1 /* 2 * linux/net/sunrpc/sched.c 3 * 4 * Scheduling for synchronous and asynchronous RPC requests. 5 * 6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> 7 * 8 * TCP NFS related read + write fixes 9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 10 */ 11 12 #include <linux/module.h> 13 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/mempool.h> 18 #include <linux/smp.h> 19 #include <linux/spinlock.h> 20 #include <linux/mutex.h> 21 #include <linux/freezer.h> 22 23 #include <linux/sunrpc/clnt.h> 24 25 #include "sunrpc.h" 26 27 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 28 #define RPCDBG_FACILITY RPCDBG_SCHED 29 #endif 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/sunrpc.h> 33 34 /* 35 * RPC slabs and memory pools 36 */ 37 #define RPC_BUFFER_MAXSIZE (2048) 38 #define RPC_BUFFER_POOLSIZE (8) 39 #define RPC_TASK_POOLSIZE (8) 40 static struct kmem_cache *rpc_task_slabp __read_mostly; 41 static struct kmem_cache *rpc_buffer_slabp __read_mostly; 42 static mempool_t *rpc_task_mempool __read_mostly; 43 static mempool_t *rpc_buffer_mempool __read_mostly; 44 45 static void rpc_async_schedule(struct work_struct *); 46 static void rpc_release_task(struct rpc_task *task); 47 static void __rpc_queue_timer_fn(unsigned long ptr); 48 49 /* 50 * RPC tasks sit here while waiting for conditions to improve. 51 */ 52 static struct rpc_wait_queue delay_queue; 53 54 /* 55 * rpciod-related stuff 56 */ 57 struct workqueue_struct *rpciod_workqueue __read_mostly; 58 struct workqueue_struct *xprtiod_workqueue __read_mostly; 59 60 /* 61 * Disable the timer for a given RPC task. Should be called with 62 * queue->lock and bh_disabled in order to avoid races within 63 * rpc_run_timer(). 64 */ 65 static void 66 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 67 { 68 if (task->tk_timeout == 0) 69 return; 70 dprintk("RPC: %5u disabling timer\n", task->tk_pid); 71 task->tk_timeout = 0; 72 list_del(&task->u.tk_wait.timer_list); 73 if (list_empty(&queue->timer_list.list)) 74 del_timer(&queue->timer_list.timer); 75 } 76 77 static void 78 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires) 79 { 80 queue->timer_list.expires = expires; 81 mod_timer(&queue->timer_list.timer, expires); 82 } 83 84 /* 85 * Set up a timer for the current task. 86 */ 87 static void 88 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 89 { 90 if (!task->tk_timeout) 91 return; 92 93 dprintk("RPC: %5u setting alarm for %u ms\n", 94 task->tk_pid, jiffies_to_msecs(task->tk_timeout)); 95 96 task->u.tk_wait.expires = jiffies + task->tk_timeout; 97 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires)) 98 rpc_set_queue_timer(queue, task->u.tk_wait.expires); 99 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list); 100 } 101 102 static void rpc_rotate_queue_owner(struct rpc_wait_queue *queue) 103 { 104 struct list_head *q = &queue->tasks[queue->priority]; 105 struct rpc_task *task; 106 107 if (!list_empty(q)) { 108 task = list_first_entry(q, struct rpc_task, u.tk_wait.list); 109 if (task->tk_owner == queue->owner) 110 list_move_tail(&task->u.tk_wait.list, q); 111 } 112 } 113 114 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) 115 { 116 if (queue->priority != priority) { 117 /* Fairness: rotate the list when changing priority */ 118 rpc_rotate_queue_owner(queue); 119 queue->priority = priority; 120 } 121 } 122 123 static void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid) 124 { 125 queue->owner = pid; 126 queue->nr = RPC_BATCH_COUNT; 127 } 128 129 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) 130 { 131 rpc_set_waitqueue_priority(queue, queue->maxpriority); 132 rpc_set_waitqueue_owner(queue, 0); 133 } 134 135 /* 136 * Add new request to a priority queue. 137 */ 138 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, 139 struct rpc_task *task, 140 unsigned char queue_priority) 141 { 142 struct list_head *q; 143 struct rpc_task *t; 144 145 INIT_LIST_HEAD(&task->u.tk_wait.links); 146 if (unlikely(queue_priority > queue->maxpriority)) 147 queue_priority = queue->maxpriority; 148 if (queue_priority > queue->priority) 149 rpc_set_waitqueue_priority(queue, queue_priority); 150 q = &queue->tasks[queue_priority]; 151 list_for_each_entry(t, q, u.tk_wait.list) { 152 if (t->tk_owner == task->tk_owner) { 153 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links); 154 return; 155 } 156 } 157 list_add_tail(&task->u.tk_wait.list, q); 158 } 159 160 /* 161 * Add new request to wait queue. 162 * 163 * Swapper tasks always get inserted at the head of the queue. 164 * This should avoid many nasty memory deadlocks and hopefully 165 * improve overall performance. 166 * Everyone else gets appended to the queue to ensure proper FIFO behavior. 167 */ 168 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, 169 struct rpc_task *task, 170 unsigned char queue_priority) 171 { 172 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 173 if (RPC_IS_QUEUED(task)) 174 return; 175 176 if (RPC_IS_PRIORITY(queue)) 177 __rpc_add_wait_queue_priority(queue, task, queue_priority); 178 else if (RPC_IS_SWAPPER(task)) 179 list_add(&task->u.tk_wait.list, &queue->tasks[0]); 180 else 181 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); 182 task->tk_waitqueue = queue; 183 queue->qlen++; 184 /* barrier matches the read in rpc_wake_up_task_queue_locked() */ 185 smp_wmb(); 186 rpc_set_queued(task); 187 188 dprintk("RPC: %5u added to queue %p \"%s\"\n", 189 task->tk_pid, queue, rpc_qname(queue)); 190 } 191 192 /* 193 * Remove request from a priority queue. 194 */ 195 static void __rpc_remove_wait_queue_priority(struct rpc_task *task) 196 { 197 struct rpc_task *t; 198 199 if (!list_empty(&task->u.tk_wait.links)) { 200 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list); 201 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list); 202 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links); 203 } 204 } 205 206 /* 207 * Remove request from queue. 208 * Note: must be called with spin lock held. 209 */ 210 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 211 { 212 __rpc_disable_timer(queue, task); 213 if (RPC_IS_PRIORITY(queue)) 214 __rpc_remove_wait_queue_priority(task); 215 list_del(&task->u.tk_wait.list); 216 queue->qlen--; 217 dprintk("RPC: %5u removed from queue %p \"%s\"\n", 218 task->tk_pid, queue, rpc_qname(queue)); 219 } 220 221 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues) 222 { 223 int i; 224 225 spin_lock_init(&queue->lock); 226 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) 227 INIT_LIST_HEAD(&queue->tasks[i]); 228 queue->maxpriority = nr_queues - 1; 229 rpc_reset_waitqueue_priority(queue); 230 queue->qlen = 0; 231 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue); 232 INIT_LIST_HEAD(&queue->timer_list.list); 233 rpc_assign_waitqueue_name(queue, qname); 234 } 235 236 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) 237 { 238 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY); 239 } 240 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue); 241 242 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) 243 { 244 __rpc_init_priority_wait_queue(queue, qname, 1); 245 } 246 EXPORT_SYMBOL_GPL(rpc_init_wait_queue); 247 248 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue) 249 { 250 del_timer_sync(&queue->timer_list.timer); 251 } 252 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue); 253 254 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode) 255 { 256 freezable_schedule_unsafe(); 257 if (signal_pending_state(mode, current)) 258 return -ERESTARTSYS; 259 return 0; 260 } 261 262 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS) 263 static void rpc_task_set_debuginfo(struct rpc_task *task) 264 { 265 static atomic_t rpc_pid; 266 267 task->tk_pid = atomic_inc_return(&rpc_pid); 268 } 269 #else 270 static inline void rpc_task_set_debuginfo(struct rpc_task *task) 271 { 272 } 273 #endif 274 275 static void rpc_set_active(struct rpc_task *task) 276 { 277 trace_rpc_task_begin(task->tk_client, task, NULL); 278 279 rpc_task_set_debuginfo(task); 280 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 281 } 282 283 /* 284 * Mark an RPC call as having completed by clearing the 'active' bit 285 * and then waking up all tasks that were sleeping. 286 */ 287 static int rpc_complete_task(struct rpc_task *task) 288 { 289 void *m = &task->tk_runstate; 290 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE); 291 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE); 292 unsigned long flags; 293 int ret; 294 295 trace_rpc_task_complete(task->tk_client, task, NULL); 296 297 spin_lock_irqsave(&wq->lock, flags); 298 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 299 ret = atomic_dec_and_test(&task->tk_count); 300 if (waitqueue_active(wq)) 301 __wake_up_locked_key(wq, TASK_NORMAL, &k); 302 spin_unlock_irqrestore(&wq->lock, flags); 303 return ret; 304 } 305 306 /* 307 * Allow callers to wait for completion of an RPC call 308 * 309 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit() 310 * to enforce taking of the wq->lock and hence avoid races with 311 * rpc_complete_task(). 312 */ 313 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action) 314 { 315 if (action == NULL) 316 action = rpc_wait_bit_killable; 317 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, 318 action, TASK_KILLABLE); 319 } 320 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task); 321 322 /* 323 * Make an RPC task runnable. 324 * 325 * Note: If the task is ASYNC, and is being made runnable after sitting on an 326 * rpc_wait_queue, this must be called with the queue spinlock held to protect 327 * the wait queue operation. 328 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(), 329 * which is needed to ensure that __rpc_execute() doesn't loop (due to the 330 * lockless RPC_IS_QUEUED() test) before we've had a chance to test 331 * the RPC_TASK_RUNNING flag. 332 */ 333 static void rpc_make_runnable(struct workqueue_struct *wq, 334 struct rpc_task *task) 335 { 336 bool need_wakeup = !rpc_test_and_set_running(task); 337 338 rpc_clear_queued(task); 339 if (!need_wakeup) 340 return; 341 if (RPC_IS_ASYNC(task)) { 342 INIT_WORK(&task->u.tk_work, rpc_async_schedule); 343 queue_work(wq, &task->u.tk_work); 344 } else 345 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); 346 } 347 348 /* 349 * Prepare for sleeping on a wait queue. 350 * By always appending tasks to the list we ensure FIFO behavior. 351 * NB: An RPC task will only receive interrupt-driven events as long 352 * as it's on a wait queue. 353 */ 354 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q, 355 struct rpc_task *task, 356 rpc_action action, 357 unsigned char queue_priority) 358 { 359 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n", 360 task->tk_pid, rpc_qname(q), jiffies); 361 362 trace_rpc_task_sleep(task->tk_client, task, q); 363 364 __rpc_add_wait_queue(q, task, queue_priority); 365 366 WARN_ON_ONCE(task->tk_callback != NULL); 367 task->tk_callback = action; 368 __rpc_add_timer(q, task); 369 } 370 371 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 372 rpc_action action) 373 { 374 /* We shouldn't ever put an inactive task to sleep */ 375 WARN_ON_ONCE(!RPC_IS_ACTIVATED(task)); 376 if (!RPC_IS_ACTIVATED(task)) { 377 task->tk_status = -EIO; 378 rpc_put_task_async(task); 379 return; 380 } 381 382 /* 383 * Protect the queue operations. 384 */ 385 spin_lock_bh(&q->lock); 386 __rpc_sleep_on_priority(q, task, action, task->tk_priority); 387 spin_unlock_bh(&q->lock); 388 } 389 EXPORT_SYMBOL_GPL(rpc_sleep_on); 390 391 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task, 392 rpc_action action, int priority) 393 { 394 /* We shouldn't ever put an inactive task to sleep */ 395 WARN_ON_ONCE(!RPC_IS_ACTIVATED(task)); 396 if (!RPC_IS_ACTIVATED(task)) { 397 task->tk_status = -EIO; 398 rpc_put_task_async(task); 399 return; 400 } 401 402 /* 403 * Protect the queue operations. 404 */ 405 spin_lock_bh(&q->lock); 406 __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW); 407 spin_unlock_bh(&q->lock); 408 } 409 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority); 410 411 /** 412 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task 413 * @wq: workqueue on which to run task 414 * @queue: wait queue 415 * @task: task to be woken up 416 * 417 * Caller must hold queue->lock, and have cleared the task queued flag. 418 */ 419 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq, 420 struct rpc_wait_queue *queue, 421 struct rpc_task *task) 422 { 423 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n", 424 task->tk_pid, jiffies); 425 426 /* Has the task been executed yet? If not, we cannot wake it up! */ 427 if (!RPC_IS_ACTIVATED(task)) { 428 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); 429 return; 430 } 431 432 trace_rpc_task_wakeup(task->tk_client, task, queue); 433 434 __rpc_remove_wait_queue(queue, task); 435 436 rpc_make_runnable(wq, task); 437 438 dprintk("RPC: __rpc_wake_up_task done\n"); 439 } 440 441 /* 442 * Wake up a queued task while the queue lock is being held 443 */ 444 static void rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq, 445 struct rpc_wait_queue *queue, struct rpc_task *task) 446 { 447 if (RPC_IS_QUEUED(task)) { 448 smp_rmb(); 449 if (task->tk_waitqueue == queue) 450 __rpc_do_wake_up_task_on_wq(wq, queue, task); 451 } 452 } 453 454 /* 455 * Wake up a queued task while the queue lock is being held 456 */ 457 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task) 458 { 459 rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task); 460 } 461 462 /* 463 * Wake up a task on a specific queue 464 */ 465 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task) 466 { 467 spin_lock_bh(&queue->lock); 468 rpc_wake_up_task_queue_locked(queue, task); 469 spin_unlock_bh(&queue->lock); 470 } 471 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task); 472 473 /* 474 * Wake up the next task on a priority queue. 475 */ 476 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue) 477 { 478 struct list_head *q; 479 struct rpc_task *task; 480 481 /* 482 * Service a batch of tasks from a single owner. 483 */ 484 q = &queue->tasks[queue->priority]; 485 if (!list_empty(q)) { 486 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 487 if (queue->owner == task->tk_owner) { 488 if (--queue->nr) 489 goto out; 490 list_move_tail(&task->u.tk_wait.list, q); 491 } 492 /* 493 * Check if we need to switch queues. 494 */ 495 goto new_owner; 496 } 497 498 /* 499 * Service the next queue. 500 */ 501 do { 502 if (q == &queue->tasks[0]) 503 q = &queue->tasks[queue->maxpriority]; 504 else 505 q = q - 1; 506 if (!list_empty(q)) { 507 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 508 goto new_queue; 509 } 510 } while (q != &queue->tasks[queue->priority]); 511 512 rpc_reset_waitqueue_priority(queue); 513 return NULL; 514 515 new_queue: 516 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); 517 new_owner: 518 rpc_set_waitqueue_owner(queue, task->tk_owner); 519 out: 520 return task; 521 } 522 523 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue) 524 { 525 if (RPC_IS_PRIORITY(queue)) 526 return __rpc_find_next_queued_priority(queue); 527 if (!list_empty(&queue->tasks[0])) 528 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list); 529 return NULL; 530 } 531 532 /* 533 * Wake up the first task on the wait queue. 534 */ 535 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq, 536 struct rpc_wait_queue *queue, 537 bool (*func)(struct rpc_task *, void *), void *data) 538 { 539 struct rpc_task *task = NULL; 540 541 dprintk("RPC: wake_up_first(%p \"%s\")\n", 542 queue, rpc_qname(queue)); 543 spin_lock_bh(&queue->lock); 544 task = __rpc_find_next_queued(queue); 545 if (task != NULL) { 546 if (func(task, data)) 547 rpc_wake_up_task_on_wq_queue_locked(wq, queue, task); 548 else 549 task = NULL; 550 } 551 spin_unlock_bh(&queue->lock); 552 553 return task; 554 } 555 556 /* 557 * Wake up the first task on the wait queue. 558 */ 559 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue, 560 bool (*func)(struct rpc_task *, void *), void *data) 561 { 562 return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data); 563 } 564 EXPORT_SYMBOL_GPL(rpc_wake_up_first); 565 566 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data) 567 { 568 return true; 569 } 570 571 /* 572 * Wake up the next task on the wait queue. 573 */ 574 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue) 575 { 576 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL); 577 } 578 EXPORT_SYMBOL_GPL(rpc_wake_up_next); 579 580 /** 581 * rpc_wake_up - wake up all rpc_tasks 582 * @queue: rpc_wait_queue on which the tasks are sleeping 583 * 584 * Grabs queue->lock 585 */ 586 void rpc_wake_up(struct rpc_wait_queue *queue) 587 { 588 struct list_head *head; 589 590 spin_lock_bh(&queue->lock); 591 head = &queue->tasks[queue->maxpriority]; 592 for (;;) { 593 while (!list_empty(head)) { 594 struct rpc_task *task; 595 task = list_first_entry(head, 596 struct rpc_task, 597 u.tk_wait.list); 598 rpc_wake_up_task_queue_locked(queue, task); 599 } 600 if (head == &queue->tasks[0]) 601 break; 602 head--; 603 } 604 spin_unlock_bh(&queue->lock); 605 } 606 EXPORT_SYMBOL_GPL(rpc_wake_up); 607 608 /** 609 * rpc_wake_up_status - wake up all rpc_tasks and set their status value. 610 * @queue: rpc_wait_queue on which the tasks are sleeping 611 * @status: status value to set 612 * 613 * Grabs queue->lock 614 */ 615 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) 616 { 617 struct list_head *head; 618 619 spin_lock_bh(&queue->lock); 620 head = &queue->tasks[queue->maxpriority]; 621 for (;;) { 622 while (!list_empty(head)) { 623 struct rpc_task *task; 624 task = list_first_entry(head, 625 struct rpc_task, 626 u.tk_wait.list); 627 task->tk_status = status; 628 rpc_wake_up_task_queue_locked(queue, task); 629 } 630 if (head == &queue->tasks[0]) 631 break; 632 head--; 633 } 634 spin_unlock_bh(&queue->lock); 635 } 636 EXPORT_SYMBOL_GPL(rpc_wake_up_status); 637 638 static void __rpc_queue_timer_fn(unsigned long ptr) 639 { 640 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr; 641 struct rpc_task *task, *n; 642 unsigned long expires, now, timeo; 643 644 spin_lock(&queue->lock); 645 expires = now = jiffies; 646 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) { 647 timeo = task->u.tk_wait.expires; 648 if (time_after_eq(now, timeo)) { 649 dprintk("RPC: %5u timeout\n", task->tk_pid); 650 task->tk_status = -ETIMEDOUT; 651 rpc_wake_up_task_queue_locked(queue, task); 652 continue; 653 } 654 if (expires == now || time_after(expires, timeo)) 655 expires = timeo; 656 } 657 if (!list_empty(&queue->timer_list.list)) 658 rpc_set_queue_timer(queue, expires); 659 spin_unlock(&queue->lock); 660 } 661 662 static void __rpc_atrun(struct rpc_task *task) 663 { 664 if (task->tk_status == -ETIMEDOUT) 665 task->tk_status = 0; 666 } 667 668 /* 669 * Run a task at a later time 670 */ 671 void rpc_delay(struct rpc_task *task, unsigned long delay) 672 { 673 task->tk_timeout = delay; 674 rpc_sleep_on(&delay_queue, task, __rpc_atrun); 675 } 676 EXPORT_SYMBOL_GPL(rpc_delay); 677 678 /* 679 * Helper to call task->tk_ops->rpc_call_prepare 680 */ 681 void rpc_prepare_task(struct rpc_task *task) 682 { 683 task->tk_ops->rpc_call_prepare(task, task->tk_calldata); 684 } 685 686 static void 687 rpc_init_task_statistics(struct rpc_task *task) 688 { 689 /* Initialize retry counters */ 690 task->tk_garb_retry = 2; 691 task->tk_cred_retry = 2; 692 task->tk_rebind_retry = 2; 693 694 /* starting timestamp */ 695 task->tk_start = ktime_get(); 696 } 697 698 static void 699 rpc_reset_task_statistics(struct rpc_task *task) 700 { 701 task->tk_timeouts = 0; 702 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT); 703 704 rpc_init_task_statistics(task); 705 } 706 707 /* 708 * Helper that calls task->tk_ops->rpc_call_done if it exists 709 */ 710 void rpc_exit_task(struct rpc_task *task) 711 { 712 task->tk_action = NULL; 713 if (task->tk_ops->rpc_call_done != NULL) { 714 task->tk_ops->rpc_call_done(task, task->tk_calldata); 715 if (task->tk_action != NULL) { 716 WARN_ON(RPC_ASSASSINATED(task)); 717 /* Always release the RPC slot and buffer memory */ 718 xprt_release(task); 719 rpc_reset_task_statistics(task); 720 } 721 } 722 } 723 724 void rpc_exit(struct rpc_task *task, int status) 725 { 726 task->tk_status = status; 727 task->tk_action = rpc_exit_task; 728 if (RPC_IS_QUEUED(task)) 729 rpc_wake_up_queued_task(task->tk_waitqueue, task); 730 } 731 EXPORT_SYMBOL_GPL(rpc_exit); 732 733 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata) 734 { 735 if (ops->rpc_release != NULL) 736 ops->rpc_release(calldata); 737 } 738 739 /* 740 * This is the RPC `scheduler' (or rather, the finite state machine). 741 */ 742 static void __rpc_execute(struct rpc_task *task) 743 { 744 struct rpc_wait_queue *queue; 745 int task_is_async = RPC_IS_ASYNC(task); 746 int status = 0; 747 748 dprintk("RPC: %5u __rpc_execute flags=0x%x\n", 749 task->tk_pid, task->tk_flags); 750 751 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 752 if (RPC_IS_QUEUED(task)) 753 return; 754 755 for (;;) { 756 void (*do_action)(struct rpc_task *); 757 758 /* 759 * Execute any pending callback first. 760 */ 761 do_action = task->tk_callback; 762 task->tk_callback = NULL; 763 if (do_action == NULL) { 764 /* 765 * Perform the next FSM step. 766 * tk_action may be NULL if the task has been killed. 767 * In particular, note that rpc_killall_tasks may 768 * do this at any time, so beware when dereferencing. 769 */ 770 do_action = task->tk_action; 771 if (do_action == NULL) 772 break; 773 } 774 trace_rpc_task_run_action(task->tk_client, task, task->tk_action); 775 do_action(task); 776 777 /* 778 * Lockless check for whether task is sleeping or not. 779 */ 780 if (!RPC_IS_QUEUED(task)) 781 continue; 782 /* 783 * The queue->lock protects against races with 784 * rpc_make_runnable(). 785 * 786 * Note that once we clear RPC_TASK_RUNNING on an asynchronous 787 * rpc_task, rpc_make_runnable() can assign it to a 788 * different workqueue. We therefore cannot assume that the 789 * rpc_task pointer may still be dereferenced. 790 */ 791 queue = task->tk_waitqueue; 792 spin_lock_bh(&queue->lock); 793 if (!RPC_IS_QUEUED(task)) { 794 spin_unlock_bh(&queue->lock); 795 continue; 796 } 797 rpc_clear_running(task); 798 spin_unlock_bh(&queue->lock); 799 if (task_is_async) 800 return; 801 802 /* sync task: sleep here */ 803 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid); 804 status = out_of_line_wait_on_bit(&task->tk_runstate, 805 RPC_TASK_QUEUED, rpc_wait_bit_killable, 806 TASK_KILLABLE); 807 if (status == -ERESTARTSYS) { 808 /* 809 * When a sync task receives a signal, it exits with 810 * -ERESTARTSYS. In order to catch any callbacks that 811 * clean up after sleeping on some queue, we don't 812 * break the loop here, but go around once more. 813 */ 814 dprintk("RPC: %5u got signal\n", task->tk_pid); 815 task->tk_flags |= RPC_TASK_KILLED; 816 rpc_exit(task, -ERESTARTSYS); 817 } 818 dprintk("RPC: %5u sync task resuming\n", task->tk_pid); 819 } 820 821 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status, 822 task->tk_status); 823 /* Release all resources associated with the task */ 824 rpc_release_task(task); 825 } 826 827 /* 828 * User-visible entry point to the scheduler. 829 * 830 * This may be called recursively if e.g. an async NFS task updates 831 * the attributes and finds that dirty pages must be flushed. 832 * NOTE: Upon exit of this function the task is guaranteed to be 833 * released. In particular note that tk_release() will have 834 * been called, so your task memory may have been freed. 835 */ 836 void rpc_execute(struct rpc_task *task) 837 { 838 bool is_async = RPC_IS_ASYNC(task); 839 840 rpc_set_active(task); 841 rpc_make_runnable(rpciod_workqueue, task); 842 if (!is_async) 843 __rpc_execute(task); 844 } 845 846 static void rpc_async_schedule(struct work_struct *work) 847 { 848 __rpc_execute(container_of(work, struct rpc_task, u.tk_work)); 849 } 850 851 /** 852 * rpc_malloc - allocate RPC buffer resources 853 * @task: RPC task 854 * 855 * A single memory region is allocated, which is split between the 856 * RPC call and RPC reply that this task is being used for. When 857 * this RPC is retired, the memory is released by calling rpc_free. 858 * 859 * To prevent rpciod from hanging, this allocator never sleeps, 860 * returning -ENOMEM and suppressing warning if the request cannot 861 * be serviced immediately. The caller can arrange to sleep in a 862 * way that is safe for rpciod. 863 * 864 * Most requests are 'small' (under 2KiB) and can be serviced from a 865 * mempool, ensuring that NFS reads and writes can always proceed, 866 * and that there is good locality of reference for these buffers. 867 * 868 * In order to avoid memory starvation triggering more writebacks of 869 * NFS requests, we avoid using GFP_KERNEL. 870 */ 871 int rpc_malloc(struct rpc_task *task) 872 { 873 struct rpc_rqst *rqst = task->tk_rqstp; 874 size_t size = rqst->rq_callsize + rqst->rq_rcvsize; 875 struct rpc_buffer *buf; 876 gfp_t gfp = GFP_NOIO | __GFP_NOWARN; 877 878 if (RPC_IS_SWAPPER(task)) 879 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN; 880 881 size += sizeof(struct rpc_buffer); 882 if (size <= RPC_BUFFER_MAXSIZE) 883 buf = mempool_alloc(rpc_buffer_mempool, gfp); 884 else 885 buf = kmalloc(size, gfp); 886 887 if (!buf) 888 return -ENOMEM; 889 890 buf->len = size; 891 dprintk("RPC: %5u allocated buffer of size %zu at %p\n", 892 task->tk_pid, size, buf); 893 rqst->rq_buffer = buf->data; 894 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize; 895 return 0; 896 } 897 EXPORT_SYMBOL_GPL(rpc_malloc); 898 899 /** 900 * rpc_free - free RPC buffer resources allocated via rpc_malloc 901 * @task: RPC task 902 * 903 */ 904 void rpc_free(struct rpc_task *task) 905 { 906 void *buffer = task->tk_rqstp->rq_buffer; 907 size_t size; 908 struct rpc_buffer *buf; 909 910 buf = container_of(buffer, struct rpc_buffer, data); 911 size = buf->len; 912 913 dprintk("RPC: freeing buffer of size %zu at %p\n", 914 size, buf); 915 916 if (size <= RPC_BUFFER_MAXSIZE) 917 mempool_free(buf, rpc_buffer_mempool); 918 else 919 kfree(buf); 920 } 921 EXPORT_SYMBOL_GPL(rpc_free); 922 923 /* 924 * Creation and deletion of RPC task structures 925 */ 926 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data) 927 { 928 memset(task, 0, sizeof(*task)); 929 atomic_set(&task->tk_count, 1); 930 task->tk_flags = task_setup_data->flags; 931 task->tk_ops = task_setup_data->callback_ops; 932 task->tk_calldata = task_setup_data->callback_data; 933 INIT_LIST_HEAD(&task->tk_task); 934 935 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW; 936 task->tk_owner = current->tgid; 937 938 /* Initialize workqueue for async tasks */ 939 task->tk_workqueue = task_setup_data->workqueue; 940 941 task->tk_xprt = xprt_get(task_setup_data->rpc_xprt); 942 943 if (task->tk_ops->rpc_call_prepare != NULL) 944 task->tk_action = rpc_prepare_task; 945 946 rpc_init_task_statistics(task); 947 948 dprintk("RPC: new task initialized, procpid %u\n", 949 task_pid_nr(current)); 950 } 951 952 static struct rpc_task * 953 rpc_alloc_task(void) 954 { 955 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO); 956 } 957 958 /* 959 * Create a new task for the specified client. 960 */ 961 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data) 962 { 963 struct rpc_task *task = setup_data->task; 964 unsigned short flags = 0; 965 966 if (task == NULL) { 967 task = rpc_alloc_task(); 968 if (task == NULL) { 969 rpc_release_calldata(setup_data->callback_ops, 970 setup_data->callback_data); 971 return ERR_PTR(-ENOMEM); 972 } 973 flags = RPC_TASK_DYNAMIC; 974 } 975 976 rpc_init_task(task, setup_data); 977 task->tk_flags |= flags; 978 dprintk("RPC: allocated task %p\n", task); 979 return task; 980 } 981 982 /* 983 * rpc_free_task - release rpc task and perform cleanups 984 * 985 * Note that we free up the rpc_task _after_ rpc_release_calldata() 986 * in order to work around a workqueue dependency issue. 987 * 988 * Tejun Heo states: 989 * "Workqueue currently considers two work items to be the same if they're 990 * on the same address and won't execute them concurrently - ie. it 991 * makes a work item which is queued again while being executed wait 992 * for the previous execution to complete. 993 * 994 * If a work function frees the work item, and then waits for an event 995 * which should be performed by another work item and *that* work item 996 * recycles the freed work item, it can create a false dependency loop. 997 * There really is no reliable way to detect this short of verifying 998 * every memory free." 999 * 1000 */ 1001 static void rpc_free_task(struct rpc_task *task) 1002 { 1003 unsigned short tk_flags = task->tk_flags; 1004 1005 rpc_release_calldata(task->tk_ops, task->tk_calldata); 1006 1007 if (tk_flags & RPC_TASK_DYNAMIC) { 1008 dprintk("RPC: %5u freeing task\n", task->tk_pid); 1009 mempool_free(task, rpc_task_mempool); 1010 } 1011 } 1012 1013 static void rpc_async_release(struct work_struct *work) 1014 { 1015 rpc_free_task(container_of(work, struct rpc_task, u.tk_work)); 1016 } 1017 1018 static void rpc_release_resources_task(struct rpc_task *task) 1019 { 1020 xprt_release(task); 1021 if (task->tk_msg.rpc_cred) { 1022 put_rpccred(task->tk_msg.rpc_cred); 1023 task->tk_msg.rpc_cred = NULL; 1024 } 1025 rpc_task_release_client(task); 1026 } 1027 1028 static void rpc_final_put_task(struct rpc_task *task, 1029 struct workqueue_struct *q) 1030 { 1031 if (q != NULL) { 1032 INIT_WORK(&task->u.tk_work, rpc_async_release); 1033 queue_work(q, &task->u.tk_work); 1034 } else 1035 rpc_free_task(task); 1036 } 1037 1038 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q) 1039 { 1040 if (atomic_dec_and_test(&task->tk_count)) { 1041 rpc_release_resources_task(task); 1042 rpc_final_put_task(task, q); 1043 } 1044 } 1045 1046 void rpc_put_task(struct rpc_task *task) 1047 { 1048 rpc_do_put_task(task, NULL); 1049 } 1050 EXPORT_SYMBOL_GPL(rpc_put_task); 1051 1052 void rpc_put_task_async(struct rpc_task *task) 1053 { 1054 rpc_do_put_task(task, task->tk_workqueue); 1055 } 1056 EXPORT_SYMBOL_GPL(rpc_put_task_async); 1057 1058 static void rpc_release_task(struct rpc_task *task) 1059 { 1060 dprintk("RPC: %5u release task\n", task->tk_pid); 1061 1062 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 1063 1064 rpc_release_resources_task(task); 1065 1066 /* 1067 * Note: at this point we have been removed from rpc_clnt->cl_tasks, 1068 * so it should be safe to use task->tk_count as a test for whether 1069 * or not any other processes still hold references to our rpc_task. 1070 */ 1071 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) { 1072 /* Wake up anyone who may be waiting for task completion */ 1073 if (!rpc_complete_task(task)) 1074 return; 1075 } else { 1076 if (!atomic_dec_and_test(&task->tk_count)) 1077 return; 1078 } 1079 rpc_final_put_task(task, task->tk_workqueue); 1080 } 1081 1082 int rpciod_up(void) 1083 { 1084 return try_module_get(THIS_MODULE) ? 0 : -EINVAL; 1085 } 1086 1087 void rpciod_down(void) 1088 { 1089 module_put(THIS_MODULE); 1090 } 1091 1092 /* 1093 * Start up the rpciod workqueue. 1094 */ 1095 static int rpciod_start(void) 1096 { 1097 struct workqueue_struct *wq; 1098 1099 /* 1100 * Create the rpciod thread and wait for it to start. 1101 */ 1102 dprintk("RPC: creating workqueue rpciod\n"); 1103 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0); 1104 if (!wq) 1105 goto out_failed; 1106 rpciod_workqueue = wq; 1107 /* Note: highpri because network receive is latency sensitive */ 1108 wq = alloc_workqueue("xprtiod", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1109 if (!wq) 1110 goto free_rpciod; 1111 xprtiod_workqueue = wq; 1112 return 1; 1113 free_rpciod: 1114 wq = rpciod_workqueue; 1115 rpciod_workqueue = NULL; 1116 destroy_workqueue(wq); 1117 out_failed: 1118 return 0; 1119 } 1120 1121 static void rpciod_stop(void) 1122 { 1123 struct workqueue_struct *wq = NULL; 1124 1125 if (rpciod_workqueue == NULL) 1126 return; 1127 dprintk("RPC: destroying workqueue rpciod\n"); 1128 1129 wq = rpciod_workqueue; 1130 rpciod_workqueue = NULL; 1131 destroy_workqueue(wq); 1132 wq = xprtiod_workqueue; 1133 xprtiod_workqueue = NULL; 1134 destroy_workqueue(wq); 1135 } 1136 1137 void 1138 rpc_destroy_mempool(void) 1139 { 1140 rpciod_stop(); 1141 mempool_destroy(rpc_buffer_mempool); 1142 mempool_destroy(rpc_task_mempool); 1143 kmem_cache_destroy(rpc_task_slabp); 1144 kmem_cache_destroy(rpc_buffer_slabp); 1145 rpc_destroy_wait_queue(&delay_queue); 1146 } 1147 1148 int 1149 rpc_init_mempool(void) 1150 { 1151 /* 1152 * The following is not strictly a mempool initialisation, 1153 * but there is no harm in doing it here 1154 */ 1155 rpc_init_wait_queue(&delay_queue, "delayq"); 1156 if (!rpciod_start()) 1157 goto err_nomem; 1158 1159 rpc_task_slabp = kmem_cache_create("rpc_tasks", 1160 sizeof(struct rpc_task), 1161 0, SLAB_HWCACHE_ALIGN, 1162 NULL); 1163 if (!rpc_task_slabp) 1164 goto err_nomem; 1165 rpc_buffer_slabp = kmem_cache_create("rpc_buffers", 1166 RPC_BUFFER_MAXSIZE, 1167 0, SLAB_HWCACHE_ALIGN, 1168 NULL); 1169 if (!rpc_buffer_slabp) 1170 goto err_nomem; 1171 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE, 1172 rpc_task_slabp); 1173 if (!rpc_task_mempool) 1174 goto err_nomem; 1175 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE, 1176 rpc_buffer_slabp); 1177 if (!rpc_buffer_mempool) 1178 goto err_nomem; 1179 return 0; 1180 err_nomem: 1181 rpc_destroy_mempool(); 1182 return -ENOMEM; 1183 } 1184