void
78 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
79 {
80 	queue->timer_list.expires = expires;
81 	mod_timer(&queue->timer_list.timer, expires);
82 }
83 
84 /*
85  * Set up a timer for the current task.
86  */
87 static void
88 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
89 {
90 	if (!task->tk_timeout)
91 		return;
92 
93 	dprintk("RPC: %5u setting alarm for %u ms\n",
94 		task->tk_pid, jiffies_to_msecs(task->tk_timeout));
95 
96 	task->u.tk_wait.expires = jiffies + task->tk_timeout;
97 	if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
98 		rpc_set_queue_timer(queue, task->u.tk_wait.expires);
99 	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
100 }
101 
102 static void rpc_rotate_queue_owner(struct rpc_wait_queue *queue)
103 {
104 	struct list_head *q = &queue->tasks[queue->priority];
105 	struct rpc_task *task;
106 
107 	if (!list_empty(q)) {
108 		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
109 		if (task->tk_owner == queue->owner)
110 			list_move_tail(&task->u.tk_wait.list, q);
111 	}
112 }
113 
114 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
115 {
116 	if (queue->priority != priority) {
117 		/* Fairness: rotate the list when changing priority */
118 		rpc_rotate_queue_owner(queue);
119 		queue->priority = priority;
120 	}
121 }
122 
123 static void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
124 {
125 	queue->owner = pid;
126 	queue->nr = RPC_BATCH_COUNT;
127 }
128 
129 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
130 {
131 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
132 	rpc_set_waitqueue_owner(queue, 0);
133 }
134 
135 /*
136  * Add new request to a priority queue.
137  */
138 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
139 		struct rpc_task *task,
140 		unsigned char queue_priority)
141 {
142 	struct list_head *q;
143 	struct rpc_task *t;
144 
145 	INIT_LIST_HEAD(&task->u.tk_wait.links);
146 	if (unlikely(queue_priority > queue->maxpriority))
147 		queue_priority = queue->maxpriority;
148 	if (queue_priority > queue->priority)
149 		rpc_set_waitqueue_priority(queue, queue_priority);
150 	q = &queue->tasks[queue_priority];
151 	list_for_each_entry(t, q, u.tk_wait.list) {
152 		if (t->tk_owner == task->tk_owner) {
153 			list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
154 			return;
155 		}
156 	}
157 	list_add_tail(&task->u.tk_wait.list, q);
158 }
159 
160 /*
161  * Add new request to wait queue.
162  *
163  * Swapper tasks always get inserted at the head of the queue.
164  * This should avoid many nasty memory deadlocks and hopefully
165  * improve overall performance.
166  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
167  */
168 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
169 		struct rpc_task *task,
170 		unsigned char queue_priority)
171 {
172 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
173 	if (RPC_IS_QUEUED(task))
174 		return;
175 
176 	if (RPC_IS_PRIORITY(queue))
177 		__rpc_add_wait_queue_priority(queue, task, queue_priority);
178 	else if (RPC_IS_SWAPPER(task))
179 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
180 	else
181 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
182 	task->tk_waitqueue = queue;
183 	queue->qlen++;
184 	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
185 	smp_wmb();
186 	rpc_set_queued(task);
187 
188 	dprintk("RPC: %5u added to queue %p \"%s\"\n",
189 			task->tk_pid, queue, rpc_qname(queue));
190 }
191 
192 /*
193  * Remove request from a priority queue.
194  */
195 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
196 {
197 	struct rpc_task *t;
198 
199 	if (!list_empty(&task->u.tk_wait.links)) {
200 		t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
201 		list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
202 		list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
203 	}
204 }
205 
206 /*
207  * Remove request from queue.
208  * Note: must be called with spin lock held.
209  */
210 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
211 {
212 	__rpc_disable_timer(queue, task);
213 	if (RPC_IS_PRIORITY(queue))
214 		__rpc_remove_wait_queue_priority(task);
215 	list_del(&task->u.tk_wait.list);
216 	queue->qlen--;
217 	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
218 			task->tk_pid, queue, rpc_qname(queue));
219 }
220 
221 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
222 {
223 	int i;
224 
225 	spin_lock_init(&queue->lock);
226 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
227 		INIT_LIST_HEAD(&queue->tasks[i]);
228 	queue->maxpriority = nr_queues - 1;
229 	rpc_reset_waitqueue_priority(queue);
230 	queue->qlen = 0;
231 	setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
232 	INIT_LIST_HEAD(&queue->timer_list.list);
233 	rpc_assign_waitqueue_name(queue, qname);
234 }
235 
236 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
237 {
238 	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
239 }
240 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
241 
242 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
243 {
244 	__rpc_init_priority_wait_queue(queue, qname, 1);
245 }
246 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
247 
248 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
249 {
250 	del_timer_sync(&queue->timer_list.timer);
251 }
252 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
253 
254 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
255 {
256 	freezable_schedule_unsafe();
257 	if (signal_pending_state(mode, current))
258 		return -ERESTARTSYS;
259 	return 0;
260 }
261 
262 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
263 static void rpc_task_set_debuginfo(struct rpc_task *task)
264 {
265 	static atomic_t rpc_pid;
266 
267 	task->tk_pid = atomic_inc_return(&rpc_pid);
268 }
269 #else
270 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
271 {
272 }
273 #endif
274 
275 static void rpc_set_active(struct rpc_task *task)
276 {
277 	trace_rpc_task_begin(task->tk_client, task, NULL);
278 
279 	rpc_task_set_debuginfo(task);
280 	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
281 }
282 
283 /*
284  * Mark an RPC call as having completed by clearing the 'active' bit
285  * and then waking up all tasks that were sleeping.
286  */
287 static int rpc_complete_task(struct rpc_task *task)
288 {
289 	void *m = &task->tk_runstate;
290 	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
291 	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
292 	unsigned long flags;
293 	int ret;
294 
295 	trace_rpc_task_complete(task->tk_client, task, NULL);
296 
297 	spin_lock_irqsave(&wq->lock, flags);
298 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
299 	ret = atomic_dec_and_test(&task->tk_count);
300 	if (waitqueue_active(wq))
301 		__wake_up_locked_key(wq, TASK_NORMAL, &k);
302 	spin_unlock_irqrestore(&wq->lock, flags);
303 	return ret;
304 }
305 
306 /*
307  * Allow callers to wait for completion of an RPC call
308  *
309  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
310  * to enforce taking of the wq->lock and hence avoid races with
311  * rpc_complete_task().
312  */
313 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
314 {
315 	if (action == NULL)
316 		action = rpc_wait_bit_killable;
317 	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
318 			action, TASK_KILLABLE);
319 }
320 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
321 
322 /*
323  * Make an RPC task runnable.
324  *
325  * Note: If the task is ASYNC, and is being made runnable after sitting on an
326  * rpc_wait_queue, this must be called with the queue spinlock held to protect
327  * the wait queue operation.
328  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
329  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
330  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
331  * the RPC_TASK_RUNNING flag.
332  */
333 static void rpc_make_runnable(struct workqueue_struct *wq,
334 		struct rpc_task *task)
335 {
336 	bool need_wakeup = !rpc_test_and_set_running(task);
337 
338 	rpc_clear_queued(task);
339 	if (!need_wakeup)
340 		return;
341 	if (RPC_IS_ASYNC(task)) {
342 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
343 		queue_work(wq, &task->u.tk_work);
344 	} else
345 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
346 }
347 
348 /*
349  * Prepare for sleeping on a wait queue.
350  * By always appending tasks to the list we ensure FIFO behavior.
351  * NB: An RPC task will only receive interrupt-driven events as long
352  * as it's on a wait queue.
353  */
354 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
355 		struct rpc_task *task,
356 		rpc_action action,
357 		unsigned char queue_priority)
358 {
359 	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
360 			task->tk_pid, rpc_qname(q), jiffies);
361 
362 	trace_rpc_task_sleep(task->tk_client, task, q);
363 
364 	__rpc_add_wait_queue(q, task, queue_priority);
365 
366 	WARN_ON_ONCE(task->tk_callback != NULL);
367 	task->tk_callback = action;
368 	__rpc_add_timer(q, task);
369 }
370 
371 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
372 				rpc_action action)
373 {
374 	/* We shouldn't ever put an inactive task to sleep */
375 	WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
376 	if (!RPC_IS_ACTIVATED(task)) {
377 		task->tk_status = -EIO;
378 		rpc_put_task_async(task);
379 		return;
380 	}
381 
382 	/*
383 	 * Protect the queue operations.
384 	 */
385 	spin_lock_bh(&q->lock);
386 	__rpc_sleep_on_priority(q, task, action, task->tk_priority);
387 	spin_unlock_bh(&q->lock);
388 }
389 EXPORT_SYMBOL_GPL(rpc_sleep_on);
390 
391 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
392 		rpc_action action, int priority)
393 {
394 	/* We shouldn't ever put an inactive task to sleep */
395 	WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
396 	if (!RPC_IS_ACTIVATED(task)) {
397 		task->tk_status = -EIO;
398 		rpc_put_task_async(task);
399 		return;
400 	}
401 
402 	/*
403 	 * Protect the queue operations.
404 	 */
405 	spin_lock_bh(&q->lock);
406 	__rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
407 	spin_unlock_bh(&q->lock);
408 }
409 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
410 
411 /**
412  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
413  * @wq: workqueue on which to run task
414  * @queue: wait queue
415  * @task: task to be woken up
416  *
417  * Caller must hold queue->lock, and have cleared the task queued flag.
418  */
419 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
420 		struct rpc_wait_queue *queue,
421 		struct rpc_task *task)
422 {
423 	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
424 			task->tk_pid, jiffies);
425 
426 	/* Has the task been executed yet? If not, we cannot wake it up! */
427 	if (!RPC_IS_ACTIVATED(task)) {
428 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
429 		return;
430 	}
431 
432 	trace_rpc_task_wakeup(task->tk_client, task, queue);
433 
434 	__rpc_remove_wait_queue(queue, task);
435 
436 	rpc_make_runnable(wq, task);
437 
438 	dprintk("RPC:       __rpc_wake_up_task done\n");
439 }
440 
441 /*
442  * Wake up a queued task while the queue lock is being held
443  */
444 static void rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq,
445 		struct rpc_wait_queue *queue, struct rpc_task *task)
446 {
447 	if (RPC_IS_QUEUED(task)) {
448 		smp_rmb();
449 		if (task->tk_waitqueue == queue)
450 			__rpc_do_wake_up_task_on_wq(wq, queue, task);
451 	}
452 }
453 
454 /*
455  * Wake up a queued task while the queue lock is being held
456  */
457 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
458 {
459 	rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task);
460 }
461 
462 /*
463  * Wake up a task on a specific queue
464  */
465 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
466 {
467 	spin_lock_bh(&queue->lock);
468 	rpc_wake_up_task_queue_locked(queue, task);
469 	spin_unlock_bh(&queue->lock);
470 }
471 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
472 
473 /*
474  * Wake up the next task on a priority queue.
475  */
476 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
477 {
478 	struct list_head *q;
479 	struct rpc_task *task;
480 
481 	/*
482 	 * Service a batch of tasks from a single owner.
483 	 */
484 	q = &queue->tasks[queue->priority];
485 	if (!list_empty(q)) {
486 		task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
487 		if (queue->owner == task->tk_owner) {
488 			if (--queue->nr)
489 				goto out;
490 			list_move_tail(&task->u.tk_wait.list, q);
491 		}
492 		/*
493 		 * Check if we need to switch queues.
494 		 */
495 		goto new_owner;
496 	}
497 
498 	/*
499 	 * Service the next queue.
500 	 */
501 	do {
502 		if (q == &queue->tasks[0])
503 			q = &queue->tasks[queue->maxpriority];
504 		else
505 			q = q - 1;
506 		if (!list_empty(q)) {
507 			task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
508 			goto new_queue;
509 		}
510 	} while (q != &queue->tasks[queue->priority]);
511 
512 	rpc_reset_waitqueue_priority(queue);
513 	return NULL;
514 
515 new_queue:
516 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
517 new_owner:
518 	rpc_set_waitqueue_owner(queue, task->tk_owner);
519 out:
520 	return task;
521 }
522 
523 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
524 {
525 	if (RPC_IS_PRIORITY(queue))
526 		return __rpc_find_next_queued_priority(queue);
527 	if (!list_empty(&queue->tasks[0]))
528 		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
529 	return NULL;
530 }
531 
532 /*
533  * Wake up the first task on the wait queue.
534  */
535 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
536 		struct rpc_wait_queue *queue,
537 		bool (*func)(struct rpc_task *, void *), void *data)
538 {
539 	struct rpc_task	*task = NULL;
540 
541 	dprintk("RPC:       wake_up_first(%p \"%s\")\n",
542 			queue, rpc_qname(queue));
543 	spin_lock_bh(&queue->lock);
544 	task = __rpc_find_next_queued(queue);
545 	if (task != NULL) {
546 		if (func(task, data))
547 			rpc_wake_up_task_on_wq_queue_locked(wq, queue, task);
548 		else
549 			task = NULL;
550 	}
551 	spin_unlock_bh(&queue->lock);
552 
553 	return task;
554 }
555 
556 /*
557  * Wake up the first task on the wait queue.
558  */
559 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
560 		bool (*func)(struct rpc_task *, void *), void *data)
561 {
562 	return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
563 }
564 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
565 
566 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
567 {
568 	return true;
569 }
570 
571 /*
572  * Wake up the next task on the wait queue.
573 */
574 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
575 {
576 	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
577 }
578 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
579 
580 /**
581  * rpc_wake_up - wake up all rpc_tasks
582  * @queue: rpc_wait_queue on which the tasks are sleeping
583  *
584  * Grabs queue->lock
585  */
586 void rpc_wake_up(struct rpc_wait_queue *queue)
587 {
588 	struct list_head *head;
589 
590 	spin_lock_bh(&queue->lock);
591 	head = &queue->tasks[queue->maxpriority];
592 	for (;;) {
593 		while (!list_empty(head)) {
594 			struct rpc_task *task;
595 			task = list_first_entry(head,
596 					struct rpc_task,
597 					u.tk_wait.list);
598 			rpc_wake_up_task_queue_locked(queue, task);
599 		}
600 		if (head == &queue->tasks[0])
601 			break;
602 		head--;
603 	}
604 	spin_unlock_bh(&queue->lock);
605 }
606 EXPORT_SYMBOL_GPL(rpc_wake_up);
607 
608 /**
609  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
610  * @queue: rpc_wait_queue on which the tasks are sleeping
611  * @status: status value to set
612  *
613  * Grabs queue->lock
614  */
615 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
616 {
617 	struct list_head *head;
618 
619 	spin_lock_bh(&queue->lock);
620 	head = &queue->tasks[queue->maxpriority];
621 	for (;;) {
622 		while (!list_empty(head)) {
623 			struct rpc_task *task;
624 			task = list_first_entry(head,
625 					struct rpc_task,
626 					u.tk_wait.list);
627 			task->tk_status = status;
628 			rpc_wake_up_task_queue_locked(queue, task);
629 		}
630 		if (head == &queue->tasks[0])
631 			break;
632 		head--;
633 	}
634 	spin_unlock_bh(&queue->lock);
635 }
636 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
637 
638 static void __rpc_queue_timer_fn(unsigned long ptr)
639 {
640 	struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
641 	struct rpc_task *task, *n;
642 	unsigned long expires, now, timeo;
643 
644 	spin_lock(&queue->lock);
645 	expires = now = jiffies;
646 	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
647 		timeo = task->u.tk_wait.expires;
648 		if (time_after_eq(now, timeo)) {
649 			dprintk("RPC: %5u timeout\n", task->tk_pid);
650 			task->tk_status = -ETIMEDOUT;
651 			rpc_wake_up_task_queue_locked(queue, task);
652 			continue;
653 		}
654 		if (expires == now || time_after(expires, timeo))
655 			expires = timeo;
656 	}
657 	if (!list_empty(&queue->timer_list.list))
658 		rpc_set_queue_timer(queue, expires);
659 	spin_unlock(&queue->lock);
660 }
661 
662 static void __rpc_atrun(struct rpc_task *task)
663 {
664 	if (task->tk_status == -ETIMEDOUT)
665 		task->tk_status = 0;
666 }
667 
668 /*
669  * Run a task at a later time
670  */
671 void rpc_delay(struct rpc_task *task, unsigned long delay)
672 {
673 	task->tk_timeout = delay;
674 	rpc_sleep_on(&delay_queue, task, __rpc_atrun);
675 }
676 EXPORT_SYMBOL_GPL(rpc_delay);
677 
678 /*
679  * Helper to call task->tk_ops->rpc_call_prepare
680  */
681 void rpc_prepare_task(struct rpc_task *task)
682 {
683 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
684 }
685 
686 static void
687 rpc_init_task_statistics(struct rpc_task *task)
688 {
689 	/* Initialize retry counters */
690 	task->tk_garb_retry = 2;
691 	task->tk_cred_retry = 2;
692 	task->tk_rebind_retry = 2;
693 
694 	/* starting timestamp */
695 	task->tk_start = ktime_get();
696 }
697 
698 static void
699 rpc_reset_task_statistics(struct rpc_task *task)
700 {
701 	task->tk_timeouts = 0;
702 	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
703 
704 	rpc_init_task_statistics(task);
705 }
706 
707 /*
708  * Helper that calls task->tk_ops->rpc_call_done if it exists
709  */
710 void rpc_exit_task(struct rpc_task *task)
711 {
712 	task->tk_action = NULL;
713 	if (task->tk_ops->rpc_call_done != NULL) {
714 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
715 		if (task->tk_action != NULL) {
716 			WARN_ON(RPC_ASSASSINATED(task));
717 			/* Always release the RPC slot and buffer memory */
718 			xprt_release(task);
719 			rpc_reset_task_statistics(task);
720 		}
721 	}
722 }
723 
724 void rpc_exit(struct rpc_task *task, int status)
725 {
726 	task->tk_status = status;
727 	task->tk_action = rpc_exit_task;
728 	if (RPC_IS_QUEUED(task))
729 		rpc_wake_up_queued_task(task->tk_waitqueue, task);
730 }
731 EXPORT_SYMBOL_GPL(rpc_exit);
732 
733 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
734 {
735 	if (ops->rpc_release != NULL)
736 		ops->rpc_release(calldata);
737 }
738 
739 /*
740  * This is the RPC `scheduler' (or rather, the finite state machine).
741  */
742 static void __rpc_execute(struct rpc_task *task)
743 {
744 	struct rpc_wait_queue *queue;
745 	int task_is_async = RPC_IS_ASYNC(task);
746 	int status = 0;
747 
748 	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
749 			task->tk_pid, task->tk_flags);
750 
751 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
752 	if (RPC_IS_QUEUED(task))
753 		return;
754 
755 	for (;;) {
756 		void (*do_action)(struct rpc_task *);
757 
758 		/*
759 		 * Execute any pending callback first.
760 		 */
761 		do_action = task->tk_callback;
762 		task->tk_callback = NULL;
763 		if (do_action == NULL) {
764 			/*
765 			 * Perform the next FSM step.
766 			 * tk_action may be NULL if the task has been killed.
767 			 * In particular, note that rpc_killall_tasks may
768 			 * do this at any time, so beware when dereferencing.
769 			 */
770 			do_action = task->tk_action;
771 			if (do_action == NULL)
772 				break;
773 		}
774 		trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
775 		do_action(task);
776 
777 		/*
778 		 * Lockless check for whether task is sleeping or not.
779 		 */
780 		if (!RPC_IS_QUEUED(task))
781 			continue;
782 		/*
783 		 * The queue->lock protects against races with
784 		 * rpc_make_runnable().
785 		 *
786 		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
787 		 * rpc_task, rpc_make_runnable() can assign it to a
788 		 * different workqueue. We therefore cannot assume that the
789 		 * rpc_task pointer may still be dereferenced.
790 		 */
791 		queue = task->tk_waitqueue;
792 		spin_lock_bh(&queue->lock);
793 		if (!RPC_IS_QUEUED(task)) {
794 			spin_unlock_bh(&queue->lock);
795 			continue;
796 		}
797 		rpc_clear_running(task);
798 		spin_unlock_bh(&queue->lock);
799 		if (task_is_async)
800 			return;
801 
802 		/* sync task: sleep here */
803 		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
804 		status = out_of_line_wait_on_bit(&task->tk_runstate,
805 				RPC_TASK_QUEUED, rpc_wait_bit_killable,
806 				TASK_KILLABLE);
807 		if (status == -ERESTARTSYS) {
808 			/*
809 			 * When a sync task receives a signal, it exits with
810 			 * -ERESTARTSYS. In order to catch any callbacks that
811 			 * clean up after sleeping on some queue, we don't
812 			 * break the loop here, but go around once more.
813 			 */
814 			dprintk("RPC: %5u got signal\n", task->tk_pid);
815 			task->tk_flags |= RPC_TASK_KILLED;
816 			rpc_exit(task, -ERESTARTSYS);
817 		}
818 		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
819 	}
820 
821 	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
822 			task->tk_status);
823 	/* Release all resources associated with the task */
824 	rpc_release_task(task);
825 }
826 
827 /*
828  * User-visible entry point to the scheduler.
829  *
830  * This may be called recursively if e.g. an async NFS task updates
831  * the attributes and finds that dirty pages must be flushed.
832  * NOTE: Upon exit of this function the task is guaranteed to be
833  *	 released. In particular note that tk_release() will have
834  *	 been called, so your task memory may have been freed.
835  */
836 void rpc_execute(struct rpc_task *task)
837 {
838 	bool is_async = RPC_IS_ASYNC(task);
839 
840 	rpc_set_active(task);
841 	rpc_make_runnable(rpciod_workqueue, task);
842 	if (!is_async)
843 		__rpc_execute(task);
844 }
845 
846 static void rpc_async_schedule(struct work_struct *work)
847 {
848 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
849 }
850 
851 /**
852  * rpc_malloc - allocate RPC buffer resources
853  * @task: RPC task
854  *
855  * A single memory region is allocated, which is split between the
856  * RPC call and RPC reply that this task is being used for. When
857  * this RPC is retired, the memory is released by calling rpc_free.
858  *
859  * To prevent rpciod from hanging, this allocator never sleeps,
860  * returning -ENOMEM and suppressing warning if the request cannot
861  * be serviced immediately. The caller can arrange to sleep in a
862  * way that is safe for rpciod.
863  *
864  * Most requests are 'small' (under 2KiB) and can be serviced from a
865  * mempool, ensuring that NFS reads and writes can always proceed,
866  * and that there is good locality of reference for these buffers.
867  *
868  * In order to avoid memory starvation triggering more writebacks of
869  * NFS requests, we avoid using GFP_KERNEL.
870  */
871 int rpc_malloc(struct rpc_task *task)
872 {
873 	struct rpc_rqst *rqst = task->tk_rqstp;
874 	size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
875 	struct rpc_buffer *buf;
876 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN;
877 
878 	if (RPC_IS_SWAPPER(task))
879 		gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
880 
881 	size += sizeof(struct rpc_buffer);
882 	if (size <= RPC_BUFFER_MAXSIZE)
883 		buf = mempool_alloc(rpc_buffer_mempool, gfp);
884 	else
885 		buf = kmalloc(size, gfp);
886 
887 	if (!buf)
888 		return -ENOMEM;
889 
890 	buf->len = size;
891 	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
892 			task->tk_pid, size, buf);
893 	rqst->rq_buffer = buf->data;
894 	rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
895 	return 0;
896 }
897 EXPORT_SYMBOL_GPL(rpc_malloc);
898 
899 /**
900  * rpc_free - free RPC buffer resources allocated via rpc_malloc
901  * @task: RPC task
902  *
903  */
904 void rpc_free(struct rpc_task *task)
905 {
906 	void *buffer = task->tk_rqstp->rq_buffer;
907 	size_t size;
908 	struct rpc_buffer *buf;
909 
910 	buf = container_of(buffer, struct rpc_buffer, data);
911 	size = buf->len;
912 
913 	dprintk("RPC:       freeing buffer of size %zu at %p\n",
914 			size, buf);
915 
916 	if (size <= RPC_BUFFER_MAXSIZE)
917 		mempool_free(buf, rpc_buffer_mempool);
918 	else
919 		kfree(buf);
920 }
921 EXPORT_SYMBOL_GPL(rpc_free);
922 
923 /*
924  * Creation and deletion of RPC task structures
925  */
926 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
927 {
928 	memset(task, 0, sizeof(*task));
929 	atomic_set(&task->tk_count, 1);
930 	task->tk_flags  = task_setup_data->flags;
931 	task->tk_ops = task_setup_data->callback_ops;
932 	task->tk_calldata = task_setup_data->callback_data;
933 	INIT_LIST_HEAD(&task->tk_task);
934 
935 	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
936 	task->tk_owner = current->tgid;
937 
938 	/* Initialize workqueue for async tasks */
939 	task->tk_workqueue = task_setup_data->workqueue;
940 
941 	task->tk_xprt = xprt_get(task_setup_data->rpc_xprt);
942 
943 	if (task->tk_ops->rpc_call_prepare != NULL)
944 		task->tk_action = rpc_prepare_task;
945 
946 	rpc_init_task_statistics(task);
947 
948 	dprintk("RPC:       new task initialized, procpid %u\n",
949 				task_pid_nr(current));
950 }
951 
952 static struct rpc_task *
953 rpc_alloc_task(void)
954 {
955 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
956 }
957 
958 /*
959  * Create a new task for the specified client.
960  */
961 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
962 {
963 	struct rpc_task	*task = setup_data->task;
964 	unsigned short flags = 0;
965 
966 	if (task == NULL) {
967 		task = rpc_alloc_task();
968 		if (task == NULL) {
969 			rpc_release_calldata(setup_data->callback_ops,
970 					setup_data->callback_data);
971 			return ERR_PTR(-ENOMEM);
972 		}
973 		flags = RPC_TASK_DYNAMIC;
974 	}
975 
976 	rpc_init_task(task, setup_data);
977 	task->tk_flags |= flags;
978 	dprintk("RPC:       allocated task %p\n", task);
979 	return task;
980 }
981 
982 /*
983  * rpc_free_task - release rpc task and perform cleanups
984  *
985  * Note that we free up the rpc_task _after_ rpc_release_calldata()
986  * in order to work around a workqueue dependency issue.
987  *
988  * Tejun Heo states:
989  * "Workqueue currently considers two work items to be the same if they're
990  * on the same address and won't execute them concurrently - ie. it
991  * makes a work item which is queued again while being executed wait
992  * for the previous execution to complete.
993  *
994  * If a work function frees the work item, and then waits for an event
995  * which should be performed by another work item and *that* work item
996  * recycles the freed work item, it can create a false dependency loop.
997  * There really is no reliable way to detect this short of verifying
998  * every memory free."
999  *
1000  */
1001 static void rpc_free_task(struct rpc_task *task)
1002 {
1003 	unsigned short tk_flags = task->tk_flags;
1004 
1005 	rpc_release_calldata(task->tk_ops, task->tk_calldata);
1006 
1007 	if (tk_flags & RPC_TASK_DYNAMIC) {
1008 		dprintk("RPC: %5u freeing task\n", task->tk_pid);
1009 		mempool_free(task, rpc_task_mempool);
1010 	}
1011 }
1012 
1013 static void rpc_async_release(struct work_struct *work)
1014 {
1015 	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1016 }
1017 
1018 static void rpc_release_resources_task(struct rpc_task *task)
1019 {
1020 	xprt_release(task);
1021 	if (task->tk_msg.rpc_cred) {
1022 		put_rpccred(task->tk_msg.rpc_cred);
1023 		task->tk_msg.rpc_cred = NULL;
1024 	}
1025 	rpc_task_release_client(task);
1026 }
1027 
1028 static void rpc_final_put_task(struct rpc_task *task,
1029 		struct workqueue_struct *q)
1030 {
1031 	if (q != NULL) {
1032 		INIT_WORK(&task->u.tk_work, rpc_async_release);
1033 		queue_work(q, &task->u.tk_work);
1034 	} else
1035 		rpc_free_task(task);
1036 }
1037 
1038 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1039 {
1040 	if (atomic_dec_and_test(&task->tk_count)) {
1041 		rpc_release_resources_task(task);
1042 		rpc_final_put_task(task, q);
1043 	}
1044 }
1045 
1046 void rpc_put_task(struct rpc_task *task)
1047 {
1048 	rpc_do_put_task(task, NULL);
1049 }
1050 EXPORT_SYMBOL_GPL(rpc_put_task);
1051 
1052 void rpc_put_task_async(struct rpc_task *task)
1053 {
1054 	rpc_do_put_task(task, task->tk_workqueue);
1055 }
1056 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1057 
1058 static void rpc_release_task(struct rpc_task *task)
1059 {
1060 	dprintk("RPC: %5u release task\n", task->tk_pid);
1061 
1062 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
1063 
1064 	rpc_release_resources_task(task);
1065 
1066 	/*
1067 	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1068 	 * so it should be safe to use task->tk_count as a test for whether
1069 	 * or not any other processes still hold references to our rpc_task.
1070 	 */
1071 	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1072 		/* Wake up anyone who may be waiting for task completion */
1073 		if (!rpc_complete_task(task))
1074 			return;
1075 	} else {
1076 		if (!atomic_dec_and_test(&task->tk_count))
1077 			return;
1078 	}
1079 	rpc_final_put_task(task, task->tk_workqueue);
1080 }
1081 
1082 int rpciod_up(void)
1083 {
1084 	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1085 }
1086 
1087 void rpciod_down(void)
1088 {
1089 	module_put(THIS_MODULE);
1090 }
1091 
1092 /*
1093  * Start up the rpciod workqueue.
1094  */
1095 static int rpciod_start(void)
1096 {
1097 	struct workqueue_struct *wq;
1098 
1099 	/*
1100 	 * Create the rpciod thread and wait for it to start.
1101 	 */
1102 	dprintk("RPC:       creating workqueue rpciod\n");
1103 	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
1104 	if (!wq)
1105 		goto out_failed;
1106 	rpciod_workqueue = wq;
1107 	/* Note: highpri because network receive is latency sensitive */
1108 	wq = alloc_workqueue("xprtiod", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1109 	if (!wq)
1110 		goto free_rpciod;
1111 	xprtiod_workqueue = wq;
1112 	return 1;
1113 free_rpciod:
1114 	wq = rpciod_workqueue;
1115 	rpciod_workqueue = NULL;
1116 	destroy_workqueue(wq);
1117 out_failed:
1118 	return 0;
1119 }
1120 
1121 static void rpciod_stop(void)
1122 {
1123 	struct workqueue_struct *wq = NULL;
1124 
1125 	if (rpciod_workqueue == NULL)
1126 		return;
1127 	dprintk("RPC:       destroying workqueue rpciod\n");
1128 
1129 	wq = rpciod_workqueue;
1130 	rpciod_workqueue = NULL;
1131 	destroy_workqueue(wq);
1132 	wq = xprtiod_workqueue;
1133 	xprtiod_workqueue = NULL;
1134 	destroy_workqueue(wq);
1135 }
1136 
1137 void
1138 rpc_destroy_mempool(void)
1139 {
1140 	rpciod_stop();
1141 	mempool_destroy(rpc_buffer_mempool);
1142 	mempool_destroy(rpc_task_mempool);
1143 	kmem_cache_destroy(rpc_task_slabp);
1144 	kmem_cache_destroy(rpc_buffer_slabp);
1145 	rpc_destroy_wait_queue(&delay_queue);
1146 }
1147 
1148 int
1149 rpc_init_mempool(void)
1150 {
1151 	/*
1152 	 * The following is not strictly a mempool initialisation,
1153 	 * but there is no harm in doing it here
1154 	 */
1155 	rpc_init_wait_queue(&delay_queue, "delayq");
1156 	if (!rpciod_start())
1157 		goto err_nomem;
1158 
1159 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1160 					     sizeof(struct rpc_task),
1161 					     0, SLAB_HWCACHE_ALIGN,
1162 					     NULL);
1163 	if (!rpc_task_slabp)
1164 		goto err_nomem;
1165 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1166 					     RPC_BUFFER_MAXSIZE,
1167 					     0, SLAB_HWCACHE_ALIGN,
1168 					     NULL);
1169 	if (!rpc_buffer_slabp)
1170 		goto err_nomem;
1171 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1172 						    rpc_task_slabp);
1173 	if (!rpc_task_mempool)
1174 		goto err_nomem;
1175 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1176 						      rpc_buffer_slabp);
1177 	if (!rpc_buffer_mempool)
1178 		goto err_nomem;
1179 	return 0;
1180 err_nomem:
1181 	rpc_destroy_mempool();
1182 	return -ENOMEM;
1183 }
1184