1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/sched.c 4 * 5 * Scheduling for synchronous and asynchronous RPC requests. 6 * 7 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> 8 * 9 * TCP NFS related read + write fixes 10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 11 */ 12 13 #include <linux/module.h> 14 15 #include <linux/sched.h> 16 #include <linux/interrupt.h> 17 #include <linux/slab.h> 18 #include <linux/mempool.h> 19 #include <linux/smp.h> 20 #include <linux/spinlock.h> 21 #include <linux/mutex.h> 22 #include <linux/freezer.h> 23 #include <linux/sched/mm.h> 24 25 #include <linux/sunrpc/clnt.h> 26 27 #include "sunrpc.h" 28 29 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 30 #define RPCDBG_FACILITY RPCDBG_SCHED 31 #endif 32 33 #define CREATE_TRACE_POINTS 34 #include <trace/events/sunrpc.h> 35 36 /* 37 * RPC slabs and memory pools 38 */ 39 #define RPC_BUFFER_MAXSIZE (2048) 40 #define RPC_BUFFER_POOLSIZE (8) 41 #define RPC_TASK_POOLSIZE (8) 42 static struct kmem_cache *rpc_task_slabp __read_mostly; 43 static struct kmem_cache *rpc_buffer_slabp __read_mostly; 44 static mempool_t *rpc_task_mempool __read_mostly; 45 static mempool_t *rpc_buffer_mempool __read_mostly; 46 47 static void rpc_async_schedule(struct work_struct *); 48 static void rpc_release_task(struct rpc_task *task); 49 static void __rpc_queue_timer_fn(struct timer_list *t); 50 51 /* 52 * RPC tasks sit here while waiting for conditions to improve. 53 */ 54 static struct rpc_wait_queue delay_queue; 55 56 /* 57 * rpciod-related stuff 58 */ 59 struct workqueue_struct *rpciod_workqueue __read_mostly; 60 struct workqueue_struct *xprtiod_workqueue __read_mostly; 61 62 unsigned long 63 rpc_task_timeout(const struct rpc_task *task) 64 { 65 unsigned long timeout = READ_ONCE(task->tk_timeout); 66 67 if (timeout != 0) { 68 unsigned long now = jiffies; 69 if (time_before(now, timeout)) 70 return timeout - now; 71 } 72 return 0; 73 } 74 EXPORT_SYMBOL_GPL(rpc_task_timeout); 75 76 /* 77 * Disable the timer for a given RPC task. Should be called with 78 * queue->lock and bh_disabled in order to avoid races within 79 * rpc_run_timer(). 80 */ 81 static void 82 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 83 { 84 if (list_empty(&task->u.tk_wait.timer_list)) 85 return; 86 dprintk("RPC: %5u disabling timer\n", task->tk_pid); 87 task->tk_timeout = 0; 88 list_del(&task->u.tk_wait.timer_list); 89 if (list_empty(&queue->timer_list.list)) 90 del_timer(&queue->timer_list.timer); 91 } 92 93 static void 94 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires) 95 { 96 timer_reduce(&queue->timer_list.timer, expires); 97 } 98 99 /* 100 * Set up a timer for the current task. 101 */ 102 static void 103 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task, 104 unsigned long timeout) 105 { 106 dprintk("RPC: %5u setting alarm for %u ms\n", 107 task->tk_pid, jiffies_to_msecs(timeout - jiffies)); 108 109 task->tk_timeout = timeout; 110 rpc_set_queue_timer(queue, timeout); 111 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list); 112 } 113 114 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) 115 { 116 if (queue->priority != priority) { 117 queue->priority = priority; 118 queue->nr = 1U << priority; 119 } 120 } 121 122 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) 123 { 124 rpc_set_waitqueue_priority(queue, queue->maxpriority); 125 } 126 127 /* 128 * Add a request to a queue list 129 */ 130 static void 131 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task) 132 { 133 struct rpc_task *t; 134 135 list_for_each_entry(t, q, u.tk_wait.list) { 136 if (t->tk_owner == task->tk_owner) { 137 list_add_tail(&task->u.tk_wait.links, 138 &t->u.tk_wait.links); 139 /* Cache the queue head in task->u.tk_wait.list */ 140 task->u.tk_wait.list.next = q; 141 task->u.tk_wait.list.prev = NULL; 142 return; 143 } 144 } 145 INIT_LIST_HEAD(&task->u.tk_wait.links); 146 list_add_tail(&task->u.tk_wait.list, q); 147 } 148 149 /* 150 * Remove request from a queue list 151 */ 152 static void 153 __rpc_list_dequeue_task(struct rpc_task *task) 154 { 155 struct list_head *q; 156 struct rpc_task *t; 157 158 if (task->u.tk_wait.list.prev == NULL) { 159 list_del(&task->u.tk_wait.links); 160 return; 161 } 162 if (!list_empty(&task->u.tk_wait.links)) { 163 t = list_first_entry(&task->u.tk_wait.links, 164 struct rpc_task, 165 u.tk_wait.links); 166 /* Assume __rpc_list_enqueue_task() cached the queue head */ 167 q = t->u.tk_wait.list.next; 168 list_add_tail(&t->u.tk_wait.list, q); 169 list_del(&task->u.tk_wait.links); 170 } 171 list_del(&task->u.tk_wait.list); 172 } 173 174 /* 175 * Add new request to a priority queue. 176 */ 177 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, 178 struct rpc_task *task, 179 unsigned char queue_priority) 180 { 181 if (unlikely(queue_priority > queue->maxpriority)) 182 queue_priority = queue->maxpriority; 183 __rpc_list_enqueue_task(&queue->tasks[queue_priority], task); 184 } 185 186 /* 187 * Add new request to wait queue. 188 * 189 * Swapper tasks always get inserted at the head of the queue. 190 * This should avoid many nasty memory deadlocks and hopefully 191 * improve overall performance. 192 * Everyone else gets appended to the queue to ensure proper FIFO behavior. 193 */ 194 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, 195 struct rpc_task *task, 196 unsigned char queue_priority) 197 { 198 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 199 if (RPC_IS_QUEUED(task)) 200 return; 201 202 INIT_LIST_HEAD(&task->u.tk_wait.timer_list); 203 if (RPC_IS_PRIORITY(queue)) 204 __rpc_add_wait_queue_priority(queue, task, queue_priority); 205 else if (RPC_IS_SWAPPER(task)) 206 list_add(&task->u.tk_wait.list, &queue->tasks[0]); 207 else 208 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); 209 task->tk_waitqueue = queue; 210 queue->qlen++; 211 /* barrier matches the read in rpc_wake_up_task_queue_locked() */ 212 smp_wmb(); 213 rpc_set_queued(task); 214 215 dprintk("RPC: %5u added to queue %p \"%s\"\n", 216 task->tk_pid, queue, rpc_qname(queue)); 217 } 218 219 /* 220 * Remove request from a priority queue. 221 */ 222 static void __rpc_remove_wait_queue_priority(struct rpc_task *task) 223 { 224 __rpc_list_dequeue_task(task); 225 } 226 227 /* 228 * Remove request from queue. 229 * Note: must be called with spin lock held. 230 */ 231 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 232 { 233 __rpc_disable_timer(queue, task); 234 if (RPC_IS_PRIORITY(queue)) 235 __rpc_remove_wait_queue_priority(task); 236 else 237 list_del(&task->u.tk_wait.list); 238 queue->qlen--; 239 dprintk("RPC: %5u removed from queue %p \"%s\"\n", 240 task->tk_pid, queue, rpc_qname(queue)); 241 } 242 243 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues) 244 { 245 int i; 246 247 spin_lock_init(&queue->lock); 248 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) 249 INIT_LIST_HEAD(&queue->tasks[i]); 250 queue->maxpriority = nr_queues - 1; 251 rpc_reset_waitqueue_priority(queue); 252 queue->qlen = 0; 253 timer_setup(&queue->timer_list.timer, 254 __rpc_queue_timer_fn, 255 TIMER_DEFERRABLE); 256 INIT_LIST_HEAD(&queue->timer_list.list); 257 rpc_assign_waitqueue_name(queue, qname); 258 } 259 260 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) 261 { 262 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY); 263 } 264 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue); 265 266 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) 267 { 268 __rpc_init_priority_wait_queue(queue, qname, 1); 269 } 270 EXPORT_SYMBOL_GPL(rpc_init_wait_queue); 271 272 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue) 273 { 274 del_timer_sync(&queue->timer_list.timer); 275 } 276 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue); 277 278 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode) 279 { 280 freezable_schedule_unsafe(); 281 if (signal_pending_state(mode, current)) 282 return -ERESTARTSYS; 283 return 0; 284 } 285 286 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS) 287 static void rpc_task_set_debuginfo(struct rpc_task *task) 288 { 289 static atomic_t rpc_pid; 290 291 task->tk_pid = atomic_inc_return(&rpc_pid); 292 } 293 #else 294 static inline void rpc_task_set_debuginfo(struct rpc_task *task) 295 { 296 } 297 #endif 298 299 static void rpc_set_active(struct rpc_task *task) 300 { 301 rpc_task_set_debuginfo(task); 302 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 303 trace_rpc_task_begin(task, NULL); 304 } 305 306 /* 307 * Mark an RPC call as having completed by clearing the 'active' bit 308 * and then waking up all tasks that were sleeping. 309 */ 310 static int rpc_complete_task(struct rpc_task *task) 311 { 312 void *m = &task->tk_runstate; 313 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE); 314 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE); 315 unsigned long flags; 316 int ret; 317 318 trace_rpc_task_complete(task, NULL); 319 320 spin_lock_irqsave(&wq->lock, flags); 321 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 322 ret = atomic_dec_and_test(&task->tk_count); 323 if (waitqueue_active(wq)) 324 __wake_up_locked_key(wq, TASK_NORMAL, &k); 325 spin_unlock_irqrestore(&wq->lock, flags); 326 return ret; 327 } 328 329 /* 330 * Allow callers to wait for completion of an RPC call 331 * 332 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit() 333 * to enforce taking of the wq->lock and hence avoid races with 334 * rpc_complete_task(). 335 */ 336 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action) 337 { 338 if (action == NULL) 339 action = rpc_wait_bit_killable; 340 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, 341 action, TASK_KILLABLE); 342 } 343 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task); 344 345 /* 346 * Make an RPC task runnable. 347 * 348 * Note: If the task is ASYNC, and is being made runnable after sitting on an 349 * rpc_wait_queue, this must be called with the queue spinlock held to protect 350 * the wait queue operation. 351 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(), 352 * which is needed to ensure that __rpc_execute() doesn't loop (due to the 353 * lockless RPC_IS_QUEUED() test) before we've had a chance to test 354 * the RPC_TASK_RUNNING flag. 355 */ 356 static void rpc_make_runnable(struct workqueue_struct *wq, 357 struct rpc_task *task) 358 { 359 bool need_wakeup = !rpc_test_and_set_running(task); 360 361 rpc_clear_queued(task); 362 if (!need_wakeup) 363 return; 364 if (RPC_IS_ASYNC(task)) { 365 INIT_WORK(&task->u.tk_work, rpc_async_schedule); 366 queue_work(wq, &task->u.tk_work); 367 } else 368 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); 369 } 370 371 /* 372 * Prepare for sleeping on a wait queue. 373 * By always appending tasks to the list we ensure FIFO behavior. 374 * NB: An RPC task will only receive interrupt-driven events as long 375 * as it's on a wait queue. 376 */ 377 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q, 378 struct rpc_task *task, 379 unsigned char queue_priority) 380 { 381 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n", 382 task->tk_pid, rpc_qname(q), jiffies); 383 384 trace_rpc_task_sleep(task, q); 385 386 __rpc_add_wait_queue(q, task, queue_priority); 387 388 } 389 390 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q, 391 struct rpc_task *task, unsigned long timeout, 392 unsigned char queue_priority) 393 { 394 if (time_is_after_jiffies(timeout)) { 395 __rpc_sleep_on_priority(q, task, queue_priority); 396 __rpc_add_timer(q, task, timeout); 397 } else 398 task->tk_status = -ETIMEDOUT; 399 } 400 401 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action) 402 { 403 if (action && !WARN_ON_ONCE(task->tk_callback != NULL)) 404 task->tk_callback = action; 405 } 406 407 static bool rpc_sleep_check_activated(struct rpc_task *task) 408 { 409 /* We shouldn't ever put an inactive task to sleep */ 410 if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) { 411 task->tk_status = -EIO; 412 rpc_put_task_async(task); 413 return false; 414 } 415 return true; 416 } 417 418 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task, 419 rpc_action action, unsigned long timeout) 420 { 421 if (!rpc_sleep_check_activated(task)) 422 return; 423 424 rpc_set_tk_callback(task, action); 425 426 /* 427 * Protect the queue operations. 428 */ 429 spin_lock_bh(&q->lock); 430 __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority); 431 spin_unlock_bh(&q->lock); 432 } 433 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout); 434 435 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 436 rpc_action action) 437 { 438 if (!rpc_sleep_check_activated(task)) 439 return; 440 441 rpc_set_tk_callback(task, action); 442 443 WARN_ON_ONCE(task->tk_timeout != 0); 444 /* 445 * Protect the queue operations. 446 */ 447 spin_lock_bh(&q->lock); 448 __rpc_sleep_on_priority(q, task, task->tk_priority); 449 spin_unlock_bh(&q->lock); 450 } 451 EXPORT_SYMBOL_GPL(rpc_sleep_on); 452 453 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q, 454 struct rpc_task *task, unsigned long timeout, int priority) 455 { 456 if (!rpc_sleep_check_activated(task)) 457 return; 458 459 priority -= RPC_PRIORITY_LOW; 460 /* 461 * Protect the queue operations. 462 */ 463 spin_lock_bh(&q->lock); 464 __rpc_sleep_on_priority_timeout(q, task, timeout, priority); 465 spin_unlock_bh(&q->lock); 466 } 467 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout); 468 469 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task, 470 int priority) 471 { 472 if (!rpc_sleep_check_activated(task)) 473 return; 474 475 WARN_ON_ONCE(task->tk_timeout != 0); 476 priority -= RPC_PRIORITY_LOW; 477 /* 478 * Protect the queue operations. 479 */ 480 spin_lock_bh(&q->lock); 481 __rpc_sleep_on_priority(q, task, priority); 482 spin_unlock_bh(&q->lock); 483 } 484 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority); 485 486 /** 487 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task 488 * @wq: workqueue on which to run task 489 * @queue: wait queue 490 * @task: task to be woken up 491 * 492 * Caller must hold queue->lock, and have cleared the task queued flag. 493 */ 494 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq, 495 struct rpc_wait_queue *queue, 496 struct rpc_task *task) 497 { 498 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n", 499 task->tk_pid, jiffies); 500 501 /* Has the task been executed yet? If not, we cannot wake it up! */ 502 if (!RPC_IS_ACTIVATED(task)) { 503 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); 504 return; 505 } 506 507 trace_rpc_task_wakeup(task, queue); 508 509 __rpc_remove_wait_queue(queue, task); 510 511 rpc_make_runnable(wq, task); 512 513 dprintk("RPC: __rpc_wake_up_task done\n"); 514 } 515 516 /* 517 * Wake up a queued task while the queue lock is being held 518 */ 519 static struct rpc_task * 520 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq, 521 struct rpc_wait_queue *queue, struct rpc_task *task, 522 bool (*action)(struct rpc_task *, void *), void *data) 523 { 524 if (RPC_IS_QUEUED(task)) { 525 smp_rmb(); 526 if (task->tk_waitqueue == queue) { 527 if (action == NULL || action(task, data)) { 528 __rpc_do_wake_up_task_on_wq(wq, queue, task); 529 return task; 530 } 531 } 532 } 533 return NULL; 534 } 535 536 static void 537 rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq, 538 struct rpc_wait_queue *queue, struct rpc_task *task) 539 { 540 rpc_wake_up_task_on_wq_queue_action_locked(wq, queue, task, NULL, NULL); 541 } 542 543 /* 544 * Wake up a queued task while the queue lock is being held 545 */ 546 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task) 547 { 548 rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task); 549 } 550 551 /* 552 * Wake up a task on a specific queue 553 */ 554 void rpc_wake_up_queued_task_on_wq(struct workqueue_struct *wq, 555 struct rpc_wait_queue *queue, 556 struct rpc_task *task) 557 { 558 if (!RPC_IS_QUEUED(task)) 559 return; 560 spin_lock_bh(&queue->lock); 561 rpc_wake_up_task_on_wq_queue_locked(wq, queue, task); 562 spin_unlock_bh(&queue->lock); 563 } 564 565 /* 566 * Wake up a task on a specific queue 567 */ 568 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task) 569 { 570 if (!RPC_IS_QUEUED(task)) 571 return; 572 spin_lock_bh(&queue->lock); 573 rpc_wake_up_task_queue_locked(queue, task); 574 spin_unlock_bh(&queue->lock); 575 } 576 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task); 577 578 static bool rpc_task_action_set_status(struct rpc_task *task, void *status) 579 { 580 task->tk_status = *(int *)status; 581 return true; 582 } 583 584 static void 585 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue, 586 struct rpc_task *task, int status) 587 { 588 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue, 589 task, rpc_task_action_set_status, &status); 590 } 591 592 /** 593 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status 594 * @queue: pointer to rpc_wait_queue 595 * @task: pointer to rpc_task 596 * @status: integer error value 597 * 598 * If @task is queued on @queue, then it is woken up, and @task->tk_status is 599 * set to the value of @status. 600 */ 601 void 602 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue, 603 struct rpc_task *task, int status) 604 { 605 if (!RPC_IS_QUEUED(task)) 606 return; 607 spin_lock_bh(&queue->lock); 608 rpc_wake_up_task_queue_set_status_locked(queue, task, status); 609 spin_unlock_bh(&queue->lock); 610 } 611 612 /* 613 * Wake up the next task on a priority queue. 614 */ 615 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue) 616 { 617 struct list_head *q; 618 struct rpc_task *task; 619 620 /* 621 * Service a batch of tasks from a single owner. 622 */ 623 q = &queue->tasks[queue->priority]; 624 if (!list_empty(q) && --queue->nr) { 625 task = list_first_entry(q, struct rpc_task, u.tk_wait.list); 626 goto out; 627 } 628 629 /* 630 * Service the next queue. 631 */ 632 do { 633 if (q == &queue->tasks[0]) 634 q = &queue->tasks[queue->maxpriority]; 635 else 636 q = q - 1; 637 if (!list_empty(q)) { 638 task = list_first_entry(q, struct rpc_task, u.tk_wait.list); 639 goto new_queue; 640 } 641 } while (q != &queue->tasks[queue->priority]); 642 643 rpc_reset_waitqueue_priority(queue); 644 return NULL; 645 646 new_queue: 647 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); 648 out: 649 return task; 650 } 651 652 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue) 653 { 654 if (RPC_IS_PRIORITY(queue)) 655 return __rpc_find_next_queued_priority(queue); 656 if (!list_empty(&queue->tasks[0])) 657 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list); 658 return NULL; 659 } 660 661 /* 662 * Wake up the first task on the wait queue. 663 */ 664 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq, 665 struct rpc_wait_queue *queue, 666 bool (*func)(struct rpc_task *, void *), void *data) 667 { 668 struct rpc_task *task = NULL; 669 670 dprintk("RPC: wake_up_first(%p \"%s\")\n", 671 queue, rpc_qname(queue)); 672 spin_lock_bh(&queue->lock); 673 task = __rpc_find_next_queued(queue); 674 if (task != NULL) 675 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue, 676 task, func, data); 677 spin_unlock_bh(&queue->lock); 678 679 return task; 680 } 681 682 /* 683 * Wake up the first task on the wait queue. 684 */ 685 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue, 686 bool (*func)(struct rpc_task *, void *), void *data) 687 { 688 return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data); 689 } 690 EXPORT_SYMBOL_GPL(rpc_wake_up_first); 691 692 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data) 693 { 694 return true; 695 } 696 697 /* 698 * Wake up the next task on the wait queue. 699 */ 700 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue) 701 { 702 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL); 703 } 704 EXPORT_SYMBOL_GPL(rpc_wake_up_next); 705 706 /** 707 * rpc_wake_up - wake up all rpc_tasks 708 * @queue: rpc_wait_queue on which the tasks are sleeping 709 * 710 * Grabs queue->lock 711 */ 712 void rpc_wake_up(struct rpc_wait_queue *queue) 713 { 714 struct list_head *head; 715 716 spin_lock_bh(&queue->lock); 717 head = &queue->tasks[queue->maxpriority]; 718 for (;;) { 719 while (!list_empty(head)) { 720 struct rpc_task *task; 721 task = list_first_entry(head, 722 struct rpc_task, 723 u.tk_wait.list); 724 rpc_wake_up_task_queue_locked(queue, task); 725 } 726 if (head == &queue->tasks[0]) 727 break; 728 head--; 729 } 730 spin_unlock_bh(&queue->lock); 731 } 732 EXPORT_SYMBOL_GPL(rpc_wake_up); 733 734 /** 735 * rpc_wake_up_status - wake up all rpc_tasks and set their status value. 736 * @queue: rpc_wait_queue on which the tasks are sleeping 737 * @status: status value to set 738 * 739 * Grabs queue->lock 740 */ 741 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) 742 { 743 struct list_head *head; 744 745 spin_lock_bh(&queue->lock); 746 head = &queue->tasks[queue->maxpriority]; 747 for (;;) { 748 while (!list_empty(head)) { 749 struct rpc_task *task; 750 task = list_first_entry(head, 751 struct rpc_task, 752 u.tk_wait.list); 753 task->tk_status = status; 754 rpc_wake_up_task_queue_locked(queue, task); 755 } 756 if (head == &queue->tasks[0]) 757 break; 758 head--; 759 } 760 spin_unlock_bh(&queue->lock); 761 } 762 EXPORT_SYMBOL_GPL(rpc_wake_up_status); 763 764 static void __rpc_queue_timer_fn(struct timer_list *t) 765 { 766 struct rpc_wait_queue *queue = from_timer(queue, t, timer_list.timer); 767 struct rpc_task *task, *n; 768 unsigned long expires, now, timeo; 769 770 spin_lock(&queue->lock); 771 expires = now = jiffies; 772 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) { 773 timeo = task->tk_timeout; 774 if (time_after_eq(now, timeo)) { 775 dprintk("RPC: %5u timeout\n", task->tk_pid); 776 task->tk_status = -ETIMEDOUT; 777 rpc_wake_up_task_queue_locked(queue, task); 778 continue; 779 } 780 if (expires == now || time_after(expires, timeo)) 781 expires = timeo; 782 } 783 if (!list_empty(&queue->timer_list.list)) 784 rpc_set_queue_timer(queue, expires); 785 spin_unlock(&queue->lock); 786 } 787 788 static void __rpc_atrun(struct rpc_task *task) 789 { 790 if (task->tk_status == -ETIMEDOUT) 791 task->tk_status = 0; 792 } 793 794 /* 795 * Run a task at a later time 796 */ 797 void rpc_delay(struct rpc_task *task, unsigned long delay) 798 { 799 rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay); 800 } 801 EXPORT_SYMBOL_GPL(rpc_delay); 802 803 /* 804 * Helper to call task->tk_ops->rpc_call_prepare 805 */ 806 void rpc_prepare_task(struct rpc_task *task) 807 { 808 task->tk_ops->rpc_call_prepare(task, task->tk_calldata); 809 } 810 811 static void 812 rpc_init_task_statistics(struct rpc_task *task) 813 { 814 /* Initialize retry counters */ 815 task->tk_garb_retry = 2; 816 task->tk_cred_retry = 2; 817 task->tk_rebind_retry = 2; 818 819 /* starting timestamp */ 820 task->tk_start = ktime_get(); 821 } 822 823 static void 824 rpc_reset_task_statistics(struct rpc_task *task) 825 { 826 task->tk_timeouts = 0; 827 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT); 828 rpc_init_task_statistics(task); 829 } 830 831 /* 832 * Helper that calls task->tk_ops->rpc_call_done if it exists 833 */ 834 void rpc_exit_task(struct rpc_task *task) 835 { 836 task->tk_action = NULL; 837 if (task->tk_ops->rpc_call_done != NULL) { 838 task->tk_ops->rpc_call_done(task, task->tk_calldata); 839 if (task->tk_action != NULL) { 840 /* Always release the RPC slot and buffer memory */ 841 xprt_release(task); 842 rpc_reset_task_statistics(task); 843 } 844 } 845 } 846 847 void rpc_signal_task(struct rpc_task *task) 848 { 849 struct rpc_wait_queue *queue; 850 851 if (!RPC_IS_ACTIVATED(task)) 852 return; 853 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate); 854 smp_mb__after_atomic(); 855 queue = READ_ONCE(task->tk_waitqueue); 856 if (queue) 857 rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS); 858 } 859 860 void rpc_exit(struct rpc_task *task, int status) 861 { 862 task->tk_status = status; 863 task->tk_action = rpc_exit_task; 864 rpc_wake_up_queued_task(task->tk_waitqueue, task); 865 } 866 EXPORT_SYMBOL_GPL(rpc_exit); 867 868 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata) 869 { 870 if (ops->rpc_release != NULL) 871 ops->rpc_release(calldata); 872 } 873 874 /* 875 * This is the RPC `scheduler' (or rather, the finite state machine). 876 */ 877 static void __rpc_execute(struct rpc_task *task) 878 { 879 struct rpc_wait_queue *queue; 880 int task_is_async = RPC_IS_ASYNC(task); 881 int status = 0; 882 883 dprintk("RPC: %5u __rpc_execute flags=0x%x\n", 884 task->tk_pid, task->tk_flags); 885 886 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 887 if (RPC_IS_QUEUED(task)) 888 return; 889 890 for (;;) { 891 void (*do_action)(struct rpc_task *); 892 893 /* 894 * Perform the next FSM step or a pending callback. 895 * 896 * tk_action may be NULL if the task has been killed. 897 * In particular, note that rpc_killall_tasks may 898 * do this at any time, so beware when dereferencing. 899 */ 900 do_action = task->tk_action; 901 if (task->tk_callback) { 902 do_action = task->tk_callback; 903 task->tk_callback = NULL; 904 } 905 if (!do_action) 906 break; 907 trace_rpc_task_run_action(task, do_action); 908 do_action(task); 909 910 /* 911 * Lockless check for whether task is sleeping or not. 912 */ 913 if (!RPC_IS_QUEUED(task)) 914 continue; 915 916 /* 917 * Signalled tasks should exit rather than sleep. 918 */ 919 if (RPC_SIGNALLED(task)) 920 rpc_exit(task, -ERESTARTSYS); 921 922 /* 923 * The queue->lock protects against races with 924 * rpc_make_runnable(). 925 * 926 * Note that once we clear RPC_TASK_RUNNING on an asynchronous 927 * rpc_task, rpc_make_runnable() can assign it to a 928 * different workqueue. We therefore cannot assume that the 929 * rpc_task pointer may still be dereferenced. 930 */ 931 queue = task->tk_waitqueue; 932 spin_lock_bh(&queue->lock); 933 if (!RPC_IS_QUEUED(task)) { 934 spin_unlock_bh(&queue->lock); 935 continue; 936 } 937 rpc_clear_running(task); 938 spin_unlock_bh(&queue->lock); 939 if (task_is_async) 940 return; 941 942 /* sync task: sleep here */ 943 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid); 944 status = out_of_line_wait_on_bit(&task->tk_runstate, 945 RPC_TASK_QUEUED, rpc_wait_bit_killable, 946 TASK_KILLABLE); 947 if (status < 0) { 948 /* 949 * When a sync task receives a signal, it exits with 950 * -ERESTARTSYS. In order to catch any callbacks that 951 * clean up after sleeping on some queue, we don't 952 * break the loop here, but go around once more. 953 */ 954 dprintk("RPC: %5u got signal\n", task->tk_pid); 955 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate); 956 rpc_exit(task, -ERESTARTSYS); 957 } 958 dprintk("RPC: %5u sync task resuming\n", task->tk_pid); 959 } 960 961 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status, 962 task->tk_status); 963 /* Release all resources associated with the task */ 964 rpc_release_task(task); 965 } 966 967 /* 968 * User-visible entry point to the scheduler. 969 * 970 * This may be called recursively if e.g. an async NFS task updates 971 * the attributes and finds that dirty pages must be flushed. 972 * NOTE: Upon exit of this function the task is guaranteed to be 973 * released. In particular note that tk_release() will have 974 * been called, so your task memory may have been freed. 975 */ 976 void rpc_execute(struct rpc_task *task) 977 { 978 bool is_async = RPC_IS_ASYNC(task); 979 980 rpc_set_active(task); 981 rpc_make_runnable(rpciod_workqueue, task); 982 if (!is_async) 983 __rpc_execute(task); 984 } 985 986 static void rpc_async_schedule(struct work_struct *work) 987 { 988 unsigned int pflags = memalloc_nofs_save(); 989 990 __rpc_execute(container_of(work, struct rpc_task, u.tk_work)); 991 memalloc_nofs_restore(pflags); 992 } 993 994 /** 995 * rpc_malloc - allocate RPC buffer resources 996 * @task: RPC task 997 * 998 * A single memory region is allocated, which is split between the 999 * RPC call and RPC reply that this task is being used for. When 1000 * this RPC is retired, the memory is released by calling rpc_free. 1001 * 1002 * To prevent rpciod from hanging, this allocator never sleeps, 1003 * returning -ENOMEM and suppressing warning if the request cannot 1004 * be serviced immediately. The caller can arrange to sleep in a 1005 * way that is safe for rpciod. 1006 * 1007 * Most requests are 'small' (under 2KiB) and can be serviced from a 1008 * mempool, ensuring that NFS reads and writes can always proceed, 1009 * and that there is good locality of reference for these buffers. 1010 */ 1011 int rpc_malloc(struct rpc_task *task) 1012 { 1013 struct rpc_rqst *rqst = task->tk_rqstp; 1014 size_t size = rqst->rq_callsize + rqst->rq_rcvsize; 1015 struct rpc_buffer *buf; 1016 gfp_t gfp = GFP_NOFS; 1017 1018 if (RPC_IS_SWAPPER(task)) 1019 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN; 1020 1021 size += sizeof(struct rpc_buffer); 1022 if (size <= RPC_BUFFER_MAXSIZE) 1023 buf = mempool_alloc(rpc_buffer_mempool, gfp); 1024 else 1025 buf = kmalloc(size, gfp); 1026 1027 if (!buf) 1028 return -ENOMEM; 1029 1030 buf->len = size; 1031 dprintk("RPC: %5u allocated buffer of size %zu at %p\n", 1032 task->tk_pid, size, buf); 1033 rqst->rq_buffer = buf->data; 1034 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize; 1035 return 0; 1036 } 1037 EXPORT_SYMBOL_GPL(rpc_malloc); 1038 1039 /** 1040 * rpc_free - free RPC buffer resources allocated via rpc_malloc 1041 * @task: RPC task 1042 * 1043 */ 1044 void rpc_free(struct rpc_task *task) 1045 { 1046 void *buffer = task->tk_rqstp->rq_buffer; 1047 size_t size; 1048 struct rpc_buffer *buf; 1049 1050 buf = container_of(buffer, struct rpc_buffer, data); 1051 size = buf->len; 1052 1053 dprintk("RPC: freeing buffer of size %zu at %p\n", 1054 size, buf); 1055 1056 if (size <= RPC_BUFFER_MAXSIZE) 1057 mempool_free(buf, rpc_buffer_mempool); 1058 else 1059 kfree(buf); 1060 } 1061 EXPORT_SYMBOL_GPL(rpc_free); 1062 1063 /* 1064 * Creation and deletion of RPC task structures 1065 */ 1066 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data) 1067 { 1068 memset(task, 0, sizeof(*task)); 1069 atomic_set(&task->tk_count, 1); 1070 task->tk_flags = task_setup_data->flags; 1071 task->tk_ops = task_setup_data->callback_ops; 1072 task->tk_calldata = task_setup_data->callback_data; 1073 INIT_LIST_HEAD(&task->tk_task); 1074 1075 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW; 1076 task->tk_owner = current->tgid; 1077 1078 /* Initialize workqueue for async tasks */ 1079 task->tk_workqueue = task_setup_data->workqueue; 1080 1081 task->tk_xprt = xprt_get(task_setup_data->rpc_xprt); 1082 1083 task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred); 1084 1085 if (task->tk_ops->rpc_call_prepare != NULL) 1086 task->tk_action = rpc_prepare_task; 1087 1088 rpc_init_task_statistics(task); 1089 1090 dprintk("RPC: new task initialized, procpid %u\n", 1091 task_pid_nr(current)); 1092 } 1093 1094 static struct rpc_task * 1095 rpc_alloc_task(void) 1096 { 1097 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS); 1098 } 1099 1100 /* 1101 * Create a new task for the specified client. 1102 */ 1103 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data) 1104 { 1105 struct rpc_task *task = setup_data->task; 1106 unsigned short flags = 0; 1107 1108 if (task == NULL) { 1109 task = rpc_alloc_task(); 1110 flags = RPC_TASK_DYNAMIC; 1111 } 1112 1113 rpc_init_task(task, setup_data); 1114 task->tk_flags |= flags; 1115 dprintk("RPC: allocated task %p\n", task); 1116 return task; 1117 } 1118 1119 /* 1120 * rpc_free_task - release rpc task and perform cleanups 1121 * 1122 * Note that we free up the rpc_task _after_ rpc_release_calldata() 1123 * in order to work around a workqueue dependency issue. 1124 * 1125 * Tejun Heo states: 1126 * "Workqueue currently considers two work items to be the same if they're 1127 * on the same address and won't execute them concurrently - ie. it 1128 * makes a work item which is queued again while being executed wait 1129 * for the previous execution to complete. 1130 * 1131 * If a work function frees the work item, and then waits for an event 1132 * which should be performed by another work item and *that* work item 1133 * recycles the freed work item, it can create a false dependency loop. 1134 * There really is no reliable way to detect this short of verifying 1135 * every memory free." 1136 * 1137 */ 1138 static void rpc_free_task(struct rpc_task *task) 1139 { 1140 unsigned short tk_flags = task->tk_flags; 1141 1142 put_rpccred(task->tk_op_cred); 1143 rpc_release_calldata(task->tk_ops, task->tk_calldata); 1144 1145 if (tk_flags & RPC_TASK_DYNAMIC) { 1146 dprintk("RPC: %5u freeing task\n", task->tk_pid); 1147 mempool_free(task, rpc_task_mempool); 1148 } 1149 } 1150 1151 static void rpc_async_release(struct work_struct *work) 1152 { 1153 unsigned int pflags = memalloc_nofs_save(); 1154 1155 rpc_free_task(container_of(work, struct rpc_task, u.tk_work)); 1156 memalloc_nofs_restore(pflags); 1157 } 1158 1159 static void rpc_release_resources_task(struct rpc_task *task) 1160 { 1161 xprt_release(task); 1162 if (task->tk_msg.rpc_cred) { 1163 put_cred(task->tk_msg.rpc_cred); 1164 task->tk_msg.rpc_cred = NULL; 1165 } 1166 rpc_task_release_client(task); 1167 } 1168 1169 static void rpc_final_put_task(struct rpc_task *task, 1170 struct workqueue_struct *q) 1171 { 1172 if (q != NULL) { 1173 INIT_WORK(&task->u.tk_work, rpc_async_release); 1174 queue_work(q, &task->u.tk_work); 1175 } else 1176 rpc_free_task(task); 1177 } 1178 1179 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q) 1180 { 1181 if (atomic_dec_and_test(&task->tk_count)) { 1182 rpc_release_resources_task(task); 1183 rpc_final_put_task(task, q); 1184 } 1185 } 1186 1187 void rpc_put_task(struct rpc_task *task) 1188 { 1189 rpc_do_put_task(task, NULL); 1190 } 1191 EXPORT_SYMBOL_GPL(rpc_put_task); 1192 1193 void rpc_put_task_async(struct rpc_task *task) 1194 { 1195 rpc_do_put_task(task, task->tk_workqueue); 1196 } 1197 EXPORT_SYMBOL_GPL(rpc_put_task_async); 1198 1199 static void rpc_release_task(struct rpc_task *task) 1200 { 1201 dprintk("RPC: %5u release task\n", task->tk_pid); 1202 1203 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 1204 1205 rpc_release_resources_task(task); 1206 1207 /* 1208 * Note: at this point we have been removed from rpc_clnt->cl_tasks, 1209 * so it should be safe to use task->tk_count as a test for whether 1210 * or not any other processes still hold references to our rpc_task. 1211 */ 1212 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) { 1213 /* Wake up anyone who may be waiting for task completion */ 1214 if (!rpc_complete_task(task)) 1215 return; 1216 } else { 1217 if (!atomic_dec_and_test(&task->tk_count)) 1218 return; 1219 } 1220 rpc_final_put_task(task, task->tk_workqueue); 1221 } 1222 1223 int rpciod_up(void) 1224 { 1225 return try_module_get(THIS_MODULE) ? 0 : -EINVAL; 1226 } 1227 1228 void rpciod_down(void) 1229 { 1230 module_put(THIS_MODULE); 1231 } 1232 1233 /* 1234 * Start up the rpciod workqueue. 1235 */ 1236 static int rpciod_start(void) 1237 { 1238 struct workqueue_struct *wq; 1239 1240 /* 1241 * Create the rpciod thread and wait for it to start. 1242 */ 1243 dprintk("RPC: creating workqueue rpciod\n"); 1244 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0); 1245 if (!wq) 1246 goto out_failed; 1247 rpciod_workqueue = wq; 1248 /* Note: highpri because network receive is latency sensitive */ 1249 wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0); 1250 if (!wq) 1251 goto free_rpciod; 1252 xprtiod_workqueue = wq; 1253 return 1; 1254 free_rpciod: 1255 wq = rpciod_workqueue; 1256 rpciod_workqueue = NULL; 1257 destroy_workqueue(wq); 1258 out_failed: 1259 return 0; 1260 } 1261 1262 static void rpciod_stop(void) 1263 { 1264 struct workqueue_struct *wq = NULL; 1265 1266 if (rpciod_workqueue == NULL) 1267 return; 1268 dprintk("RPC: destroying workqueue rpciod\n"); 1269 1270 wq = rpciod_workqueue; 1271 rpciod_workqueue = NULL; 1272 destroy_workqueue(wq); 1273 wq = xprtiod_workqueue; 1274 xprtiod_workqueue = NULL; 1275 destroy_workqueue(wq); 1276 } 1277 1278 void 1279 rpc_destroy_mempool(void) 1280 { 1281 rpciod_stop(); 1282 mempool_destroy(rpc_buffer_mempool); 1283 mempool_destroy(rpc_task_mempool); 1284 kmem_cache_destroy(rpc_task_slabp); 1285 kmem_cache_destroy(rpc_buffer_slabp); 1286 rpc_destroy_wait_queue(&delay_queue); 1287 } 1288 1289 int 1290 rpc_init_mempool(void) 1291 { 1292 /* 1293 * The following is not strictly a mempool initialisation, 1294 * but there is no harm in doing it here 1295 */ 1296 rpc_init_wait_queue(&delay_queue, "delayq"); 1297 if (!rpciod_start()) 1298 goto err_nomem; 1299 1300 rpc_task_slabp = kmem_cache_create("rpc_tasks", 1301 sizeof(struct rpc_task), 1302 0, SLAB_HWCACHE_ALIGN, 1303 NULL); 1304 if (!rpc_task_slabp) 1305 goto err_nomem; 1306 rpc_buffer_slabp = kmem_cache_create("rpc_buffers", 1307 RPC_BUFFER_MAXSIZE, 1308 0, SLAB_HWCACHE_ALIGN, 1309 NULL); 1310 if (!rpc_buffer_slabp) 1311 goto err_nomem; 1312 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE, 1313 rpc_task_slabp); 1314 if (!rpc_task_mempool) 1315 goto err_nomem; 1316 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE, 1317 rpc_buffer_slabp); 1318 if (!rpc_buffer_mempool) 1319 goto err_nomem; 1320 return 0; 1321 err_nomem: 1322 rpc_destroy_mempool(); 1323 return -ENOMEM; 1324 } 1325