xref: /linux/net/sunrpc/sched.c (revision d8327c784b51b57dac2c26cfad87dce0d68dfd98)
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11 
12 #include <linux/module.h>
13 
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 
22 #include <linux/sunrpc/clnt.h>
23 #include <linux/sunrpc/xprt.h>
24 
25 #ifdef RPC_DEBUG
26 #define RPCDBG_FACILITY		RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID	0xf00baa
28 static int			rpc_task_id;
29 #endif
30 
31 /*
32  * RPC slabs and memory pools
33  */
34 #define RPC_BUFFER_MAXSIZE	(2048)
35 #define RPC_BUFFER_POOLSIZE	(8)
36 #define RPC_TASK_POOLSIZE	(8)
37 static kmem_cache_t	*rpc_task_slabp __read_mostly;
38 static kmem_cache_t	*rpc_buffer_slabp __read_mostly;
39 static mempool_t	*rpc_task_mempool __read_mostly;
40 static mempool_t	*rpc_buffer_mempool __read_mostly;
41 
42 static void			__rpc_default_timer(struct rpc_task *task);
43 static void			rpciod_killall(void);
44 static void			rpc_async_schedule(void *);
45 
46 /*
47  * RPC tasks that create another task (e.g. for contacting the portmapper)
48  * will wait on this queue for their child's completion
49  */
50 static RPC_WAITQ(childq, "childq");
51 
52 /*
53  * RPC tasks sit here while waiting for conditions to improve.
54  */
55 static RPC_WAITQ(delay_queue, "delayq");
56 
57 /*
58  * All RPC tasks are linked into this list
59  */
60 static LIST_HEAD(all_tasks);
61 
62 /*
63  * rpciod-related stuff
64  */
65 static DECLARE_MUTEX(rpciod_sema);
66 static unsigned int		rpciod_users;
67 static struct workqueue_struct *rpciod_workqueue;
68 
69 /*
70  * Spinlock for other critical sections of code.
71  */
72 static DEFINE_SPINLOCK(rpc_sched_lock);
73 
74 /*
75  * Disable the timer for a given RPC task. Should be called with
76  * queue->lock and bh_disabled in order to avoid races within
77  * rpc_run_timer().
78  */
79 static inline void
80 __rpc_disable_timer(struct rpc_task *task)
81 {
82 	dprintk("RPC: %4d disabling timer\n", task->tk_pid);
83 	task->tk_timeout_fn = NULL;
84 	task->tk_timeout = 0;
85 }
86 
87 /*
88  * Run a timeout function.
89  * We use the callback in order to allow __rpc_wake_up_task()
90  * and friends to disable the timer synchronously on SMP systems
91  * without calling del_timer_sync(). The latter could cause a
92  * deadlock if called while we're holding spinlocks...
93  */
94 static void rpc_run_timer(struct rpc_task *task)
95 {
96 	void (*callback)(struct rpc_task *);
97 
98 	callback = task->tk_timeout_fn;
99 	task->tk_timeout_fn = NULL;
100 	if (callback && RPC_IS_QUEUED(task)) {
101 		dprintk("RPC: %4d running timer\n", task->tk_pid);
102 		callback(task);
103 	}
104 	smp_mb__before_clear_bit();
105 	clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
106 	smp_mb__after_clear_bit();
107 }
108 
109 /*
110  * Set up a timer for the current task.
111  */
112 static inline void
113 __rpc_add_timer(struct rpc_task *task, rpc_action timer)
114 {
115 	if (!task->tk_timeout)
116 		return;
117 
118 	dprintk("RPC: %4d setting alarm for %lu ms\n",
119 			task->tk_pid, task->tk_timeout * 1000 / HZ);
120 
121 	if (timer)
122 		task->tk_timeout_fn = timer;
123 	else
124 		task->tk_timeout_fn = __rpc_default_timer;
125 	set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
126 	mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
127 }
128 
129 /*
130  * Delete any timer for the current task. Because we use del_timer_sync(),
131  * this function should never be called while holding queue->lock.
132  */
133 static void
134 rpc_delete_timer(struct rpc_task *task)
135 {
136 	if (RPC_IS_QUEUED(task))
137 		return;
138 	if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
139 		del_singleshot_timer_sync(&task->tk_timer);
140 		dprintk("RPC: %4d deleting timer\n", task->tk_pid);
141 	}
142 }
143 
144 /*
145  * Add new request to a priority queue.
146  */
147 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
148 {
149 	struct list_head *q;
150 	struct rpc_task *t;
151 
152 	INIT_LIST_HEAD(&task->u.tk_wait.links);
153 	q = &queue->tasks[task->tk_priority];
154 	if (unlikely(task->tk_priority > queue->maxpriority))
155 		q = &queue->tasks[queue->maxpriority];
156 	list_for_each_entry(t, q, u.tk_wait.list) {
157 		if (t->tk_cookie == task->tk_cookie) {
158 			list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
159 			return;
160 		}
161 	}
162 	list_add_tail(&task->u.tk_wait.list, q);
163 }
164 
165 /*
166  * Add new request to wait queue.
167  *
168  * Swapper tasks always get inserted at the head of the queue.
169  * This should avoid many nasty memory deadlocks and hopefully
170  * improve overall performance.
171  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
172  */
173 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
174 {
175 	BUG_ON (RPC_IS_QUEUED(task));
176 
177 	if (RPC_IS_PRIORITY(queue))
178 		__rpc_add_wait_queue_priority(queue, task);
179 	else if (RPC_IS_SWAPPER(task))
180 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
181 	else
182 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
183 	task->u.tk_wait.rpc_waitq = queue;
184 	rpc_set_queued(task);
185 
186 	dprintk("RPC: %4d added to queue %p \"%s\"\n",
187 				task->tk_pid, queue, rpc_qname(queue));
188 }
189 
190 /*
191  * Remove request from a priority queue.
192  */
193 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
194 {
195 	struct rpc_task *t;
196 
197 	if (!list_empty(&task->u.tk_wait.links)) {
198 		t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
199 		list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
200 		list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
201 	}
202 	list_del(&task->u.tk_wait.list);
203 }
204 
205 /*
206  * Remove request from queue.
207  * Note: must be called with spin lock held.
208  */
209 static void __rpc_remove_wait_queue(struct rpc_task *task)
210 {
211 	struct rpc_wait_queue *queue;
212 	queue = task->u.tk_wait.rpc_waitq;
213 
214 	if (RPC_IS_PRIORITY(queue))
215 		__rpc_remove_wait_queue_priority(task);
216 	else
217 		list_del(&task->u.tk_wait.list);
218 	dprintk("RPC: %4d removed from queue %p \"%s\"\n",
219 				task->tk_pid, queue, rpc_qname(queue));
220 }
221 
222 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
223 {
224 	queue->priority = priority;
225 	queue->count = 1 << (priority * 2);
226 }
227 
228 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie)
229 {
230 	queue->cookie = cookie;
231 	queue->nr = RPC_BATCH_COUNT;
232 }
233 
234 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
235 {
236 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
237 	rpc_set_waitqueue_cookie(queue, 0);
238 }
239 
240 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio)
241 {
242 	int i;
243 
244 	spin_lock_init(&queue->lock);
245 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
246 		INIT_LIST_HEAD(&queue->tasks[i]);
247 	queue->maxpriority = maxprio;
248 	rpc_reset_waitqueue_priority(queue);
249 #ifdef RPC_DEBUG
250 	queue->name = qname;
251 #endif
252 }
253 
254 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
255 {
256 	__rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH);
257 }
258 
259 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
260 {
261 	__rpc_init_priority_wait_queue(queue, qname, 0);
262 }
263 EXPORT_SYMBOL(rpc_init_wait_queue);
264 
265 static int rpc_wait_bit_interruptible(void *word)
266 {
267 	if (signal_pending(current))
268 		return -ERESTARTSYS;
269 	schedule();
270 	return 0;
271 }
272 
273 /*
274  * Mark an RPC call as having completed by clearing the 'active' bit
275  */
276 static inline void rpc_mark_complete_task(struct rpc_task *task)
277 {
278 	rpc_clear_active(task);
279 	wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
280 }
281 
282 /*
283  * Allow callers to wait for completion of an RPC call
284  */
285 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
286 {
287 	if (action == NULL)
288 		action = rpc_wait_bit_interruptible;
289 	return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
290 			action, TASK_INTERRUPTIBLE);
291 }
292 EXPORT_SYMBOL(__rpc_wait_for_completion_task);
293 
294 /*
295  * Make an RPC task runnable.
296  *
297  * Note: If the task is ASYNC, this must be called with
298  * the spinlock held to protect the wait queue operation.
299  */
300 static void rpc_make_runnable(struct rpc_task *task)
301 {
302 	int do_ret;
303 
304 	BUG_ON(task->tk_timeout_fn);
305 	do_ret = rpc_test_and_set_running(task);
306 	rpc_clear_queued(task);
307 	if (do_ret)
308 		return;
309 	if (RPC_IS_ASYNC(task)) {
310 		int status;
311 
312 		INIT_WORK(&task->u.tk_work, rpc_async_schedule, (void *)task);
313 		status = queue_work(task->tk_workqueue, &task->u.tk_work);
314 		if (status < 0) {
315 			printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
316 			task->tk_status = status;
317 			return;
318 		}
319 	} else
320 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
321 }
322 
323 /*
324  * Place a newly initialized task on the workqueue.
325  */
326 static inline void
327 rpc_schedule_run(struct rpc_task *task)
328 {
329 	rpc_set_active(task);
330 	rpc_make_runnable(task);
331 }
332 
333 /*
334  * Prepare for sleeping on a wait queue.
335  * By always appending tasks to the list we ensure FIFO behavior.
336  * NB: An RPC task will only receive interrupt-driven events as long
337  * as it's on a wait queue.
338  */
339 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
340 			rpc_action action, rpc_action timer)
341 {
342 	dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task->tk_pid,
343 				rpc_qname(q), jiffies);
344 
345 	if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
346 		printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
347 		return;
348 	}
349 
350 	/* Mark the task as being activated if so needed */
351 	rpc_set_active(task);
352 
353 	__rpc_add_wait_queue(q, task);
354 
355 	BUG_ON(task->tk_callback != NULL);
356 	task->tk_callback = action;
357 	__rpc_add_timer(task, timer);
358 }
359 
360 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
361 				rpc_action action, rpc_action timer)
362 {
363 	/*
364 	 * Protect the queue operations.
365 	 */
366 	spin_lock_bh(&q->lock);
367 	__rpc_sleep_on(q, task, action, timer);
368 	spin_unlock_bh(&q->lock);
369 }
370 
371 /**
372  * __rpc_do_wake_up_task - wake up a single rpc_task
373  * @task: task to be woken up
374  *
375  * Caller must hold queue->lock, and have cleared the task queued flag.
376  */
377 static void __rpc_do_wake_up_task(struct rpc_task *task)
378 {
379 	dprintk("RPC: %4d __rpc_wake_up_task (now %ld)\n", task->tk_pid, jiffies);
380 
381 #ifdef RPC_DEBUG
382 	BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
383 #endif
384 	/* Has the task been executed yet? If not, we cannot wake it up! */
385 	if (!RPC_IS_ACTIVATED(task)) {
386 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
387 		return;
388 	}
389 
390 	__rpc_disable_timer(task);
391 	__rpc_remove_wait_queue(task);
392 
393 	rpc_make_runnable(task);
394 
395 	dprintk("RPC:      __rpc_wake_up_task done\n");
396 }
397 
398 /*
399  * Wake up the specified task
400  */
401 static void __rpc_wake_up_task(struct rpc_task *task)
402 {
403 	if (rpc_start_wakeup(task)) {
404 		if (RPC_IS_QUEUED(task))
405 			__rpc_do_wake_up_task(task);
406 		rpc_finish_wakeup(task);
407 	}
408 }
409 
410 /*
411  * Default timeout handler if none specified by user
412  */
413 static void
414 __rpc_default_timer(struct rpc_task *task)
415 {
416 	dprintk("RPC: %d timeout (default timer)\n", task->tk_pid);
417 	task->tk_status = -ETIMEDOUT;
418 	rpc_wake_up_task(task);
419 }
420 
421 /*
422  * Wake up the specified task
423  */
424 void rpc_wake_up_task(struct rpc_task *task)
425 {
426 	if (rpc_start_wakeup(task)) {
427 		if (RPC_IS_QUEUED(task)) {
428 			struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq;
429 
430 			spin_lock_bh(&queue->lock);
431 			__rpc_do_wake_up_task(task);
432 			spin_unlock_bh(&queue->lock);
433 		}
434 		rpc_finish_wakeup(task);
435 	}
436 }
437 
438 /*
439  * Wake up the next task on a priority queue.
440  */
441 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
442 {
443 	struct list_head *q;
444 	struct rpc_task *task;
445 
446 	/*
447 	 * Service a batch of tasks from a single cookie.
448 	 */
449 	q = &queue->tasks[queue->priority];
450 	if (!list_empty(q)) {
451 		task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
452 		if (queue->cookie == task->tk_cookie) {
453 			if (--queue->nr)
454 				goto out;
455 			list_move_tail(&task->u.tk_wait.list, q);
456 		}
457 		/*
458 		 * Check if we need to switch queues.
459 		 */
460 		if (--queue->count)
461 			goto new_cookie;
462 	}
463 
464 	/*
465 	 * Service the next queue.
466 	 */
467 	do {
468 		if (q == &queue->tasks[0])
469 			q = &queue->tasks[queue->maxpriority];
470 		else
471 			q = q - 1;
472 		if (!list_empty(q)) {
473 			task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
474 			goto new_queue;
475 		}
476 	} while (q != &queue->tasks[queue->priority]);
477 
478 	rpc_reset_waitqueue_priority(queue);
479 	return NULL;
480 
481 new_queue:
482 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
483 new_cookie:
484 	rpc_set_waitqueue_cookie(queue, task->tk_cookie);
485 out:
486 	__rpc_wake_up_task(task);
487 	return task;
488 }
489 
490 /*
491  * Wake up the next task on the wait queue.
492  */
493 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
494 {
495 	struct rpc_task	*task = NULL;
496 
497 	dprintk("RPC:      wake_up_next(%p \"%s\")\n", queue, rpc_qname(queue));
498 	spin_lock_bh(&queue->lock);
499 	if (RPC_IS_PRIORITY(queue))
500 		task = __rpc_wake_up_next_priority(queue);
501 	else {
502 		task_for_first(task, &queue->tasks[0])
503 			__rpc_wake_up_task(task);
504 	}
505 	spin_unlock_bh(&queue->lock);
506 
507 	return task;
508 }
509 
510 /**
511  * rpc_wake_up - wake up all rpc_tasks
512  * @queue: rpc_wait_queue on which the tasks are sleeping
513  *
514  * Grabs queue->lock
515  */
516 void rpc_wake_up(struct rpc_wait_queue *queue)
517 {
518 	struct rpc_task *task, *next;
519 	struct list_head *head;
520 
521 	spin_lock_bh(&queue->lock);
522 	head = &queue->tasks[queue->maxpriority];
523 	for (;;) {
524 		list_for_each_entry_safe(task, next, head, u.tk_wait.list)
525 			__rpc_wake_up_task(task);
526 		if (head == &queue->tasks[0])
527 			break;
528 		head--;
529 	}
530 	spin_unlock_bh(&queue->lock);
531 }
532 
533 /**
534  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
535  * @queue: rpc_wait_queue on which the tasks are sleeping
536  * @status: status value to set
537  *
538  * Grabs queue->lock
539  */
540 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
541 {
542 	struct rpc_task *task, *next;
543 	struct list_head *head;
544 
545 	spin_lock_bh(&queue->lock);
546 	head = &queue->tasks[queue->maxpriority];
547 	for (;;) {
548 		list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
549 			task->tk_status = status;
550 			__rpc_wake_up_task(task);
551 		}
552 		if (head == &queue->tasks[0])
553 			break;
554 		head--;
555 	}
556 	spin_unlock_bh(&queue->lock);
557 }
558 
559 /*
560  * Run a task at a later time
561  */
562 static void	__rpc_atrun(struct rpc_task *);
563 void
564 rpc_delay(struct rpc_task *task, unsigned long delay)
565 {
566 	task->tk_timeout = delay;
567 	rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
568 }
569 
570 static void
571 __rpc_atrun(struct rpc_task *task)
572 {
573 	task->tk_status = 0;
574 	rpc_wake_up_task(task);
575 }
576 
577 /*
578  * Helper to call task->tk_ops->rpc_call_prepare
579  */
580 static void rpc_prepare_task(struct rpc_task *task)
581 {
582 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
583 }
584 
585 /*
586  * Helper that calls task->tk_ops->rpc_call_done if it exists
587  */
588 void rpc_exit_task(struct rpc_task *task)
589 {
590 	task->tk_action = NULL;
591 	if (task->tk_ops->rpc_call_done != NULL) {
592 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
593 		if (task->tk_action != NULL) {
594 			WARN_ON(RPC_ASSASSINATED(task));
595 			/* Always release the RPC slot and buffer memory */
596 			xprt_release(task);
597 		}
598 	}
599 }
600 EXPORT_SYMBOL(rpc_exit_task);
601 
602 /*
603  * This is the RPC `scheduler' (or rather, the finite state machine).
604  */
605 static int __rpc_execute(struct rpc_task *task)
606 {
607 	int		status = 0;
608 
609 	dprintk("RPC: %4d rpc_execute flgs %x\n",
610 				task->tk_pid, task->tk_flags);
611 
612 	BUG_ON(RPC_IS_QUEUED(task));
613 
614 	for (;;) {
615 		/*
616 		 * Garbage collection of pending timers...
617 		 */
618 		rpc_delete_timer(task);
619 
620 		/*
621 		 * Execute any pending callback.
622 		 */
623 		if (RPC_DO_CALLBACK(task)) {
624 			/* Define a callback save pointer */
625 			void (*save_callback)(struct rpc_task *);
626 
627 			/*
628 			 * If a callback exists, save it, reset it,
629 			 * call it.
630 			 * The save is needed to stop from resetting
631 			 * another callback set within the callback handler
632 			 * - Dave
633 			 */
634 			save_callback=task->tk_callback;
635 			task->tk_callback=NULL;
636 			lock_kernel();
637 			save_callback(task);
638 			unlock_kernel();
639 		}
640 
641 		/*
642 		 * Perform the next FSM step.
643 		 * tk_action may be NULL when the task has been killed
644 		 * by someone else.
645 		 */
646 		if (!RPC_IS_QUEUED(task)) {
647 			if (task->tk_action == NULL)
648 				break;
649 			lock_kernel();
650 			task->tk_action(task);
651 			unlock_kernel();
652 		}
653 
654 		/*
655 		 * Lockless check for whether task is sleeping or not.
656 		 */
657 		if (!RPC_IS_QUEUED(task))
658 			continue;
659 		rpc_clear_running(task);
660 		if (RPC_IS_ASYNC(task)) {
661 			/* Careful! we may have raced... */
662 			if (RPC_IS_QUEUED(task))
663 				return 0;
664 			if (rpc_test_and_set_running(task))
665 				return 0;
666 			continue;
667 		}
668 
669 		/* sync task: sleep here */
670 		dprintk("RPC: %4d sync task going to sleep\n", task->tk_pid);
671 		/* Note: Caller should be using rpc_clnt_sigmask() */
672 		status = out_of_line_wait_on_bit(&task->tk_runstate,
673 				RPC_TASK_QUEUED, rpc_wait_bit_interruptible,
674 				TASK_INTERRUPTIBLE);
675 		if (status == -ERESTARTSYS) {
676 			/*
677 			 * When a sync task receives a signal, it exits with
678 			 * -ERESTARTSYS. In order to catch any callbacks that
679 			 * clean up after sleeping on some queue, we don't
680 			 * break the loop here, but go around once more.
681 			 */
682 			dprintk("RPC: %4d got signal\n", task->tk_pid);
683 			task->tk_flags |= RPC_TASK_KILLED;
684 			rpc_exit(task, -ERESTARTSYS);
685 			rpc_wake_up_task(task);
686 		}
687 		rpc_set_running(task);
688 		dprintk("RPC: %4d sync task resuming\n", task->tk_pid);
689 	}
690 
691 	dprintk("RPC: %4d, return %d, status %d\n", task->tk_pid, status, task->tk_status);
692 	/* Wake up anyone who is waiting for task completion */
693 	rpc_mark_complete_task(task);
694 	/* Release all resources associated with the task */
695 	rpc_release_task(task);
696 	return status;
697 }
698 
699 /*
700  * User-visible entry point to the scheduler.
701  *
702  * This may be called recursively if e.g. an async NFS task updates
703  * the attributes and finds that dirty pages must be flushed.
704  * NOTE: Upon exit of this function the task is guaranteed to be
705  *	 released. In particular note that tk_release() will have
706  *	 been called, so your task memory may have been freed.
707  */
708 int
709 rpc_execute(struct rpc_task *task)
710 {
711 	rpc_set_active(task);
712 	rpc_set_running(task);
713 	return __rpc_execute(task);
714 }
715 
716 static void rpc_async_schedule(void *arg)
717 {
718 	__rpc_execute((struct rpc_task *)arg);
719 }
720 
721 /**
722  * rpc_malloc - allocate an RPC buffer
723  * @task: RPC task that will use this buffer
724  * @size: requested byte size
725  *
726  * We try to ensure that some NFS reads and writes can always proceed
727  * by using a mempool when allocating 'small' buffers.
728  * In order to avoid memory starvation triggering more writebacks of
729  * NFS requests, we use GFP_NOFS rather than GFP_KERNEL.
730  */
731 void * rpc_malloc(struct rpc_task *task, size_t size)
732 {
733 	struct rpc_rqst *req = task->tk_rqstp;
734 	gfp_t	gfp;
735 
736 	if (task->tk_flags & RPC_TASK_SWAPPER)
737 		gfp = GFP_ATOMIC;
738 	else
739 		gfp = GFP_NOFS;
740 
741 	if (size > RPC_BUFFER_MAXSIZE) {
742 		req->rq_buffer = kmalloc(size, gfp);
743 		if (req->rq_buffer)
744 			req->rq_bufsize = size;
745 	} else {
746 		req->rq_buffer = mempool_alloc(rpc_buffer_mempool, gfp);
747 		if (req->rq_buffer)
748 			req->rq_bufsize = RPC_BUFFER_MAXSIZE;
749 	}
750 	return req->rq_buffer;
751 }
752 
753 /**
754  * rpc_free - free buffer allocated via rpc_malloc
755  * @task: RPC task with a buffer to be freed
756  *
757  */
758 void rpc_free(struct rpc_task *task)
759 {
760 	struct rpc_rqst *req = task->tk_rqstp;
761 
762 	if (req->rq_buffer) {
763 		if (req->rq_bufsize == RPC_BUFFER_MAXSIZE)
764 			mempool_free(req->rq_buffer, rpc_buffer_mempool);
765 		else
766 			kfree(req->rq_buffer);
767 		req->rq_buffer = NULL;
768 		req->rq_bufsize = 0;
769 	}
770 }
771 
772 /*
773  * Creation and deletion of RPC task structures
774  */
775 void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
776 {
777 	memset(task, 0, sizeof(*task));
778 	init_timer(&task->tk_timer);
779 	task->tk_timer.data     = (unsigned long) task;
780 	task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer;
781 	atomic_set(&task->tk_count, 1);
782 	task->tk_client = clnt;
783 	task->tk_flags  = flags;
784 	task->tk_ops = tk_ops;
785 	if (tk_ops->rpc_call_prepare != NULL)
786 		task->tk_action = rpc_prepare_task;
787 	task->tk_calldata = calldata;
788 
789 	/* Initialize retry counters */
790 	task->tk_garb_retry = 2;
791 	task->tk_cred_retry = 2;
792 
793 	task->tk_priority = RPC_PRIORITY_NORMAL;
794 	task->tk_cookie = (unsigned long)current;
795 
796 	/* Initialize workqueue for async tasks */
797 	task->tk_workqueue = rpciod_workqueue;
798 
799 	if (clnt) {
800 		atomic_inc(&clnt->cl_users);
801 		if (clnt->cl_softrtry)
802 			task->tk_flags |= RPC_TASK_SOFT;
803 		if (!clnt->cl_intr)
804 			task->tk_flags |= RPC_TASK_NOINTR;
805 	}
806 
807 #ifdef RPC_DEBUG
808 	task->tk_magic = RPC_TASK_MAGIC_ID;
809 	task->tk_pid = rpc_task_id++;
810 #endif
811 	/* Add to global list of all tasks */
812 	spin_lock(&rpc_sched_lock);
813 	list_add_tail(&task->tk_task, &all_tasks);
814 	spin_unlock(&rpc_sched_lock);
815 
816 	BUG_ON(task->tk_ops == NULL);
817 
818 	dprintk("RPC: %4d new task procpid %d\n", task->tk_pid,
819 				current->pid);
820 }
821 
822 static struct rpc_task *
823 rpc_alloc_task(void)
824 {
825 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
826 }
827 
828 static void rpc_free_task(struct rpc_task *task)
829 {
830 	dprintk("RPC: %4d freeing task\n", task->tk_pid);
831 	mempool_free(task, rpc_task_mempool);
832 }
833 
834 /*
835  * Create a new task for the specified client.  We have to
836  * clean up after an allocation failure, as the client may
837  * have specified "oneshot".
838  */
839 struct rpc_task *rpc_new_task(struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
840 {
841 	struct rpc_task	*task;
842 
843 	task = rpc_alloc_task();
844 	if (!task)
845 		goto cleanup;
846 
847 	rpc_init_task(task, clnt, flags, tk_ops, calldata);
848 
849 	dprintk("RPC: %4d allocated task\n", task->tk_pid);
850 	task->tk_flags |= RPC_TASK_DYNAMIC;
851 out:
852 	return task;
853 
854 cleanup:
855 	/* Check whether to release the client */
856 	if (clnt) {
857 		printk("rpc_new_task: failed, users=%d, oneshot=%d\n",
858 			atomic_read(&clnt->cl_users), clnt->cl_oneshot);
859 		atomic_inc(&clnt->cl_users); /* pretend we were used ... */
860 		rpc_release_client(clnt);
861 	}
862 	goto out;
863 }
864 
865 void rpc_release_task(struct rpc_task *task)
866 {
867 	const struct rpc_call_ops *tk_ops = task->tk_ops;
868 	void *calldata = task->tk_calldata;
869 
870 #ifdef RPC_DEBUG
871 	BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
872 #endif
873 	if (!atomic_dec_and_test(&task->tk_count))
874 		return;
875 	dprintk("RPC: %4d release task\n", task->tk_pid);
876 
877 	/* Remove from global task list */
878 	spin_lock(&rpc_sched_lock);
879 	list_del(&task->tk_task);
880 	spin_unlock(&rpc_sched_lock);
881 
882 	BUG_ON (RPC_IS_QUEUED(task));
883 
884 	/* Synchronously delete any running timer */
885 	rpc_delete_timer(task);
886 
887 	/* Release resources */
888 	if (task->tk_rqstp)
889 		xprt_release(task);
890 	if (task->tk_msg.rpc_cred)
891 		rpcauth_unbindcred(task);
892 	if (task->tk_client) {
893 		rpc_release_client(task->tk_client);
894 		task->tk_client = NULL;
895 	}
896 
897 #ifdef RPC_DEBUG
898 	task->tk_magic = 0;
899 #endif
900 	if (task->tk_flags & RPC_TASK_DYNAMIC)
901 		rpc_free_task(task);
902 	if (tk_ops->rpc_release)
903 		tk_ops->rpc_release(calldata);
904 }
905 
906 /**
907  * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it
908  * @clnt: pointer to RPC client
909  * @flags: RPC flags
910  * @ops: RPC call ops
911  * @data: user call data
912  */
913 struct rpc_task *rpc_run_task(struct rpc_clnt *clnt, int flags,
914 					const struct rpc_call_ops *ops,
915 					void *data)
916 {
917 	struct rpc_task *task;
918 	task = rpc_new_task(clnt, flags, ops, data);
919 	if (task == NULL)
920 		return ERR_PTR(-ENOMEM);
921 	atomic_inc(&task->tk_count);
922 	rpc_execute(task);
923 	return task;
924 }
925 EXPORT_SYMBOL(rpc_run_task);
926 
927 /**
928  * rpc_find_parent - find the parent of a child task.
929  * @child: child task
930  * @parent: parent task
931  *
932  * Checks that the parent task is still sleeping on the
933  * queue 'childq'. If so returns a pointer to the parent.
934  * Upon failure returns NULL.
935  *
936  * Caller must hold childq.lock
937  */
938 static inline struct rpc_task *rpc_find_parent(struct rpc_task *child, struct rpc_task *parent)
939 {
940 	struct rpc_task	*task;
941 	struct list_head *le;
942 
943 	task_for_each(task, le, &childq.tasks[0])
944 		if (task == parent)
945 			return parent;
946 
947 	return NULL;
948 }
949 
950 static void rpc_child_exit(struct rpc_task *child, void *calldata)
951 {
952 	struct rpc_task	*parent;
953 
954 	spin_lock_bh(&childq.lock);
955 	if ((parent = rpc_find_parent(child, calldata)) != NULL) {
956 		parent->tk_status = child->tk_status;
957 		__rpc_wake_up_task(parent);
958 	}
959 	spin_unlock_bh(&childq.lock);
960 }
961 
962 static const struct rpc_call_ops rpc_child_ops = {
963 	.rpc_call_done = rpc_child_exit,
964 };
965 
966 /*
967  * Note: rpc_new_task releases the client after a failure.
968  */
969 struct rpc_task *
970 rpc_new_child(struct rpc_clnt *clnt, struct rpc_task *parent)
971 {
972 	struct rpc_task	*task;
973 
974 	task = rpc_new_task(clnt, RPC_TASK_ASYNC | RPC_TASK_CHILD, &rpc_child_ops, parent);
975 	if (!task)
976 		goto fail;
977 	return task;
978 
979 fail:
980 	parent->tk_status = -ENOMEM;
981 	return NULL;
982 }
983 
984 void rpc_run_child(struct rpc_task *task, struct rpc_task *child, rpc_action func)
985 {
986 	spin_lock_bh(&childq.lock);
987 	/* N.B. Is it possible for the child to have already finished? */
988 	__rpc_sleep_on(&childq, task, func, NULL);
989 	rpc_schedule_run(child);
990 	spin_unlock_bh(&childq.lock);
991 }
992 
993 /*
994  * Kill all tasks for the given client.
995  * XXX: kill their descendants as well?
996  */
997 void rpc_killall_tasks(struct rpc_clnt *clnt)
998 {
999 	struct rpc_task	*rovr;
1000 	struct list_head *le;
1001 
1002 	dprintk("RPC:      killing all tasks for client %p\n", clnt);
1003 
1004 	/*
1005 	 * Spin lock all_tasks to prevent changes...
1006 	 */
1007 	spin_lock(&rpc_sched_lock);
1008 	alltask_for_each(rovr, le, &all_tasks) {
1009 		if (! RPC_IS_ACTIVATED(rovr))
1010 			continue;
1011 		if (!clnt || rovr->tk_client == clnt) {
1012 			rovr->tk_flags |= RPC_TASK_KILLED;
1013 			rpc_exit(rovr, -EIO);
1014 			rpc_wake_up_task(rovr);
1015 		}
1016 	}
1017 	spin_unlock(&rpc_sched_lock);
1018 }
1019 
1020 static DECLARE_MUTEX_LOCKED(rpciod_running);
1021 
1022 static void rpciod_killall(void)
1023 {
1024 	unsigned long flags;
1025 
1026 	while (!list_empty(&all_tasks)) {
1027 		clear_thread_flag(TIF_SIGPENDING);
1028 		rpc_killall_tasks(NULL);
1029 		flush_workqueue(rpciod_workqueue);
1030 		if (!list_empty(&all_tasks)) {
1031 			dprintk("rpciod_killall: waiting for tasks to exit\n");
1032 			yield();
1033 		}
1034 	}
1035 
1036 	spin_lock_irqsave(&current->sighand->siglock, flags);
1037 	recalc_sigpending();
1038 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
1039 }
1040 
1041 /*
1042  * Start up the rpciod process if it's not already running.
1043  */
1044 int
1045 rpciod_up(void)
1046 {
1047 	struct workqueue_struct *wq;
1048 	int error = 0;
1049 
1050 	down(&rpciod_sema);
1051 	dprintk("rpciod_up: users %d\n", rpciod_users);
1052 	rpciod_users++;
1053 	if (rpciod_workqueue)
1054 		goto out;
1055 	/*
1056 	 * If there's no pid, we should be the first user.
1057 	 */
1058 	if (rpciod_users > 1)
1059 		printk(KERN_WARNING "rpciod_up: no workqueue, %d users??\n", rpciod_users);
1060 	/*
1061 	 * Create the rpciod thread and wait for it to start.
1062 	 */
1063 	error = -ENOMEM;
1064 	wq = create_workqueue("rpciod");
1065 	if (wq == NULL) {
1066 		printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error);
1067 		rpciod_users--;
1068 		goto out;
1069 	}
1070 	rpciod_workqueue = wq;
1071 	error = 0;
1072 out:
1073 	up(&rpciod_sema);
1074 	return error;
1075 }
1076 
1077 void
1078 rpciod_down(void)
1079 {
1080 	down(&rpciod_sema);
1081 	dprintk("rpciod_down sema %d\n", rpciod_users);
1082 	if (rpciod_users) {
1083 		if (--rpciod_users)
1084 			goto out;
1085 	} else
1086 		printk(KERN_WARNING "rpciod_down: no users??\n");
1087 
1088 	if (!rpciod_workqueue) {
1089 		dprintk("rpciod_down: Nothing to do!\n");
1090 		goto out;
1091 	}
1092 	rpciod_killall();
1093 
1094 	destroy_workqueue(rpciod_workqueue);
1095 	rpciod_workqueue = NULL;
1096  out:
1097 	up(&rpciod_sema);
1098 }
1099 
1100 #ifdef RPC_DEBUG
1101 void rpc_show_tasks(void)
1102 {
1103 	struct list_head *le;
1104 	struct rpc_task *t;
1105 
1106 	spin_lock(&rpc_sched_lock);
1107 	if (list_empty(&all_tasks)) {
1108 		spin_unlock(&rpc_sched_lock);
1109 		return;
1110 	}
1111 	printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
1112 		"-rpcwait -action- ---ops--\n");
1113 	alltask_for_each(t, le, &all_tasks) {
1114 		const char *rpc_waitq = "none";
1115 
1116 		if (RPC_IS_QUEUED(t))
1117 			rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq);
1118 
1119 		printk("%05d %04d %04x %06d %8p %6d %8p %08ld %8s %8p %8p\n",
1120 			t->tk_pid,
1121 			(t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1),
1122 			t->tk_flags, t->tk_status,
1123 			t->tk_client,
1124 			(t->tk_client ? t->tk_client->cl_prog : 0),
1125 			t->tk_rqstp, t->tk_timeout,
1126 			rpc_waitq,
1127 			t->tk_action, t->tk_ops);
1128 	}
1129 	spin_unlock(&rpc_sched_lock);
1130 }
1131 #endif
1132 
1133 void
1134 rpc_destroy_mempool(void)
1135 {
1136 	if (rpc_buffer_mempool)
1137 		mempool_destroy(rpc_buffer_mempool);
1138 	if (rpc_task_mempool)
1139 		mempool_destroy(rpc_task_mempool);
1140 	if (rpc_task_slabp && kmem_cache_destroy(rpc_task_slabp))
1141 		printk(KERN_INFO "rpc_task: not all structures were freed\n");
1142 	if (rpc_buffer_slabp && kmem_cache_destroy(rpc_buffer_slabp))
1143 		printk(KERN_INFO "rpc_buffers: not all structures were freed\n");
1144 }
1145 
1146 int
1147 rpc_init_mempool(void)
1148 {
1149 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1150 					     sizeof(struct rpc_task),
1151 					     0, SLAB_HWCACHE_ALIGN,
1152 					     NULL, NULL);
1153 	if (!rpc_task_slabp)
1154 		goto err_nomem;
1155 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1156 					     RPC_BUFFER_MAXSIZE,
1157 					     0, SLAB_HWCACHE_ALIGN,
1158 					     NULL, NULL);
1159 	if (!rpc_buffer_slabp)
1160 		goto err_nomem;
1161 	rpc_task_mempool = mempool_create(RPC_TASK_POOLSIZE,
1162 					    mempool_alloc_slab,
1163 					    mempool_free_slab,
1164 					    rpc_task_slabp);
1165 	if (!rpc_task_mempool)
1166 		goto err_nomem;
1167 	rpc_buffer_mempool = mempool_create(RPC_BUFFER_POOLSIZE,
1168 					    mempool_alloc_slab,
1169 					    mempool_free_slab,
1170 					    rpc_buffer_slabp);
1171 	if (!rpc_buffer_mempool)
1172 		goto err_nomem;
1173 	return 0;
1174 err_nomem:
1175 	rpc_destroy_mempool();
1176 	return -ENOMEM;
1177 }
1178