xref: /linux/net/sunrpc/sched.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11 
12 #include <linux/module.h>
13 
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22 
23 #include <linux/sunrpc/clnt.h>
24 
25 #include "sunrpc.h"
26 
27 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
28 #define RPCDBG_FACILITY		RPCDBG_SCHED
29 #endif
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
33 
34 /*
35  * RPC slabs and memory pools
36  */
37 #define RPC_BUFFER_MAXSIZE	(2048)
38 #define RPC_BUFFER_POOLSIZE	(8)
39 #define RPC_TASK_POOLSIZE	(8)
40 static struct kmem_cache	*rpc_task_slabp __read_mostly;
41 static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
42 static mempool_t	*rpc_task_mempool __read_mostly;
43 static mempool_t	*rpc_buffer_mempool __read_mostly;
44 
45 static void			rpc_async_schedule(struct work_struct *);
46 static void			 rpc_release_task(struct rpc_task *task);
47 static void __rpc_queue_timer_fn(unsigned long ptr);
48 
49 /*
50  * RPC tasks sit here while waiting for conditions to improve.
51  */
52 static struct rpc_wait_queue delay_queue;
53 
54 /*
55  * rpciod-related stuff
56  */
57 struct workqueue_struct *rpciod_workqueue;
58 
59 /*
60  * Disable the timer for a given RPC task. Should be called with
61  * queue->lock and bh_disabled in order to avoid races within
62  * rpc_run_timer().
63  */
64 static void
65 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
66 {
67 	if (task->tk_timeout == 0)
68 		return;
69 	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
70 	task->tk_timeout = 0;
71 	list_del(&task->u.tk_wait.timer_list);
72 	if (list_empty(&queue->timer_list.list))
73 		del_timer(&queue->timer_list.timer);
74 }
75 
76 static void
77 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
78 {
79 	queue->timer_list.expires = expires;
80 	mod_timer(&queue->timer_list.timer, expires);
81 }
82 
83 /*
84  * Set up a timer for the current task.
85  */
86 static void
87 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
88 {
89 	if (!task->tk_timeout)
90 		return;
91 
92 	dprintk("RPC: %5u setting alarm for %u ms\n",
93 		task->tk_pid, jiffies_to_msecs(task->tk_timeout));
94 
95 	task->u.tk_wait.expires = jiffies + task->tk_timeout;
96 	if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
97 		rpc_set_queue_timer(queue, task->u.tk_wait.expires);
98 	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
99 }
100 
101 static void rpc_rotate_queue_owner(struct rpc_wait_queue *queue)
102 {
103 	struct list_head *q = &queue->tasks[queue->priority];
104 	struct rpc_task *task;
105 
106 	if (!list_empty(q)) {
107 		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
108 		if (task->tk_owner == queue->owner)
109 			list_move_tail(&task->u.tk_wait.list, q);
110 	}
111 }
112 
113 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
114 {
115 	if (queue->priority != priority) {
116 		/* Fairness: rotate the list when changing priority */
117 		rpc_rotate_queue_owner(queue);
118 		queue->priority = priority;
119 	}
120 }
121 
122 static void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
123 {
124 	queue->owner = pid;
125 	queue->nr = RPC_BATCH_COUNT;
126 }
127 
128 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
129 {
130 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
131 	rpc_set_waitqueue_owner(queue, 0);
132 }
133 
134 /*
135  * Add new request to a priority queue.
136  */
137 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
138 		struct rpc_task *task,
139 		unsigned char queue_priority)
140 {
141 	struct list_head *q;
142 	struct rpc_task *t;
143 
144 	INIT_LIST_HEAD(&task->u.tk_wait.links);
145 	if (unlikely(queue_priority > queue->maxpriority))
146 		queue_priority = queue->maxpriority;
147 	if (queue_priority > queue->priority)
148 		rpc_set_waitqueue_priority(queue, queue_priority);
149 	q = &queue->tasks[queue_priority];
150 	list_for_each_entry(t, q, u.tk_wait.list) {
151 		if (t->tk_owner == task->tk_owner) {
152 			list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
153 			return;
154 		}
155 	}
156 	list_add_tail(&task->u.tk_wait.list, q);
157 }
158 
159 /*
160  * Add new request to wait queue.
161  *
162  * Swapper tasks always get inserted at the head of the queue.
163  * This should avoid many nasty memory deadlocks and hopefully
164  * improve overall performance.
165  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
166  */
167 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
168 		struct rpc_task *task,
169 		unsigned char queue_priority)
170 {
171 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
172 	if (RPC_IS_QUEUED(task))
173 		return;
174 
175 	if (RPC_IS_PRIORITY(queue))
176 		__rpc_add_wait_queue_priority(queue, task, queue_priority);
177 	else if (RPC_IS_SWAPPER(task))
178 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
179 	else
180 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
181 	task->tk_waitqueue = queue;
182 	queue->qlen++;
183 	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
184 	smp_wmb();
185 	rpc_set_queued(task);
186 
187 	dprintk("RPC: %5u added to queue %p \"%s\"\n",
188 			task->tk_pid, queue, rpc_qname(queue));
189 }
190 
191 /*
192  * Remove request from a priority queue.
193  */
194 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
195 {
196 	struct rpc_task *t;
197 
198 	if (!list_empty(&task->u.tk_wait.links)) {
199 		t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
200 		list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
201 		list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
202 	}
203 }
204 
205 /*
206  * Remove request from queue.
207  * Note: must be called with spin lock held.
208  */
209 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
210 {
211 	__rpc_disable_timer(queue, task);
212 	if (RPC_IS_PRIORITY(queue))
213 		__rpc_remove_wait_queue_priority(task);
214 	list_del(&task->u.tk_wait.list);
215 	queue->qlen--;
216 	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
217 			task->tk_pid, queue, rpc_qname(queue));
218 }
219 
220 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
221 {
222 	int i;
223 
224 	spin_lock_init(&queue->lock);
225 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
226 		INIT_LIST_HEAD(&queue->tasks[i]);
227 	queue->maxpriority = nr_queues - 1;
228 	rpc_reset_waitqueue_priority(queue);
229 	queue->qlen = 0;
230 	setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
231 	INIT_LIST_HEAD(&queue->timer_list.list);
232 	rpc_assign_waitqueue_name(queue, qname);
233 }
234 
235 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
236 {
237 	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
238 }
239 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
240 
241 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
242 {
243 	__rpc_init_priority_wait_queue(queue, qname, 1);
244 }
245 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
246 
247 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
248 {
249 	del_timer_sync(&queue->timer_list.timer);
250 }
251 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
252 
253 static int rpc_wait_bit_killable(struct wait_bit_key *key)
254 {
255 	if (fatal_signal_pending(current))
256 		return -ERESTARTSYS;
257 	freezable_schedule_unsafe();
258 	return 0;
259 }
260 
261 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
262 static void rpc_task_set_debuginfo(struct rpc_task *task)
263 {
264 	static atomic_t rpc_pid;
265 
266 	task->tk_pid = atomic_inc_return(&rpc_pid);
267 }
268 #else
269 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
270 {
271 }
272 #endif
273 
274 static void rpc_set_active(struct rpc_task *task)
275 {
276 	trace_rpc_task_begin(task->tk_client, task, NULL);
277 
278 	rpc_task_set_debuginfo(task);
279 	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
280 }
281 
282 /*
283  * Mark an RPC call as having completed by clearing the 'active' bit
284  * and then waking up all tasks that were sleeping.
285  */
286 static int rpc_complete_task(struct rpc_task *task)
287 {
288 	void *m = &task->tk_runstate;
289 	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
290 	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
291 	unsigned long flags;
292 	int ret;
293 
294 	trace_rpc_task_complete(task->tk_client, task, NULL);
295 
296 	spin_lock_irqsave(&wq->lock, flags);
297 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
298 	ret = atomic_dec_and_test(&task->tk_count);
299 	if (waitqueue_active(wq))
300 		__wake_up_locked_key(wq, TASK_NORMAL, &k);
301 	spin_unlock_irqrestore(&wq->lock, flags);
302 	return ret;
303 }
304 
305 /*
306  * Allow callers to wait for completion of an RPC call
307  *
308  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
309  * to enforce taking of the wq->lock and hence avoid races with
310  * rpc_complete_task().
311  */
312 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
313 {
314 	if (action == NULL)
315 		action = rpc_wait_bit_killable;
316 	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
317 			action, TASK_KILLABLE);
318 }
319 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
320 
321 /*
322  * Make an RPC task runnable.
323  *
324  * Note: If the task is ASYNC, and is being made runnable after sitting on an
325  * rpc_wait_queue, this must be called with the queue spinlock held to protect
326  * the wait queue operation.
327  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
328  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
329  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
330  * the RPC_TASK_RUNNING flag.
331  */
332 static void rpc_make_runnable(struct rpc_task *task)
333 {
334 	bool need_wakeup = !rpc_test_and_set_running(task);
335 
336 	rpc_clear_queued(task);
337 	if (!need_wakeup)
338 		return;
339 	if (RPC_IS_ASYNC(task)) {
340 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
341 		queue_work(rpciod_workqueue, &task->u.tk_work);
342 	} else
343 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
344 }
345 
346 /*
347  * Prepare for sleeping on a wait queue.
348  * By always appending tasks to the list we ensure FIFO behavior.
349  * NB: An RPC task will only receive interrupt-driven events as long
350  * as it's on a wait queue.
351  */
352 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
353 		struct rpc_task *task,
354 		rpc_action action,
355 		unsigned char queue_priority)
356 {
357 	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
358 			task->tk_pid, rpc_qname(q), jiffies);
359 
360 	trace_rpc_task_sleep(task->tk_client, task, q);
361 
362 	__rpc_add_wait_queue(q, task, queue_priority);
363 
364 	WARN_ON_ONCE(task->tk_callback != NULL);
365 	task->tk_callback = action;
366 	__rpc_add_timer(q, task);
367 }
368 
369 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
370 				rpc_action action)
371 {
372 	/* We shouldn't ever put an inactive task to sleep */
373 	WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
374 	if (!RPC_IS_ACTIVATED(task)) {
375 		task->tk_status = -EIO;
376 		rpc_put_task_async(task);
377 		return;
378 	}
379 
380 	/*
381 	 * Protect the queue operations.
382 	 */
383 	spin_lock_bh(&q->lock);
384 	__rpc_sleep_on_priority(q, task, action, task->tk_priority);
385 	spin_unlock_bh(&q->lock);
386 }
387 EXPORT_SYMBOL_GPL(rpc_sleep_on);
388 
389 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
390 		rpc_action action, int priority)
391 {
392 	/* We shouldn't ever put an inactive task to sleep */
393 	WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
394 	if (!RPC_IS_ACTIVATED(task)) {
395 		task->tk_status = -EIO;
396 		rpc_put_task_async(task);
397 		return;
398 	}
399 
400 	/*
401 	 * Protect the queue operations.
402 	 */
403 	spin_lock_bh(&q->lock);
404 	__rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
405 	spin_unlock_bh(&q->lock);
406 }
407 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
408 
409 /**
410  * __rpc_do_wake_up_task - wake up a single rpc_task
411  * @queue: wait queue
412  * @task: task to be woken up
413  *
414  * Caller must hold queue->lock, and have cleared the task queued flag.
415  */
416 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
417 {
418 	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
419 			task->tk_pid, jiffies);
420 
421 	/* Has the task been executed yet? If not, we cannot wake it up! */
422 	if (!RPC_IS_ACTIVATED(task)) {
423 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
424 		return;
425 	}
426 
427 	trace_rpc_task_wakeup(task->tk_client, task, queue);
428 
429 	__rpc_remove_wait_queue(queue, task);
430 
431 	rpc_make_runnable(task);
432 
433 	dprintk("RPC:       __rpc_wake_up_task done\n");
434 }
435 
436 /*
437  * Wake up a queued task while the queue lock is being held
438  */
439 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
440 {
441 	if (RPC_IS_QUEUED(task)) {
442 		smp_rmb();
443 		if (task->tk_waitqueue == queue)
444 			__rpc_do_wake_up_task(queue, task);
445 	}
446 }
447 
448 /*
449  * Wake up a task on a specific queue
450  */
451 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
452 {
453 	spin_lock_bh(&queue->lock);
454 	rpc_wake_up_task_queue_locked(queue, task);
455 	spin_unlock_bh(&queue->lock);
456 }
457 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
458 
459 /*
460  * Wake up the next task on a priority queue.
461  */
462 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
463 {
464 	struct list_head *q;
465 	struct rpc_task *task;
466 
467 	/*
468 	 * Service a batch of tasks from a single owner.
469 	 */
470 	q = &queue->tasks[queue->priority];
471 	if (!list_empty(q)) {
472 		task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
473 		if (queue->owner == task->tk_owner) {
474 			if (--queue->nr)
475 				goto out;
476 			list_move_tail(&task->u.tk_wait.list, q);
477 		}
478 		/*
479 		 * Check if we need to switch queues.
480 		 */
481 		goto new_owner;
482 	}
483 
484 	/*
485 	 * Service the next queue.
486 	 */
487 	do {
488 		if (q == &queue->tasks[0])
489 			q = &queue->tasks[queue->maxpriority];
490 		else
491 			q = q - 1;
492 		if (!list_empty(q)) {
493 			task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
494 			goto new_queue;
495 		}
496 	} while (q != &queue->tasks[queue->priority]);
497 
498 	rpc_reset_waitqueue_priority(queue);
499 	return NULL;
500 
501 new_queue:
502 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
503 new_owner:
504 	rpc_set_waitqueue_owner(queue, task->tk_owner);
505 out:
506 	return task;
507 }
508 
509 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
510 {
511 	if (RPC_IS_PRIORITY(queue))
512 		return __rpc_find_next_queued_priority(queue);
513 	if (!list_empty(&queue->tasks[0]))
514 		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
515 	return NULL;
516 }
517 
518 /*
519  * Wake up the first task on the wait queue.
520  */
521 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
522 		bool (*func)(struct rpc_task *, void *), void *data)
523 {
524 	struct rpc_task	*task = NULL;
525 
526 	dprintk("RPC:       wake_up_first(%p \"%s\")\n",
527 			queue, rpc_qname(queue));
528 	spin_lock_bh(&queue->lock);
529 	task = __rpc_find_next_queued(queue);
530 	if (task != NULL) {
531 		if (func(task, data))
532 			rpc_wake_up_task_queue_locked(queue, task);
533 		else
534 			task = NULL;
535 	}
536 	spin_unlock_bh(&queue->lock);
537 
538 	return task;
539 }
540 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
541 
542 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
543 {
544 	return true;
545 }
546 
547 /*
548  * Wake up the next task on the wait queue.
549 */
550 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
551 {
552 	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
553 }
554 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
555 
556 /**
557  * rpc_wake_up - wake up all rpc_tasks
558  * @queue: rpc_wait_queue on which the tasks are sleeping
559  *
560  * Grabs queue->lock
561  */
562 void rpc_wake_up(struct rpc_wait_queue *queue)
563 {
564 	struct list_head *head;
565 
566 	spin_lock_bh(&queue->lock);
567 	head = &queue->tasks[queue->maxpriority];
568 	for (;;) {
569 		while (!list_empty(head)) {
570 			struct rpc_task *task;
571 			task = list_first_entry(head,
572 					struct rpc_task,
573 					u.tk_wait.list);
574 			rpc_wake_up_task_queue_locked(queue, task);
575 		}
576 		if (head == &queue->tasks[0])
577 			break;
578 		head--;
579 	}
580 	spin_unlock_bh(&queue->lock);
581 }
582 EXPORT_SYMBOL_GPL(rpc_wake_up);
583 
584 /**
585  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
586  * @queue: rpc_wait_queue on which the tasks are sleeping
587  * @status: status value to set
588  *
589  * Grabs queue->lock
590  */
591 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
592 {
593 	struct list_head *head;
594 
595 	spin_lock_bh(&queue->lock);
596 	head = &queue->tasks[queue->maxpriority];
597 	for (;;) {
598 		while (!list_empty(head)) {
599 			struct rpc_task *task;
600 			task = list_first_entry(head,
601 					struct rpc_task,
602 					u.tk_wait.list);
603 			task->tk_status = status;
604 			rpc_wake_up_task_queue_locked(queue, task);
605 		}
606 		if (head == &queue->tasks[0])
607 			break;
608 		head--;
609 	}
610 	spin_unlock_bh(&queue->lock);
611 }
612 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
613 
614 static void __rpc_queue_timer_fn(unsigned long ptr)
615 {
616 	struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
617 	struct rpc_task *task, *n;
618 	unsigned long expires, now, timeo;
619 
620 	spin_lock(&queue->lock);
621 	expires = now = jiffies;
622 	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
623 		timeo = task->u.tk_wait.expires;
624 		if (time_after_eq(now, timeo)) {
625 			dprintk("RPC: %5u timeout\n", task->tk_pid);
626 			task->tk_status = -ETIMEDOUT;
627 			rpc_wake_up_task_queue_locked(queue, task);
628 			continue;
629 		}
630 		if (expires == now || time_after(expires, timeo))
631 			expires = timeo;
632 	}
633 	if (!list_empty(&queue->timer_list.list))
634 		rpc_set_queue_timer(queue, expires);
635 	spin_unlock(&queue->lock);
636 }
637 
638 static void __rpc_atrun(struct rpc_task *task)
639 {
640 	if (task->tk_status == -ETIMEDOUT)
641 		task->tk_status = 0;
642 }
643 
644 /*
645  * Run a task at a later time
646  */
647 void rpc_delay(struct rpc_task *task, unsigned long delay)
648 {
649 	task->tk_timeout = delay;
650 	rpc_sleep_on(&delay_queue, task, __rpc_atrun);
651 }
652 EXPORT_SYMBOL_GPL(rpc_delay);
653 
654 /*
655  * Helper to call task->tk_ops->rpc_call_prepare
656  */
657 void rpc_prepare_task(struct rpc_task *task)
658 {
659 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
660 }
661 
662 static void
663 rpc_init_task_statistics(struct rpc_task *task)
664 {
665 	/* Initialize retry counters */
666 	task->tk_garb_retry = 2;
667 	task->tk_cred_retry = 2;
668 	task->tk_rebind_retry = 2;
669 
670 	/* starting timestamp */
671 	task->tk_start = ktime_get();
672 }
673 
674 static void
675 rpc_reset_task_statistics(struct rpc_task *task)
676 {
677 	task->tk_timeouts = 0;
678 	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
679 
680 	rpc_init_task_statistics(task);
681 }
682 
683 /*
684  * Helper that calls task->tk_ops->rpc_call_done if it exists
685  */
686 void rpc_exit_task(struct rpc_task *task)
687 {
688 	task->tk_action = NULL;
689 	if (task->tk_ops->rpc_call_done != NULL) {
690 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
691 		if (task->tk_action != NULL) {
692 			WARN_ON(RPC_ASSASSINATED(task));
693 			/* Always release the RPC slot and buffer memory */
694 			xprt_release(task);
695 			rpc_reset_task_statistics(task);
696 		}
697 	}
698 }
699 
700 void rpc_exit(struct rpc_task *task, int status)
701 {
702 	task->tk_status = status;
703 	task->tk_action = rpc_exit_task;
704 	if (RPC_IS_QUEUED(task))
705 		rpc_wake_up_queued_task(task->tk_waitqueue, task);
706 }
707 EXPORT_SYMBOL_GPL(rpc_exit);
708 
709 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
710 {
711 	if (ops->rpc_release != NULL)
712 		ops->rpc_release(calldata);
713 }
714 
715 /*
716  * This is the RPC `scheduler' (or rather, the finite state machine).
717  */
718 static void __rpc_execute(struct rpc_task *task)
719 {
720 	struct rpc_wait_queue *queue;
721 	int task_is_async = RPC_IS_ASYNC(task);
722 	int status = 0;
723 
724 	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
725 			task->tk_pid, task->tk_flags);
726 
727 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
728 	if (RPC_IS_QUEUED(task))
729 		return;
730 
731 	for (;;) {
732 		void (*do_action)(struct rpc_task *);
733 
734 		/*
735 		 * Execute any pending callback first.
736 		 */
737 		do_action = task->tk_callback;
738 		task->tk_callback = NULL;
739 		if (do_action == NULL) {
740 			/*
741 			 * Perform the next FSM step.
742 			 * tk_action may be NULL if the task has been killed.
743 			 * In particular, note that rpc_killall_tasks may
744 			 * do this at any time, so beware when dereferencing.
745 			 */
746 			do_action = task->tk_action;
747 			if (do_action == NULL)
748 				break;
749 		}
750 		trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
751 		do_action(task);
752 
753 		/*
754 		 * Lockless check for whether task is sleeping or not.
755 		 */
756 		if (!RPC_IS_QUEUED(task))
757 			continue;
758 		/*
759 		 * The queue->lock protects against races with
760 		 * rpc_make_runnable().
761 		 *
762 		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
763 		 * rpc_task, rpc_make_runnable() can assign it to a
764 		 * different workqueue. We therefore cannot assume that the
765 		 * rpc_task pointer may still be dereferenced.
766 		 */
767 		queue = task->tk_waitqueue;
768 		spin_lock_bh(&queue->lock);
769 		if (!RPC_IS_QUEUED(task)) {
770 			spin_unlock_bh(&queue->lock);
771 			continue;
772 		}
773 		rpc_clear_running(task);
774 		spin_unlock_bh(&queue->lock);
775 		if (task_is_async)
776 			return;
777 
778 		/* sync task: sleep here */
779 		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
780 		status = out_of_line_wait_on_bit(&task->tk_runstate,
781 				RPC_TASK_QUEUED, rpc_wait_bit_killable,
782 				TASK_KILLABLE);
783 		if (status == -ERESTARTSYS) {
784 			/*
785 			 * When a sync task receives a signal, it exits with
786 			 * -ERESTARTSYS. In order to catch any callbacks that
787 			 * clean up after sleeping on some queue, we don't
788 			 * break the loop here, but go around once more.
789 			 */
790 			dprintk("RPC: %5u got signal\n", task->tk_pid);
791 			task->tk_flags |= RPC_TASK_KILLED;
792 			rpc_exit(task, -ERESTARTSYS);
793 		}
794 		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
795 	}
796 
797 	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
798 			task->tk_status);
799 	/* Release all resources associated with the task */
800 	rpc_release_task(task);
801 }
802 
803 /*
804  * User-visible entry point to the scheduler.
805  *
806  * This may be called recursively if e.g. an async NFS task updates
807  * the attributes and finds that dirty pages must be flushed.
808  * NOTE: Upon exit of this function the task is guaranteed to be
809  *	 released. In particular note that tk_release() will have
810  *	 been called, so your task memory may have been freed.
811  */
812 void rpc_execute(struct rpc_task *task)
813 {
814 	bool is_async = RPC_IS_ASYNC(task);
815 
816 	rpc_set_active(task);
817 	rpc_make_runnable(task);
818 	if (!is_async)
819 		__rpc_execute(task);
820 }
821 
822 static void rpc_async_schedule(struct work_struct *work)
823 {
824 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
825 }
826 
827 /**
828  * rpc_malloc - allocate an RPC buffer
829  * @task: RPC task that will use this buffer
830  * @size: requested byte size
831  *
832  * To prevent rpciod from hanging, this allocator never sleeps,
833  * returning NULL and suppressing warning if the request cannot be serviced
834  * immediately.
835  * The caller can arrange to sleep in a way that is safe for rpciod.
836  *
837  * Most requests are 'small' (under 2KiB) and can be serviced from a
838  * mempool, ensuring that NFS reads and writes can always proceed,
839  * and that there is good locality of reference for these buffers.
840  *
841  * In order to avoid memory starvation triggering more writebacks of
842  * NFS requests, we avoid using GFP_KERNEL.
843  */
844 void *rpc_malloc(struct rpc_task *task, size_t size)
845 {
846 	struct rpc_buffer *buf;
847 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN;
848 
849 	if (RPC_IS_SWAPPER(task))
850 		gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
851 
852 	size += sizeof(struct rpc_buffer);
853 	if (size <= RPC_BUFFER_MAXSIZE)
854 		buf = mempool_alloc(rpc_buffer_mempool, gfp);
855 	else
856 		buf = kmalloc(size, gfp);
857 
858 	if (!buf)
859 		return NULL;
860 
861 	buf->len = size;
862 	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
863 			task->tk_pid, size, buf);
864 	return &buf->data;
865 }
866 EXPORT_SYMBOL_GPL(rpc_malloc);
867 
868 /**
869  * rpc_free - free buffer allocated via rpc_malloc
870  * @buffer: buffer to free
871  *
872  */
873 void rpc_free(void *buffer)
874 {
875 	size_t size;
876 	struct rpc_buffer *buf;
877 
878 	if (!buffer)
879 		return;
880 
881 	buf = container_of(buffer, struct rpc_buffer, data);
882 	size = buf->len;
883 
884 	dprintk("RPC:       freeing buffer of size %zu at %p\n",
885 			size, buf);
886 
887 	if (size <= RPC_BUFFER_MAXSIZE)
888 		mempool_free(buf, rpc_buffer_mempool);
889 	else
890 		kfree(buf);
891 }
892 EXPORT_SYMBOL_GPL(rpc_free);
893 
894 /*
895  * Creation and deletion of RPC task structures
896  */
897 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
898 {
899 	memset(task, 0, sizeof(*task));
900 	atomic_set(&task->tk_count, 1);
901 	task->tk_flags  = task_setup_data->flags;
902 	task->tk_ops = task_setup_data->callback_ops;
903 	task->tk_calldata = task_setup_data->callback_data;
904 	INIT_LIST_HEAD(&task->tk_task);
905 
906 	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
907 	task->tk_owner = current->tgid;
908 
909 	/* Initialize workqueue for async tasks */
910 	task->tk_workqueue = task_setup_data->workqueue;
911 
912 	if (task->tk_ops->rpc_call_prepare != NULL)
913 		task->tk_action = rpc_prepare_task;
914 
915 	rpc_init_task_statistics(task);
916 
917 	dprintk("RPC:       new task initialized, procpid %u\n",
918 				task_pid_nr(current));
919 }
920 
921 static struct rpc_task *
922 rpc_alloc_task(void)
923 {
924 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
925 }
926 
927 /*
928  * Create a new task for the specified client.
929  */
930 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
931 {
932 	struct rpc_task	*task = setup_data->task;
933 	unsigned short flags = 0;
934 
935 	if (task == NULL) {
936 		task = rpc_alloc_task();
937 		if (task == NULL) {
938 			rpc_release_calldata(setup_data->callback_ops,
939 					setup_data->callback_data);
940 			return ERR_PTR(-ENOMEM);
941 		}
942 		flags = RPC_TASK_DYNAMIC;
943 	}
944 
945 	rpc_init_task(task, setup_data);
946 	task->tk_flags |= flags;
947 	dprintk("RPC:       allocated task %p\n", task);
948 	return task;
949 }
950 
951 /*
952  * rpc_free_task - release rpc task and perform cleanups
953  *
954  * Note that we free up the rpc_task _after_ rpc_release_calldata()
955  * in order to work around a workqueue dependency issue.
956  *
957  * Tejun Heo states:
958  * "Workqueue currently considers two work items to be the same if they're
959  * on the same address and won't execute them concurrently - ie. it
960  * makes a work item which is queued again while being executed wait
961  * for the previous execution to complete.
962  *
963  * If a work function frees the work item, and then waits for an event
964  * which should be performed by another work item and *that* work item
965  * recycles the freed work item, it can create a false dependency loop.
966  * There really is no reliable way to detect this short of verifying
967  * every memory free."
968  *
969  */
970 static void rpc_free_task(struct rpc_task *task)
971 {
972 	unsigned short tk_flags = task->tk_flags;
973 
974 	rpc_release_calldata(task->tk_ops, task->tk_calldata);
975 
976 	if (tk_flags & RPC_TASK_DYNAMIC) {
977 		dprintk("RPC: %5u freeing task\n", task->tk_pid);
978 		mempool_free(task, rpc_task_mempool);
979 	}
980 }
981 
982 static void rpc_async_release(struct work_struct *work)
983 {
984 	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
985 }
986 
987 static void rpc_release_resources_task(struct rpc_task *task)
988 {
989 	xprt_release(task);
990 	if (task->tk_msg.rpc_cred) {
991 		put_rpccred(task->tk_msg.rpc_cred);
992 		task->tk_msg.rpc_cred = NULL;
993 	}
994 	rpc_task_release_client(task);
995 }
996 
997 static void rpc_final_put_task(struct rpc_task *task,
998 		struct workqueue_struct *q)
999 {
1000 	if (q != NULL) {
1001 		INIT_WORK(&task->u.tk_work, rpc_async_release);
1002 		queue_work(q, &task->u.tk_work);
1003 	} else
1004 		rpc_free_task(task);
1005 }
1006 
1007 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1008 {
1009 	if (atomic_dec_and_test(&task->tk_count)) {
1010 		rpc_release_resources_task(task);
1011 		rpc_final_put_task(task, q);
1012 	}
1013 }
1014 
1015 void rpc_put_task(struct rpc_task *task)
1016 {
1017 	rpc_do_put_task(task, NULL);
1018 }
1019 EXPORT_SYMBOL_GPL(rpc_put_task);
1020 
1021 void rpc_put_task_async(struct rpc_task *task)
1022 {
1023 	rpc_do_put_task(task, task->tk_workqueue);
1024 }
1025 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1026 
1027 static void rpc_release_task(struct rpc_task *task)
1028 {
1029 	dprintk("RPC: %5u release task\n", task->tk_pid);
1030 
1031 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
1032 
1033 	rpc_release_resources_task(task);
1034 
1035 	/*
1036 	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1037 	 * so it should be safe to use task->tk_count as a test for whether
1038 	 * or not any other processes still hold references to our rpc_task.
1039 	 */
1040 	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1041 		/* Wake up anyone who may be waiting for task completion */
1042 		if (!rpc_complete_task(task))
1043 			return;
1044 	} else {
1045 		if (!atomic_dec_and_test(&task->tk_count))
1046 			return;
1047 	}
1048 	rpc_final_put_task(task, task->tk_workqueue);
1049 }
1050 
1051 int rpciod_up(void)
1052 {
1053 	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1054 }
1055 
1056 void rpciod_down(void)
1057 {
1058 	module_put(THIS_MODULE);
1059 }
1060 
1061 /*
1062  * Start up the rpciod workqueue.
1063  */
1064 static int rpciod_start(void)
1065 {
1066 	struct workqueue_struct *wq;
1067 
1068 	/*
1069 	 * Create the rpciod thread and wait for it to start.
1070 	 */
1071 	dprintk("RPC:       creating workqueue rpciod\n");
1072 	/* Note: highpri because network receive is latency sensitive */
1073 	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1074 	rpciod_workqueue = wq;
1075 	return rpciod_workqueue != NULL;
1076 }
1077 
1078 static void rpciod_stop(void)
1079 {
1080 	struct workqueue_struct *wq = NULL;
1081 
1082 	if (rpciod_workqueue == NULL)
1083 		return;
1084 	dprintk("RPC:       destroying workqueue rpciod\n");
1085 
1086 	wq = rpciod_workqueue;
1087 	rpciod_workqueue = NULL;
1088 	destroy_workqueue(wq);
1089 }
1090 
1091 void
1092 rpc_destroy_mempool(void)
1093 {
1094 	rpciod_stop();
1095 	mempool_destroy(rpc_buffer_mempool);
1096 	mempool_destroy(rpc_task_mempool);
1097 	kmem_cache_destroy(rpc_task_slabp);
1098 	kmem_cache_destroy(rpc_buffer_slabp);
1099 	rpc_destroy_wait_queue(&delay_queue);
1100 }
1101 
1102 int
1103 rpc_init_mempool(void)
1104 {
1105 	/*
1106 	 * The following is not strictly a mempool initialisation,
1107 	 * but there is no harm in doing it here
1108 	 */
1109 	rpc_init_wait_queue(&delay_queue, "delayq");
1110 	if (!rpciod_start())
1111 		goto err_nomem;
1112 
1113 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1114 					     sizeof(struct rpc_task),
1115 					     0, SLAB_HWCACHE_ALIGN,
1116 					     NULL);
1117 	if (!rpc_task_slabp)
1118 		goto err_nomem;
1119 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1120 					     RPC_BUFFER_MAXSIZE,
1121 					     0, SLAB_HWCACHE_ALIGN,
1122 					     NULL);
1123 	if (!rpc_buffer_slabp)
1124 		goto err_nomem;
1125 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1126 						    rpc_task_slabp);
1127 	if (!rpc_task_mempool)
1128 		goto err_nomem;
1129 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1130 						      rpc_buffer_slabp);
1131 	if (!rpc_buffer_mempool)
1132 		goto err_nomem;
1133 	return 0;
1134 err_nomem:
1135 	rpc_destroy_mempool();
1136 	return -ENOMEM;
1137 }
1138