xref: /linux/net/sunrpc/sched.c (revision b0148a98ec5151fec82064d95f11eb9efbc628ea)
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11 
12 #include <linux/module.h>
13 
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 
23 #include <linux/sunrpc/clnt.h>
24 
25 #ifdef RPC_DEBUG
26 #define RPCDBG_FACILITY		RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID	0xf00baa
28 static int			rpc_task_id;
29 #endif
30 
31 /*
32  * RPC slabs and memory pools
33  */
34 #define RPC_BUFFER_MAXSIZE	(2048)
35 #define RPC_BUFFER_POOLSIZE	(8)
36 #define RPC_TASK_POOLSIZE	(8)
37 static struct kmem_cache	*rpc_task_slabp __read_mostly;
38 static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
39 static mempool_t	*rpc_task_mempool __read_mostly;
40 static mempool_t	*rpc_buffer_mempool __read_mostly;
41 
42 static void			__rpc_default_timer(struct rpc_task *task);
43 static void			rpciod_killall(void);
44 static void			rpc_async_schedule(struct work_struct *);
45 static void			 rpc_release_task(struct rpc_task *task);
46 
47 /*
48  * RPC tasks sit here while waiting for conditions to improve.
49  */
50 static RPC_WAITQ(delay_queue, "delayq");
51 
52 /*
53  * All RPC tasks are linked into this list
54  */
55 static LIST_HEAD(all_tasks);
56 
57 /*
58  * rpciod-related stuff
59  */
60 static DEFINE_MUTEX(rpciod_mutex);
61 static unsigned int		rpciod_users;
62 struct workqueue_struct *rpciod_workqueue;
63 
64 /*
65  * Spinlock for other critical sections of code.
66  */
67 static DEFINE_SPINLOCK(rpc_sched_lock);
68 
69 /*
70  * Disable the timer for a given RPC task. Should be called with
71  * queue->lock and bh_disabled in order to avoid races within
72  * rpc_run_timer().
73  */
74 static inline void
75 __rpc_disable_timer(struct rpc_task *task)
76 {
77 	dprintk("RPC: %4d disabling timer\n", task->tk_pid);
78 	task->tk_timeout_fn = NULL;
79 	task->tk_timeout = 0;
80 }
81 
82 /*
83  * Run a timeout function.
84  * We use the callback in order to allow __rpc_wake_up_task()
85  * and friends to disable the timer synchronously on SMP systems
86  * without calling del_timer_sync(). The latter could cause a
87  * deadlock if called while we're holding spinlocks...
88  */
89 static void rpc_run_timer(struct rpc_task *task)
90 {
91 	void (*callback)(struct rpc_task *);
92 
93 	callback = task->tk_timeout_fn;
94 	task->tk_timeout_fn = NULL;
95 	if (callback && RPC_IS_QUEUED(task)) {
96 		dprintk("RPC: %4d running timer\n", task->tk_pid);
97 		callback(task);
98 	}
99 	smp_mb__before_clear_bit();
100 	clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
101 	smp_mb__after_clear_bit();
102 }
103 
104 /*
105  * Set up a timer for the current task.
106  */
107 static inline void
108 __rpc_add_timer(struct rpc_task *task, rpc_action timer)
109 {
110 	if (!task->tk_timeout)
111 		return;
112 
113 	dprintk("RPC: %4d setting alarm for %lu ms\n",
114 			task->tk_pid, task->tk_timeout * 1000 / HZ);
115 
116 	if (timer)
117 		task->tk_timeout_fn = timer;
118 	else
119 		task->tk_timeout_fn = __rpc_default_timer;
120 	set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
121 	mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
122 }
123 
124 /*
125  * Delete any timer for the current task. Because we use del_timer_sync(),
126  * this function should never be called while holding queue->lock.
127  */
128 static void
129 rpc_delete_timer(struct rpc_task *task)
130 {
131 	if (RPC_IS_QUEUED(task))
132 		return;
133 	if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
134 		del_singleshot_timer_sync(&task->tk_timer);
135 		dprintk("RPC: %4d deleting timer\n", task->tk_pid);
136 	}
137 }
138 
139 /*
140  * Add new request to a priority queue.
141  */
142 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
143 {
144 	struct list_head *q;
145 	struct rpc_task *t;
146 
147 	INIT_LIST_HEAD(&task->u.tk_wait.links);
148 	q = &queue->tasks[task->tk_priority];
149 	if (unlikely(task->tk_priority > queue->maxpriority))
150 		q = &queue->tasks[queue->maxpriority];
151 	list_for_each_entry(t, q, u.tk_wait.list) {
152 		if (t->tk_cookie == task->tk_cookie) {
153 			list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
154 			return;
155 		}
156 	}
157 	list_add_tail(&task->u.tk_wait.list, q);
158 }
159 
160 /*
161  * Add new request to wait queue.
162  *
163  * Swapper tasks always get inserted at the head of the queue.
164  * This should avoid many nasty memory deadlocks and hopefully
165  * improve overall performance.
166  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
167  */
168 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
169 {
170 	BUG_ON (RPC_IS_QUEUED(task));
171 
172 	if (RPC_IS_PRIORITY(queue))
173 		__rpc_add_wait_queue_priority(queue, task);
174 	else if (RPC_IS_SWAPPER(task))
175 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
176 	else
177 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
178 	task->u.tk_wait.rpc_waitq = queue;
179 	queue->qlen++;
180 	rpc_set_queued(task);
181 
182 	dprintk("RPC: %4d added to queue %p \"%s\"\n",
183 				task->tk_pid, queue, rpc_qname(queue));
184 }
185 
186 /*
187  * Remove request from a priority queue.
188  */
189 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
190 {
191 	struct rpc_task *t;
192 
193 	if (!list_empty(&task->u.tk_wait.links)) {
194 		t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
195 		list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
196 		list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
197 	}
198 	list_del(&task->u.tk_wait.list);
199 }
200 
201 /*
202  * Remove request from queue.
203  * Note: must be called with spin lock held.
204  */
205 static void __rpc_remove_wait_queue(struct rpc_task *task)
206 {
207 	struct rpc_wait_queue *queue;
208 	queue = task->u.tk_wait.rpc_waitq;
209 
210 	if (RPC_IS_PRIORITY(queue))
211 		__rpc_remove_wait_queue_priority(task);
212 	else
213 		list_del(&task->u.tk_wait.list);
214 	queue->qlen--;
215 	dprintk("RPC: %4d removed from queue %p \"%s\"\n",
216 				task->tk_pid, queue, rpc_qname(queue));
217 }
218 
219 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
220 {
221 	queue->priority = priority;
222 	queue->count = 1 << (priority * 2);
223 }
224 
225 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie)
226 {
227 	queue->cookie = cookie;
228 	queue->nr = RPC_BATCH_COUNT;
229 }
230 
231 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
232 {
233 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
234 	rpc_set_waitqueue_cookie(queue, 0);
235 }
236 
237 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio)
238 {
239 	int i;
240 
241 	spin_lock_init(&queue->lock);
242 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
243 		INIT_LIST_HEAD(&queue->tasks[i]);
244 	queue->maxpriority = maxprio;
245 	rpc_reset_waitqueue_priority(queue);
246 #ifdef RPC_DEBUG
247 	queue->name = qname;
248 #endif
249 }
250 
251 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
252 {
253 	__rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH);
254 }
255 
256 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
257 {
258 	__rpc_init_priority_wait_queue(queue, qname, 0);
259 }
260 EXPORT_SYMBOL(rpc_init_wait_queue);
261 
262 static int rpc_wait_bit_interruptible(void *word)
263 {
264 	if (signal_pending(current))
265 		return -ERESTARTSYS;
266 	schedule();
267 	return 0;
268 }
269 
270 static void rpc_set_active(struct rpc_task *task)
271 {
272 	if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
273 		return;
274 	spin_lock(&rpc_sched_lock);
275 #ifdef RPC_DEBUG
276 	task->tk_magic = RPC_TASK_MAGIC_ID;
277 	task->tk_pid = rpc_task_id++;
278 #endif
279 	/* Add to global list of all tasks */
280 	list_add_tail(&task->tk_task, &all_tasks);
281 	spin_unlock(&rpc_sched_lock);
282 }
283 
284 /*
285  * Mark an RPC call as having completed by clearing the 'active' bit
286  */
287 static void rpc_mark_complete_task(struct rpc_task *task)
288 {
289 	smp_mb__before_clear_bit();
290 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
291 	smp_mb__after_clear_bit();
292 	wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
293 }
294 
295 /*
296  * Allow callers to wait for completion of an RPC call
297  */
298 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
299 {
300 	if (action == NULL)
301 		action = rpc_wait_bit_interruptible;
302 	return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
303 			action, TASK_INTERRUPTIBLE);
304 }
305 EXPORT_SYMBOL(__rpc_wait_for_completion_task);
306 
307 /*
308  * Make an RPC task runnable.
309  *
310  * Note: If the task is ASYNC, this must be called with
311  * the spinlock held to protect the wait queue operation.
312  */
313 static void rpc_make_runnable(struct rpc_task *task)
314 {
315 	BUG_ON(task->tk_timeout_fn);
316 	rpc_clear_queued(task);
317 	if (rpc_test_and_set_running(task))
318 		return;
319 	/* We might have raced */
320 	if (RPC_IS_QUEUED(task)) {
321 		rpc_clear_running(task);
322 		return;
323 	}
324 	if (RPC_IS_ASYNC(task)) {
325 		int status;
326 
327 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
328 		status = queue_work(task->tk_workqueue, &task->u.tk_work);
329 		if (status < 0) {
330 			printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
331 			task->tk_status = status;
332 			return;
333 		}
334 	} else
335 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
336 }
337 
338 /*
339  * Prepare for sleeping on a wait queue.
340  * By always appending tasks to the list we ensure FIFO behavior.
341  * NB: An RPC task will only receive interrupt-driven events as long
342  * as it's on a wait queue.
343  */
344 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
345 			rpc_action action, rpc_action timer)
346 {
347 	dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task->tk_pid,
348 				rpc_qname(q), jiffies);
349 
350 	if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
351 		printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
352 		return;
353 	}
354 
355 	__rpc_add_wait_queue(q, task);
356 
357 	BUG_ON(task->tk_callback != NULL);
358 	task->tk_callback = action;
359 	__rpc_add_timer(task, timer);
360 }
361 
362 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
363 				rpc_action action, rpc_action timer)
364 {
365 	/* Mark the task as being activated if so needed */
366 	rpc_set_active(task);
367 
368 	/*
369 	 * Protect the queue operations.
370 	 */
371 	spin_lock_bh(&q->lock);
372 	__rpc_sleep_on(q, task, action, timer);
373 	spin_unlock_bh(&q->lock);
374 }
375 
376 /**
377  * __rpc_do_wake_up_task - wake up a single rpc_task
378  * @task: task to be woken up
379  *
380  * Caller must hold queue->lock, and have cleared the task queued flag.
381  */
382 static void __rpc_do_wake_up_task(struct rpc_task *task)
383 {
384 	dprintk("RPC: %4d __rpc_wake_up_task (now %ld)\n", task->tk_pid, jiffies);
385 
386 #ifdef RPC_DEBUG
387 	BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
388 #endif
389 	/* Has the task been executed yet? If not, we cannot wake it up! */
390 	if (!RPC_IS_ACTIVATED(task)) {
391 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
392 		return;
393 	}
394 
395 	__rpc_disable_timer(task);
396 	__rpc_remove_wait_queue(task);
397 
398 	rpc_make_runnable(task);
399 
400 	dprintk("RPC:      __rpc_wake_up_task done\n");
401 }
402 
403 /*
404  * Wake up the specified task
405  */
406 static void __rpc_wake_up_task(struct rpc_task *task)
407 {
408 	if (rpc_start_wakeup(task)) {
409 		if (RPC_IS_QUEUED(task))
410 			__rpc_do_wake_up_task(task);
411 		rpc_finish_wakeup(task);
412 	}
413 }
414 
415 /*
416  * Default timeout handler if none specified by user
417  */
418 static void
419 __rpc_default_timer(struct rpc_task *task)
420 {
421 	dprintk("RPC: %d timeout (default timer)\n", task->tk_pid);
422 	task->tk_status = -ETIMEDOUT;
423 	rpc_wake_up_task(task);
424 }
425 
426 /*
427  * Wake up the specified task
428  */
429 void rpc_wake_up_task(struct rpc_task *task)
430 {
431 	rcu_read_lock_bh();
432 	if (rpc_start_wakeup(task)) {
433 		if (RPC_IS_QUEUED(task)) {
434 			struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq;
435 
436 			/* Note: we're already in a bh-safe context */
437 			spin_lock(&queue->lock);
438 			__rpc_do_wake_up_task(task);
439 			spin_unlock(&queue->lock);
440 		}
441 		rpc_finish_wakeup(task);
442 	}
443 	rcu_read_unlock_bh();
444 }
445 
446 /*
447  * Wake up the next task on a priority queue.
448  */
449 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
450 {
451 	struct list_head *q;
452 	struct rpc_task *task;
453 
454 	/*
455 	 * Service a batch of tasks from a single cookie.
456 	 */
457 	q = &queue->tasks[queue->priority];
458 	if (!list_empty(q)) {
459 		task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
460 		if (queue->cookie == task->tk_cookie) {
461 			if (--queue->nr)
462 				goto out;
463 			list_move_tail(&task->u.tk_wait.list, q);
464 		}
465 		/*
466 		 * Check if we need to switch queues.
467 		 */
468 		if (--queue->count)
469 			goto new_cookie;
470 	}
471 
472 	/*
473 	 * Service the next queue.
474 	 */
475 	do {
476 		if (q == &queue->tasks[0])
477 			q = &queue->tasks[queue->maxpriority];
478 		else
479 			q = q - 1;
480 		if (!list_empty(q)) {
481 			task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
482 			goto new_queue;
483 		}
484 	} while (q != &queue->tasks[queue->priority]);
485 
486 	rpc_reset_waitqueue_priority(queue);
487 	return NULL;
488 
489 new_queue:
490 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
491 new_cookie:
492 	rpc_set_waitqueue_cookie(queue, task->tk_cookie);
493 out:
494 	__rpc_wake_up_task(task);
495 	return task;
496 }
497 
498 /*
499  * Wake up the next task on the wait queue.
500  */
501 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
502 {
503 	struct rpc_task	*task = NULL;
504 
505 	dprintk("RPC:      wake_up_next(%p \"%s\")\n", queue, rpc_qname(queue));
506 	rcu_read_lock_bh();
507 	spin_lock(&queue->lock);
508 	if (RPC_IS_PRIORITY(queue))
509 		task = __rpc_wake_up_next_priority(queue);
510 	else {
511 		task_for_first(task, &queue->tasks[0])
512 			__rpc_wake_up_task(task);
513 	}
514 	spin_unlock(&queue->lock);
515 	rcu_read_unlock_bh();
516 
517 	return task;
518 }
519 
520 /**
521  * rpc_wake_up - wake up all rpc_tasks
522  * @queue: rpc_wait_queue on which the tasks are sleeping
523  *
524  * Grabs queue->lock
525  */
526 void rpc_wake_up(struct rpc_wait_queue *queue)
527 {
528 	struct rpc_task *task, *next;
529 	struct list_head *head;
530 
531 	rcu_read_lock_bh();
532 	spin_lock(&queue->lock);
533 	head = &queue->tasks[queue->maxpriority];
534 	for (;;) {
535 		list_for_each_entry_safe(task, next, head, u.tk_wait.list)
536 			__rpc_wake_up_task(task);
537 		if (head == &queue->tasks[0])
538 			break;
539 		head--;
540 	}
541 	spin_unlock(&queue->lock);
542 	rcu_read_unlock_bh();
543 }
544 
545 /**
546  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
547  * @queue: rpc_wait_queue on which the tasks are sleeping
548  * @status: status value to set
549  *
550  * Grabs queue->lock
551  */
552 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
553 {
554 	struct rpc_task *task, *next;
555 	struct list_head *head;
556 
557 	rcu_read_lock_bh();
558 	spin_lock(&queue->lock);
559 	head = &queue->tasks[queue->maxpriority];
560 	for (;;) {
561 		list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
562 			task->tk_status = status;
563 			__rpc_wake_up_task(task);
564 		}
565 		if (head == &queue->tasks[0])
566 			break;
567 		head--;
568 	}
569 	spin_unlock(&queue->lock);
570 	rcu_read_unlock_bh();
571 }
572 
573 static void __rpc_atrun(struct rpc_task *task)
574 {
575 	rpc_wake_up_task(task);
576 }
577 
578 /*
579  * Run a task at a later time
580  */
581 void rpc_delay(struct rpc_task *task, unsigned long delay)
582 {
583 	task->tk_timeout = delay;
584 	rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
585 }
586 
587 /*
588  * Helper to call task->tk_ops->rpc_call_prepare
589  */
590 static void rpc_prepare_task(struct rpc_task *task)
591 {
592 	lock_kernel();
593 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
594 	unlock_kernel();
595 }
596 
597 /*
598  * Helper that calls task->tk_ops->rpc_call_done if it exists
599  */
600 void rpc_exit_task(struct rpc_task *task)
601 {
602 	task->tk_action = NULL;
603 	if (task->tk_ops->rpc_call_done != NULL) {
604 		lock_kernel();
605 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
606 		unlock_kernel();
607 		if (task->tk_action != NULL) {
608 			WARN_ON(RPC_ASSASSINATED(task));
609 			/* Always release the RPC slot and buffer memory */
610 			xprt_release(task);
611 		}
612 	}
613 }
614 EXPORT_SYMBOL(rpc_exit_task);
615 
616 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
617 {
618 	if (ops->rpc_release != NULL) {
619 		lock_kernel();
620 		ops->rpc_release(calldata);
621 		unlock_kernel();
622 	}
623 }
624 
625 /*
626  * This is the RPC `scheduler' (or rather, the finite state machine).
627  */
628 static int __rpc_execute(struct rpc_task *task)
629 {
630 	int		status = 0;
631 
632 	dprintk("RPC: %4d rpc_execute flgs %x\n",
633 				task->tk_pid, task->tk_flags);
634 
635 	BUG_ON(RPC_IS_QUEUED(task));
636 
637 	for (;;) {
638 		/*
639 		 * Garbage collection of pending timers...
640 		 */
641 		rpc_delete_timer(task);
642 
643 		/*
644 		 * Execute any pending callback.
645 		 */
646 		if (RPC_DO_CALLBACK(task)) {
647 			/* Define a callback save pointer */
648 			void (*save_callback)(struct rpc_task *);
649 
650 			/*
651 			 * If a callback exists, save it, reset it,
652 			 * call it.
653 			 * The save is needed to stop from resetting
654 			 * another callback set within the callback handler
655 			 * - Dave
656 			 */
657 			save_callback=task->tk_callback;
658 			task->tk_callback=NULL;
659 			save_callback(task);
660 		}
661 
662 		/*
663 		 * Perform the next FSM step.
664 		 * tk_action may be NULL when the task has been killed
665 		 * by someone else.
666 		 */
667 		if (!RPC_IS_QUEUED(task)) {
668 			if (task->tk_action == NULL)
669 				break;
670 			task->tk_action(task);
671 		}
672 
673 		/*
674 		 * Lockless check for whether task is sleeping or not.
675 		 */
676 		if (!RPC_IS_QUEUED(task))
677 			continue;
678 		rpc_clear_running(task);
679 		if (RPC_IS_ASYNC(task)) {
680 			/* Careful! we may have raced... */
681 			if (RPC_IS_QUEUED(task))
682 				return 0;
683 			if (rpc_test_and_set_running(task))
684 				return 0;
685 			continue;
686 		}
687 
688 		/* sync task: sleep here */
689 		dprintk("RPC: %4d sync task going to sleep\n", task->tk_pid);
690 		/* Note: Caller should be using rpc_clnt_sigmask() */
691 		status = out_of_line_wait_on_bit(&task->tk_runstate,
692 				RPC_TASK_QUEUED, rpc_wait_bit_interruptible,
693 				TASK_INTERRUPTIBLE);
694 		if (status == -ERESTARTSYS) {
695 			/*
696 			 * When a sync task receives a signal, it exits with
697 			 * -ERESTARTSYS. In order to catch any callbacks that
698 			 * clean up after sleeping on some queue, we don't
699 			 * break the loop here, but go around once more.
700 			 */
701 			dprintk("RPC: %4d got signal\n", task->tk_pid);
702 			task->tk_flags |= RPC_TASK_KILLED;
703 			rpc_exit(task, -ERESTARTSYS);
704 			rpc_wake_up_task(task);
705 		}
706 		rpc_set_running(task);
707 		dprintk("RPC: %4d sync task resuming\n", task->tk_pid);
708 	}
709 
710 	dprintk("RPC: %4d, return %d, status %d\n", task->tk_pid, status, task->tk_status);
711 	/* Release all resources associated with the task */
712 	rpc_release_task(task);
713 	return status;
714 }
715 
716 /*
717  * User-visible entry point to the scheduler.
718  *
719  * This may be called recursively if e.g. an async NFS task updates
720  * the attributes and finds that dirty pages must be flushed.
721  * NOTE: Upon exit of this function the task is guaranteed to be
722  *	 released. In particular note that tk_release() will have
723  *	 been called, so your task memory may have been freed.
724  */
725 int
726 rpc_execute(struct rpc_task *task)
727 {
728 	rpc_set_active(task);
729 	rpc_set_running(task);
730 	return __rpc_execute(task);
731 }
732 
733 static void rpc_async_schedule(struct work_struct *work)
734 {
735 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
736 }
737 
738 /**
739  * rpc_malloc - allocate an RPC buffer
740  * @task: RPC task that will use this buffer
741  * @size: requested byte size
742  *
743  * We try to ensure that some NFS reads and writes can always proceed
744  * by using a mempool when allocating 'small' buffers.
745  * In order to avoid memory starvation triggering more writebacks of
746  * NFS requests, we use GFP_NOFS rather than GFP_KERNEL.
747  */
748 void * rpc_malloc(struct rpc_task *task, size_t size)
749 {
750 	struct rpc_rqst *req = task->tk_rqstp;
751 	gfp_t	gfp;
752 
753 	if (task->tk_flags & RPC_TASK_SWAPPER)
754 		gfp = GFP_ATOMIC;
755 	else
756 		gfp = GFP_NOFS;
757 
758 	if (size > RPC_BUFFER_MAXSIZE) {
759 		req->rq_buffer = kmalloc(size, gfp);
760 		if (req->rq_buffer)
761 			req->rq_bufsize = size;
762 	} else {
763 		req->rq_buffer = mempool_alloc(rpc_buffer_mempool, gfp);
764 		if (req->rq_buffer)
765 			req->rq_bufsize = RPC_BUFFER_MAXSIZE;
766 	}
767 	return req->rq_buffer;
768 }
769 
770 /**
771  * rpc_free - free buffer allocated via rpc_malloc
772  * @task: RPC task with a buffer to be freed
773  *
774  */
775 void rpc_free(struct rpc_task *task)
776 {
777 	struct rpc_rqst *req = task->tk_rqstp;
778 
779 	if (req->rq_buffer) {
780 		if (req->rq_bufsize == RPC_BUFFER_MAXSIZE)
781 			mempool_free(req->rq_buffer, rpc_buffer_mempool);
782 		else
783 			kfree(req->rq_buffer);
784 		req->rq_buffer = NULL;
785 		req->rq_bufsize = 0;
786 	}
787 }
788 
789 /*
790  * Creation and deletion of RPC task structures
791  */
792 void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
793 {
794 	memset(task, 0, sizeof(*task));
795 	init_timer(&task->tk_timer);
796 	task->tk_timer.data     = (unsigned long) task;
797 	task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer;
798 	atomic_set(&task->tk_count, 1);
799 	task->tk_client = clnt;
800 	task->tk_flags  = flags;
801 	task->tk_ops = tk_ops;
802 	if (tk_ops->rpc_call_prepare != NULL)
803 		task->tk_action = rpc_prepare_task;
804 	task->tk_calldata = calldata;
805 
806 	/* Initialize retry counters */
807 	task->tk_garb_retry = 2;
808 	task->tk_cred_retry = 2;
809 
810 	task->tk_priority = RPC_PRIORITY_NORMAL;
811 	task->tk_cookie = (unsigned long)current;
812 
813 	/* Initialize workqueue for async tasks */
814 	task->tk_workqueue = rpciod_workqueue;
815 
816 	if (clnt) {
817 		atomic_inc(&clnt->cl_users);
818 		if (clnt->cl_softrtry)
819 			task->tk_flags |= RPC_TASK_SOFT;
820 		if (!clnt->cl_intr)
821 			task->tk_flags |= RPC_TASK_NOINTR;
822 	}
823 
824 	BUG_ON(task->tk_ops == NULL);
825 
826 	/* starting timestamp */
827 	task->tk_start = jiffies;
828 
829 	dprintk("RPC: %4d new task procpid %d\n", task->tk_pid,
830 				current->pid);
831 }
832 
833 static struct rpc_task *
834 rpc_alloc_task(void)
835 {
836 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
837 }
838 
839 static void rpc_free_task(struct rcu_head *rcu)
840 {
841 	struct rpc_task *task = container_of(rcu, struct rpc_task, u.tk_rcu);
842 	dprintk("RPC: %4d freeing task\n", task->tk_pid);
843 	mempool_free(task, rpc_task_mempool);
844 }
845 
846 /*
847  * Create a new task for the specified client.  We have to
848  * clean up after an allocation failure, as the client may
849  * have specified "oneshot".
850  */
851 struct rpc_task *rpc_new_task(struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
852 {
853 	struct rpc_task	*task;
854 
855 	task = rpc_alloc_task();
856 	if (!task)
857 		goto cleanup;
858 
859 	rpc_init_task(task, clnt, flags, tk_ops, calldata);
860 
861 	dprintk("RPC: %4d allocated task\n", task->tk_pid);
862 	task->tk_flags |= RPC_TASK_DYNAMIC;
863 out:
864 	return task;
865 
866 cleanup:
867 	/* Check whether to release the client */
868 	if (clnt) {
869 		printk("rpc_new_task: failed, users=%d, oneshot=%d\n",
870 			atomic_read(&clnt->cl_users), clnt->cl_oneshot);
871 		atomic_inc(&clnt->cl_users); /* pretend we were used ... */
872 		rpc_release_client(clnt);
873 	}
874 	goto out;
875 }
876 
877 
878 void rpc_put_task(struct rpc_task *task)
879 {
880 	const struct rpc_call_ops *tk_ops = task->tk_ops;
881 	void *calldata = task->tk_calldata;
882 
883 	if (!atomic_dec_and_test(&task->tk_count))
884 		return;
885 	/* Release resources */
886 	if (task->tk_rqstp)
887 		xprt_release(task);
888 	if (task->tk_msg.rpc_cred)
889 		rpcauth_unbindcred(task);
890 	if (task->tk_client) {
891 		rpc_release_client(task->tk_client);
892 		task->tk_client = NULL;
893 	}
894 	if (task->tk_flags & RPC_TASK_DYNAMIC)
895 		call_rcu_bh(&task->u.tk_rcu, rpc_free_task);
896 	rpc_release_calldata(tk_ops, calldata);
897 }
898 EXPORT_SYMBOL(rpc_put_task);
899 
900 static void rpc_release_task(struct rpc_task *task)
901 {
902 #ifdef RPC_DEBUG
903 	BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
904 #endif
905 	dprintk("RPC: %4d release task\n", task->tk_pid);
906 
907 	/* Remove from global task list */
908 	spin_lock(&rpc_sched_lock);
909 	list_del(&task->tk_task);
910 	spin_unlock(&rpc_sched_lock);
911 
912 	BUG_ON (RPC_IS_QUEUED(task));
913 
914 	/* Synchronously delete any running timer */
915 	rpc_delete_timer(task);
916 
917 #ifdef RPC_DEBUG
918 	task->tk_magic = 0;
919 #endif
920 	/* Wake up anyone who is waiting for task completion */
921 	rpc_mark_complete_task(task);
922 
923 	rpc_put_task(task);
924 }
925 
926 /**
927  * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it
928  * @clnt: pointer to RPC client
929  * @flags: RPC flags
930  * @ops: RPC call ops
931  * @data: user call data
932  */
933 struct rpc_task *rpc_run_task(struct rpc_clnt *clnt, int flags,
934 					const struct rpc_call_ops *ops,
935 					void *data)
936 {
937 	struct rpc_task *task;
938 	task = rpc_new_task(clnt, flags, ops, data);
939 	if (task == NULL) {
940 		rpc_release_calldata(ops, data);
941 		return ERR_PTR(-ENOMEM);
942 	}
943 	atomic_inc(&task->tk_count);
944 	rpc_execute(task);
945 	return task;
946 }
947 EXPORT_SYMBOL(rpc_run_task);
948 
949 /*
950  * Kill all tasks for the given client.
951  * XXX: kill their descendants as well?
952  */
953 void rpc_killall_tasks(struct rpc_clnt *clnt)
954 {
955 	struct rpc_task	*rovr;
956 	struct list_head *le;
957 
958 	dprintk("RPC:      killing all tasks for client %p\n", clnt);
959 
960 	/*
961 	 * Spin lock all_tasks to prevent changes...
962 	 */
963 	spin_lock(&rpc_sched_lock);
964 	alltask_for_each(rovr, le, &all_tasks) {
965 		if (! RPC_IS_ACTIVATED(rovr))
966 			continue;
967 		if (!clnt || rovr->tk_client == clnt) {
968 			rovr->tk_flags |= RPC_TASK_KILLED;
969 			rpc_exit(rovr, -EIO);
970 			rpc_wake_up_task(rovr);
971 		}
972 	}
973 	spin_unlock(&rpc_sched_lock);
974 }
975 
976 static DECLARE_MUTEX_LOCKED(rpciod_running);
977 
978 static void rpciod_killall(void)
979 {
980 	unsigned long flags;
981 
982 	while (!list_empty(&all_tasks)) {
983 		clear_thread_flag(TIF_SIGPENDING);
984 		rpc_killall_tasks(NULL);
985 		flush_workqueue(rpciod_workqueue);
986 		if (!list_empty(&all_tasks)) {
987 			dprintk("rpciod_killall: waiting for tasks to exit\n");
988 			yield();
989 		}
990 	}
991 
992 	spin_lock_irqsave(&current->sighand->siglock, flags);
993 	recalc_sigpending();
994 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
995 }
996 
997 /*
998  * Start up the rpciod process if it's not already running.
999  */
1000 int
1001 rpciod_up(void)
1002 {
1003 	struct workqueue_struct *wq;
1004 	int error = 0;
1005 
1006 	mutex_lock(&rpciod_mutex);
1007 	dprintk("rpciod_up: users %d\n", rpciod_users);
1008 	rpciod_users++;
1009 	if (rpciod_workqueue)
1010 		goto out;
1011 	/*
1012 	 * If there's no pid, we should be the first user.
1013 	 */
1014 	if (rpciod_users > 1)
1015 		printk(KERN_WARNING "rpciod_up: no workqueue, %d users??\n", rpciod_users);
1016 	/*
1017 	 * Create the rpciod thread and wait for it to start.
1018 	 */
1019 	error = -ENOMEM;
1020 	wq = create_workqueue("rpciod");
1021 	if (wq == NULL) {
1022 		printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error);
1023 		rpciod_users--;
1024 		goto out;
1025 	}
1026 	rpciod_workqueue = wq;
1027 	error = 0;
1028 out:
1029 	mutex_unlock(&rpciod_mutex);
1030 	return error;
1031 }
1032 
1033 void
1034 rpciod_down(void)
1035 {
1036 	mutex_lock(&rpciod_mutex);
1037 	dprintk("rpciod_down sema %d\n", rpciod_users);
1038 	if (rpciod_users) {
1039 		if (--rpciod_users)
1040 			goto out;
1041 	} else
1042 		printk(KERN_WARNING "rpciod_down: no users??\n");
1043 
1044 	if (!rpciod_workqueue) {
1045 		dprintk("rpciod_down: Nothing to do!\n");
1046 		goto out;
1047 	}
1048 	rpciod_killall();
1049 
1050 	destroy_workqueue(rpciod_workqueue);
1051 	rpciod_workqueue = NULL;
1052  out:
1053 	mutex_unlock(&rpciod_mutex);
1054 }
1055 
1056 #ifdef RPC_DEBUG
1057 void rpc_show_tasks(void)
1058 {
1059 	struct list_head *le;
1060 	struct rpc_task *t;
1061 
1062 	spin_lock(&rpc_sched_lock);
1063 	if (list_empty(&all_tasks)) {
1064 		spin_unlock(&rpc_sched_lock);
1065 		return;
1066 	}
1067 	printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
1068 		"-rpcwait -action- ---ops--\n");
1069 	alltask_for_each(t, le, &all_tasks) {
1070 		const char *rpc_waitq = "none";
1071 
1072 		if (RPC_IS_QUEUED(t))
1073 			rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq);
1074 
1075 		printk("%05d %04d %04x %06d %8p %6d %8p %08ld %8s %8p %8p\n",
1076 			t->tk_pid,
1077 			(t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1),
1078 			t->tk_flags, t->tk_status,
1079 			t->tk_client,
1080 			(t->tk_client ? t->tk_client->cl_prog : 0),
1081 			t->tk_rqstp, t->tk_timeout,
1082 			rpc_waitq,
1083 			t->tk_action, t->tk_ops);
1084 	}
1085 	spin_unlock(&rpc_sched_lock);
1086 }
1087 #endif
1088 
1089 void
1090 rpc_destroy_mempool(void)
1091 {
1092 	if (rpc_buffer_mempool)
1093 		mempool_destroy(rpc_buffer_mempool);
1094 	if (rpc_task_mempool)
1095 		mempool_destroy(rpc_task_mempool);
1096 	if (rpc_task_slabp)
1097 		kmem_cache_destroy(rpc_task_slabp);
1098 	if (rpc_buffer_slabp)
1099 		kmem_cache_destroy(rpc_buffer_slabp);
1100 }
1101 
1102 int
1103 rpc_init_mempool(void)
1104 {
1105 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1106 					     sizeof(struct rpc_task),
1107 					     0, SLAB_HWCACHE_ALIGN,
1108 					     NULL, NULL);
1109 	if (!rpc_task_slabp)
1110 		goto err_nomem;
1111 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1112 					     RPC_BUFFER_MAXSIZE,
1113 					     0, SLAB_HWCACHE_ALIGN,
1114 					     NULL, NULL);
1115 	if (!rpc_buffer_slabp)
1116 		goto err_nomem;
1117 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1118 						    rpc_task_slabp);
1119 	if (!rpc_task_mempool)
1120 		goto err_nomem;
1121 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1122 						      rpc_buffer_slabp);
1123 	if (!rpc_buffer_mempool)
1124 		goto err_nomem;
1125 	return 0;
1126 err_nomem:
1127 	rpc_destroy_mempool();
1128 	return -ENOMEM;
1129 }
1130