xref: /linux/net/sunrpc/sched.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11 
12 #include <linux/module.h>
13 
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 
23 #include <linux/sunrpc/clnt.h>
24 
25 #ifdef RPC_DEBUG
26 #define RPCDBG_FACILITY		RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID	0xf00baa
28 static int			rpc_task_id;
29 #endif
30 
31 /*
32  * RPC slabs and memory pools
33  */
34 #define RPC_BUFFER_MAXSIZE	(2048)
35 #define RPC_BUFFER_POOLSIZE	(8)
36 #define RPC_TASK_POOLSIZE	(8)
37 static struct kmem_cache	*rpc_task_slabp __read_mostly;
38 static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
39 static mempool_t	*rpc_task_mempool __read_mostly;
40 static mempool_t	*rpc_buffer_mempool __read_mostly;
41 
42 static void			__rpc_default_timer(struct rpc_task *task);
43 static void			rpciod_killall(void);
44 static void			rpc_async_schedule(struct work_struct *);
45 static void			 rpc_release_task(struct rpc_task *task);
46 
47 /*
48  * RPC tasks sit here while waiting for conditions to improve.
49  */
50 static RPC_WAITQ(delay_queue, "delayq");
51 
52 /*
53  * All RPC tasks are linked into this list
54  */
55 static LIST_HEAD(all_tasks);
56 
57 /*
58  * rpciod-related stuff
59  */
60 static DEFINE_MUTEX(rpciod_mutex);
61 static unsigned int		rpciod_users;
62 struct workqueue_struct *rpciod_workqueue;
63 
64 /*
65  * Spinlock for other critical sections of code.
66  */
67 static DEFINE_SPINLOCK(rpc_sched_lock);
68 
69 /*
70  * Disable the timer for a given RPC task. Should be called with
71  * queue->lock and bh_disabled in order to avoid races within
72  * rpc_run_timer().
73  */
74 static inline void
75 __rpc_disable_timer(struct rpc_task *task)
76 {
77 	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
78 	task->tk_timeout_fn = NULL;
79 	task->tk_timeout = 0;
80 }
81 
82 /*
83  * Run a timeout function.
84  * We use the callback in order to allow __rpc_wake_up_task()
85  * and friends to disable the timer synchronously on SMP systems
86  * without calling del_timer_sync(). The latter could cause a
87  * deadlock if called while we're holding spinlocks...
88  */
89 static void rpc_run_timer(struct rpc_task *task)
90 {
91 	void (*callback)(struct rpc_task *);
92 
93 	callback = task->tk_timeout_fn;
94 	task->tk_timeout_fn = NULL;
95 	if (callback && RPC_IS_QUEUED(task)) {
96 		dprintk("RPC: %5u running timer\n", task->tk_pid);
97 		callback(task);
98 	}
99 	smp_mb__before_clear_bit();
100 	clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
101 	smp_mb__after_clear_bit();
102 }
103 
104 /*
105  * Set up a timer for the current task.
106  */
107 static inline void
108 __rpc_add_timer(struct rpc_task *task, rpc_action timer)
109 {
110 	if (!task->tk_timeout)
111 		return;
112 
113 	dprintk("RPC: %5u setting alarm for %lu ms\n",
114 			task->tk_pid, task->tk_timeout * 1000 / HZ);
115 
116 	if (timer)
117 		task->tk_timeout_fn = timer;
118 	else
119 		task->tk_timeout_fn = __rpc_default_timer;
120 	set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
121 	mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
122 }
123 
124 /*
125  * Delete any timer for the current task. Because we use del_timer_sync(),
126  * this function should never be called while holding queue->lock.
127  */
128 static void
129 rpc_delete_timer(struct rpc_task *task)
130 {
131 	if (RPC_IS_QUEUED(task))
132 		return;
133 	if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
134 		del_singleshot_timer_sync(&task->tk_timer);
135 		dprintk("RPC: %5u deleting timer\n", task->tk_pid);
136 	}
137 }
138 
139 /*
140  * Add new request to a priority queue.
141  */
142 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
143 {
144 	struct list_head *q;
145 	struct rpc_task *t;
146 
147 	INIT_LIST_HEAD(&task->u.tk_wait.links);
148 	q = &queue->tasks[task->tk_priority];
149 	if (unlikely(task->tk_priority > queue->maxpriority))
150 		q = &queue->tasks[queue->maxpriority];
151 	list_for_each_entry(t, q, u.tk_wait.list) {
152 		if (t->tk_cookie == task->tk_cookie) {
153 			list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
154 			return;
155 		}
156 	}
157 	list_add_tail(&task->u.tk_wait.list, q);
158 }
159 
160 /*
161  * Add new request to wait queue.
162  *
163  * Swapper tasks always get inserted at the head of the queue.
164  * This should avoid many nasty memory deadlocks and hopefully
165  * improve overall performance.
166  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
167  */
168 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
169 {
170 	BUG_ON (RPC_IS_QUEUED(task));
171 
172 	if (RPC_IS_PRIORITY(queue))
173 		__rpc_add_wait_queue_priority(queue, task);
174 	else if (RPC_IS_SWAPPER(task))
175 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
176 	else
177 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
178 	task->u.tk_wait.rpc_waitq = queue;
179 	queue->qlen++;
180 	rpc_set_queued(task);
181 
182 	dprintk("RPC: %5u added to queue %p \"%s\"\n",
183 			task->tk_pid, queue, rpc_qname(queue));
184 }
185 
186 /*
187  * Remove request from a priority queue.
188  */
189 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
190 {
191 	struct rpc_task *t;
192 
193 	if (!list_empty(&task->u.tk_wait.links)) {
194 		t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
195 		list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
196 		list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
197 	}
198 	list_del(&task->u.tk_wait.list);
199 }
200 
201 /*
202  * Remove request from queue.
203  * Note: must be called with spin lock held.
204  */
205 static void __rpc_remove_wait_queue(struct rpc_task *task)
206 {
207 	struct rpc_wait_queue *queue;
208 	queue = task->u.tk_wait.rpc_waitq;
209 
210 	if (RPC_IS_PRIORITY(queue))
211 		__rpc_remove_wait_queue_priority(task);
212 	else
213 		list_del(&task->u.tk_wait.list);
214 	queue->qlen--;
215 	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
216 			task->tk_pid, queue, rpc_qname(queue));
217 }
218 
219 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
220 {
221 	queue->priority = priority;
222 	queue->count = 1 << (priority * 2);
223 }
224 
225 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie)
226 {
227 	queue->cookie = cookie;
228 	queue->nr = RPC_BATCH_COUNT;
229 }
230 
231 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
232 {
233 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
234 	rpc_set_waitqueue_cookie(queue, 0);
235 }
236 
237 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio)
238 {
239 	int i;
240 
241 	spin_lock_init(&queue->lock);
242 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
243 		INIT_LIST_HEAD(&queue->tasks[i]);
244 	queue->maxpriority = maxprio;
245 	rpc_reset_waitqueue_priority(queue);
246 #ifdef RPC_DEBUG
247 	queue->name = qname;
248 #endif
249 }
250 
251 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
252 {
253 	__rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH);
254 }
255 
256 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
257 {
258 	__rpc_init_priority_wait_queue(queue, qname, 0);
259 }
260 EXPORT_SYMBOL(rpc_init_wait_queue);
261 
262 static int rpc_wait_bit_interruptible(void *word)
263 {
264 	if (signal_pending(current))
265 		return -ERESTARTSYS;
266 	schedule();
267 	return 0;
268 }
269 
270 static void rpc_set_active(struct rpc_task *task)
271 {
272 	if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
273 		return;
274 	spin_lock(&rpc_sched_lock);
275 #ifdef RPC_DEBUG
276 	task->tk_magic = RPC_TASK_MAGIC_ID;
277 	task->tk_pid = rpc_task_id++;
278 #endif
279 	/* Add to global list of all tasks */
280 	list_add_tail(&task->tk_task, &all_tasks);
281 	spin_unlock(&rpc_sched_lock);
282 }
283 
284 /*
285  * Mark an RPC call as having completed by clearing the 'active' bit
286  */
287 static void rpc_mark_complete_task(struct rpc_task *task)
288 {
289 	smp_mb__before_clear_bit();
290 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
291 	smp_mb__after_clear_bit();
292 	wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
293 }
294 
295 /*
296  * Allow callers to wait for completion of an RPC call
297  */
298 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
299 {
300 	if (action == NULL)
301 		action = rpc_wait_bit_interruptible;
302 	return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
303 			action, TASK_INTERRUPTIBLE);
304 }
305 EXPORT_SYMBOL(__rpc_wait_for_completion_task);
306 
307 /*
308  * Make an RPC task runnable.
309  *
310  * Note: If the task is ASYNC, this must be called with
311  * the spinlock held to protect the wait queue operation.
312  */
313 static void rpc_make_runnable(struct rpc_task *task)
314 {
315 	BUG_ON(task->tk_timeout_fn);
316 	rpc_clear_queued(task);
317 	if (rpc_test_and_set_running(task))
318 		return;
319 	/* We might have raced */
320 	if (RPC_IS_QUEUED(task)) {
321 		rpc_clear_running(task);
322 		return;
323 	}
324 	if (RPC_IS_ASYNC(task)) {
325 		int status;
326 
327 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
328 		status = queue_work(task->tk_workqueue, &task->u.tk_work);
329 		if (status < 0) {
330 			printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
331 			task->tk_status = status;
332 			return;
333 		}
334 	} else
335 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
336 }
337 
338 /*
339  * Prepare for sleeping on a wait queue.
340  * By always appending tasks to the list we ensure FIFO behavior.
341  * NB: An RPC task will only receive interrupt-driven events as long
342  * as it's on a wait queue.
343  */
344 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
345 			rpc_action action, rpc_action timer)
346 {
347 	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
348 			task->tk_pid, rpc_qname(q), jiffies);
349 
350 	if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
351 		printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
352 		return;
353 	}
354 
355 	__rpc_add_wait_queue(q, task);
356 
357 	BUG_ON(task->tk_callback != NULL);
358 	task->tk_callback = action;
359 	__rpc_add_timer(task, timer);
360 }
361 
362 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
363 				rpc_action action, rpc_action timer)
364 {
365 	/* Mark the task as being activated if so needed */
366 	rpc_set_active(task);
367 
368 	/*
369 	 * Protect the queue operations.
370 	 */
371 	spin_lock_bh(&q->lock);
372 	__rpc_sleep_on(q, task, action, timer);
373 	spin_unlock_bh(&q->lock);
374 }
375 
376 /**
377  * __rpc_do_wake_up_task - wake up a single rpc_task
378  * @task: task to be woken up
379  *
380  * Caller must hold queue->lock, and have cleared the task queued flag.
381  */
382 static void __rpc_do_wake_up_task(struct rpc_task *task)
383 {
384 	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
385 			task->tk_pid, jiffies);
386 
387 #ifdef RPC_DEBUG
388 	BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
389 #endif
390 	/* Has the task been executed yet? If not, we cannot wake it up! */
391 	if (!RPC_IS_ACTIVATED(task)) {
392 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
393 		return;
394 	}
395 
396 	__rpc_disable_timer(task);
397 	__rpc_remove_wait_queue(task);
398 
399 	rpc_make_runnable(task);
400 
401 	dprintk("RPC:       __rpc_wake_up_task done\n");
402 }
403 
404 /*
405  * Wake up the specified task
406  */
407 static void __rpc_wake_up_task(struct rpc_task *task)
408 {
409 	if (rpc_start_wakeup(task)) {
410 		if (RPC_IS_QUEUED(task))
411 			__rpc_do_wake_up_task(task);
412 		rpc_finish_wakeup(task);
413 	}
414 }
415 
416 /*
417  * Default timeout handler if none specified by user
418  */
419 static void
420 __rpc_default_timer(struct rpc_task *task)
421 {
422 	dprintk("RPC: %5u timeout (default timer)\n", task->tk_pid);
423 	task->tk_status = -ETIMEDOUT;
424 	rpc_wake_up_task(task);
425 }
426 
427 /*
428  * Wake up the specified task
429  */
430 void rpc_wake_up_task(struct rpc_task *task)
431 {
432 	rcu_read_lock_bh();
433 	if (rpc_start_wakeup(task)) {
434 		if (RPC_IS_QUEUED(task)) {
435 			struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq;
436 
437 			/* Note: we're already in a bh-safe context */
438 			spin_lock(&queue->lock);
439 			__rpc_do_wake_up_task(task);
440 			spin_unlock(&queue->lock);
441 		}
442 		rpc_finish_wakeup(task);
443 	}
444 	rcu_read_unlock_bh();
445 }
446 
447 /*
448  * Wake up the next task on a priority queue.
449  */
450 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
451 {
452 	struct list_head *q;
453 	struct rpc_task *task;
454 
455 	/*
456 	 * Service a batch of tasks from a single cookie.
457 	 */
458 	q = &queue->tasks[queue->priority];
459 	if (!list_empty(q)) {
460 		task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
461 		if (queue->cookie == task->tk_cookie) {
462 			if (--queue->nr)
463 				goto out;
464 			list_move_tail(&task->u.tk_wait.list, q);
465 		}
466 		/*
467 		 * Check if we need to switch queues.
468 		 */
469 		if (--queue->count)
470 			goto new_cookie;
471 	}
472 
473 	/*
474 	 * Service the next queue.
475 	 */
476 	do {
477 		if (q == &queue->tasks[0])
478 			q = &queue->tasks[queue->maxpriority];
479 		else
480 			q = q - 1;
481 		if (!list_empty(q)) {
482 			task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
483 			goto new_queue;
484 		}
485 	} while (q != &queue->tasks[queue->priority]);
486 
487 	rpc_reset_waitqueue_priority(queue);
488 	return NULL;
489 
490 new_queue:
491 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
492 new_cookie:
493 	rpc_set_waitqueue_cookie(queue, task->tk_cookie);
494 out:
495 	__rpc_wake_up_task(task);
496 	return task;
497 }
498 
499 /*
500  * Wake up the next task on the wait queue.
501  */
502 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
503 {
504 	struct rpc_task	*task = NULL;
505 
506 	dprintk("RPC:       wake_up_next(%p \"%s\")\n",
507 			queue, rpc_qname(queue));
508 	rcu_read_lock_bh();
509 	spin_lock(&queue->lock);
510 	if (RPC_IS_PRIORITY(queue))
511 		task = __rpc_wake_up_next_priority(queue);
512 	else {
513 		task_for_first(task, &queue->tasks[0])
514 			__rpc_wake_up_task(task);
515 	}
516 	spin_unlock(&queue->lock);
517 	rcu_read_unlock_bh();
518 
519 	return task;
520 }
521 
522 /**
523  * rpc_wake_up - wake up all rpc_tasks
524  * @queue: rpc_wait_queue on which the tasks are sleeping
525  *
526  * Grabs queue->lock
527  */
528 void rpc_wake_up(struct rpc_wait_queue *queue)
529 {
530 	struct rpc_task *task, *next;
531 	struct list_head *head;
532 
533 	rcu_read_lock_bh();
534 	spin_lock(&queue->lock);
535 	head = &queue->tasks[queue->maxpriority];
536 	for (;;) {
537 		list_for_each_entry_safe(task, next, head, u.tk_wait.list)
538 			__rpc_wake_up_task(task);
539 		if (head == &queue->tasks[0])
540 			break;
541 		head--;
542 	}
543 	spin_unlock(&queue->lock);
544 	rcu_read_unlock_bh();
545 }
546 
547 /**
548  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
549  * @queue: rpc_wait_queue on which the tasks are sleeping
550  * @status: status value to set
551  *
552  * Grabs queue->lock
553  */
554 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
555 {
556 	struct rpc_task *task, *next;
557 	struct list_head *head;
558 
559 	rcu_read_lock_bh();
560 	spin_lock(&queue->lock);
561 	head = &queue->tasks[queue->maxpriority];
562 	for (;;) {
563 		list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
564 			task->tk_status = status;
565 			__rpc_wake_up_task(task);
566 		}
567 		if (head == &queue->tasks[0])
568 			break;
569 		head--;
570 	}
571 	spin_unlock(&queue->lock);
572 	rcu_read_unlock_bh();
573 }
574 
575 static void __rpc_atrun(struct rpc_task *task)
576 {
577 	rpc_wake_up_task(task);
578 }
579 
580 /*
581  * Run a task at a later time
582  */
583 void rpc_delay(struct rpc_task *task, unsigned long delay)
584 {
585 	task->tk_timeout = delay;
586 	rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
587 }
588 
589 /*
590  * Helper to call task->tk_ops->rpc_call_prepare
591  */
592 static void rpc_prepare_task(struct rpc_task *task)
593 {
594 	lock_kernel();
595 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
596 	unlock_kernel();
597 }
598 
599 /*
600  * Helper that calls task->tk_ops->rpc_call_done if it exists
601  */
602 void rpc_exit_task(struct rpc_task *task)
603 {
604 	task->tk_action = NULL;
605 	if (task->tk_ops->rpc_call_done != NULL) {
606 		lock_kernel();
607 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
608 		unlock_kernel();
609 		if (task->tk_action != NULL) {
610 			WARN_ON(RPC_ASSASSINATED(task));
611 			/* Always release the RPC slot and buffer memory */
612 			xprt_release(task);
613 		}
614 	}
615 }
616 EXPORT_SYMBOL(rpc_exit_task);
617 
618 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
619 {
620 	if (ops->rpc_release != NULL) {
621 		lock_kernel();
622 		ops->rpc_release(calldata);
623 		unlock_kernel();
624 	}
625 }
626 
627 /*
628  * This is the RPC `scheduler' (or rather, the finite state machine).
629  */
630 static void __rpc_execute(struct rpc_task *task)
631 {
632 	int		status = 0;
633 
634 	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
635 			task->tk_pid, task->tk_flags);
636 
637 	BUG_ON(RPC_IS_QUEUED(task));
638 
639 	for (;;) {
640 		/*
641 		 * Garbage collection of pending timers...
642 		 */
643 		rpc_delete_timer(task);
644 
645 		/*
646 		 * Execute any pending callback.
647 		 */
648 		if (RPC_DO_CALLBACK(task)) {
649 			/* Define a callback save pointer */
650 			void (*save_callback)(struct rpc_task *);
651 
652 			/*
653 			 * If a callback exists, save it, reset it,
654 			 * call it.
655 			 * The save is needed to stop from resetting
656 			 * another callback set within the callback handler
657 			 * - Dave
658 			 */
659 			save_callback=task->tk_callback;
660 			task->tk_callback=NULL;
661 			save_callback(task);
662 		}
663 
664 		/*
665 		 * Perform the next FSM step.
666 		 * tk_action may be NULL when the task has been killed
667 		 * by someone else.
668 		 */
669 		if (!RPC_IS_QUEUED(task)) {
670 			if (task->tk_action == NULL)
671 				break;
672 			task->tk_action(task);
673 		}
674 
675 		/*
676 		 * Lockless check for whether task is sleeping or not.
677 		 */
678 		if (!RPC_IS_QUEUED(task))
679 			continue;
680 		rpc_clear_running(task);
681 		if (RPC_IS_ASYNC(task)) {
682 			/* Careful! we may have raced... */
683 			if (RPC_IS_QUEUED(task))
684 				return;
685 			if (rpc_test_and_set_running(task))
686 				return;
687 			continue;
688 		}
689 
690 		/* sync task: sleep here */
691 		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
692 		/* Note: Caller should be using rpc_clnt_sigmask() */
693 		status = out_of_line_wait_on_bit(&task->tk_runstate,
694 				RPC_TASK_QUEUED, rpc_wait_bit_interruptible,
695 				TASK_INTERRUPTIBLE);
696 		if (status == -ERESTARTSYS) {
697 			/*
698 			 * When a sync task receives a signal, it exits with
699 			 * -ERESTARTSYS. In order to catch any callbacks that
700 			 * clean up after sleeping on some queue, we don't
701 			 * break the loop here, but go around once more.
702 			 */
703 			dprintk("RPC: %5u got signal\n", task->tk_pid);
704 			task->tk_flags |= RPC_TASK_KILLED;
705 			rpc_exit(task, -ERESTARTSYS);
706 			rpc_wake_up_task(task);
707 		}
708 		rpc_set_running(task);
709 		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
710 	}
711 
712 	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
713 			task->tk_status);
714 	/* Release all resources associated with the task */
715 	rpc_release_task(task);
716 }
717 
718 /*
719  * User-visible entry point to the scheduler.
720  *
721  * This may be called recursively if e.g. an async NFS task updates
722  * the attributes and finds that dirty pages must be flushed.
723  * NOTE: Upon exit of this function the task is guaranteed to be
724  *	 released. In particular note that tk_release() will have
725  *	 been called, so your task memory may have been freed.
726  */
727 void rpc_execute(struct rpc_task *task)
728 {
729 	rpc_set_active(task);
730 	rpc_set_running(task);
731 	__rpc_execute(task);
732 }
733 
734 static void rpc_async_schedule(struct work_struct *work)
735 {
736 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
737 }
738 
739 /**
740  * rpc_malloc - allocate an RPC buffer
741  * @task: RPC task that will use this buffer
742  * @size: requested byte size
743  *
744  * We try to ensure that some NFS reads and writes can always proceed
745  * by using a mempool when allocating 'small' buffers.
746  * In order to avoid memory starvation triggering more writebacks of
747  * NFS requests, we use GFP_NOFS rather than GFP_KERNEL.
748  */
749 void * rpc_malloc(struct rpc_task *task, size_t size)
750 {
751 	struct rpc_rqst *req = task->tk_rqstp;
752 	gfp_t	gfp;
753 
754 	if (task->tk_flags & RPC_TASK_SWAPPER)
755 		gfp = GFP_ATOMIC;
756 	else
757 		gfp = GFP_NOFS;
758 
759 	if (size > RPC_BUFFER_MAXSIZE) {
760 		req->rq_buffer = kmalloc(size, gfp);
761 		if (req->rq_buffer)
762 			req->rq_bufsize = size;
763 	} else {
764 		req->rq_buffer = mempool_alloc(rpc_buffer_mempool, gfp);
765 		if (req->rq_buffer)
766 			req->rq_bufsize = RPC_BUFFER_MAXSIZE;
767 	}
768 	return req->rq_buffer;
769 }
770 
771 /**
772  * rpc_free - free buffer allocated via rpc_malloc
773  * @task: RPC task with a buffer to be freed
774  *
775  */
776 void rpc_free(struct rpc_task *task)
777 {
778 	struct rpc_rqst *req = task->tk_rqstp;
779 
780 	if (req->rq_buffer) {
781 		if (req->rq_bufsize == RPC_BUFFER_MAXSIZE)
782 			mempool_free(req->rq_buffer, rpc_buffer_mempool);
783 		else
784 			kfree(req->rq_buffer);
785 		req->rq_buffer = NULL;
786 		req->rq_bufsize = 0;
787 	}
788 }
789 
790 /*
791  * Creation and deletion of RPC task structures
792  */
793 void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
794 {
795 	memset(task, 0, sizeof(*task));
796 	init_timer(&task->tk_timer);
797 	task->tk_timer.data     = (unsigned long) task;
798 	task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer;
799 	atomic_set(&task->tk_count, 1);
800 	task->tk_client = clnt;
801 	task->tk_flags  = flags;
802 	task->tk_ops = tk_ops;
803 	if (tk_ops->rpc_call_prepare != NULL)
804 		task->tk_action = rpc_prepare_task;
805 	task->tk_calldata = calldata;
806 
807 	/* Initialize retry counters */
808 	task->tk_garb_retry = 2;
809 	task->tk_cred_retry = 2;
810 
811 	task->tk_priority = RPC_PRIORITY_NORMAL;
812 	task->tk_cookie = (unsigned long)current;
813 
814 	/* Initialize workqueue for async tasks */
815 	task->tk_workqueue = rpciod_workqueue;
816 
817 	if (clnt) {
818 		atomic_inc(&clnt->cl_users);
819 		if (clnt->cl_softrtry)
820 			task->tk_flags |= RPC_TASK_SOFT;
821 		if (!clnt->cl_intr)
822 			task->tk_flags |= RPC_TASK_NOINTR;
823 	}
824 
825 	BUG_ON(task->tk_ops == NULL);
826 
827 	/* starting timestamp */
828 	task->tk_start = jiffies;
829 
830 	dprintk("RPC:       new task initialized, procpid %u\n",
831 				current->pid);
832 }
833 
834 static struct rpc_task *
835 rpc_alloc_task(void)
836 {
837 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
838 }
839 
840 static void rpc_free_task(struct rcu_head *rcu)
841 {
842 	struct rpc_task *task = container_of(rcu, struct rpc_task, u.tk_rcu);
843 	dprintk("RPC: %5u freeing task\n", task->tk_pid);
844 	mempool_free(task, rpc_task_mempool);
845 }
846 
847 /*
848  * Create a new task for the specified client.  We have to
849  * clean up after an allocation failure, as the client may
850  * have specified "oneshot".
851  */
852 struct rpc_task *rpc_new_task(struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
853 {
854 	struct rpc_task	*task;
855 
856 	task = rpc_alloc_task();
857 	if (!task)
858 		goto cleanup;
859 
860 	rpc_init_task(task, clnt, flags, tk_ops, calldata);
861 
862 	dprintk("RPC:       allocated task %p\n", task);
863 	task->tk_flags |= RPC_TASK_DYNAMIC;
864 out:
865 	return task;
866 
867 cleanup:
868 	/* Check whether to release the client */
869 	if (clnt) {
870 		printk("rpc_new_task: failed, users=%d, oneshot=%d\n",
871 			atomic_read(&clnt->cl_users), clnt->cl_oneshot);
872 		atomic_inc(&clnt->cl_users); /* pretend we were used ... */
873 		rpc_release_client(clnt);
874 	}
875 	goto out;
876 }
877 
878 
879 void rpc_put_task(struct rpc_task *task)
880 {
881 	const struct rpc_call_ops *tk_ops = task->tk_ops;
882 	void *calldata = task->tk_calldata;
883 
884 	if (!atomic_dec_and_test(&task->tk_count))
885 		return;
886 	/* Release resources */
887 	if (task->tk_rqstp)
888 		xprt_release(task);
889 	if (task->tk_msg.rpc_cred)
890 		rpcauth_unbindcred(task);
891 	if (task->tk_client) {
892 		rpc_release_client(task->tk_client);
893 		task->tk_client = NULL;
894 	}
895 	if (task->tk_flags & RPC_TASK_DYNAMIC)
896 		call_rcu_bh(&task->u.tk_rcu, rpc_free_task);
897 	rpc_release_calldata(tk_ops, calldata);
898 }
899 EXPORT_SYMBOL(rpc_put_task);
900 
901 static void rpc_release_task(struct rpc_task *task)
902 {
903 #ifdef RPC_DEBUG
904 	BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
905 #endif
906 	dprintk("RPC: %5u release task\n", task->tk_pid);
907 
908 	/* Remove from global task list */
909 	spin_lock(&rpc_sched_lock);
910 	list_del(&task->tk_task);
911 	spin_unlock(&rpc_sched_lock);
912 
913 	BUG_ON (RPC_IS_QUEUED(task));
914 
915 	/* Synchronously delete any running timer */
916 	rpc_delete_timer(task);
917 
918 #ifdef RPC_DEBUG
919 	task->tk_magic = 0;
920 #endif
921 	/* Wake up anyone who is waiting for task completion */
922 	rpc_mark_complete_task(task);
923 
924 	rpc_put_task(task);
925 }
926 
927 /**
928  * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it
929  * @clnt: pointer to RPC client
930  * @flags: RPC flags
931  * @ops: RPC call ops
932  * @data: user call data
933  */
934 struct rpc_task *rpc_run_task(struct rpc_clnt *clnt, int flags,
935 					const struct rpc_call_ops *ops,
936 					void *data)
937 {
938 	struct rpc_task *task;
939 	task = rpc_new_task(clnt, flags, ops, data);
940 	if (task == NULL) {
941 		rpc_release_calldata(ops, data);
942 		return ERR_PTR(-ENOMEM);
943 	}
944 	atomic_inc(&task->tk_count);
945 	rpc_execute(task);
946 	return task;
947 }
948 EXPORT_SYMBOL(rpc_run_task);
949 
950 /*
951  * Kill all tasks for the given client.
952  * XXX: kill their descendants as well?
953  */
954 void rpc_killall_tasks(struct rpc_clnt *clnt)
955 {
956 	struct rpc_task	*rovr;
957 	struct list_head *le;
958 
959 	dprintk("RPC:       killing all tasks for client %p\n", clnt);
960 
961 	/*
962 	 * Spin lock all_tasks to prevent changes...
963 	 */
964 	spin_lock(&rpc_sched_lock);
965 	alltask_for_each(rovr, le, &all_tasks) {
966 		if (! RPC_IS_ACTIVATED(rovr))
967 			continue;
968 		if (!clnt || rovr->tk_client == clnt) {
969 			rovr->tk_flags |= RPC_TASK_KILLED;
970 			rpc_exit(rovr, -EIO);
971 			rpc_wake_up_task(rovr);
972 		}
973 	}
974 	spin_unlock(&rpc_sched_lock);
975 }
976 
977 static DECLARE_MUTEX_LOCKED(rpciod_running);
978 
979 static void rpciod_killall(void)
980 {
981 	unsigned long flags;
982 
983 	while (!list_empty(&all_tasks)) {
984 		clear_thread_flag(TIF_SIGPENDING);
985 		rpc_killall_tasks(NULL);
986 		flush_workqueue(rpciod_workqueue);
987 		if (!list_empty(&all_tasks)) {
988 			dprintk("RPC:       rpciod_killall: waiting for tasks "
989 					"to exit\n");
990 			yield();
991 		}
992 	}
993 
994 	spin_lock_irqsave(&current->sighand->siglock, flags);
995 	recalc_sigpending();
996 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
997 }
998 
999 /*
1000  * Start up the rpciod process if it's not already running.
1001  */
1002 int
1003 rpciod_up(void)
1004 {
1005 	struct workqueue_struct *wq;
1006 	int error = 0;
1007 
1008 	mutex_lock(&rpciod_mutex);
1009 	dprintk("RPC:       rpciod_up: users %u\n", rpciod_users);
1010 	rpciod_users++;
1011 	if (rpciod_workqueue)
1012 		goto out;
1013 	/*
1014 	 * If there's no pid, we should be the first user.
1015 	 */
1016 	if (rpciod_users > 1)
1017 		printk(KERN_WARNING "rpciod_up: no workqueue, %u users??\n", rpciod_users);
1018 	/*
1019 	 * Create the rpciod thread and wait for it to start.
1020 	 */
1021 	error = -ENOMEM;
1022 	wq = create_workqueue("rpciod");
1023 	if (wq == NULL) {
1024 		printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error);
1025 		rpciod_users--;
1026 		goto out;
1027 	}
1028 	rpciod_workqueue = wq;
1029 	error = 0;
1030 out:
1031 	mutex_unlock(&rpciod_mutex);
1032 	return error;
1033 }
1034 
1035 void
1036 rpciod_down(void)
1037 {
1038 	mutex_lock(&rpciod_mutex);
1039 	dprintk("RPC:       rpciod_down sema %u\n", rpciod_users);
1040 	if (rpciod_users) {
1041 		if (--rpciod_users)
1042 			goto out;
1043 	} else
1044 		printk(KERN_WARNING "rpciod_down: no users??\n");
1045 
1046 	if (!rpciod_workqueue) {
1047 		dprintk("RPC:       rpciod_down: Nothing to do!\n");
1048 		goto out;
1049 	}
1050 	rpciod_killall();
1051 
1052 	destroy_workqueue(rpciod_workqueue);
1053 	rpciod_workqueue = NULL;
1054  out:
1055 	mutex_unlock(&rpciod_mutex);
1056 }
1057 
1058 #ifdef RPC_DEBUG
1059 void rpc_show_tasks(void)
1060 {
1061 	struct list_head *le;
1062 	struct rpc_task *t;
1063 
1064 	spin_lock(&rpc_sched_lock);
1065 	if (list_empty(&all_tasks)) {
1066 		spin_unlock(&rpc_sched_lock);
1067 		return;
1068 	}
1069 	printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
1070 		"-rpcwait -action- ---ops--\n");
1071 	alltask_for_each(t, le, &all_tasks) {
1072 		const char *rpc_waitq = "none";
1073 
1074 		if (RPC_IS_QUEUED(t))
1075 			rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq);
1076 
1077 		printk("%5u %04d %04x %6d %8p %6d %8p %8ld %8s %8p %8p\n",
1078 			t->tk_pid,
1079 			(t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1),
1080 			t->tk_flags, t->tk_status,
1081 			t->tk_client,
1082 			(t->tk_client ? t->tk_client->cl_prog : 0),
1083 			t->tk_rqstp, t->tk_timeout,
1084 			rpc_waitq,
1085 			t->tk_action, t->tk_ops);
1086 	}
1087 	spin_unlock(&rpc_sched_lock);
1088 }
1089 #endif
1090 
1091 void
1092 rpc_destroy_mempool(void)
1093 {
1094 	if (rpc_buffer_mempool)
1095 		mempool_destroy(rpc_buffer_mempool);
1096 	if (rpc_task_mempool)
1097 		mempool_destroy(rpc_task_mempool);
1098 	if (rpc_task_slabp)
1099 		kmem_cache_destroy(rpc_task_slabp);
1100 	if (rpc_buffer_slabp)
1101 		kmem_cache_destroy(rpc_buffer_slabp);
1102 }
1103 
1104 int
1105 rpc_init_mempool(void)
1106 {
1107 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1108 					     sizeof(struct rpc_task),
1109 					     0, SLAB_HWCACHE_ALIGN,
1110 					     NULL, NULL);
1111 	if (!rpc_task_slabp)
1112 		goto err_nomem;
1113 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1114 					     RPC_BUFFER_MAXSIZE,
1115 					     0, SLAB_HWCACHE_ALIGN,
1116 					     NULL, NULL);
1117 	if (!rpc_buffer_slabp)
1118 		goto err_nomem;
1119 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1120 						    rpc_task_slabp);
1121 	if (!rpc_task_mempool)
1122 		goto err_nomem;
1123 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1124 						      rpc_buffer_slabp);
1125 	if (!rpc_buffer_mempool)
1126 		goto err_nomem;
1127 	return 0;
1128 err_nomem:
1129 	rpc_destroy_mempool();
1130 	return -ENOMEM;
1131 }
1132