1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/sched.c 4 * 5 * Scheduling for synchronous and asynchronous RPC requests. 6 * 7 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> 8 * 9 * TCP NFS related read + write fixes 10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 11 */ 12 13 #include <linux/module.h> 14 15 #include <linux/sched.h> 16 #include <linux/interrupt.h> 17 #include <linux/slab.h> 18 #include <linux/mempool.h> 19 #include <linux/smp.h> 20 #include <linux/spinlock.h> 21 #include <linux/mutex.h> 22 #include <linux/freezer.h> 23 #include <linux/sched/mm.h> 24 25 #include <linux/sunrpc/clnt.h> 26 #include <linux/sunrpc/metrics.h> 27 28 #include "sunrpc.h" 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/sunrpc.h> 32 33 /* 34 * RPC slabs and memory pools 35 */ 36 #define RPC_BUFFER_MAXSIZE (2048) 37 #define RPC_BUFFER_POOLSIZE (8) 38 #define RPC_TASK_POOLSIZE (8) 39 static struct kmem_cache *rpc_task_slabp __read_mostly; 40 static struct kmem_cache *rpc_buffer_slabp __read_mostly; 41 static mempool_t *rpc_task_mempool __read_mostly; 42 static mempool_t *rpc_buffer_mempool __read_mostly; 43 44 static void rpc_async_schedule(struct work_struct *); 45 static void rpc_release_task(struct rpc_task *task); 46 static void __rpc_queue_timer_fn(struct work_struct *); 47 48 /* 49 * RPC tasks sit here while waiting for conditions to improve. 50 */ 51 static struct rpc_wait_queue delay_queue; 52 53 /* 54 * rpciod-related stuff 55 */ 56 struct workqueue_struct *rpciod_workqueue __read_mostly; 57 struct workqueue_struct *xprtiod_workqueue __read_mostly; 58 EXPORT_SYMBOL_GPL(xprtiod_workqueue); 59 60 gfp_t rpc_task_gfp_mask(void) 61 { 62 if (current->flags & PF_WQ_WORKER) 63 return GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN; 64 return GFP_KERNEL; 65 } 66 67 unsigned long 68 rpc_task_timeout(const struct rpc_task *task) 69 { 70 unsigned long timeout = READ_ONCE(task->tk_timeout); 71 72 if (timeout != 0) { 73 unsigned long now = jiffies; 74 if (time_before(now, timeout)) 75 return timeout - now; 76 } 77 return 0; 78 } 79 EXPORT_SYMBOL_GPL(rpc_task_timeout); 80 81 /* 82 * Disable the timer for a given RPC task. Should be called with 83 * queue->lock and bh_disabled in order to avoid races within 84 * rpc_run_timer(). 85 */ 86 static void 87 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 88 { 89 if (list_empty(&task->u.tk_wait.timer_list)) 90 return; 91 task->tk_timeout = 0; 92 list_del(&task->u.tk_wait.timer_list); 93 if (list_empty(&queue->timer_list.list)) 94 cancel_delayed_work(&queue->timer_list.dwork); 95 } 96 97 static void 98 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires) 99 { 100 unsigned long now = jiffies; 101 queue->timer_list.expires = expires; 102 if (time_before_eq(expires, now)) 103 expires = 0; 104 else 105 expires -= now; 106 mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires); 107 } 108 109 /* 110 * Set up a timer for the current task. 111 */ 112 static void 113 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task, 114 unsigned long timeout) 115 { 116 task->tk_timeout = timeout; 117 if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires)) 118 rpc_set_queue_timer(queue, timeout); 119 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list); 120 } 121 122 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) 123 { 124 if (queue->priority != priority) { 125 queue->priority = priority; 126 queue->nr = 1U << priority; 127 } 128 } 129 130 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) 131 { 132 rpc_set_waitqueue_priority(queue, queue->maxpriority); 133 } 134 135 /* 136 * Add a request to a queue list 137 */ 138 static void 139 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task) 140 { 141 struct rpc_task *t; 142 143 list_for_each_entry(t, q, u.tk_wait.list) { 144 if (t->tk_owner == task->tk_owner) { 145 list_add_tail(&task->u.tk_wait.links, 146 &t->u.tk_wait.links); 147 /* Cache the queue head in task->u.tk_wait.list */ 148 task->u.tk_wait.list.next = q; 149 task->u.tk_wait.list.prev = NULL; 150 return; 151 } 152 } 153 INIT_LIST_HEAD(&task->u.tk_wait.links); 154 list_add_tail(&task->u.tk_wait.list, q); 155 } 156 157 /* 158 * Remove request from a queue list 159 */ 160 static void 161 __rpc_list_dequeue_task(struct rpc_task *task) 162 { 163 struct list_head *q; 164 struct rpc_task *t; 165 166 if (task->u.tk_wait.list.prev == NULL) { 167 list_del(&task->u.tk_wait.links); 168 return; 169 } 170 if (!list_empty(&task->u.tk_wait.links)) { 171 t = list_first_entry(&task->u.tk_wait.links, 172 struct rpc_task, 173 u.tk_wait.links); 174 /* Assume __rpc_list_enqueue_task() cached the queue head */ 175 q = t->u.tk_wait.list.next; 176 list_add_tail(&t->u.tk_wait.list, q); 177 list_del(&task->u.tk_wait.links); 178 } 179 list_del(&task->u.tk_wait.list); 180 } 181 182 /* 183 * Add new request to a priority queue. 184 */ 185 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, 186 struct rpc_task *task, 187 unsigned char queue_priority) 188 { 189 if (unlikely(queue_priority > queue->maxpriority)) 190 queue_priority = queue->maxpriority; 191 __rpc_list_enqueue_task(&queue->tasks[queue_priority], task); 192 } 193 194 /* 195 * Add new request to wait queue. 196 */ 197 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, 198 struct rpc_task *task, 199 unsigned char queue_priority) 200 { 201 INIT_LIST_HEAD(&task->u.tk_wait.timer_list); 202 if (RPC_IS_PRIORITY(queue)) 203 __rpc_add_wait_queue_priority(queue, task, queue_priority); 204 else 205 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); 206 task->tk_waitqueue = queue; 207 queue->qlen++; 208 /* barrier matches the read in rpc_wake_up_task_queue_locked() */ 209 smp_wmb(); 210 rpc_set_queued(task); 211 } 212 213 /* 214 * Remove request from a priority queue. 215 */ 216 static void __rpc_remove_wait_queue_priority(struct rpc_task *task) 217 { 218 __rpc_list_dequeue_task(task); 219 } 220 221 /* 222 * Remove request from queue. 223 * Note: must be called with spin lock held. 224 */ 225 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 226 { 227 __rpc_disable_timer(queue, task); 228 if (RPC_IS_PRIORITY(queue)) 229 __rpc_remove_wait_queue_priority(task); 230 else 231 list_del(&task->u.tk_wait.list); 232 queue->qlen--; 233 } 234 235 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues) 236 { 237 int i; 238 239 spin_lock_init(&queue->lock); 240 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) 241 INIT_LIST_HEAD(&queue->tasks[i]); 242 queue->maxpriority = nr_queues - 1; 243 rpc_reset_waitqueue_priority(queue); 244 queue->qlen = 0; 245 queue->timer_list.expires = 0; 246 INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn); 247 INIT_LIST_HEAD(&queue->timer_list.list); 248 rpc_assign_waitqueue_name(queue, qname); 249 } 250 251 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) 252 { 253 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY); 254 } 255 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue); 256 257 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) 258 { 259 __rpc_init_priority_wait_queue(queue, qname, 1); 260 } 261 EXPORT_SYMBOL_GPL(rpc_init_wait_queue); 262 263 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue) 264 { 265 cancel_delayed_work_sync(&queue->timer_list.dwork); 266 } 267 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue); 268 269 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode) 270 { 271 freezable_schedule_unsafe(); 272 if (signal_pending_state(mode, current)) 273 return -ERESTARTSYS; 274 return 0; 275 } 276 277 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS) 278 static void rpc_task_set_debuginfo(struct rpc_task *task) 279 { 280 struct rpc_clnt *clnt = task->tk_client; 281 282 /* Might be a task carrying a reverse-direction operation */ 283 if (!clnt) { 284 static atomic_t rpc_pid; 285 286 task->tk_pid = atomic_inc_return(&rpc_pid); 287 return; 288 } 289 290 task->tk_pid = atomic_inc_return(&clnt->cl_pid); 291 } 292 #else 293 static inline void rpc_task_set_debuginfo(struct rpc_task *task) 294 { 295 } 296 #endif 297 298 static void rpc_set_active(struct rpc_task *task) 299 { 300 rpc_task_set_debuginfo(task); 301 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 302 trace_rpc_task_begin(task, NULL); 303 } 304 305 /* 306 * Mark an RPC call as having completed by clearing the 'active' bit 307 * and then waking up all tasks that were sleeping. 308 */ 309 static int rpc_complete_task(struct rpc_task *task) 310 { 311 void *m = &task->tk_runstate; 312 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE); 313 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE); 314 unsigned long flags; 315 int ret; 316 317 trace_rpc_task_complete(task, NULL); 318 319 spin_lock_irqsave(&wq->lock, flags); 320 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 321 ret = atomic_dec_and_test(&task->tk_count); 322 if (waitqueue_active(wq)) 323 __wake_up_locked_key(wq, TASK_NORMAL, &k); 324 spin_unlock_irqrestore(&wq->lock, flags); 325 return ret; 326 } 327 328 /* 329 * Allow callers to wait for completion of an RPC call 330 * 331 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit() 332 * to enforce taking of the wq->lock and hence avoid races with 333 * rpc_complete_task(). 334 */ 335 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action) 336 { 337 if (action == NULL) 338 action = rpc_wait_bit_killable; 339 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, 340 action, TASK_KILLABLE); 341 } 342 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task); 343 344 /* 345 * Make an RPC task runnable. 346 * 347 * Note: If the task is ASYNC, and is being made runnable after sitting on an 348 * rpc_wait_queue, this must be called with the queue spinlock held to protect 349 * the wait queue operation. 350 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(), 351 * which is needed to ensure that __rpc_execute() doesn't loop (due to the 352 * lockless RPC_IS_QUEUED() test) before we've had a chance to test 353 * the RPC_TASK_RUNNING flag. 354 */ 355 static void rpc_make_runnable(struct workqueue_struct *wq, 356 struct rpc_task *task) 357 { 358 bool need_wakeup = !rpc_test_and_set_running(task); 359 360 rpc_clear_queued(task); 361 if (!need_wakeup) 362 return; 363 if (RPC_IS_ASYNC(task)) { 364 INIT_WORK(&task->u.tk_work, rpc_async_schedule); 365 queue_work(wq, &task->u.tk_work); 366 } else 367 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); 368 } 369 370 /* 371 * Prepare for sleeping on a wait queue. 372 * By always appending tasks to the list we ensure FIFO behavior. 373 * NB: An RPC task will only receive interrupt-driven events as long 374 * as it's on a wait queue. 375 */ 376 static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q, 377 struct rpc_task *task, 378 unsigned char queue_priority) 379 { 380 trace_rpc_task_sleep(task, q); 381 382 __rpc_add_wait_queue(q, task, queue_priority); 383 } 384 385 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q, 386 struct rpc_task *task, 387 unsigned char queue_priority) 388 { 389 if (WARN_ON_ONCE(RPC_IS_QUEUED(task))) 390 return; 391 __rpc_do_sleep_on_priority(q, task, queue_priority); 392 } 393 394 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q, 395 struct rpc_task *task, unsigned long timeout, 396 unsigned char queue_priority) 397 { 398 if (WARN_ON_ONCE(RPC_IS_QUEUED(task))) 399 return; 400 if (time_is_after_jiffies(timeout)) { 401 __rpc_do_sleep_on_priority(q, task, queue_priority); 402 __rpc_add_timer(q, task, timeout); 403 } else 404 task->tk_status = -ETIMEDOUT; 405 } 406 407 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action) 408 { 409 if (action && !WARN_ON_ONCE(task->tk_callback != NULL)) 410 task->tk_callback = action; 411 } 412 413 static bool rpc_sleep_check_activated(struct rpc_task *task) 414 { 415 /* We shouldn't ever put an inactive task to sleep */ 416 if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) { 417 task->tk_status = -EIO; 418 rpc_put_task_async(task); 419 return false; 420 } 421 return true; 422 } 423 424 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task, 425 rpc_action action, unsigned long timeout) 426 { 427 if (!rpc_sleep_check_activated(task)) 428 return; 429 430 rpc_set_tk_callback(task, action); 431 432 /* 433 * Protect the queue operations. 434 */ 435 spin_lock(&q->lock); 436 __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority); 437 spin_unlock(&q->lock); 438 } 439 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout); 440 441 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 442 rpc_action action) 443 { 444 if (!rpc_sleep_check_activated(task)) 445 return; 446 447 rpc_set_tk_callback(task, action); 448 449 WARN_ON_ONCE(task->tk_timeout != 0); 450 /* 451 * Protect the queue operations. 452 */ 453 spin_lock(&q->lock); 454 __rpc_sleep_on_priority(q, task, task->tk_priority); 455 spin_unlock(&q->lock); 456 } 457 EXPORT_SYMBOL_GPL(rpc_sleep_on); 458 459 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q, 460 struct rpc_task *task, unsigned long timeout, int priority) 461 { 462 if (!rpc_sleep_check_activated(task)) 463 return; 464 465 priority -= RPC_PRIORITY_LOW; 466 /* 467 * Protect the queue operations. 468 */ 469 spin_lock(&q->lock); 470 __rpc_sleep_on_priority_timeout(q, task, timeout, priority); 471 spin_unlock(&q->lock); 472 } 473 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout); 474 475 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task, 476 int priority) 477 { 478 if (!rpc_sleep_check_activated(task)) 479 return; 480 481 WARN_ON_ONCE(task->tk_timeout != 0); 482 priority -= RPC_PRIORITY_LOW; 483 /* 484 * Protect the queue operations. 485 */ 486 spin_lock(&q->lock); 487 __rpc_sleep_on_priority(q, task, priority); 488 spin_unlock(&q->lock); 489 } 490 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority); 491 492 /** 493 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task 494 * @wq: workqueue on which to run task 495 * @queue: wait queue 496 * @task: task to be woken up 497 * 498 * Caller must hold queue->lock, and have cleared the task queued flag. 499 */ 500 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq, 501 struct rpc_wait_queue *queue, 502 struct rpc_task *task) 503 { 504 /* Has the task been executed yet? If not, we cannot wake it up! */ 505 if (!RPC_IS_ACTIVATED(task)) { 506 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); 507 return; 508 } 509 510 trace_rpc_task_wakeup(task, queue); 511 512 __rpc_remove_wait_queue(queue, task); 513 514 rpc_make_runnable(wq, task); 515 } 516 517 /* 518 * Wake up a queued task while the queue lock is being held 519 */ 520 static struct rpc_task * 521 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq, 522 struct rpc_wait_queue *queue, struct rpc_task *task, 523 bool (*action)(struct rpc_task *, void *), void *data) 524 { 525 if (RPC_IS_QUEUED(task)) { 526 smp_rmb(); 527 if (task->tk_waitqueue == queue) { 528 if (action == NULL || action(task, data)) { 529 __rpc_do_wake_up_task_on_wq(wq, queue, task); 530 return task; 531 } 532 } 533 } 534 return NULL; 535 } 536 537 /* 538 * Wake up a queued task while the queue lock is being held 539 */ 540 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, 541 struct rpc_task *task) 542 { 543 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue, 544 task, NULL, NULL); 545 } 546 547 /* 548 * Wake up a task on a specific queue 549 */ 550 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task) 551 { 552 if (!RPC_IS_QUEUED(task)) 553 return; 554 spin_lock(&queue->lock); 555 rpc_wake_up_task_queue_locked(queue, task); 556 spin_unlock(&queue->lock); 557 } 558 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task); 559 560 static bool rpc_task_action_set_status(struct rpc_task *task, void *status) 561 { 562 task->tk_status = *(int *)status; 563 return true; 564 } 565 566 static void 567 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue, 568 struct rpc_task *task, int status) 569 { 570 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue, 571 task, rpc_task_action_set_status, &status); 572 } 573 574 /** 575 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status 576 * @queue: pointer to rpc_wait_queue 577 * @task: pointer to rpc_task 578 * @status: integer error value 579 * 580 * If @task is queued on @queue, then it is woken up, and @task->tk_status is 581 * set to the value of @status. 582 */ 583 void 584 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue, 585 struct rpc_task *task, int status) 586 { 587 if (!RPC_IS_QUEUED(task)) 588 return; 589 spin_lock(&queue->lock); 590 rpc_wake_up_task_queue_set_status_locked(queue, task, status); 591 spin_unlock(&queue->lock); 592 } 593 594 /* 595 * Wake up the next task on a priority queue. 596 */ 597 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue) 598 { 599 struct list_head *q; 600 struct rpc_task *task; 601 602 /* 603 * Service the privileged queue. 604 */ 605 q = &queue->tasks[RPC_NR_PRIORITY - 1]; 606 if (queue->maxpriority > RPC_PRIORITY_PRIVILEGED && !list_empty(q)) { 607 task = list_first_entry(q, struct rpc_task, u.tk_wait.list); 608 goto out; 609 } 610 611 /* 612 * Service a batch of tasks from a single owner. 613 */ 614 q = &queue->tasks[queue->priority]; 615 if (!list_empty(q) && queue->nr) { 616 queue->nr--; 617 task = list_first_entry(q, struct rpc_task, u.tk_wait.list); 618 goto out; 619 } 620 621 /* 622 * Service the next queue. 623 */ 624 do { 625 if (q == &queue->tasks[0]) 626 q = &queue->tasks[queue->maxpriority]; 627 else 628 q = q - 1; 629 if (!list_empty(q)) { 630 task = list_first_entry(q, struct rpc_task, u.tk_wait.list); 631 goto new_queue; 632 } 633 } while (q != &queue->tasks[queue->priority]); 634 635 rpc_reset_waitqueue_priority(queue); 636 return NULL; 637 638 new_queue: 639 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); 640 out: 641 return task; 642 } 643 644 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue) 645 { 646 if (RPC_IS_PRIORITY(queue)) 647 return __rpc_find_next_queued_priority(queue); 648 if (!list_empty(&queue->tasks[0])) 649 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list); 650 return NULL; 651 } 652 653 /* 654 * Wake up the first task on the wait queue. 655 */ 656 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq, 657 struct rpc_wait_queue *queue, 658 bool (*func)(struct rpc_task *, void *), void *data) 659 { 660 struct rpc_task *task = NULL; 661 662 spin_lock(&queue->lock); 663 task = __rpc_find_next_queued(queue); 664 if (task != NULL) 665 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue, 666 task, func, data); 667 spin_unlock(&queue->lock); 668 669 return task; 670 } 671 672 /* 673 * Wake up the first task on the wait queue. 674 */ 675 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue, 676 bool (*func)(struct rpc_task *, void *), void *data) 677 { 678 return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data); 679 } 680 EXPORT_SYMBOL_GPL(rpc_wake_up_first); 681 682 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data) 683 { 684 return true; 685 } 686 687 /* 688 * Wake up the next task on the wait queue. 689 */ 690 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue) 691 { 692 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL); 693 } 694 EXPORT_SYMBOL_GPL(rpc_wake_up_next); 695 696 /** 697 * rpc_wake_up_locked - wake up all rpc_tasks 698 * @queue: rpc_wait_queue on which the tasks are sleeping 699 * 700 */ 701 static void rpc_wake_up_locked(struct rpc_wait_queue *queue) 702 { 703 struct rpc_task *task; 704 705 for (;;) { 706 task = __rpc_find_next_queued(queue); 707 if (task == NULL) 708 break; 709 rpc_wake_up_task_queue_locked(queue, task); 710 } 711 } 712 713 /** 714 * rpc_wake_up - wake up all rpc_tasks 715 * @queue: rpc_wait_queue on which the tasks are sleeping 716 * 717 * Grabs queue->lock 718 */ 719 void rpc_wake_up(struct rpc_wait_queue *queue) 720 { 721 spin_lock(&queue->lock); 722 rpc_wake_up_locked(queue); 723 spin_unlock(&queue->lock); 724 } 725 EXPORT_SYMBOL_GPL(rpc_wake_up); 726 727 /** 728 * rpc_wake_up_status_locked - wake up all rpc_tasks and set their status value. 729 * @queue: rpc_wait_queue on which the tasks are sleeping 730 * @status: status value to set 731 */ 732 static void rpc_wake_up_status_locked(struct rpc_wait_queue *queue, int status) 733 { 734 struct rpc_task *task; 735 736 for (;;) { 737 task = __rpc_find_next_queued(queue); 738 if (task == NULL) 739 break; 740 rpc_wake_up_task_queue_set_status_locked(queue, task, status); 741 } 742 } 743 744 /** 745 * rpc_wake_up_status - wake up all rpc_tasks and set their status value. 746 * @queue: rpc_wait_queue on which the tasks are sleeping 747 * @status: status value to set 748 * 749 * Grabs queue->lock 750 */ 751 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) 752 { 753 spin_lock(&queue->lock); 754 rpc_wake_up_status_locked(queue, status); 755 spin_unlock(&queue->lock); 756 } 757 EXPORT_SYMBOL_GPL(rpc_wake_up_status); 758 759 static void __rpc_queue_timer_fn(struct work_struct *work) 760 { 761 struct rpc_wait_queue *queue = container_of(work, 762 struct rpc_wait_queue, 763 timer_list.dwork.work); 764 struct rpc_task *task, *n; 765 unsigned long expires, now, timeo; 766 767 spin_lock(&queue->lock); 768 expires = now = jiffies; 769 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) { 770 timeo = task->tk_timeout; 771 if (time_after_eq(now, timeo)) { 772 trace_rpc_task_timeout(task, task->tk_action); 773 task->tk_status = -ETIMEDOUT; 774 rpc_wake_up_task_queue_locked(queue, task); 775 continue; 776 } 777 if (expires == now || time_after(expires, timeo)) 778 expires = timeo; 779 } 780 if (!list_empty(&queue->timer_list.list)) 781 rpc_set_queue_timer(queue, expires); 782 spin_unlock(&queue->lock); 783 } 784 785 static void __rpc_atrun(struct rpc_task *task) 786 { 787 if (task->tk_status == -ETIMEDOUT) 788 task->tk_status = 0; 789 } 790 791 /* 792 * Run a task at a later time 793 */ 794 void rpc_delay(struct rpc_task *task, unsigned long delay) 795 { 796 rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay); 797 } 798 EXPORT_SYMBOL_GPL(rpc_delay); 799 800 /* 801 * Helper to call task->tk_ops->rpc_call_prepare 802 */ 803 void rpc_prepare_task(struct rpc_task *task) 804 { 805 task->tk_ops->rpc_call_prepare(task, task->tk_calldata); 806 } 807 808 static void 809 rpc_init_task_statistics(struct rpc_task *task) 810 { 811 /* Initialize retry counters */ 812 task->tk_garb_retry = 2; 813 task->tk_cred_retry = 2; 814 task->tk_rebind_retry = 2; 815 816 /* starting timestamp */ 817 task->tk_start = ktime_get(); 818 } 819 820 static void 821 rpc_reset_task_statistics(struct rpc_task *task) 822 { 823 task->tk_timeouts = 0; 824 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT); 825 rpc_init_task_statistics(task); 826 } 827 828 /* 829 * Helper that calls task->tk_ops->rpc_call_done if it exists 830 */ 831 void rpc_exit_task(struct rpc_task *task) 832 { 833 trace_rpc_task_end(task, task->tk_action); 834 task->tk_action = NULL; 835 if (task->tk_ops->rpc_count_stats) 836 task->tk_ops->rpc_count_stats(task, task->tk_calldata); 837 else if (task->tk_client) 838 rpc_count_iostats(task, task->tk_client->cl_metrics); 839 if (task->tk_ops->rpc_call_done != NULL) { 840 trace_rpc_task_call_done(task, task->tk_ops->rpc_call_done); 841 task->tk_ops->rpc_call_done(task, task->tk_calldata); 842 if (task->tk_action != NULL) { 843 /* Always release the RPC slot and buffer memory */ 844 xprt_release(task); 845 rpc_reset_task_statistics(task); 846 } 847 } 848 } 849 850 void rpc_signal_task(struct rpc_task *task) 851 { 852 struct rpc_wait_queue *queue; 853 854 if (!RPC_IS_ACTIVATED(task)) 855 return; 856 857 trace_rpc_task_signalled(task, task->tk_action); 858 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate); 859 smp_mb__after_atomic(); 860 queue = READ_ONCE(task->tk_waitqueue); 861 if (queue) 862 rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS); 863 } 864 865 void rpc_exit(struct rpc_task *task, int status) 866 { 867 task->tk_status = status; 868 task->tk_action = rpc_exit_task; 869 rpc_wake_up_queued_task(task->tk_waitqueue, task); 870 } 871 EXPORT_SYMBOL_GPL(rpc_exit); 872 873 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata) 874 { 875 if (ops->rpc_release != NULL) 876 ops->rpc_release(calldata); 877 } 878 879 static bool xprt_needs_memalloc(struct rpc_xprt *xprt, struct rpc_task *tk) 880 { 881 if (!xprt) 882 return false; 883 if (!atomic_read(&xprt->swapper)) 884 return false; 885 return test_bit(XPRT_LOCKED, &xprt->state) && xprt->snd_task == tk; 886 } 887 888 /* 889 * This is the RPC `scheduler' (or rather, the finite state machine). 890 */ 891 static void __rpc_execute(struct rpc_task *task) 892 { 893 struct rpc_wait_queue *queue; 894 int task_is_async = RPC_IS_ASYNC(task); 895 int status = 0; 896 unsigned long pflags = current->flags; 897 898 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 899 if (RPC_IS_QUEUED(task)) 900 return; 901 902 for (;;) { 903 void (*do_action)(struct rpc_task *); 904 905 /* 906 * Perform the next FSM step or a pending callback. 907 * 908 * tk_action may be NULL if the task has been killed. 909 * In particular, note that rpc_killall_tasks may 910 * do this at any time, so beware when dereferencing. 911 */ 912 do_action = task->tk_action; 913 if (task->tk_callback) { 914 do_action = task->tk_callback; 915 task->tk_callback = NULL; 916 } 917 if (!do_action) 918 break; 919 if (RPC_IS_SWAPPER(task) || 920 xprt_needs_memalloc(task->tk_xprt, task)) 921 current->flags |= PF_MEMALLOC; 922 923 trace_rpc_task_run_action(task, do_action); 924 do_action(task); 925 926 /* 927 * Lockless check for whether task is sleeping or not. 928 */ 929 if (!RPC_IS_QUEUED(task)) { 930 cond_resched(); 931 continue; 932 } 933 934 /* 935 * Signalled tasks should exit rather than sleep. 936 */ 937 if (RPC_SIGNALLED(task)) { 938 task->tk_rpc_status = -ERESTARTSYS; 939 rpc_exit(task, -ERESTARTSYS); 940 } 941 942 /* 943 * The queue->lock protects against races with 944 * rpc_make_runnable(). 945 * 946 * Note that once we clear RPC_TASK_RUNNING on an asynchronous 947 * rpc_task, rpc_make_runnable() can assign it to a 948 * different workqueue. We therefore cannot assume that the 949 * rpc_task pointer may still be dereferenced. 950 */ 951 queue = task->tk_waitqueue; 952 spin_lock(&queue->lock); 953 if (!RPC_IS_QUEUED(task)) { 954 spin_unlock(&queue->lock); 955 continue; 956 } 957 rpc_clear_running(task); 958 spin_unlock(&queue->lock); 959 if (task_is_async) 960 goto out; 961 962 /* sync task: sleep here */ 963 trace_rpc_task_sync_sleep(task, task->tk_action); 964 status = out_of_line_wait_on_bit(&task->tk_runstate, 965 RPC_TASK_QUEUED, rpc_wait_bit_killable, 966 TASK_KILLABLE); 967 if (status < 0) { 968 /* 969 * When a sync task receives a signal, it exits with 970 * -ERESTARTSYS. In order to catch any callbacks that 971 * clean up after sleeping on some queue, we don't 972 * break the loop here, but go around once more. 973 */ 974 trace_rpc_task_signalled(task, task->tk_action); 975 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate); 976 task->tk_rpc_status = -ERESTARTSYS; 977 rpc_exit(task, -ERESTARTSYS); 978 } 979 trace_rpc_task_sync_wake(task, task->tk_action); 980 } 981 982 /* Release all resources associated with the task */ 983 rpc_release_task(task); 984 out: 985 current_restore_flags(pflags, PF_MEMALLOC); 986 } 987 988 /* 989 * User-visible entry point to the scheduler. 990 * 991 * This may be called recursively if e.g. an async NFS task updates 992 * the attributes and finds that dirty pages must be flushed. 993 * NOTE: Upon exit of this function the task is guaranteed to be 994 * released. In particular note that tk_release() will have 995 * been called, so your task memory may have been freed. 996 */ 997 void rpc_execute(struct rpc_task *task) 998 { 999 bool is_async = RPC_IS_ASYNC(task); 1000 1001 rpc_set_active(task); 1002 rpc_make_runnable(rpciod_workqueue, task); 1003 if (!is_async) { 1004 unsigned int pflags = memalloc_nofs_save(); 1005 __rpc_execute(task); 1006 memalloc_nofs_restore(pflags); 1007 } 1008 } 1009 1010 static void rpc_async_schedule(struct work_struct *work) 1011 { 1012 unsigned int pflags = memalloc_nofs_save(); 1013 1014 __rpc_execute(container_of(work, struct rpc_task, u.tk_work)); 1015 memalloc_nofs_restore(pflags); 1016 } 1017 1018 /** 1019 * rpc_malloc - allocate RPC buffer resources 1020 * @task: RPC task 1021 * 1022 * A single memory region is allocated, which is split between the 1023 * RPC call and RPC reply that this task is being used for. When 1024 * this RPC is retired, the memory is released by calling rpc_free. 1025 * 1026 * To prevent rpciod from hanging, this allocator never sleeps, 1027 * returning -ENOMEM and suppressing warning if the request cannot 1028 * be serviced immediately. The caller can arrange to sleep in a 1029 * way that is safe for rpciod. 1030 * 1031 * Most requests are 'small' (under 2KiB) and can be serviced from a 1032 * mempool, ensuring that NFS reads and writes can always proceed, 1033 * and that there is good locality of reference for these buffers. 1034 */ 1035 int rpc_malloc(struct rpc_task *task) 1036 { 1037 struct rpc_rqst *rqst = task->tk_rqstp; 1038 size_t size = rqst->rq_callsize + rqst->rq_rcvsize; 1039 struct rpc_buffer *buf; 1040 gfp_t gfp = rpc_task_gfp_mask(); 1041 1042 size += sizeof(struct rpc_buffer); 1043 if (size <= RPC_BUFFER_MAXSIZE) { 1044 buf = kmem_cache_alloc(rpc_buffer_slabp, gfp); 1045 /* Reach for the mempool if dynamic allocation fails */ 1046 if (!buf && RPC_IS_ASYNC(task)) 1047 buf = mempool_alloc(rpc_buffer_mempool, GFP_NOWAIT); 1048 } else 1049 buf = kmalloc(size, gfp); 1050 1051 if (!buf) 1052 return -ENOMEM; 1053 1054 buf->len = size; 1055 rqst->rq_buffer = buf->data; 1056 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize; 1057 return 0; 1058 } 1059 EXPORT_SYMBOL_GPL(rpc_malloc); 1060 1061 /** 1062 * rpc_free - free RPC buffer resources allocated via rpc_malloc 1063 * @task: RPC task 1064 * 1065 */ 1066 void rpc_free(struct rpc_task *task) 1067 { 1068 void *buffer = task->tk_rqstp->rq_buffer; 1069 size_t size; 1070 struct rpc_buffer *buf; 1071 1072 buf = container_of(buffer, struct rpc_buffer, data); 1073 size = buf->len; 1074 1075 if (size <= RPC_BUFFER_MAXSIZE) 1076 mempool_free(buf, rpc_buffer_mempool); 1077 else 1078 kfree(buf); 1079 } 1080 EXPORT_SYMBOL_GPL(rpc_free); 1081 1082 /* 1083 * Creation and deletion of RPC task structures 1084 */ 1085 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data) 1086 { 1087 memset(task, 0, sizeof(*task)); 1088 atomic_set(&task->tk_count, 1); 1089 task->tk_flags = task_setup_data->flags; 1090 task->tk_ops = task_setup_data->callback_ops; 1091 task->tk_calldata = task_setup_data->callback_data; 1092 INIT_LIST_HEAD(&task->tk_task); 1093 1094 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW; 1095 task->tk_owner = current->tgid; 1096 1097 /* Initialize workqueue for async tasks */ 1098 task->tk_workqueue = task_setup_data->workqueue; 1099 1100 task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client, 1101 xprt_get(task_setup_data->rpc_xprt)); 1102 1103 task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred); 1104 1105 if (task->tk_ops->rpc_call_prepare != NULL) 1106 task->tk_action = rpc_prepare_task; 1107 1108 rpc_init_task_statistics(task); 1109 } 1110 1111 static struct rpc_task *rpc_alloc_task(void) 1112 { 1113 struct rpc_task *task; 1114 1115 task = kmem_cache_alloc(rpc_task_slabp, rpc_task_gfp_mask()); 1116 if (task) 1117 return task; 1118 return mempool_alloc(rpc_task_mempool, GFP_NOWAIT); 1119 } 1120 1121 /* 1122 * Create a new task for the specified client. 1123 */ 1124 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data) 1125 { 1126 struct rpc_task *task = setup_data->task; 1127 unsigned short flags = 0; 1128 1129 if (task == NULL) { 1130 task = rpc_alloc_task(); 1131 if (task == NULL) { 1132 rpc_release_calldata(setup_data->callback_ops, 1133 setup_data->callback_data); 1134 return ERR_PTR(-ENOMEM); 1135 } 1136 flags = RPC_TASK_DYNAMIC; 1137 } 1138 1139 rpc_init_task(task, setup_data); 1140 task->tk_flags |= flags; 1141 return task; 1142 } 1143 1144 /* 1145 * rpc_free_task - release rpc task and perform cleanups 1146 * 1147 * Note that we free up the rpc_task _after_ rpc_release_calldata() 1148 * in order to work around a workqueue dependency issue. 1149 * 1150 * Tejun Heo states: 1151 * "Workqueue currently considers two work items to be the same if they're 1152 * on the same address and won't execute them concurrently - ie. it 1153 * makes a work item which is queued again while being executed wait 1154 * for the previous execution to complete. 1155 * 1156 * If a work function frees the work item, and then waits for an event 1157 * which should be performed by another work item and *that* work item 1158 * recycles the freed work item, it can create a false dependency loop. 1159 * There really is no reliable way to detect this short of verifying 1160 * every memory free." 1161 * 1162 */ 1163 static void rpc_free_task(struct rpc_task *task) 1164 { 1165 unsigned short tk_flags = task->tk_flags; 1166 1167 put_rpccred(task->tk_op_cred); 1168 rpc_release_calldata(task->tk_ops, task->tk_calldata); 1169 1170 if (tk_flags & RPC_TASK_DYNAMIC) 1171 mempool_free(task, rpc_task_mempool); 1172 } 1173 1174 static void rpc_async_release(struct work_struct *work) 1175 { 1176 unsigned int pflags = memalloc_nofs_save(); 1177 1178 rpc_free_task(container_of(work, struct rpc_task, u.tk_work)); 1179 memalloc_nofs_restore(pflags); 1180 } 1181 1182 static void rpc_release_resources_task(struct rpc_task *task) 1183 { 1184 xprt_release(task); 1185 if (task->tk_msg.rpc_cred) { 1186 if (!(task->tk_flags & RPC_TASK_CRED_NOREF)) 1187 put_cred(task->tk_msg.rpc_cred); 1188 task->tk_msg.rpc_cred = NULL; 1189 } 1190 rpc_task_release_client(task); 1191 } 1192 1193 static void rpc_final_put_task(struct rpc_task *task, 1194 struct workqueue_struct *q) 1195 { 1196 if (q != NULL) { 1197 INIT_WORK(&task->u.tk_work, rpc_async_release); 1198 queue_work(q, &task->u.tk_work); 1199 } else 1200 rpc_free_task(task); 1201 } 1202 1203 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q) 1204 { 1205 if (atomic_dec_and_test(&task->tk_count)) { 1206 rpc_release_resources_task(task); 1207 rpc_final_put_task(task, q); 1208 } 1209 } 1210 1211 void rpc_put_task(struct rpc_task *task) 1212 { 1213 rpc_do_put_task(task, NULL); 1214 } 1215 EXPORT_SYMBOL_GPL(rpc_put_task); 1216 1217 void rpc_put_task_async(struct rpc_task *task) 1218 { 1219 rpc_do_put_task(task, task->tk_workqueue); 1220 } 1221 EXPORT_SYMBOL_GPL(rpc_put_task_async); 1222 1223 static void rpc_release_task(struct rpc_task *task) 1224 { 1225 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 1226 1227 rpc_release_resources_task(task); 1228 1229 /* 1230 * Note: at this point we have been removed from rpc_clnt->cl_tasks, 1231 * so it should be safe to use task->tk_count as a test for whether 1232 * or not any other processes still hold references to our rpc_task. 1233 */ 1234 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) { 1235 /* Wake up anyone who may be waiting for task completion */ 1236 if (!rpc_complete_task(task)) 1237 return; 1238 } else { 1239 if (!atomic_dec_and_test(&task->tk_count)) 1240 return; 1241 } 1242 rpc_final_put_task(task, task->tk_workqueue); 1243 } 1244 1245 int rpciod_up(void) 1246 { 1247 return try_module_get(THIS_MODULE) ? 0 : -EINVAL; 1248 } 1249 1250 void rpciod_down(void) 1251 { 1252 module_put(THIS_MODULE); 1253 } 1254 1255 /* 1256 * Start up the rpciod workqueue. 1257 */ 1258 static int rpciod_start(void) 1259 { 1260 struct workqueue_struct *wq; 1261 1262 /* 1263 * Create the rpciod thread and wait for it to start. 1264 */ 1265 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0); 1266 if (!wq) 1267 goto out_failed; 1268 rpciod_workqueue = wq; 1269 wq = alloc_workqueue("xprtiod", WQ_UNBOUND | WQ_MEM_RECLAIM, 0); 1270 if (!wq) 1271 goto free_rpciod; 1272 xprtiod_workqueue = wq; 1273 return 1; 1274 free_rpciod: 1275 wq = rpciod_workqueue; 1276 rpciod_workqueue = NULL; 1277 destroy_workqueue(wq); 1278 out_failed: 1279 return 0; 1280 } 1281 1282 static void rpciod_stop(void) 1283 { 1284 struct workqueue_struct *wq = NULL; 1285 1286 if (rpciod_workqueue == NULL) 1287 return; 1288 1289 wq = rpciod_workqueue; 1290 rpciod_workqueue = NULL; 1291 destroy_workqueue(wq); 1292 wq = xprtiod_workqueue; 1293 xprtiod_workqueue = NULL; 1294 destroy_workqueue(wq); 1295 } 1296 1297 void 1298 rpc_destroy_mempool(void) 1299 { 1300 rpciod_stop(); 1301 mempool_destroy(rpc_buffer_mempool); 1302 mempool_destroy(rpc_task_mempool); 1303 kmem_cache_destroy(rpc_task_slabp); 1304 kmem_cache_destroy(rpc_buffer_slabp); 1305 rpc_destroy_wait_queue(&delay_queue); 1306 } 1307 1308 int 1309 rpc_init_mempool(void) 1310 { 1311 /* 1312 * The following is not strictly a mempool initialisation, 1313 * but there is no harm in doing it here 1314 */ 1315 rpc_init_wait_queue(&delay_queue, "delayq"); 1316 if (!rpciod_start()) 1317 goto err_nomem; 1318 1319 rpc_task_slabp = kmem_cache_create("rpc_tasks", 1320 sizeof(struct rpc_task), 1321 0, SLAB_HWCACHE_ALIGN, 1322 NULL); 1323 if (!rpc_task_slabp) 1324 goto err_nomem; 1325 rpc_buffer_slabp = kmem_cache_create("rpc_buffers", 1326 RPC_BUFFER_MAXSIZE, 1327 0, SLAB_HWCACHE_ALIGN, 1328 NULL); 1329 if (!rpc_buffer_slabp) 1330 goto err_nomem; 1331 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE, 1332 rpc_task_slabp); 1333 if (!rpc_task_mempool) 1334 goto err_nomem; 1335 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE, 1336 rpc_buffer_slabp); 1337 if (!rpc_buffer_mempool) 1338 goto err_nomem; 1339 return 0; 1340 err_nomem: 1341 rpc_destroy_mempool(); 1342 return -ENOMEM; 1343 } 1344