xref: /linux/net/sunrpc/sched.c (revision 83439a0f1ce6a592f95e41338320b5f01b98a356)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/sched.c
4  *
5  * Scheduling for synchronous and asynchronous RPC requests.
6  *
7  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8  *
9  * TCP NFS related read + write fixes
10  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11  */
12 
13 #include <linux/module.h>
14 
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24 
25 #include <linux/sunrpc/clnt.h>
26 #include <linux/sunrpc/metrics.h>
27 
28 #include "sunrpc.h"
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/sunrpc.h>
32 
33 /*
34  * RPC slabs and memory pools
35  */
36 #define RPC_BUFFER_MAXSIZE	(2048)
37 #define RPC_BUFFER_POOLSIZE	(8)
38 #define RPC_TASK_POOLSIZE	(8)
39 static struct kmem_cache	*rpc_task_slabp __read_mostly;
40 static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
41 static mempool_t	*rpc_task_mempool __read_mostly;
42 static mempool_t	*rpc_buffer_mempool __read_mostly;
43 
44 static void			rpc_async_schedule(struct work_struct *);
45 static void			 rpc_release_task(struct rpc_task *task);
46 static void __rpc_queue_timer_fn(struct work_struct *);
47 
48 /*
49  * RPC tasks sit here while waiting for conditions to improve.
50  */
51 static struct rpc_wait_queue delay_queue;
52 
53 /*
54  * rpciod-related stuff
55  */
56 struct workqueue_struct *rpciod_workqueue __read_mostly;
57 struct workqueue_struct *xprtiod_workqueue __read_mostly;
58 EXPORT_SYMBOL_GPL(xprtiod_workqueue);
59 
60 gfp_t rpc_task_gfp_mask(void)
61 {
62 	if (current->flags & PF_WQ_WORKER)
63 		return GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
64 	return GFP_KERNEL;
65 }
66 EXPORT_SYMBOL_GPL(rpc_task_gfp_mask);
67 
68 unsigned long
69 rpc_task_timeout(const struct rpc_task *task)
70 {
71 	unsigned long timeout = READ_ONCE(task->tk_timeout);
72 
73 	if (timeout != 0) {
74 		unsigned long now = jiffies;
75 		if (time_before(now, timeout))
76 			return timeout - now;
77 	}
78 	return 0;
79 }
80 EXPORT_SYMBOL_GPL(rpc_task_timeout);
81 
82 /*
83  * Disable the timer for a given RPC task. Should be called with
84  * queue->lock and bh_disabled in order to avoid races within
85  * rpc_run_timer().
86  */
87 static void
88 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
89 {
90 	if (list_empty(&task->u.tk_wait.timer_list))
91 		return;
92 	task->tk_timeout = 0;
93 	list_del(&task->u.tk_wait.timer_list);
94 	if (list_empty(&queue->timer_list.list))
95 		cancel_delayed_work(&queue->timer_list.dwork);
96 }
97 
98 static void
99 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
100 {
101 	unsigned long now = jiffies;
102 	queue->timer_list.expires = expires;
103 	if (time_before_eq(expires, now))
104 		expires = 0;
105 	else
106 		expires -= now;
107 	mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
108 }
109 
110 /*
111  * Set up a timer for the current task.
112  */
113 static void
114 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
115 		unsigned long timeout)
116 {
117 	task->tk_timeout = timeout;
118 	if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
119 		rpc_set_queue_timer(queue, timeout);
120 	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
121 }
122 
123 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
124 {
125 	if (queue->priority != priority) {
126 		queue->priority = priority;
127 		queue->nr = 1U << priority;
128 	}
129 }
130 
131 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
132 {
133 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
134 }
135 
136 /*
137  * Add a request to a queue list
138  */
139 static void
140 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
141 {
142 	struct rpc_task *t;
143 
144 	list_for_each_entry(t, q, u.tk_wait.list) {
145 		if (t->tk_owner == task->tk_owner) {
146 			list_add_tail(&task->u.tk_wait.links,
147 					&t->u.tk_wait.links);
148 			/* Cache the queue head in task->u.tk_wait.list */
149 			task->u.tk_wait.list.next = q;
150 			task->u.tk_wait.list.prev = NULL;
151 			return;
152 		}
153 	}
154 	INIT_LIST_HEAD(&task->u.tk_wait.links);
155 	list_add_tail(&task->u.tk_wait.list, q);
156 }
157 
158 /*
159  * Remove request from a queue list
160  */
161 static void
162 __rpc_list_dequeue_task(struct rpc_task *task)
163 {
164 	struct list_head *q;
165 	struct rpc_task *t;
166 
167 	if (task->u.tk_wait.list.prev == NULL) {
168 		list_del(&task->u.tk_wait.links);
169 		return;
170 	}
171 	if (!list_empty(&task->u.tk_wait.links)) {
172 		t = list_first_entry(&task->u.tk_wait.links,
173 				struct rpc_task,
174 				u.tk_wait.links);
175 		/* Assume __rpc_list_enqueue_task() cached the queue head */
176 		q = t->u.tk_wait.list.next;
177 		list_add_tail(&t->u.tk_wait.list, q);
178 		list_del(&task->u.tk_wait.links);
179 	}
180 	list_del(&task->u.tk_wait.list);
181 }
182 
183 /*
184  * Add new request to a priority queue.
185  */
186 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
187 		struct rpc_task *task,
188 		unsigned char queue_priority)
189 {
190 	if (unlikely(queue_priority > queue->maxpriority))
191 		queue_priority = queue->maxpriority;
192 	__rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
193 }
194 
195 /*
196  * Add new request to wait queue.
197  */
198 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
199 		struct rpc_task *task,
200 		unsigned char queue_priority)
201 {
202 	INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
203 	if (RPC_IS_PRIORITY(queue))
204 		__rpc_add_wait_queue_priority(queue, task, queue_priority);
205 	else
206 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
207 	task->tk_waitqueue = queue;
208 	queue->qlen++;
209 	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
210 	smp_wmb();
211 	rpc_set_queued(task);
212 }
213 
214 /*
215  * Remove request from a priority queue.
216  */
217 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
218 {
219 	__rpc_list_dequeue_task(task);
220 }
221 
222 /*
223  * Remove request from queue.
224  * Note: must be called with spin lock held.
225  */
226 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
227 {
228 	__rpc_disable_timer(queue, task);
229 	if (RPC_IS_PRIORITY(queue))
230 		__rpc_remove_wait_queue_priority(task);
231 	else
232 		list_del(&task->u.tk_wait.list);
233 	queue->qlen--;
234 }
235 
236 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
237 {
238 	int i;
239 
240 	spin_lock_init(&queue->lock);
241 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
242 		INIT_LIST_HEAD(&queue->tasks[i]);
243 	queue->maxpriority = nr_queues - 1;
244 	rpc_reset_waitqueue_priority(queue);
245 	queue->qlen = 0;
246 	queue->timer_list.expires = 0;
247 	INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
248 	INIT_LIST_HEAD(&queue->timer_list.list);
249 	rpc_assign_waitqueue_name(queue, qname);
250 }
251 
252 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
253 {
254 	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
255 }
256 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
257 
258 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
259 {
260 	__rpc_init_priority_wait_queue(queue, qname, 1);
261 }
262 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
263 
264 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
265 {
266 	cancel_delayed_work_sync(&queue->timer_list.dwork);
267 }
268 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
269 
270 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
271 {
272 	schedule();
273 	if (signal_pending_state(mode, current))
274 		return -ERESTARTSYS;
275 	return 0;
276 }
277 
278 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
279 static void rpc_task_set_debuginfo(struct rpc_task *task)
280 {
281 	struct rpc_clnt *clnt = task->tk_client;
282 
283 	/* Might be a task carrying a reverse-direction operation */
284 	if (!clnt) {
285 		static atomic_t rpc_pid;
286 
287 		task->tk_pid = atomic_inc_return(&rpc_pid);
288 		return;
289 	}
290 
291 	task->tk_pid = atomic_inc_return(&clnt->cl_pid);
292 }
293 #else
294 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
295 {
296 }
297 #endif
298 
299 static void rpc_set_active(struct rpc_task *task)
300 {
301 	rpc_task_set_debuginfo(task);
302 	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
303 	trace_rpc_task_begin(task, NULL);
304 }
305 
306 /*
307  * Mark an RPC call as having completed by clearing the 'active' bit
308  * and then waking up all tasks that were sleeping.
309  */
310 static int rpc_complete_task(struct rpc_task *task)
311 {
312 	void *m = &task->tk_runstate;
313 	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
314 	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
315 	unsigned long flags;
316 	int ret;
317 
318 	trace_rpc_task_complete(task, NULL);
319 
320 	spin_lock_irqsave(&wq->lock, flags);
321 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
322 	ret = atomic_dec_and_test(&task->tk_count);
323 	if (waitqueue_active(wq))
324 		__wake_up_locked_key(wq, TASK_NORMAL, &k);
325 	spin_unlock_irqrestore(&wq->lock, flags);
326 	return ret;
327 }
328 
329 /*
330  * Allow callers to wait for completion of an RPC call
331  *
332  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
333  * to enforce taking of the wq->lock and hence avoid races with
334  * rpc_complete_task().
335  */
336 int rpc_wait_for_completion_task(struct rpc_task *task)
337 {
338 	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
339 			rpc_wait_bit_killable, TASK_KILLABLE|TASK_FREEZABLE_UNSAFE);
340 }
341 EXPORT_SYMBOL_GPL(rpc_wait_for_completion_task);
342 
343 /*
344  * Make an RPC task runnable.
345  *
346  * Note: If the task is ASYNC, and is being made runnable after sitting on an
347  * rpc_wait_queue, this must be called with the queue spinlock held to protect
348  * the wait queue operation.
349  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
350  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
351  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
352  * the RPC_TASK_RUNNING flag.
353  */
354 static void rpc_make_runnable(struct workqueue_struct *wq,
355 		struct rpc_task *task)
356 {
357 	bool need_wakeup = !rpc_test_and_set_running(task);
358 
359 	rpc_clear_queued(task);
360 	if (!need_wakeup)
361 		return;
362 	if (RPC_IS_ASYNC(task)) {
363 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
364 		queue_work(wq, &task->u.tk_work);
365 	} else
366 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
367 }
368 
369 /*
370  * Prepare for sleeping on a wait queue.
371  * By always appending tasks to the list we ensure FIFO behavior.
372  * NB: An RPC task will only receive interrupt-driven events as long
373  * as it's on a wait queue.
374  */
375 static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q,
376 		struct rpc_task *task,
377 		unsigned char queue_priority)
378 {
379 	trace_rpc_task_sleep(task, q);
380 
381 	__rpc_add_wait_queue(q, task, queue_priority);
382 }
383 
384 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
385 		struct rpc_task *task,
386 		unsigned char queue_priority)
387 {
388 	if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
389 		return;
390 	__rpc_do_sleep_on_priority(q, task, queue_priority);
391 }
392 
393 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
394 		struct rpc_task *task, unsigned long timeout,
395 		unsigned char queue_priority)
396 {
397 	if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
398 		return;
399 	if (time_is_after_jiffies(timeout)) {
400 		__rpc_do_sleep_on_priority(q, task, queue_priority);
401 		__rpc_add_timer(q, task, timeout);
402 	} else
403 		task->tk_status = -ETIMEDOUT;
404 }
405 
406 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
407 {
408 	if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
409 		task->tk_callback = action;
410 }
411 
412 static bool rpc_sleep_check_activated(struct rpc_task *task)
413 {
414 	/* We shouldn't ever put an inactive task to sleep */
415 	if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
416 		task->tk_status = -EIO;
417 		rpc_put_task_async(task);
418 		return false;
419 	}
420 	return true;
421 }
422 
423 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
424 				rpc_action action, unsigned long timeout)
425 {
426 	if (!rpc_sleep_check_activated(task))
427 		return;
428 
429 	rpc_set_tk_callback(task, action);
430 
431 	/*
432 	 * Protect the queue operations.
433 	 */
434 	spin_lock(&q->lock);
435 	__rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
436 	spin_unlock(&q->lock);
437 }
438 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
439 
440 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
441 				rpc_action action)
442 {
443 	if (!rpc_sleep_check_activated(task))
444 		return;
445 
446 	rpc_set_tk_callback(task, action);
447 
448 	WARN_ON_ONCE(task->tk_timeout != 0);
449 	/*
450 	 * Protect the queue operations.
451 	 */
452 	spin_lock(&q->lock);
453 	__rpc_sleep_on_priority(q, task, task->tk_priority);
454 	spin_unlock(&q->lock);
455 }
456 EXPORT_SYMBOL_GPL(rpc_sleep_on);
457 
458 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
459 		struct rpc_task *task, unsigned long timeout, int priority)
460 {
461 	if (!rpc_sleep_check_activated(task))
462 		return;
463 
464 	priority -= RPC_PRIORITY_LOW;
465 	/*
466 	 * Protect the queue operations.
467 	 */
468 	spin_lock(&q->lock);
469 	__rpc_sleep_on_priority_timeout(q, task, timeout, priority);
470 	spin_unlock(&q->lock);
471 }
472 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
473 
474 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
475 		int priority)
476 {
477 	if (!rpc_sleep_check_activated(task))
478 		return;
479 
480 	WARN_ON_ONCE(task->tk_timeout != 0);
481 	priority -= RPC_PRIORITY_LOW;
482 	/*
483 	 * Protect the queue operations.
484 	 */
485 	spin_lock(&q->lock);
486 	__rpc_sleep_on_priority(q, task, priority);
487 	spin_unlock(&q->lock);
488 }
489 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
490 
491 /**
492  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
493  * @wq: workqueue on which to run task
494  * @queue: wait queue
495  * @task: task to be woken up
496  *
497  * Caller must hold queue->lock, and have cleared the task queued flag.
498  */
499 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
500 		struct rpc_wait_queue *queue,
501 		struct rpc_task *task)
502 {
503 	/* Has the task been executed yet? If not, we cannot wake it up! */
504 	if (!RPC_IS_ACTIVATED(task)) {
505 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
506 		return;
507 	}
508 
509 	trace_rpc_task_wakeup(task, queue);
510 
511 	__rpc_remove_wait_queue(queue, task);
512 
513 	rpc_make_runnable(wq, task);
514 }
515 
516 /*
517  * Wake up a queued task while the queue lock is being held
518  */
519 static struct rpc_task *
520 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
521 		struct rpc_wait_queue *queue, struct rpc_task *task,
522 		bool (*action)(struct rpc_task *, void *), void *data)
523 {
524 	if (RPC_IS_QUEUED(task)) {
525 		smp_rmb();
526 		if (task->tk_waitqueue == queue) {
527 			if (action == NULL || action(task, data)) {
528 				__rpc_do_wake_up_task_on_wq(wq, queue, task);
529 				return task;
530 			}
531 		}
532 	}
533 	return NULL;
534 }
535 
536 /*
537  * Wake up a queued task while the queue lock is being held
538  */
539 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
540 					  struct rpc_task *task)
541 {
542 	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
543 						   task, NULL, NULL);
544 }
545 
546 /*
547  * Wake up a task on a specific queue
548  */
549 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
550 {
551 	if (!RPC_IS_QUEUED(task))
552 		return;
553 	spin_lock(&queue->lock);
554 	rpc_wake_up_task_queue_locked(queue, task);
555 	spin_unlock(&queue->lock);
556 }
557 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
558 
559 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
560 {
561 	task->tk_status = *(int *)status;
562 	return true;
563 }
564 
565 static void
566 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
567 		struct rpc_task *task, int status)
568 {
569 	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
570 			task, rpc_task_action_set_status, &status);
571 }
572 
573 /**
574  * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
575  * @queue: pointer to rpc_wait_queue
576  * @task: pointer to rpc_task
577  * @status: integer error value
578  *
579  * If @task is queued on @queue, then it is woken up, and @task->tk_status is
580  * set to the value of @status.
581  */
582 void
583 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
584 		struct rpc_task *task, int status)
585 {
586 	if (!RPC_IS_QUEUED(task))
587 		return;
588 	spin_lock(&queue->lock);
589 	rpc_wake_up_task_queue_set_status_locked(queue, task, status);
590 	spin_unlock(&queue->lock);
591 }
592 
593 /*
594  * Wake up the next task on a priority queue.
595  */
596 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
597 {
598 	struct list_head *q;
599 	struct rpc_task *task;
600 
601 	/*
602 	 * Service the privileged queue.
603 	 */
604 	q = &queue->tasks[RPC_NR_PRIORITY - 1];
605 	if (queue->maxpriority > RPC_PRIORITY_PRIVILEGED && !list_empty(q)) {
606 		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
607 		goto out;
608 	}
609 
610 	/*
611 	 * Service a batch of tasks from a single owner.
612 	 */
613 	q = &queue->tasks[queue->priority];
614 	if (!list_empty(q) && queue->nr) {
615 		queue->nr--;
616 		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
617 		goto out;
618 	}
619 
620 	/*
621 	 * Service the next queue.
622 	 */
623 	do {
624 		if (q == &queue->tasks[0])
625 			q = &queue->tasks[queue->maxpriority];
626 		else
627 			q = q - 1;
628 		if (!list_empty(q)) {
629 			task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
630 			goto new_queue;
631 		}
632 	} while (q != &queue->tasks[queue->priority]);
633 
634 	rpc_reset_waitqueue_priority(queue);
635 	return NULL;
636 
637 new_queue:
638 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
639 out:
640 	return task;
641 }
642 
643 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
644 {
645 	if (RPC_IS_PRIORITY(queue))
646 		return __rpc_find_next_queued_priority(queue);
647 	if (!list_empty(&queue->tasks[0]))
648 		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
649 	return NULL;
650 }
651 
652 /*
653  * Wake up the first task on the wait queue.
654  */
655 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
656 		struct rpc_wait_queue *queue,
657 		bool (*func)(struct rpc_task *, void *), void *data)
658 {
659 	struct rpc_task	*task = NULL;
660 
661 	spin_lock(&queue->lock);
662 	task = __rpc_find_next_queued(queue);
663 	if (task != NULL)
664 		task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
665 				task, func, data);
666 	spin_unlock(&queue->lock);
667 
668 	return task;
669 }
670 
671 /*
672  * Wake up the first task on the wait queue.
673  */
674 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
675 		bool (*func)(struct rpc_task *, void *), void *data)
676 {
677 	return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
678 }
679 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
680 
681 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
682 {
683 	return true;
684 }
685 
686 /*
687  * Wake up the next task on the wait queue.
688 */
689 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
690 {
691 	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
692 }
693 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
694 
695 /**
696  * rpc_wake_up_locked - wake up all rpc_tasks
697  * @queue: rpc_wait_queue on which the tasks are sleeping
698  *
699  */
700 static void rpc_wake_up_locked(struct rpc_wait_queue *queue)
701 {
702 	struct rpc_task *task;
703 
704 	for (;;) {
705 		task = __rpc_find_next_queued(queue);
706 		if (task == NULL)
707 			break;
708 		rpc_wake_up_task_queue_locked(queue, task);
709 	}
710 }
711 
712 /**
713  * rpc_wake_up - wake up all rpc_tasks
714  * @queue: rpc_wait_queue on which the tasks are sleeping
715  *
716  * Grabs queue->lock
717  */
718 void rpc_wake_up(struct rpc_wait_queue *queue)
719 {
720 	spin_lock(&queue->lock);
721 	rpc_wake_up_locked(queue);
722 	spin_unlock(&queue->lock);
723 }
724 EXPORT_SYMBOL_GPL(rpc_wake_up);
725 
726 /**
727  * rpc_wake_up_status_locked - wake up all rpc_tasks and set their status value.
728  * @queue: rpc_wait_queue on which the tasks are sleeping
729  * @status: status value to set
730  */
731 static void rpc_wake_up_status_locked(struct rpc_wait_queue *queue, int status)
732 {
733 	struct rpc_task *task;
734 
735 	for (;;) {
736 		task = __rpc_find_next_queued(queue);
737 		if (task == NULL)
738 			break;
739 		rpc_wake_up_task_queue_set_status_locked(queue, task, status);
740 	}
741 }
742 
743 /**
744  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
745  * @queue: rpc_wait_queue on which the tasks are sleeping
746  * @status: status value to set
747  *
748  * Grabs queue->lock
749  */
750 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
751 {
752 	spin_lock(&queue->lock);
753 	rpc_wake_up_status_locked(queue, status);
754 	spin_unlock(&queue->lock);
755 }
756 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
757 
758 static void __rpc_queue_timer_fn(struct work_struct *work)
759 {
760 	struct rpc_wait_queue *queue = container_of(work,
761 			struct rpc_wait_queue,
762 			timer_list.dwork.work);
763 	struct rpc_task *task, *n;
764 	unsigned long expires, now, timeo;
765 
766 	spin_lock(&queue->lock);
767 	expires = now = jiffies;
768 	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
769 		timeo = task->tk_timeout;
770 		if (time_after_eq(now, timeo)) {
771 			trace_rpc_task_timeout(task, task->tk_action);
772 			task->tk_status = -ETIMEDOUT;
773 			rpc_wake_up_task_queue_locked(queue, task);
774 			continue;
775 		}
776 		if (expires == now || time_after(expires, timeo))
777 			expires = timeo;
778 	}
779 	if (!list_empty(&queue->timer_list.list))
780 		rpc_set_queue_timer(queue, expires);
781 	spin_unlock(&queue->lock);
782 }
783 
784 static void __rpc_atrun(struct rpc_task *task)
785 {
786 	if (task->tk_status == -ETIMEDOUT)
787 		task->tk_status = 0;
788 }
789 
790 /*
791  * Run a task at a later time
792  */
793 void rpc_delay(struct rpc_task *task, unsigned long delay)
794 {
795 	rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
796 }
797 EXPORT_SYMBOL_GPL(rpc_delay);
798 
799 /*
800  * Helper to call task->tk_ops->rpc_call_prepare
801  */
802 void rpc_prepare_task(struct rpc_task *task)
803 {
804 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
805 }
806 
807 static void
808 rpc_init_task_statistics(struct rpc_task *task)
809 {
810 	/* Initialize retry counters */
811 	task->tk_garb_retry = 2;
812 	task->tk_cred_retry = 2;
813 	task->tk_rebind_retry = 2;
814 
815 	/* starting timestamp */
816 	task->tk_start = ktime_get();
817 }
818 
819 static void
820 rpc_reset_task_statistics(struct rpc_task *task)
821 {
822 	task->tk_timeouts = 0;
823 	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
824 	rpc_init_task_statistics(task);
825 }
826 
827 /*
828  * Helper that calls task->tk_ops->rpc_call_done if it exists
829  */
830 void rpc_exit_task(struct rpc_task *task)
831 {
832 	trace_rpc_task_end(task, task->tk_action);
833 	task->tk_action = NULL;
834 	if (task->tk_ops->rpc_count_stats)
835 		task->tk_ops->rpc_count_stats(task, task->tk_calldata);
836 	else if (task->tk_client)
837 		rpc_count_iostats(task, task->tk_client->cl_metrics);
838 	if (task->tk_ops->rpc_call_done != NULL) {
839 		trace_rpc_task_call_done(task, task->tk_ops->rpc_call_done);
840 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
841 		if (task->tk_action != NULL) {
842 			/* Always release the RPC slot and buffer memory */
843 			xprt_release(task);
844 			rpc_reset_task_statistics(task);
845 		}
846 	}
847 }
848 
849 void rpc_signal_task(struct rpc_task *task)
850 {
851 	struct rpc_wait_queue *queue;
852 
853 	if (!RPC_IS_ACTIVATED(task))
854 		return;
855 
856 	trace_rpc_task_signalled(task, task->tk_action);
857 	set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
858 	smp_mb__after_atomic();
859 	queue = READ_ONCE(task->tk_waitqueue);
860 	if (queue)
861 		rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
862 }
863 
864 void rpc_exit(struct rpc_task *task, int status)
865 {
866 	task->tk_status = status;
867 	task->tk_action = rpc_exit_task;
868 	rpc_wake_up_queued_task(task->tk_waitqueue, task);
869 }
870 EXPORT_SYMBOL_GPL(rpc_exit);
871 
872 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
873 {
874 	if (ops->rpc_release != NULL)
875 		ops->rpc_release(calldata);
876 }
877 
878 static bool xprt_needs_memalloc(struct rpc_xprt *xprt, struct rpc_task *tk)
879 {
880 	if (!xprt)
881 		return false;
882 	if (!atomic_read(&xprt->swapper))
883 		return false;
884 	return test_bit(XPRT_LOCKED, &xprt->state) && xprt->snd_task == tk;
885 }
886 
887 /*
888  * This is the RPC `scheduler' (or rather, the finite state machine).
889  */
890 static void __rpc_execute(struct rpc_task *task)
891 {
892 	struct rpc_wait_queue *queue;
893 	int task_is_async = RPC_IS_ASYNC(task);
894 	int status = 0;
895 	unsigned long pflags = current->flags;
896 
897 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
898 	if (RPC_IS_QUEUED(task))
899 		return;
900 
901 	for (;;) {
902 		void (*do_action)(struct rpc_task *);
903 
904 		/*
905 		 * Perform the next FSM step or a pending callback.
906 		 *
907 		 * tk_action may be NULL if the task has been killed.
908 		 * In particular, note that rpc_killall_tasks may
909 		 * do this at any time, so beware when dereferencing.
910 		 */
911 		do_action = task->tk_action;
912 		if (task->tk_callback) {
913 			do_action = task->tk_callback;
914 			task->tk_callback = NULL;
915 		}
916 		if (!do_action)
917 			break;
918 		if (RPC_IS_SWAPPER(task) ||
919 		    xprt_needs_memalloc(task->tk_xprt, task))
920 			current->flags |= PF_MEMALLOC;
921 
922 		trace_rpc_task_run_action(task, do_action);
923 		do_action(task);
924 
925 		/*
926 		 * Lockless check for whether task is sleeping or not.
927 		 */
928 		if (!RPC_IS_QUEUED(task)) {
929 			cond_resched();
930 			continue;
931 		}
932 
933 		/*
934 		 * Signalled tasks should exit rather than sleep.
935 		 */
936 		if (RPC_SIGNALLED(task)) {
937 			task->tk_rpc_status = -ERESTARTSYS;
938 			rpc_exit(task, -ERESTARTSYS);
939 		}
940 
941 		/*
942 		 * The queue->lock protects against races with
943 		 * rpc_make_runnable().
944 		 *
945 		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
946 		 * rpc_task, rpc_make_runnable() can assign it to a
947 		 * different workqueue. We therefore cannot assume that the
948 		 * rpc_task pointer may still be dereferenced.
949 		 */
950 		queue = task->tk_waitqueue;
951 		spin_lock(&queue->lock);
952 		if (!RPC_IS_QUEUED(task)) {
953 			spin_unlock(&queue->lock);
954 			continue;
955 		}
956 		rpc_clear_running(task);
957 		spin_unlock(&queue->lock);
958 		if (task_is_async)
959 			goto out;
960 
961 		/* sync task: sleep here */
962 		trace_rpc_task_sync_sleep(task, task->tk_action);
963 		status = out_of_line_wait_on_bit(&task->tk_runstate,
964 				RPC_TASK_QUEUED, rpc_wait_bit_killable,
965 				TASK_KILLABLE|TASK_FREEZABLE);
966 		if (status < 0) {
967 			/*
968 			 * When a sync task receives a signal, it exits with
969 			 * -ERESTARTSYS. In order to catch any callbacks that
970 			 * clean up after sleeping on some queue, we don't
971 			 * break the loop here, but go around once more.
972 			 */
973 			trace_rpc_task_signalled(task, task->tk_action);
974 			set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
975 			task->tk_rpc_status = -ERESTARTSYS;
976 			rpc_exit(task, -ERESTARTSYS);
977 		}
978 		trace_rpc_task_sync_wake(task, task->tk_action);
979 	}
980 
981 	/* Release all resources associated with the task */
982 	rpc_release_task(task);
983 out:
984 	current_restore_flags(pflags, PF_MEMALLOC);
985 }
986 
987 /*
988  * User-visible entry point to the scheduler.
989  *
990  * This may be called recursively if e.g. an async NFS task updates
991  * the attributes and finds that dirty pages must be flushed.
992  * NOTE: Upon exit of this function the task is guaranteed to be
993  *	 released. In particular note that tk_release() will have
994  *	 been called, so your task memory may have been freed.
995  */
996 void rpc_execute(struct rpc_task *task)
997 {
998 	bool is_async = RPC_IS_ASYNC(task);
999 
1000 	rpc_set_active(task);
1001 	rpc_make_runnable(rpciod_workqueue, task);
1002 	if (!is_async) {
1003 		unsigned int pflags = memalloc_nofs_save();
1004 		__rpc_execute(task);
1005 		memalloc_nofs_restore(pflags);
1006 	}
1007 }
1008 
1009 static void rpc_async_schedule(struct work_struct *work)
1010 {
1011 	unsigned int pflags = memalloc_nofs_save();
1012 
1013 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
1014 	memalloc_nofs_restore(pflags);
1015 }
1016 
1017 /**
1018  * rpc_malloc - allocate RPC buffer resources
1019  * @task: RPC task
1020  *
1021  * A single memory region is allocated, which is split between the
1022  * RPC call and RPC reply that this task is being used for. When
1023  * this RPC is retired, the memory is released by calling rpc_free.
1024  *
1025  * To prevent rpciod from hanging, this allocator never sleeps,
1026  * returning -ENOMEM and suppressing warning if the request cannot
1027  * be serviced immediately. The caller can arrange to sleep in a
1028  * way that is safe for rpciod.
1029  *
1030  * Most requests are 'small' (under 2KiB) and can be serviced from a
1031  * mempool, ensuring that NFS reads and writes can always proceed,
1032  * and that there is good locality of reference for these buffers.
1033  */
1034 int rpc_malloc(struct rpc_task *task)
1035 {
1036 	struct rpc_rqst *rqst = task->tk_rqstp;
1037 	size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1038 	struct rpc_buffer *buf;
1039 	gfp_t gfp = rpc_task_gfp_mask();
1040 
1041 	size += sizeof(struct rpc_buffer);
1042 	if (size <= RPC_BUFFER_MAXSIZE) {
1043 		buf = kmem_cache_alloc(rpc_buffer_slabp, gfp);
1044 		/* Reach for the mempool if dynamic allocation fails */
1045 		if (!buf && RPC_IS_ASYNC(task))
1046 			buf = mempool_alloc(rpc_buffer_mempool, GFP_NOWAIT);
1047 	} else
1048 		buf = kmalloc(size, gfp);
1049 
1050 	if (!buf)
1051 		return -ENOMEM;
1052 
1053 	buf->len = size;
1054 	rqst->rq_buffer = buf->data;
1055 	rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1056 	return 0;
1057 }
1058 EXPORT_SYMBOL_GPL(rpc_malloc);
1059 
1060 /**
1061  * rpc_free - free RPC buffer resources allocated via rpc_malloc
1062  * @task: RPC task
1063  *
1064  */
1065 void rpc_free(struct rpc_task *task)
1066 {
1067 	void *buffer = task->tk_rqstp->rq_buffer;
1068 	size_t size;
1069 	struct rpc_buffer *buf;
1070 
1071 	buf = container_of(buffer, struct rpc_buffer, data);
1072 	size = buf->len;
1073 
1074 	if (size <= RPC_BUFFER_MAXSIZE)
1075 		mempool_free(buf, rpc_buffer_mempool);
1076 	else
1077 		kfree(buf);
1078 }
1079 EXPORT_SYMBOL_GPL(rpc_free);
1080 
1081 /*
1082  * Creation and deletion of RPC task structures
1083  */
1084 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1085 {
1086 	memset(task, 0, sizeof(*task));
1087 	atomic_set(&task->tk_count, 1);
1088 	task->tk_flags  = task_setup_data->flags;
1089 	task->tk_ops = task_setup_data->callback_ops;
1090 	task->tk_calldata = task_setup_data->callback_data;
1091 	INIT_LIST_HEAD(&task->tk_task);
1092 
1093 	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1094 	task->tk_owner = current->tgid;
1095 
1096 	/* Initialize workqueue for async tasks */
1097 	task->tk_workqueue = task_setup_data->workqueue;
1098 
1099 	task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1100 			xprt_get(task_setup_data->rpc_xprt));
1101 
1102 	task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1103 
1104 	if (task->tk_ops->rpc_call_prepare != NULL)
1105 		task->tk_action = rpc_prepare_task;
1106 
1107 	rpc_init_task_statistics(task);
1108 }
1109 
1110 static struct rpc_task *rpc_alloc_task(void)
1111 {
1112 	struct rpc_task *task;
1113 
1114 	task = kmem_cache_alloc(rpc_task_slabp, rpc_task_gfp_mask());
1115 	if (task)
1116 		return task;
1117 	return mempool_alloc(rpc_task_mempool, GFP_NOWAIT);
1118 }
1119 
1120 /*
1121  * Create a new task for the specified client.
1122  */
1123 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1124 {
1125 	struct rpc_task	*task = setup_data->task;
1126 	unsigned short flags = 0;
1127 
1128 	if (task == NULL) {
1129 		task = rpc_alloc_task();
1130 		if (task == NULL) {
1131 			rpc_release_calldata(setup_data->callback_ops,
1132 					     setup_data->callback_data);
1133 			return ERR_PTR(-ENOMEM);
1134 		}
1135 		flags = RPC_TASK_DYNAMIC;
1136 	}
1137 
1138 	rpc_init_task(task, setup_data);
1139 	task->tk_flags |= flags;
1140 	return task;
1141 }
1142 
1143 /*
1144  * rpc_free_task - release rpc task and perform cleanups
1145  *
1146  * Note that we free up the rpc_task _after_ rpc_release_calldata()
1147  * in order to work around a workqueue dependency issue.
1148  *
1149  * Tejun Heo states:
1150  * "Workqueue currently considers two work items to be the same if they're
1151  * on the same address and won't execute them concurrently - ie. it
1152  * makes a work item which is queued again while being executed wait
1153  * for the previous execution to complete.
1154  *
1155  * If a work function frees the work item, and then waits for an event
1156  * which should be performed by another work item and *that* work item
1157  * recycles the freed work item, it can create a false dependency loop.
1158  * There really is no reliable way to detect this short of verifying
1159  * every memory free."
1160  *
1161  */
1162 static void rpc_free_task(struct rpc_task *task)
1163 {
1164 	unsigned short tk_flags = task->tk_flags;
1165 
1166 	put_rpccred(task->tk_op_cred);
1167 	rpc_release_calldata(task->tk_ops, task->tk_calldata);
1168 
1169 	if (tk_flags & RPC_TASK_DYNAMIC)
1170 		mempool_free(task, rpc_task_mempool);
1171 }
1172 
1173 static void rpc_async_release(struct work_struct *work)
1174 {
1175 	unsigned int pflags = memalloc_nofs_save();
1176 
1177 	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1178 	memalloc_nofs_restore(pflags);
1179 }
1180 
1181 static void rpc_release_resources_task(struct rpc_task *task)
1182 {
1183 	xprt_release(task);
1184 	if (task->tk_msg.rpc_cred) {
1185 		if (!(task->tk_flags & RPC_TASK_CRED_NOREF))
1186 			put_cred(task->tk_msg.rpc_cred);
1187 		task->tk_msg.rpc_cred = NULL;
1188 	}
1189 	rpc_task_release_client(task);
1190 }
1191 
1192 static void rpc_final_put_task(struct rpc_task *task,
1193 		struct workqueue_struct *q)
1194 {
1195 	if (q != NULL) {
1196 		INIT_WORK(&task->u.tk_work, rpc_async_release);
1197 		queue_work(q, &task->u.tk_work);
1198 	} else
1199 		rpc_free_task(task);
1200 }
1201 
1202 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1203 {
1204 	if (atomic_dec_and_test(&task->tk_count)) {
1205 		rpc_release_resources_task(task);
1206 		rpc_final_put_task(task, q);
1207 	}
1208 }
1209 
1210 void rpc_put_task(struct rpc_task *task)
1211 {
1212 	rpc_do_put_task(task, NULL);
1213 }
1214 EXPORT_SYMBOL_GPL(rpc_put_task);
1215 
1216 void rpc_put_task_async(struct rpc_task *task)
1217 {
1218 	rpc_do_put_task(task, task->tk_workqueue);
1219 }
1220 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1221 
1222 static void rpc_release_task(struct rpc_task *task)
1223 {
1224 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
1225 
1226 	rpc_release_resources_task(task);
1227 
1228 	/*
1229 	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1230 	 * so it should be safe to use task->tk_count as a test for whether
1231 	 * or not any other processes still hold references to our rpc_task.
1232 	 */
1233 	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1234 		/* Wake up anyone who may be waiting for task completion */
1235 		if (!rpc_complete_task(task))
1236 			return;
1237 	} else {
1238 		if (!atomic_dec_and_test(&task->tk_count))
1239 			return;
1240 	}
1241 	rpc_final_put_task(task, task->tk_workqueue);
1242 }
1243 
1244 int rpciod_up(void)
1245 {
1246 	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1247 }
1248 
1249 void rpciod_down(void)
1250 {
1251 	module_put(THIS_MODULE);
1252 }
1253 
1254 /*
1255  * Start up the rpciod workqueue.
1256  */
1257 static int rpciod_start(void)
1258 {
1259 	struct workqueue_struct *wq;
1260 
1261 	/*
1262 	 * Create the rpciod thread and wait for it to start.
1263 	 */
1264 	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1265 	if (!wq)
1266 		goto out_failed;
1267 	rpciod_workqueue = wq;
1268 	wq = alloc_workqueue("xprtiod", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
1269 	if (!wq)
1270 		goto free_rpciod;
1271 	xprtiod_workqueue = wq;
1272 	return 1;
1273 free_rpciod:
1274 	wq = rpciod_workqueue;
1275 	rpciod_workqueue = NULL;
1276 	destroy_workqueue(wq);
1277 out_failed:
1278 	return 0;
1279 }
1280 
1281 static void rpciod_stop(void)
1282 {
1283 	struct workqueue_struct *wq = NULL;
1284 
1285 	if (rpciod_workqueue == NULL)
1286 		return;
1287 
1288 	wq = rpciod_workqueue;
1289 	rpciod_workqueue = NULL;
1290 	destroy_workqueue(wq);
1291 	wq = xprtiod_workqueue;
1292 	xprtiod_workqueue = NULL;
1293 	destroy_workqueue(wq);
1294 }
1295 
1296 void
1297 rpc_destroy_mempool(void)
1298 {
1299 	rpciod_stop();
1300 	mempool_destroy(rpc_buffer_mempool);
1301 	mempool_destroy(rpc_task_mempool);
1302 	kmem_cache_destroy(rpc_task_slabp);
1303 	kmem_cache_destroy(rpc_buffer_slabp);
1304 	rpc_destroy_wait_queue(&delay_queue);
1305 }
1306 
1307 int
1308 rpc_init_mempool(void)
1309 {
1310 	/*
1311 	 * The following is not strictly a mempool initialisation,
1312 	 * but there is no harm in doing it here
1313 	 */
1314 	rpc_init_wait_queue(&delay_queue, "delayq");
1315 	if (!rpciod_start())
1316 		goto err_nomem;
1317 
1318 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1319 					     sizeof(struct rpc_task),
1320 					     0, SLAB_HWCACHE_ALIGN,
1321 					     NULL);
1322 	if (!rpc_task_slabp)
1323 		goto err_nomem;
1324 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1325 					     RPC_BUFFER_MAXSIZE,
1326 					     0, SLAB_HWCACHE_ALIGN,
1327 					     NULL);
1328 	if (!rpc_buffer_slabp)
1329 		goto err_nomem;
1330 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1331 						    rpc_task_slabp);
1332 	if (!rpc_task_mempool)
1333 		goto err_nomem;
1334 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1335 						      rpc_buffer_slabp);
1336 	if (!rpc_buffer_mempool)
1337 		goto err_nomem;
1338 	return 0;
1339 err_nomem:
1340 	rpc_destroy_mempool();
1341 	return -ENOMEM;
1342 }
1343