1 /* 2 * linux/net/sunrpc/sched.c 3 * 4 * Scheduling for synchronous and asynchronous RPC requests. 5 * 6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> 7 * 8 * TCP NFS related read + write fixes 9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 10 */ 11 12 #include <linux/module.h> 13 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/mempool.h> 18 #include <linux/smp.h> 19 #include <linux/smp_lock.h> 20 #include <linux/spinlock.h> 21 22 #include <linux/sunrpc/clnt.h> 23 #include <linux/sunrpc/xprt.h> 24 25 #ifdef RPC_DEBUG 26 #define RPCDBG_FACILITY RPCDBG_SCHED 27 #define RPC_TASK_MAGIC_ID 0xf00baa 28 static int rpc_task_id; 29 #endif 30 31 /* 32 * RPC slabs and memory pools 33 */ 34 #define RPC_BUFFER_MAXSIZE (2048) 35 #define RPC_BUFFER_POOLSIZE (8) 36 #define RPC_TASK_POOLSIZE (8) 37 static kmem_cache_t *rpc_task_slabp __read_mostly; 38 static kmem_cache_t *rpc_buffer_slabp __read_mostly; 39 static mempool_t *rpc_task_mempool __read_mostly; 40 static mempool_t *rpc_buffer_mempool __read_mostly; 41 42 static void __rpc_default_timer(struct rpc_task *task); 43 static void rpciod_killall(void); 44 static void rpc_async_schedule(void *); 45 46 /* 47 * RPC tasks that create another task (e.g. for contacting the portmapper) 48 * will wait on this queue for their child's completion 49 */ 50 static RPC_WAITQ(childq, "childq"); 51 52 /* 53 * RPC tasks sit here while waiting for conditions to improve. 54 */ 55 static RPC_WAITQ(delay_queue, "delayq"); 56 57 /* 58 * All RPC tasks are linked into this list 59 */ 60 static LIST_HEAD(all_tasks); 61 62 /* 63 * rpciod-related stuff 64 */ 65 static DECLARE_MUTEX(rpciod_sema); 66 static unsigned int rpciod_users; 67 static struct workqueue_struct *rpciod_workqueue; 68 69 /* 70 * Spinlock for other critical sections of code. 71 */ 72 static DEFINE_SPINLOCK(rpc_sched_lock); 73 74 /* 75 * Disable the timer for a given RPC task. Should be called with 76 * queue->lock and bh_disabled in order to avoid races within 77 * rpc_run_timer(). 78 */ 79 static inline void 80 __rpc_disable_timer(struct rpc_task *task) 81 { 82 dprintk("RPC: %4d disabling timer\n", task->tk_pid); 83 task->tk_timeout_fn = NULL; 84 task->tk_timeout = 0; 85 } 86 87 /* 88 * Run a timeout function. 89 * We use the callback in order to allow __rpc_wake_up_task() 90 * and friends to disable the timer synchronously on SMP systems 91 * without calling del_timer_sync(). The latter could cause a 92 * deadlock if called while we're holding spinlocks... 93 */ 94 static void rpc_run_timer(struct rpc_task *task) 95 { 96 void (*callback)(struct rpc_task *); 97 98 callback = task->tk_timeout_fn; 99 task->tk_timeout_fn = NULL; 100 if (callback && RPC_IS_QUEUED(task)) { 101 dprintk("RPC: %4d running timer\n", task->tk_pid); 102 callback(task); 103 } 104 smp_mb__before_clear_bit(); 105 clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate); 106 smp_mb__after_clear_bit(); 107 } 108 109 /* 110 * Set up a timer for the current task. 111 */ 112 static inline void 113 __rpc_add_timer(struct rpc_task *task, rpc_action timer) 114 { 115 if (!task->tk_timeout) 116 return; 117 118 dprintk("RPC: %4d setting alarm for %lu ms\n", 119 task->tk_pid, task->tk_timeout * 1000 / HZ); 120 121 if (timer) 122 task->tk_timeout_fn = timer; 123 else 124 task->tk_timeout_fn = __rpc_default_timer; 125 set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate); 126 mod_timer(&task->tk_timer, jiffies + task->tk_timeout); 127 } 128 129 /* 130 * Delete any timer for the current task. Because we use del_timer_sync(), 131 * this function should never be called while holding queue->lock. 132 */ 133 static void 134 rpc_delete_timer(struct rpc_task *task) 135 { 136 if (RPC_IS_QUEUED(task)) 137 return; 138 if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) { 139 del_singleshot_timer_sync(&task->tk_timer); 140 dprintk("RPC: %4d deleting timer\n", task->tk_pid); 141 } 142 } 143 144 /* 145 * Add new request to a priority queue. 146 */ 147 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task) 148 { 149 struct list_head *q; 150 struct rpc_task *t; 151 152 INIT_LIST_HEAD(&task->u.tk_wait.links); 153 q = &queue->tasks[task->tk_priority]; 154 if (unlikely(task->tk_priority > queue->maxpriority)) 155 q = &queue->tasks[queue->maxpriority]; 156 list_for_each_entry(t, q, u.tk_wait.list) { 157 if (t->tk_cookie == task->tk_cookie) { 158 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links); 159 return; 160 } 161 } 162 list_add_tail(&task->u.tk_wait.list, q); 163 } 164 165 /* 166 * Add new request to wait queue. 167 * 168 * Swapper tasks always get inserted at the head of the queue. 169 * This should avoid many nasty memory deadlocks and hopefully 170 * improve overall performance. 171 * Everyone else gets appended to the queue to ensure proper FIFO behavior. 172 */ 173 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 174 { 175 BUG_ON (RPC_IS_QUEUED(task)); 176 177 if (RPC_IS_PRIORITY(queue)) 178 __rpc_add_wait_queue_priority(queue, task); 179 else if (RPC_IS_SWAPPER(task)) 180 list_add(&task->u.tk_wait.list, &queue->tasks[0]); 181 else 182 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); 183 task->u.tk_wait.rpc_waitq = queue; 184 rpc_set_queued(task); 185 186 dprintk("RPC: %4d added to queue %p \"%s\"\n", 187 task->tk_pid, queue, rpc_qname(queue)); 188 } 189 190 /* 191 * Remove request from a priority queue. 192 */ 193 static void __rpc_remove_wait_queue_priority(struct rpc_task *task) 194 { 195 struct rpc_task *t; 196 197 if (!list_empty(&task->u.tk_wait.links)) { 198 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list); 199 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list); 200 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links); 201 } 202 list_del(&task->u.tk_wait.list); 203 } 204 205 /* 206 * Remove request from queue. 207 * Note: must be called with spin lock held. 208 */ 209 static void __rpc_remove_wait_queue(struct rpc_task *task) 210 { 211 struct rpc_wait_queue *queue; 212 queue = task->u.tk_wait.rpc_waitq; 213 214 if (RPC_IS_PRIORITY(queue)) 215 __rpc_remove_wait_queue_priority(task); 216 else 217 list_del(&task->u.tk_wait.list); 218 dprintk("RPC: %4d removed from queue %p \"%s\"\n", 219 task->tk_pid, queue, rpc_qname(queue)); 220 } 221 222 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) 223 { 224 queue->priority = priority; 225 queue->count = 1 << (priority * 2); 226 } 227 228 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie) 229 { 230 queue->cookie = cookie; 231 queue->nr = RPC_BATCH_COUNT; 232 } 233 234 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) 235 { 236 rpc_set_waitqueue_priority(queue, queue->maxpriority); 237 rpc_set_waitqueue_cookie(queue, 0); 238 } 239 240 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio) 241 { 242 int i; 243 244 spin_lock_init(&queue->lock); 245 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) 246 INIT_LIST_HEAD(&queue->tasks[i]); 247 queue->maxpriority = maxprio; 248 rpc_reset_waitqueue_priority(queue); 249 #ifdef RPC_DEBUG 250 queue->name = qname; 251 #endif 252 } 253 254 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) 255 { 256 __rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH); 257 } 258 259 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) 260 { 261 __rpc_init_priority_wait_queue(queue, qname, 0); 262 } 263 EXPORT_SYMBOL(rpc_init_wait_queue); 264 265 static int rpc_wait_bit_interruptible(void *word) 266 { 267 if (signal_pending(current)) 268 return -ERESTARTSYS; 269 schedule(); 270 return 0; 271 } 272 273 /* 274 * Mark an RPC call as having completed by clearing the 'active' bit 275 */ 276 static inline void rpc_mark_complete_task(struct rpc_task *task) 277 { 278 rpc_clear_active(task); 279 wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE); 280 } 281 282 /* 283 * Allow callers to wait for completion of an RPC call 284 */ 285 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *)) 286 { 287 if (action == NULL) 288 action = rpc_wait_bit_interruptible; 289 return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, 290 action, TASK_INTERRUPTIBLE); 291 } 292 EXPORT_SYMBOL(__rpc_wait_for_completion_task); 293 294 /* 295 * Make an RPC task runnable. 296 * 297 * Note: If the task is ASYNC, this must be called with 298 * the spinlock held to protect the wait queue operation. 299 */ 300 static void rpc_make_runnable(struct rpc_task *task) 301 { 302 int do_ret; 303 304 BUG_ON(task->tk_timeout_fn); 305 do_ret = rpc_test_and_set_running(task); 306 rpc_clear_queued(task); 307 if (do_ret) 308 return; 309 if (RPC_IS_ASYNC(task)) { 310 int status; 311 312 INIT_WORK(&task->u.tk_work, rpc_async_schedule, (void *)task); 313 status = queue_work(task->tk_workqueue, &task->u.tk_work); 314 if (status < 0) { 315 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status); 316 task->tk_status = status; 317 return; 318 } 319 } else 320 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); 321 } 322 323 /* 324 * Place a newly initialized task on the workqueue. 325 */ 326 static inline void 327 rpc_schedule_run(struct rpc_task *task) 328 { 329 rpc_set_active(task); 330 rpc_make_runnable(task); 331 } 332 333 /* 334 * Prepare for sleeping on a wait queue. 335 * By always appending tasks to the list we ensure FIFO behavior. 336 * NB: An RPC task will only receive interrupt-driven events as long 337 * as it's on a wait queue. 338 */ 339 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 340 rpc_action action, rpc_action timer) 341 { 342 dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task->tk_pid, 343 rpc_qname(q), jiffies); 344 345 if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) { 346 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n"); 347 return; 348 } 349 350 /* Mark the task as being activated if so needed */ 351 rpc_set_active(task); 352 353 __rpc_add_wait_queue(q, task); 354 355 BUG_ON(task->tk_callback != NULL); 356 task->tk_callback = action; 357 __rpc_add_timer(task, timer); 358 } 359 360 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 361 rpc_action action, rpc_action timer) 362 { 363 /* 364 * Protect the queue operations. 365 */ 366 spin_lock_bh(&q->lock); 367 __rpc_sleep_on(q, task, action, timer); 368 spin_unlock_bh(&q->lock); 369 } 370 371 /** 372 * __rpc_do_wake_up_task - wake up a single rpc_task 373 * @task: task to be woken up 374 * 375 * Caller must hold queue->lock, and have cleared the task queued flag. 376 */ 377 static void __rpc_do_wake_up_task(struct rpc_task *task) 378 { 379 dprintk("RPC: %4d __rpc_wake_up_task (now %ld)\n", task->tk_pid, jiffies); 380 381 #ifdef RPC_DEBUG 382 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID); 383 #endif 384 /* Has the task been executed yet? If not, we cannot wake it up! */ 385 if (!RPC_IS_ACTIVATED(task)) { 386 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); 387 return; 388 } 389 390 __rpc_disable_timer(task); 391 __rpc_remove_wait_queue(task); 392 393 rpc_make_runnable(task); 394 395 dprintk("RPC: __rpc_wake_up_task done\n"); 396 } 397 398 /* 399 * Wake up the specified task 400 */ 401 static void __rpc_wake_up_task(struct rpc_task *task) 402 { 403 if (rpc_start_wakeup(task)) { 404 if (RPC_IS_QUEUED(task)) 405 __rpc_do_wake_up_task(task); 406 rpc_finish_wakeup(task); 407 } 408 } 409 410 /* 411 * Default timeout handler if none specified by user 412 */ 413 static void 414 __rpc_default_timer(struct rpc_task *task) 415 { 416 dprintk("RPC: %d timeout (default timer)\n", task->tk_pid); 417 task->tk_status = -ETIMEDOUT; 418 rpc_wake_up_task(task); 419 } 420 421 /* 422 * Wake up the specified task 423 */ 424 void rpc_wake_up_task(struct rpc_task *task) 425 { 426 if (rpc_start_wakeup(task)) { 427 if (RPC_IS_QUEUED(task)) { 428 struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq; 429 430 spin_lock_bh(&queue->lock); 431 __rpc_do_wake_up_task(task); 432 spin_unlock_bh(&queue->lock); 433 } 434 rpc_finish_wakeup(task); 435 } 436 } 437 438 /* 439 * Wake up the next task on a priority queue. 440 */ 441 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue) 442 { 443 struct list_head *q; 444 struct rpc_task *task; 445 446 /* 447 * Service a batch of tasks from a single cookie. 448 */ 449 q = &queue->tasks[queue->priority]; 450 if (!list_empty(q)) { 451 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 452 if (queue->cookie == task->tk_cookie) { 453 if (--queue->nr) 454 goto out; 455 list_move_tail(&task->u.tk_wait.list, q); 456 } 457 /* 458 * Check if we need to switch queues. 459 */ 460 if (--queue->count) 461 goto new_cookie; 462 } 463 464 /* 465 * Service the next queue. 466 */ 467 do { 468 if (q == &queue->tasks[0]) 469 q = &queue->tasks[queue->maxpriority]; 470 else 471 q = q - 1; 472 if (!list_empty(q)) { 473 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 474 goto new_queue; 475 } 476 } while (q != &queue->tasks[queue->priority]); 477 478 rpc_reset_waitqueue_priority(queue); 479 return NULL; 480 481 new_queue: 482 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); 483 new_cookie: 484 rpc_set_waitqueue_cookie(queue, task->tk_cookie); 485 out: 486 __rpc_wake_up_task(task); 487 return task; 488 } 489 490 /* 491 * Wake up the next task on the wait queue. 492 */ 493 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue) 494 { 495 struct rpc_task *task = NULL; 496 497 dprintk("RPC: wake_up_next(%p \"%s\")\n", queue, rpc_qname(queue)); 498 spin_lock_bh(&queue->lock); 499 if (RPC_IS_PRIORITY(queue)) 500 task = __rpc_wake_up_next_priority(queue); 501 else { 502 task_for_first(task, &queue->tasks[0]) 503 __rpc_wake_up_task(task); 504 } 505 spin_unlock_bh(&queue->lock); 506 507 return task; 508 } 509 510 /** 511 * rpc_wake_up - wake up all rpc_tasks 512 * @queue: rpc_wait_queue on which the tasks are sleeping 513 * 514 * Grabs queue->lock 515 */ 516 void rpc_wake_up(struct rpc_wait_queue *queue) 517 { 518 struct rpc_task *task, *next; 519 struct list_head *head; 520 521 spin_lock_bh(&queue->lock); 522 head = &queue->tasks[queue->maxpriority]; 523 for (;;) { 524 list_for_each_entry_safe(task, next, head, u.tk_wait.list) 525 __rpc_wake_up_task(task); 526 if (head == &queue->tasks[0]) 527 break; 528 head--; 529 } 530 spin_unlock_bh(&queue->lock); 531 } 532 533 /** 534 * rpc_wake_up_status - wake up all rpc_tasks and set their status value. 535 * @queue: rpc_wait_queue on which the tasks are sleeping 536 * @status: status value to set 537 * 538 * Grabs queue->lock 539 */ 540 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) 541 { 542 struct rpc_task *task, *next; 543 struct list_head *head; 544 545 spin_lock_bh(&queue->lock); 546 head = &queue->tasks[queue->maxpriority]; 547 for (;;) { 548 list_for_each_entry_safe(task, next, head, u.tk_wait.list) { 549 task->tk_status = status; 550 __rpc_wake_up_task(task); 551 } 552 if (head == &queue->tasks[0]) 553 break; 554 head--; 555 } 556 spin_unlock_bh(&queue->lock); 557 } 558 559 /* 560 * Run a task at a later time 561 */ 562 static void __rpc_atrun(struct rpc_task *); 563 void 564 rpc_delay(struct rpc_task *task, unsigned long delay) 565 { 566 task->tk_timeout = delay; 567 rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun); 568 } 569 570 static void 571 __rpc_atrun(struct rpc_task *task) 572 { 573 task->tk_status = 0; 574 rpc_wake_up_task(task); 575 } 576 577 /* 578 * Helper to call task->tk_ops->rpc_call_prepare 579 */ 580 static void rpc_prepare_task(struct rpc_task *task) 581 { 582 task->tk_ops->rpc_call_prepare(task, task->tk_calldata); 583 } 584 585 /* 586 * Helper that calls task->tk_ops->rpc_call_done if it exists 587 */ 588 void rpc_exit_task(struct rpc_task *task) 589 { 590 task->tk_action = NULL; 591 if (task->tk_ops->rpc_call_done != NULL) { 592 task->tk_ops->rpc_call_done(task, task->tk_calldata); 593 if (task->tk_action != NULL) { 594 WARN_ON(RPC_ASSASSINATED(task)); 595 /* Always release the RPC slot and buffer memory */ 596 xprt_release(task); 597 } 598 } 599 } 600 EXPORT_SYMBOL(rpc_exit_task); 601 602 /* 603 * This is the RPC `scheduler' (or rather, the finite state machine). 604 */ 605 static int __rpc_execute(struct rpc_task *task) 606 { 607 int status = 0; 608 609 dprintk("RPC: %4d rpc_execute flgs %x\n", 610 task->tk_pid, task->tk_flags); 611 612 BUG_ON(RPC_IS_QUEUED(task)); 613 614 for (;;) { 615 /* 616 * Garbage collection of pending timers... 617 */ 618 rpc_delete_timer(task); 619 620 /* 621 * Execute any pending callback. 622 */ 623 if (RPC_DO_CALLBACK(task)) { 624 /* Define a callback save pointer */ 625 void (*save_callback)(struct rpc_task *); 626 627 /* 628 * If a callback exists, save it, reset it, 629 * call it. 630 * The save is needed to stop from resetting 631 * another callback set within the callback handler 632 * - Dave 633 */ 634 save_callback=task->tk_callback; 635 task->tk_callback=NULL; 636 lock_kernel(); 637 save_callback(task); 638 unlock_kernel(); 639 } 640 641 /* 642 * Perform the next FSM step. 643 * tk_action may be NULL when the task has been killed 644 * by someone else. 645 */ 646 if (!RPC_IS_QUEUED(task)) { 647 if (task->tk_action == NULL) 648 break; 649 lock_kernel(); 650 task->tk_action(task); 651 unlock_kernel(); 652 } 653 654 /* 655 * Lockless check for whether task is sleeping or not. 656 */ 657 if (!RPC_IS_QUEUED(task)) 658 continue; 659 rpc_clear_running(task); 660 if (RPC_IS_ASYNC(task)) { 661 /* Careful! we may have raced... */ 662 if (RPC_IS_QUEUED(task)) 663 return 0; 664 if (rpc_test_and_set_running(task)) 665 return 0; 666 continue; 667 } 668 669 /* sync task: sleep here */ 670 dprintk("RPC: %4d sync task going to sleep\n", task->tk_pid); 671 /* Note: Caller should be using rpc_clnt_sigmask() */ 672 status = out_of_line_wait_on_bit(&task->tk_runstate, 673 RPC_TASK_QUEUED, rpc_wait_bit_interruptible, 674 TASK_INTERRUPTIBLE); 675 if (status == -ERESTARTSYS) { 676 /* 677 * When a sync task receives a signal, it exits with 678 * -ERESTARTSYS. In order to catch any callbacks that 679 * clean up after sleeping on some queue, we don't 680 * break the loop here, but go around once more. 681 */ 682 dprintk("RPC: %4d got signal\n", task->tk_pid); 683 task->tk_flags |= RPC_TASK_KILLED; 684 rpc_exit(task, -ERESTARTSYS); 685 rpc_wake_up_task(task); 686 } 687 rpc_set_running(task); 688 dprintk("RPC: %4d sync task resuming\n", task->tk_pid); 689 } 690 691 dprintk("RPC: %4d, return %d, status %d\n", task->tk_pid, status, task->tk_status); 692 /* Wake up anyone who is waiting for task completion */ 693 rpc_mark_complete_task(task); 694 /* Release all resources associated with the task */ 695 rpc_release_task(task); 696 return status; 697 } 698 699 /* 700 * User-visible entry point to the scheduler. 701 * 702 * This may be called recursively if e.g. an async NFS task updates 703 * the attributes and finds that dirty pages must be flushed. 704 * NOTE: Upon exit of this function the task is guaranteed to be 705 * released. In particular note that tk_release() will have 706 * been called, so your task memory may have been freed. 707 */ 708 int 709 rpc_execute(struct rpc_task *task) 710 { 711 rpc_set_active(task); 712 rpc_set_running(task); 713 return __rpc_execute(task); 714 } 715 716 static void rpc_async_schedule(void *arg) 717 { 718 __rpc_execute((struct rpc_task *)arg); 719 } 720 721 /** 722 * rpc_malloc - allocate an RPC buffer 723 * @task: RPC task that will use this buffer 724 * @size: requested byte size 725 * 726 * We try to ensure that some NFS reads and writes can always proceed 727 * by using a mempool when allocating 'small' buffers. 728 * In order to avoid memory starvation triggering more writebacks of 729 * NFS requests, we use GFP_NOFS rather than GFP_KERNEL. 730 */ 731 void * rpc_malloc(struct rpc_task *task, size_t size) 732 { 733 struct rpc_rqst *req = task->tk_rqstp; 734 gfp_t gfp; 735 736 if (task->tk_flags & RPC_TASK_SWAPPER) 737 gfp = GFP_ATOMIC; 738 else 739 gfp = GFP_NOFS; 740 741 if (size > RPC_BUFFER_MAXSIZE) { 742 req->rq_buffer = kmalloc(size, gfp); 743 if (req->rq_buffer) 744 req->rq_bufsize = size; 745 } else { 746 req->rq_buffer = mempool_alloc(rpc_buffer_mempool, gfp); 747 if (req->rq_buffer) 748 req->rq_bufsize = RPC_BUFFER_MAXSIZE; 749 } 750 return req->rq_buffer; 751 } 752 753 /** 754 * rpc_free - free buffer allocated via rpc_malloc 755 * @task: RPC task with a buffer to be freed 756 * 757 */ 758 void rpc_free(struct rpc_task *task) 759 { 760 struct rpc_rqst *req = task->tk_rqstp; 761 762 if (req->rq_buffer) { 763 if (req->rq_bufsize == RPC_BUFFER_MAXSIZE) 764 mempool_free(req->rq_buffer, rpc_buffer_mempool); 765 else 766 kfree(req->rq_buffer); 767 req->rq_buffer = NULL; 768 req->rq_bufsize = 0; 769 } 770 } 771 772 /* 773 * Creation and deletion of RPC task structures 774 */ 775 void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata) 776 { 777 memset(task, 0, sizeof(*task)); 778 init_timer(&task->tk_timer); 779 task->tk_timer.data = (unsigned long) task; 780 task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer; 781 atomic_set(&task->tk_count, 1); 782 task->tk_client = clnt; 783 task->tk_flags = flags; 784 task->tk_ops = tk_ops; 785 if (tk_ops->rpc_call_prepare != NULL) 786 task->tk_action = rpc_prepare_task; 787 task->tk_calldata = calldata; 788 789 /* Initialize retry counters */ 790 task->tk_garb_retry = 2; 791 task->tk_cred_retry = 2; 792 793 task->tk_priority = RPC_PRIORITY_NORMAL; 794 task->tk_cookie = (unsigned long)current; 795 796 /* Initialize workqueue for async tasks */ 797 task->tk_workqueue = rpciod_workqueue; 798 799 if (clnt) { 800 atomic_inc(&clnt->cl_users); 801 if (clnt->cl_softrtry) 802 task->tk_flags |= RPC_TASK_SOFT; 803 if (!clnt->cl_intr) 804 task->tk_flags |= RPC_TASK_NOINTR; 805 } 806 807 #ifdef RPC_DEBUG 808 task->tk_magic = RPC_TASK_MAGIC_ID; 809 task->tk_pid = rpc_task_id++; 810 #endif 811 /* Add to global list of all tasks */ 812 spin_lock(&rpc_sched_lock); 813 list_add_tail(&task->tk_task, &all_tasks); 814 spin_unlock(&rpc_sched_lock); 815 816 BUG_ON(task->tk_ops == NULL); 817 818 dprintk("RPC: %4d new task procpid %d\n", task->tk_pid, 819 current->pid); 820 } 821 822 static struct rpc_task * 823 rpc_alloc_task(void) 824 { 825 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS); 826 } 827 828 static void rpc_free_task(struct rpc_task *task) 829 { 830 dprintk("RPC: %4d freeing task\n", task->tk_pid); 831 mempool_free(task, rpc_task_mempool); 832 } 833 834 /* 835 * Create a new task for the specified client. We have to 836 * clean up after an allocation failure, as the client may 837 * have specified "oneshot". 838 */ 839 struct rpc_task *rpc_new_task(struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata) 840 { 841 struct rpc_task *task; 842 843 task = rpc_alloc_task(); 844 if (!task) 845 goto cleanup; 846 847 rpc_init_task(task, clnt, flags, tk_ops, calldata); 848 849 dprintk("RPC: %4d allocated task\n", task->tk_pid); 850 task->tk_flags |= RPC_TASK_DYNAMIC; 851 out: 852 return task; 853 854 cleanup: 855 /* Check whether to release the client */ 856 if (clnt) { 857 printk("rpc_new_task: failed, users=%d, oneshot=%d\n", 858 atomic_read(&clnt->cl_users), clnt->cl_oneshot); 859 atomic_inc(&clnt->cl_users); /* pretend we were used ... */ 860 rpc_release_client(clnt); 861 } 862 goto out; 863 } 864 865 void rpc_release_task(struct rpc_task *task) 866 { 867 const struct rpc_call_ops *tk_ops = task->tk_ops; 868 void *calldata = task->tk_calldata; 869 870 #ifdef RPC_DEBUG 871 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID); 872 #endif 873 if (!atomic_dec_and_test(&task->tk_count)) 874 return; 875 dprintk("RPC: %4d release task\n", task->tk_pid); 876 877 /* Remove from global task list */ 878 spin_lock(&rpc_sched_lock); 879 list_del(&task->tk_task); 880 spin_unlock(&rpc_sched_lock); 881 882 BUG_ON (RPC_IS_QUEUED(task)); 883 884 /* Synchronously delete any running timer */ 885 rpc_delete_timer(task); 886 887 /* Release resources */ 888 if (task->tk_rqstp) 889 xprt_release(task); 890 if (task->tk_msg.rpc_cred) 891 rpcauth_unbindcred(task); 892 if (task->tk_client) { 893 rpc_release_client(task->tk_client); 894 task->tk_client = NULL; 895 } 896 897 #ifdef RPC_DEBUG 898 task->tk_magic = 0; 899 #endif 900 if (task->tk_flags & RPC_TASK_DYNAMIC) 901 rpc_free_task(task); 902 if (tk_ops->rpc_release) 903 tk_ops->rpc_release(calldata); 904 } 905 906 /** 907 * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it 908 * @clnt: pointer to RPC client 909 * @flags: RPC flags 910 * @ops: RPC call ops 911 * @data: user call data 912 */ 913 struct rpc_task *rpc_run_task(struct rpc_clnt *clnt, int flags, 914 const struct rpc_call_ops *ops, 915 void *data) 916 { 917 struct rpc_task *task; 918 task = rpc_new_task(clnt, flags, ops, data); 919 if (task == NULL) 920 return ERR_PTR(-ENOMEM); 921 atomic_inc(&task->tk_count); 922 rpc_execute(task); 923 return task; 924 } 925 EXPORT_SYMBOL(rpc_run_task); 926 927 /** 928 * rpc_find_parent - find the parent of a child task. 929 * @child: child task 930 * @parent: parent task 931 * 932 * Checks that the parent task is still sleeping on the 933 * queue 'childq'. If so returns a pointer to the parent. 934 * Upon failure returns NULL. 935 * 936 * Caller must hold childq.lock 937 */ 938 static inline struct rpc_task *rpc_find_parent(struct rpc_task *child, struct rpc_task *parent) 939 { 940 struct rpc_task *task; 941 struct list_head *le; 942 943 task_for_each(task, le, &childq.tasks[0]) 944 if (task == parent) 945 return parent; 946 947 return NULL; 948 } 949 950 static void rpc_child_exit(struct rpc_task *child, void *calldata) 951 { 952 struct rpc_task *parent; 953 954 spin_lock_bh(&childq.lock); 955 if ((parent = rpc_find_parent(child, calldata)) != NULL) { 956 parent->tk_status = child->tk_status; 957 __rpc_wake_up_task(parent); 958 } 959 spin_unlock_bh(&childq.lock); 960 } 961 962 static const struct rpc_call_ops rpc_child_ops = { 963 .rpc_call_done = rpc_child_exit, 964 }; 965 966 /* 967 * Note: rpc_new_task releases the client after a failure. 968 */ 969 struct rpc_task * 970 rpc_new_child(struct rpc_clnt *clnt, struct rpc_task *parent) 971 { 972 struct rpc_task *task; 973 974 task = rpc_new_task(clnt, RPC_TASK_ASYNC | RPC_TASK_CHILD, &rpc_child_ops, parent); 975 if (!task) 976 goto fail; 977 return task; 978 979 fail: 980 parent->tk_status = -ENOMEM; 981 return NULL; 982 } 983 984 void rpc_run_child(struct rpc_task *task, struct rpc_task *child, rpc_action func) 985 { 986 spin_lock_bh(&childq.lock); 987 /* N.B. Is it possible for the child to have already finished? */ 988 __rpc_sleep_on(&childq, task, func, NULL); 989 rpc_schedule_run(child); 990 spin_unlock_bh(&childq.lock); 991 } 992 993 /* 994 * Kill all tasks for the given client. 995 * XXX: kill their descendants as well? 996 */ 997 void rpc_killall_tasks(struct rpc_clnt *clnt) 998 { 999 struct rpc_task *rovr; 1000 struct list_head *le; 1001 1002 dprintk("RPC: killing all tasks for client %p\n", clnt); 1003 1004 /* 1005 * Spin lock all_tasks to prevent changes... 1006 */ 1007 spin_lock(&rpc_sched_lock); 1008 alltask_for_each(rovr, le, &all_tasks) { 1009 if (! RPC_IS_ACTIVATED(rovr)) 1010 continue; 1011 if (!clnt || rovr->tk_client == clnt) { 1012 rovr->tk_flags |= RPC_TASK_KILLED; 1013 rpc_exit(rovr, -EIO); 1014 rpc_wake_up_task(rovr); 1015 } 1016 } 1017 spin_unlock(&rpc_sched_lock); 1018 } 1019 1020 static DECLARE_MUTEX_LOCKED(rpciod_running); 1021 1022 static void rpciod_killall(void) 1023 { 1024 unsigned long flags; 1025 1026 while (!list_empty(&all_tasks)) { 1027 clear_thread_flag(TIF_SIGPENDING); 1028 rpc_killall_tasks(NULL); 1029 flush_workqueue(rpciod_workqueue); 1030 if (!list_empty(&all_tasks)) { 1031 dprintk("rpciod_killall: waiting for tasks to exit\n"); 1032 yield(); 1033 } 1034 } 1035 1036 spin_lock_irqsave(¤t->sighand->siglock, flags); 1037 recalc_sigpending(); 1038 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 1039 } 1040 1041 /* 1042 * Start up the rpciod process if it's not already running. 1043 */ 1044 int 1045 rpciod_up(void) 1046 { 1047 struct workqueue_struct *wq; 1048 int error = 0; 1049 1050 down(&rpciod_sema); 1051 dprintk("rpciod_up: users %d\n", rpciod_users); 1052 rpciod_users++; 1053 if (rpciod_workqueue) 1054 goto out; 1055 /* 1056 * If there's no pid, we should be the first user. 1057 */ 1058 if (rpciod_users > 1) 1059 printk(KERN_WARNING "rpciod_up: no workqueue, %d users??\n", rpciod_users); 1060 /* 1061 * Create the rpciod thread and wait for it to start. 1062 */ 1063 error = -ENOMEM; 1064 wq = create_workqueue("rpciod"); 1065 if (wq == NULL) { 1066 printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error); 1067 rpciod_users--; 1068 goto out; 1069 } 1070 rpciod_workqueue = wq; 1071 error = 0; 1072 out: 1073 up(&rpciod_sema); 1074 return error; 1075 } 1076 1077 void 1078 rpciod_down(void) 1079 { 1080 down(&rpciod_sema); 1081 dprintk("rpciod_down sema %d\n", rpciod_users); 1082 if (rpciod_users) { 1083 if (--rpciod_users) 1084 goto out; 1085 } else 1086 printk(KERN_WARNING "rpciod_down: no users??\n"); 1087 1088 if (!rpciod_workqueue) { 1089 dprintk("rpciod_down: Nothing to do!\n"); 1090 goto out; 1091 } 1092 rpciod_killall(); 1093 1094 destroy_workqueue(rpciod_workqueue); 1095 rpciod_workqueue = NULL; 1096 out: 1097 up(&rpciod_sema); 1098 } 1099 1100 #ifdef RPC_DEBUG 1101 void rpc_show_tasks(void) 1102 { 1103 struct list_head *le; 1104 struct rpc_task *t; 1105 1106 spin_lock(&rpc_sched_lock); 1107 if (list_empty(&all_tasks)) { 1108 spin_unlock(&rpc_sched_lock); 1109 return; 1110 } 1111 printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout " 1112 "-rpcwait -action- ---ops--\n"); 1113 alltask_for_each(t, le, &all_tasks) { 1114 const char *rpc_waitq = "none"; 1115 1116 if (RPC_IS_QUEUED(t)) 1117 rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq); 1118 1119 printk("%05d %04d %04x %06d %8p %6d %8p %08ld %8s %8p %8p\n", 1120 t->tk_pid, 1121 (t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1), 1122 t->tk_flags, t->tk_status, 1123 t->tk_client, 1124 (t->tk_client ? t->tk_client->cl_prog : 0), 1125 t->tk_rqstp, t->tk_timeout, 1126 rpc_waitq, 1127 t->tk_action, t->tk_ops); 1128 } 1129 spin_unlock(&rpc_sched_lock); 1130 } 1131 #endif 1132 1133 void 1134 rpc_destroy_mempool(void) 1135 { 1136 if (rpc_buffer_mempool) 1137 mempool_destroy(rpc_buffer_mempool); 1138 if (rpc_task_mempool) 1139 mempool_destroy(rpc_task_mempool); 1140 if (rpc_task_slabp && kmem_cache_destroy(rpc_task_slabp)) 1141 printk(KERN_INFO "rpc_task: not all structures were freed\n"); 1142 if (rpc_buffer_slabp && kmem_cache_destroy(rpc_buffer_slabp)) 1143 printk(KERN_INFO "rpc_buffers: not all structures were freed\n"); 1144 } 1145 1146 int 1147 rpc_init_mempool(void) 1148 { 1149 rpc_task_slabp = kmem_cache_create("rpc_tasks", 1150 sizeof(struct rpc_task), 1151 0, SLAB_HWCACHE_ALIGN, 1152 NULL, NULL); 1153 if (!rpc_task_slabp) 1154 goto err_nomem; 1155 rpc_buffer_slabp = kmem_cache_create("rpc_buffers", 1156 RPC_BUFFER_MAXSIZE, 1157 0, SLAB_HWCACHE_ALIGN, 1158 NULL, NULL); 1159 if (!rpc_buffer_slabp) 1160 goto err_nomem; 1161 rpc_task_mempool = mempool_create(RPC_TASK_POOLSIZE, 1162 mempool_alloc_slab, 1163 mempool_free_slab, 1164 rpc_task_slabp); 1165 if (!rpc_task_mempool) 1166 goto err_nomem; 1167 rpc_buffer_mempool = mempool_create(RPC_BUFFER_POOLSIZE, 1168 mempool_alloc_slab, 1169 mempool_free_slab, 1170 rpc_buffer_slabp); 1171 if (!rpc_buffer_mempool) 1172 goto err_nomem; 1173 return 0; 1174 err_nomem: 1175 rpc_destroy_mempool(); 1176 return -ENOMEM; 1177 } 1178