xref: /linux/net/sunrpc/sched.c (revision 6eb2fb3170549737207974c2c6ad34bcc2f3025e)
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11 
12 #include <linux/module.h>
13 
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22 
23 #include <linux/sunrpc/clnt.h>
24 
25 #include "sunrpc.h"
26 
27 #ifdef RPC_DEBUG
28 #define RPCDBG_FACILITY		RPCDBG_SCHED
29 #endif
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
33 
34 /*
35  * RPC slabs and memory pools
36  */
37 #define RPC_BUFFER_MAXSIZE	(2048)
38 #define RPC_BUFFER_POOLSIZE	(8)
39 #define RPC_TASK_POOLSIZE	(8)
40 static struct kmem_cache	*rpc_task_slabp __read_mostly;
41 static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
42 static mempool_t	*rpc_task_mempool __read_mostly;
43 static mempool_t	*rpc_buffer_mempool __read_mostly;
44 
45 static void			rpc_async_schedule(struct work_struct *);
46 static void			 rpc_release_task(struct rpc_task *task);
47 static void __rpc_queue_timer_fn(unsigned long ptr);
48 
49 /*
50  * RPC tasks sit here while waiting for conditions to improve.
51  */
52 static struct rpc_wait_queue delay_queue;
53 
54 /*
55  * rpciod-related stuff
56  */
57 struct workqueue_struct *rpciod_workqueue;
58 
59 /*
60  * Disable the timer for a given RPC task. Should be called with
61  * queue->lock and bh_disabled in order to avoid races within
62  * rpc_run_timer().
63  */
64 static void
65 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
66 {
67 	if (task->tk_timeout == 0)
68 		return;
69 	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
70 	task->tk_timeout = 0;
71 	list_del(&task->u.tk_wait.timer_list);
72 	if (list_empty(&queue->timer_list.list))
73 		del_timer(&queue->timer_list.timer);
74 }
75 
76 static void
77 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
78 {
79 	queue->timer_list.expires = expires;
80 	mod_timer(&queue->timer_list.timer, expires);
81 }
82 
83 /*
84  * Set up a timer for the current task.
85  */
86 static void
87 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
88 {
89 	if (!task->tk_timeout)
90 		return;
91 
92 	dprintk("RPC: %5u setting alarm for %lu ms\n",
93 			task->tk_pid, task->tk_timeout * 1000 / HZ);
94 
95 	task->u.tk_wait.expires = jiffies + task->tk_timeout;
96 	if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
97 		rpc_set_queue_timer(queue, task->u.tk_wait.expires);
98 	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
99 }
100 
101 static void rpc_rotate_queue_owner(struct rpc_wait_queue *queue)
102 {
103 	struct list_head *q = &queue->tasks[queue->priority];
104 	struct rpc_task *task;
105 
106 	if (!list_empty(q)) {
107 		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
108 		if (task->tk_owner == queue->owner)
109 			list_move_tail(&task->u.tk_wait.list, q);
110 	}
111 }
112 
113 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
114 {
115 	if (queue->priority != priority) {
116 		/* Fairness: rotate the list when changing priority */
117 		rpc_rotate_queue_owner(queue);
118 		queue->priority = priority;
119 	}
120 }
121 
122 static void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
123 {
124 	queue->owner = pid;
125 	queue->nr = RPC_BATCH_COUNT;
126 }
127 
128 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
129 {
130 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
131 	rpc_set_waitqueue_owner(queue, 0);
132 }
133 
134 /*
135  * Add new request to a priority queue.
136  */
137 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
138 		struct rpc_task *task,
139 		unsigned char queue_priority)
140 {
141 	struct list_head *q;
142 	struct rpc_task *t;
143 
144 	INIT_LIST_HEAD(&task->u.tk_wait.links);
145 	if (unlikely(queue_priority > queue->maxpriority))
146 		queue_priority = queue->maxpriority;
147 	if (queue_priority > queue->priority)
148 		rpc_set_waitqueue_priority(queue, queue_priority);
149 	q = &queue->tasks[queue_priority];
150 	list_for_each_entry(t, q, u.tk_wait.list) {
151 		if (t->tk_owner == task->tk_owner) {
152 			list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
153 			return;
154 		}
155 	}
156 	list_add_tail(&task->u.tk_wait.list, q);
157 }
158 
159 /*
160  * Add new request to wait queue.
161  *
162  * Swapper tasks always get inserted at the head of the queue.
163  * This should avoid many nasty memory deadlocks and hopefully
164  * improve overall performance.
165  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
166  */
167 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
168 		struct rpc_task *task,
169 		unsigned char queue_priority)
170 {
171 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
172 	if (RPC_IS_QUEUED(task))
173 		return;
174 
175 	if (RPC_IS_PRIORITY(queue))
176 		__rpc_add_wait_queue_priority(queue, task, queue_priority);
177 	else if (RPC_IS_SWAPPER(task))
178 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
179 	else
180 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
181 	task->tk_waitqueue = queue;
182 	queue->qlen++;
183 	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
184 	smp_wmb();
185 	rpc_set_queued(task);
186 
187 	dprintk("RPC: %5u added to queue %p \"%s\"\n",
188 			task->tk_pid, queue, rpc_qname(queue));
189 }
190 
191 /*
192  * Remove request from a priority queue.
193  */
194 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
195 {
196 	struct rpc_task *t;
197 
198 	if (!list_empty(&task->u.tk_wait.links)) {
199 		t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
200 		list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
201 		list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
202 	}
203 }
204 
205 /*
206  * Remove request from queue.
207  * Note: must be called with spin lock held.
208  */
209 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
210 {
211 	__rpc_disable_timer(queue, task);
212 	if (RPC_IS_PRIORITY(queue))
213 		__rpc_remove_wait_queue_priority(task);
214 	list_del(&task->u.tk_wait.list);
215 	queue->qlen--;
216 	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
217 			task->tk_pid, queue, rpc_qname(queue));
218 }
219 
220 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
221 {
222 	int i;
223 
224 	spin_lock_init(&queue->lock);
225 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
226 		INIT_LIST_HEAD(&queue->tasks[i]);
227 	queue->maxpriority = nr_queues - 1;
228 	rpc_reset_waitqueue_priority(queue);
229 	queue->qlen = 0;
230 	setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
231 	INIT_LIST_HEAD(&queue->timer_list.list);
232 	rpc_assign_waitqueue_name(queue, qname);
233 }
234 
235 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
236 {
237 	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
238 }
239 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
240 
241 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
242 {
243 	__rpc_init_priority_wait_queue(queue, qname, 1);
244 }
245 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
246 
247 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
248 {
249 	del_timer_sync(&queue->timer_list.timer);
250 }
251 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
252 
253 static int rpc_wait_bit_killable(void *word)
254 {
255 	if (fatal_signal_pending(current))
256 		return -ERESTARTSYS;
257 	freezable_schedule();
258 	return 0;
259 }
260 
261 #ifdef RPC_DEBUG
262 static void rpc_task_set_debuginfo(struct rpc_task *task)
263 {
264 	static atomic_t rpc_pid;
265 
266 	task->tk_pid = atomic_inc_return(&rpc_pid);
267 }
268 #else
269 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
270 {
271 }
272 #endif
273 
274 static void rpc_set_active(struct rpc_task *task)
275 {
276 	trace_rpc_task_begin(task->tk_client, task, NULL);
277 
278 	rpc_task_set_debuginfo(task);
279 	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
280 }
281 
282 /*
283  * Mark an RPC call as having completed by clearing the 'active' bit
284  * and then waking up all tasks that were sleeping.
285  */
286 static int rpc_complete_task(struct rpc_task *task)
287 {
288 	void *m = &task->tk_runstate;
289 	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
290 	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
291 	unsigned long flags;
292 	int ret;
293 
294 	trace_rpc_task_complete(task->tk_client, task, NULL);
295 
296 	spin_lock_irqsave(&wq->lock, flags);
297 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
298 	ret = atomic_dec_and_test(&task->tk_count);
299 	if (waitqueue_active(wq))
300 		__wake_up_locked_key(wq, TASK_NORMAL, &k);
301 	spin_unlock_irqrestore(&wq->lock, flags);
302 	return ret;
303 }
304 
305 /*
306  * Allow callers to wait for completion of an RPC call
307  *
308  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
309  * to enforce taking of the wq->lock and hence avoid races with
310  * rpc_complete_task().
311  */
312 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
313 {
314 	if (action == NULL)
315 		action = rpc_wait_bit_killable;
316 	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
317 			action, TASK_KILLABLE);
318 }
319 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
320 
321 /*
322  * Make an RPC task runnable.
323  *
324  * Note: If the task is ASYNC, and is being made runnable after sitting on an
325  * rpc_wait_queue, this must be called with the queue spinlock held to protect
326  * the wait queue operation.
327  */
328 static void rpc_make_runnable(struct rpc_task *task)
329 {
330 	rpc_clear_queued(task);
331 	if (rpc_test_and_set_running(task))
332 		return;
333 	if (RPC_IS_ASYNC(task)) {
334 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
335 		queue_work(rpciod_workqueue, &task->u.tk_work);
336 	} else
337 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
338 }
339 
340 /*
341  * Prepare for sleeping on a wait queue.
342  * By always appending tasks to the list we ensure FIFO behavior.
343  * NB: An RPC task will only receive interrupt-driven events as long
344  * as it's on a wait queue.
345  */
346 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
347 		struct rpc_task *task,
348 		rpc_action action,
349 		unsigned char queue_priority)
350 {
351 	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
352 			task->tk_pid, rpc_qname(q), jiffies);
353 
354 	trace_rpc_task_sleep(task->tk_client, task, q);
355 
356 	__rpc_add_wait_queue(q, task, queue_priority);
357 
358 	WARN_ON_ONCE(task->tk_callback != NULL);
359 	task->tk_callback = action;
360 	__rpc_add_timer(q, task);
361 }
362 
363 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
364 				rpc_action action)
365 {
366 	/* We shouldn't ever put an inactive task to sleep */
367 	WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
368 	if (!RPC_IS_ACTIVATED(task)) {
369 		task->tk_status = -EIO;
370 		rpc_put_task_async(task);
371 		return;
372 	}
373 
374 	/*
375 	 * Protect the queue operations.
376 	 */
377 	spin_lock_bh(&q->lock);
378 	__rpc_sleep_on_priority(q, task, action, task->tk_priority);
379 	spin_unlock_bh(&q->lock);
380 }
381 EXPORT_SYMBOL_GPL(rpc_sleep_on);
382 
383 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
384 		rpc_action action, int priority)
385 {
386 	/* We shouldn't ever put an inactive task to sleep */
387 	WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
388 	if (!RPC_IS_ACTIVATED(task)) {
389 		task->tk_status = -EIO;
390 		rpc_put_task_async(task);
391 		return;
392 	}
393 
394 	/*
395 	 * Protect the queue operations.
396 	 */
397 	spin_lock_bh(&q->lock);
398 	__rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
399 	spin_unlock_bh(&q->lock);
400 }
401 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
402 
403 /**
404  * __rpc_do_wake_up_task - wake up a single rpc_task
405  * @queue: wait queue
406  * @task: task to be woken up
407  *
408  * Caller must hold queue->lock, and have cleared the task queued flag.
409  */
410 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
411 {
412 	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
413 			task->tk_pid, jiffies);
414 
415 	/* Has the task been executed yet? If not, we cannot wake it up! */
416 	if (!RPC_IS_ACTIVATED(task)) {
417 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
418 		return;
419 	}
420 
421 	trace_rpc_task_wakeup(task->tk_client, task, queue);
422 
423 	__rpc_remove_wait_queue(queue, task);
424 
425 	rpc_make_runnable(task);
426 
427 	dprintk("RPC:       __rpc_wake_up_task done\n");
428 }
429 
430 /*
431  * Wake up a queued task while the queue lock is being held
432  */
433 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
434 {
435 	if (RPC_IS_QUEUED(task)) {
436 		smp_rmb();
437 		if (task->tk_waitqueue == queue)
438 			__rpc_do_wake_up_task(queue, task);
439 	}
440 }
441 
442 /*
443  * Tests whether rpc queue is empty
444  */
445 int rpc_queue_empty(struct rpc_wait_queue *queue)
446 {
447 	int res;
448 
449 	spin_lock_bh(&queue->lock);
450 	res = queue->qlen;
451 	spin_unlock_bh(&queue->lock);
452 	return res == 0;
453 }
454 EXPORT_SYMBOL_GPL(rpc_queue_empty);
455 
456 /*
457  * Wake up a task on a specific queue
458  */
459 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
460 {
461 	spin_lock_bh(&queue->lock);
462 	rpc_wake_up_task_queue_locked(queue, task);
463 	spin_unlock_bh(&queue->lock);
464 }
465 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
466 
467 /*
468  * Wake up the next task on a priority queue.
469  */
470 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
471 {
472 	struct list_head *q;
473 	struct rpc_task *task;
474 
475 	/*
476 	 * Service a batch of tasks from a single owner.
477 	 */
478 	q = &queue->tasks[queue->priority];
479 	if (!list_empty(q)) {
480 		task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
481 		if (queue->owner == task->tk_owner) {
482 			if (--queue->nr)
483 				goto out;
484 			list_move_tail(&task->u.tk_wait.list, q);
485 		}
486 		/*
487 		 * Check if we need to switch queues.
488 		 */
489 		goto new_owner;
490 	}
491 
492 	/*
493 	 * Service the next queue.
494 	 */
495 	do {
496 		if (q == &queue->tasks[0])
497 			q = &queue->tasks[queue->maxpriority];
498 		else
499 			q = q - 1;
500 		if (!list_empty(q)) {
501 			task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
502 			goto new_queue;
503 		}
504 	} while (q != &queue->tasks[queue->priority]);
505 
506 	rpc_reset_waitqueue_priority(queue);
507 	return NULL;
508 
509 new_queue:
510 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
511 new_owner:
512 	rpc_set_waitqueue_owner(queue, task->tk_owner);
513 out:
514 	return task;
515 }
516 
517 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
518 {
519 	if (RPC_IS_PRIORITY(queue))
520 		return __rpc_find_next_queued_priority(queue);
521 	if (!list_empty(&queue->tasks[0]))
522 		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
523 	return NULL;
524 }
525 
526 /*
527  * Wake up the first task on the wait queue.
528  */
529 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
530 		bool (*func)(struct rpc_task *, void *), void *data)
531 {
532 	struct rpc_task	*task = NULL;
533 
534 	dprintk("RPC:       wake_up_first(%p \"%s\")\n",
535 			queue, rpc_qname(queue));
536 	spin_lock_bh(&queue->lock);
537 	task = __rpc_find_next_queued(queue);
538 	if (task != NULL) {
539 		if (func(task, data))
540 			rpc_wake_up_task_queue_locked(queue, task);
541 		else
542 			task = NULL;
543 	}
544 	spin_unlock_bh(&queue->lock);
545 
546 	return task;
547 }
548 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
549 
550 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
551 {
552 	return true;
553 }
554 
555 /*
556  * Wake up the next task on the wait queue.
557 */
558 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
559 {
560 	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
561 }
562 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
563 
564 /**
565  * rpc_wake_up - wake up all rpc_tasks
566  * @queue: rpc_wait_queue on which the tasks are sleeping
567  *
568  * Grabs queue->lock
569  */
570 void rpc_wake_up(struct rpc_wait_queue *queue)
571 {
572 	struct list_head *head;
573 
574 	spin_lock_bh(&queue->lock);
575 	head = &queue->tasks[queue->maxpriority];
576 	for (;;) {
577 		while (!list_empty(head)) {
578 			struct rpc_task *task;
579 			task = list_first_entry(head,
580 					struct rpc_task,
581 					u.tk_wait.list);
582 			rpc_wake_up_task_queue_locked(queue, task);
583 		}
584 		if (head == &queue->tasks[0])
585 			break;
586 		head--;
587 	}
588 	spin_unlock_bh(&queue->lock);
589 }
590 EXPORT_SYMBOL_GPL(rpc_wake_up);
591 
592 /**
593  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
594  * @queue: rpc_wait_queue on which the tasks are sleeping
595  * @status: status value to set
596  *
597  * Grabs queue->lock
598  */
599 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
600 {
601 	struct list_head *head;
602 
603 	spin_lock_bh(&queue->lock);
604 	head = &queue->tasks[queue->maxpriority];
605 	for (;;) {
606 		while (!list_empty(head)) {
607 			struct rpc_task *task;
608 			task = list_first_entry(head,
609 					struct rpc_task,
610 					u.tk_wait.list);
611 			task->tk_status = status;
612 			rpc_wake_up_task_queue_locked(queue, task);
613 		}
614 		if (head == &queue->tasks[0])
615 			break;
616 		head--;
617 	}
618 	spin_unlock_bh(&queue->lock);
619 }
620 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
621 
622 static void __rpc_queue_timer_fn(unsigned long ptr)
623 {
624 	struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
625 	struct rpc_task *task, *n;
626 	unsigned long expires, now, timeo;
627 
628 	spin_lock(&queue->lock);
629 	expires = now = jiffies;
630 	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
631 		timeo = task->u.tk_wait.expires;
632 		if (time_after_eq(now, timeo)) {
633 			dprintk("RPC: %5u timeout\n", task->tk_pid);
634 			task->tk_status = -ETIMEDOUT;
635 			rpc_wake_up_task_queue_locked(queue, task);
636 			continue;
637 		}
638 		if (expires == now || time_after(expires, timeo))
639 			expires = timeo;
640 	}
641 	if (!list_empty(&queue->timer_list.list))
642 		rpc_set_queue_timer(queue, expires);
643 	spin_unlock(&queue->lock);
644 }
645 
646 static void __rpc_atrun(struct rpc_task *task)
647 {
648 	task->tk_status = 0;
649 }
650 
651 /*
652  * Run a task at a later time
653  */
654 void rpc_delay(struct rpc_task *task, unsigned long delay)
655 {
656 	task->tk_timeout = delay;
657 	rpc_sleep_on(&delay_queue, task, __rpc_atrun);
658 }
659 EXPORT_SYMBOL_GPL(rpc_delay);
660 
661 /*
662  * Helper to call task->tk_ops->rpc_call_prepare
663  */
664 void rpc_prepare_task(struct rpc_task *task)
665 {
666 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
667 }
668 
669 static void
670 rpc_init_task_statistics(struct rpc_task *task)
671 {
672 	/* Initialize retry counters */
673 	task->tk_garb_retry = 2;
674 	task->tk_cred_retry = 2;
675 	task->tk_rebind_retry = 2;
676 
677 	/* starting timestamp */
678 	task->tk_start = ktime_get();
679 }
680 
681 static void
682 rpc_reset_task_statistics(struct rpc_task *task)
683 {
684 	task->tk_timeouts = 0;
685 	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
686 
687 	rpc_init_task_statistics(task);
688 }
689 
690 /*
691  * Helper that calls task->tk_ops->rpc_call_done if it exists
692  */
693 void rpc_exit_task(struct rpc_task *task)
694 {
695 	task->tk_action = NULL;
696 	if (task->tk_ops->rpc_call_done != NULL) {
697 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
698 		if (task->tk_action != NULL) {
699 			WARN_ON(RPC_ASSASSINATED(task));
700 			/* Always release the RPC slot and buffer memory */
701 			xprt_release(task);
702 			rpc_reset_task_statistics(task);
703 		}
704 	}
705 }
706 
707 void rpc_exit(struct rpc_task *task, int status)
708 {
709 	task->tk_status = status;
710 	task->tk_action = rpc_exit_task;
711 	if (RPC_IS_QUEUED(task))
712 		rpc_wake_up_queued_task(task->tk_waitqueue, task);
713 }
714 EXPORT_SYMBOL_GPL(rpc_exit);
715 
716 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
717 {
718 	if (ops->rpc_release != NULL)
719 		ops->rpc_release(calldata);
720 }
721 
722 /*
723  * This is the RPC `scheduler' (or rather, the finite state machine).
724  */
725 static void __rpc_execute(struct rpc_task *task)
726 {
727 	struct rpc_wait_queue *queue;
728 	int task_is_async = RPC_IS_ASYNC(task);
729 	int status = 0;
730 
731 	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
732 			task->tk_pid, task->tk_flags);
733 
734 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
735 	if (RPC_IS_QUEUED(task))
736 		return;
737 
738 	for (;;) {
739 		void (*do_action)(struct rpc_task *);
740 
741 		/*
742 		 * Execute any pending callback first.
743 		 */
744 		do_action = task->tk_callback;
745 		task->tk_callback = NULL;
746 		if (do_action == NULL) {
747 			/*
748 			 * Perform the next FSM step.
749 			 * tk_action may be NULL if the task has been killed.
750 			 * In particular, note that rpc_killall_tasks may
751 			 * do this at any time, so beware when dereferencing.
752 			 */
753 			do_action = task->tk_action;
754 			if (do_action == NULL)
755 				break;
756 		}
757 		trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
758 		do_action(task);
759 
760 		/*
761 		 * Lockless check for whether task is sleeping or not.
762 		 */
763 		if (!RPC_IS_QUEUED(task))
764 			continue;
765 		/*
766 		 * The queue->lock protects against races with
767 		 * rpc_make_runnable().
768 		 *
769 		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
770 		 * rpc_task, rpc_make_runnable() can assign it to a
771 		 * different workqueue. We therefore cannot assume that the
772 		 * rpc_task pointer may still be dereferenced.
773 		 */
774 		queue = task->tk_waitqueue;
775 		spin_lock_bh(&queue->lock);
776 		if (!RPC_IS_QUEUED(task)) {
777 			spin_unlock_bh(&queue->lock);
778 			continue;
779 		}
780 		rpc_clear_running(task);
781 		spin_unlock_bh(&queue->lock);
782 		if (task_is_async)
783 			return;
784 
785 		/* sync task: sleep here */
786 		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
787 		status = out_of_line_wait_on_bit(&task->tk_runstate,
788 				RPC_TASK_QUEUED, rpc_wait_bit_killable,
789 				TASK_KILLABLE);
790 		if (status == -ERESTARTSYS) {
791 			/*
792 			 * When a sync task receives a signal, it exits with
793 			 * -ERESTARTSYS. In order to catch any callbacks that
794 			 * clean up after sleeping on some queue, we don't
795 			 * break the loop here, but go around once more.
796 			 */
797 			dprintk("RPC: %5u got signal\n", task->tk_pid);
798 			task->tk_flags |= RPC_TASK_KILLED;
799 			rpc_exit(task, -ERESTARTSYS);
800 		}
801 		rpc_set_running(task);
802 		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
803 	}
804 
805 	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
806 			task->tk_status);
807 	/* Release all resources associated with the task */
808 	rpc_release_task(task);
809 }
810 
811 /*
812  * User-visible entry point to the scheduler.
813  *
814  * This may be called recursively if e.g. an async NFS task updates
815  * the attributes and finds that dirty pages must be flushed.
816  * NOTE: Upon exit of this function the task is guaranteed to be
817  *	 released. In particular note that tk_release() will have
818  *	 been called, so your task memory may have been freed.
819  */
820 void rpc_execute(struct rpc_task *task)
821 {
822 	rpc_set_active(task);
823 	rpc_make_runnable(task);
824 	if (!RPC_IS_ASYNC(task))
825 		__rpc_execute(task);
826 }
827 
828 static void rpc_async_schedule(struct work_struct *work)
829 {
830 	current->flags |= PF_FSTRANS;
831 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
832 	current->flags &= ~PF_FSTRANS;
833 }
834 
835 /**
836  * rpc_malloc - allocate an RPC buffer
837  * @task: RPC task that will use this buffer
838  * @size: requested byte size
839  *
840  * To prevent rpciod from hanging, this allocator never sleeps,
841  * returning NULL if the request cannot be serviced immediately.
842  * The caller can arrange to sleep in a way that is safe for rpciod.
843  *
844  * Most requests are 'small' (under 2KiB) and can be serviced from a
845  * mempool, ensuring that NFS reads and writes can always proceed,
846  * and that there is good locality of reference for these buffers.
847  *
848  * In order to avoid memory starvation triggering more writebacks of
849  * NFS requests, we avoid using GFP_KERNEL.
850  */
851 void *rpc_malloc(struct rpc_task *task, size_t size)
852 {
853 	struct rpc_buffer *buf;
854 	gfp_t gfp = GFP_NOWAIT;
855 
856 	if (RPC_IS_SWAPPER(task))
857 		gfp |= __GFP_MEMALLOC;
858 
859 	size += sizeof(struct rpc_buffer);
860 	if (size <= RPC_BUFFER_MAXSIZE)
861 		buf = mempool_alloc(rpc_buffer_mempool, gfp);
862 	else
863 		buf = kmalloc(size, gfp);
864 
865 	if (!buf)
866 		return NULL;
867 
868 	buf->len = size;
869 	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
870 			task->tk_pid, size, buf);
871 	return &buf->data;
872 }
873 EXPORT_SYMBOL_GPL(rpc_malloc);
874 
875 /**
876  * rpc_free - free buffer allocated via rpc_malloc
877  * @buffer: buffer to free
878  *
879  */
880 void rpc_free(void *buffer)
881 {
882 	size_t size;
883 	struct rpc_buffer *buf;
884 
885 	if (!buffer)
886 		return;
887 
888 	buf = container_of(buffer, struct rpc_buffer, data);
889 	size = buf->len;
890 
891 	dprintk("RPC:       freeing buffer of size %zu at %p\n",
892 			size, buf);
893 
894 	if (size <= RPC_BUFFER_MAXSIZE)
895 		mempool_free(buf, rpc_buffer_mempool);
896 	else
897 		kfree(buf);
898 }
899 EXPORT_SYMBOL_GPL(rpc_free);
900 
901 /*
902  * Creation and deletion of RPC task structures
903  */
904 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
905 {
906 	memset(task, 0, sizeof(*task));
907 	atomic_set(&task->tk_count, 1);
908 	task->tk_flags  = task_setup_data->flags;
909 	task->tk_ops = task_setup_data->callback_ops;
910 	task->tk_calldata = task_setup_data->callback_data;
911 	INIT_LIST_HEAD(&task->tk_task);
912 
913 	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
914 	task->tk_owner = current->tgid;
915 
916 	/* Initialize workqueue for async tasks */
917 	task->tk_workqueue = task_setup_data->workqueue;
918 
919 	if (task->tk_ops->rpc_call_prepare != NULL)
920 		task->tk_action = rpc_prepare_task;
921 
922 	rpc_init_task_statistics(task);
923 
924 	dprintk("RPC:       new task initialized, procpid %u\n",
925 				task_pid_nr(current));
926 }
927 
928 static struct rpc_task *
929 rpc_alloc_task(void)
930 {
931 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
932 }
933 
934 /*
935  * Create a new task for the specified client.
936  */
937 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
938 {
939 	struct rpc_task	*task = setup_data->task;
940 	unsigned short flags = 0;
941 
942 	if (task == NULL) {
943 		task = rpc_alloc_task();
944 		if (task == NULL) {
945 			rpc_release_calldata(setup_data->callback_ops,
946 					setup_data->callback_data);
947 			return ERR_PTR(-ENOMEM);
948 		}
949 		flags = RPC_TASK_DYNAMIC;
950 	}
951 
952 	rpc_init_task(task, setup_data);
953 	task->tk_flags |= flags;
954 	dprintk("RPC:       allocated task %p\n", task);
955 	return task;
956 }
957 
958 /*
959  * rpc_free_task - release rpc task and perform cleanups
960  *
961  * Note that we free up the rpc_task _after_ rpc_release_calldata()
962  * in order to work around a workqueue dependency issue.
963  *
964  * Tejun Heo states:
965  * "Workqueue currently considers two work items to be the same if they're
966  * on the same address and won't execute them concurrently - ie. it
967  * makes a work item which is queued again while being executed wait
968  * for the previous execution to complete.
969  *
970  * If a work function frees the work item, and then waits for an event
971  * which should be performed by another work item and *that* work item
972  * recycles the freed work item, it can create a false dependency loop.
973  * There really is no reliable way to detect this short of verifying
974  * every memory free."
975  *
976  */
977 static void rpc_free_task(struct rpc_task *task)
978 {
979 	unsigned short tk_flags = task->tk_flags;
980 
981 	rpc_release_calldata(task->tk_ops, task->tk_calldata);
982 
983 	if (tk_flags & RPC_TASK_DYNAMIC) {
984 		dprintk("RPC: %5u freeing task\n", task->tk_pid);
985 		mempool_free(task, rpc_task_mempool);
986 	}
987 }
988 
989 static void rpc_async_release(struct work_struct *work)
990 {
991 	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
992 }
993 
994 static void rpc_release_resources_task(struct rpc_task *task)
995 {
996 	xprt_release(task);
997 	if (task->tk_msg.rpc_cred) {
998 		put_rpccred(task->tk_msg.rpc_cred);
999 		task->tk_msg.rpc_cred = NULL;
1000 	}
1001 	rpc_task_release_client(task);
1002 }
1003 
1004 static void rpc_final_put_task(struct rpc_task *task,
1005 		struct workqueue_struct *q)
1006 {
1007 	if (q != NULL) {
1008 		INIT_WORK(&task->u.tk_work, rpc_async_release);
1009 		queue_work(q, &task->u.tk_work);
1010 	} else
1011 		rpc_free_task(task);
1012 }
1013 
1014 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1015 {
1016 	if (atomic_dec_and_test(&task->tk_count)) {
1017 		rpc_release_resources_task(task);
1018 		rpc_final_put_task(task, q);
1019 	}
1020 }
1021 
1022 void rpc_put_task(struct rpc_task *task)
1023 {
1024 	rpc_do_put_task(task, NULL);
1025 }
1026 EXPORT_SYMBOL_GPL(rpc_put_task);
1027 
1028 void rpc_put_task_async(struct rpc_task *task)
1029 {
1030 	rpc_do_put_task(task, task->tk_workqueue);
1031 }
1032 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1033 
1034 static void rpc_release_task(struct rpc_task *task)
1035 {
1036 	dprintk("RPC: %5u release task\n", task->tk_pid);
1037 
1038 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
1039 
1040 	rpc_release_resources_task(task);
1041 
1042 	/*
1043 	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1044 	 * so it should be safe to use task->tk_count as a test for whether
1045 	 * or not any other processes still hold references to our rpc_task.
1046 	 */
1047 	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1048 		/* Wake up anyone who may be waiting for task completion */
1049 		if (!rpc_complete_task(task))
1050 			return;
1051 	} else {
1052 		if (!atomic_dec_and_test(&task->tk_count))
1053 			return;
1054 	}
1055 	rpc_final_put_task(task, task->tk_workqueue);
1056 }
1057 
1058 int rpciod_up(void)
1059 {
1060 	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1061 }
1062 
1063 void rpciod_down(void)
1064 {
1065 	module_put(THIS_MODULE);
1066 }
1067 
1068 /*
1069  * Start up the rpciod workqueue.
1070  */
1071 static int rpciod_start(void)
1072 {
1073 	struct workqueue_struct *wq;
1074 
1075 	/*
1076 	 * Create the rpciod thread and wait for it to start.
1077 	 */
1078 	dprintk("RPC:       creating workqueue rpciod\n");
1079 	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 1);
1080 	rpciod_workqueue = wq;
1081 	return rpciod_workqueue != NULL;
1082 }
1083 
1084 static void rpciod_stop(void)
1085 {
1086 	struct workqueue_struct *wq = NULL;
1087 
1088 	if (rpciod_workqueue == NULL)
1089 		return;
1090 	dprintk("RPC:       destroying workqueue rpciod\n");
1091 
1092 	wq = rpciod_workqueue;
1093 	rpciod_workqueue = NULL;
1094 	destroy_workqueue(wq);
1095 }
1096 
1097 void
1098 rpc_destroy_mempool(void)
1099 {
1100 	rpciod_stop();
1101 	if (rpc_buffer_mempool)
1102 		mempool_destroy(rpc_buffer_mempool);
1103 	if (rpc_task_mempool)
1104 		mempool_destroy(rpc_task_mempool);
1105 	if (rpc_task_slabp)
1106 		kmem_cache_destroy(rpc_task_slabp);
1107 	if (rpc_buffer_slabp)
1108 		kmem_cache_destroy(rpc_buffer_slabp);
1109 	rpc_destroy_wait_queue(&delay_queue);
1110 }
1111 
1112 int
1113 rpc_init_mempool(void)
1114 {
1115 	/*
1116 	 * The following is not strictly a mempool initialisation,
1117 	 * but there is no harm in doing it here
1118 	 */
1119 	rpc_init_wait_queue(&delay_queue, "delayq");
1120 	if (!rpciod_start())
1121 		goto err_nomem;
1122 
1123 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1124 					     sizeof(struct rpc_task),
1125 					     0, SLAB_HWCACHE_ALIGN,
1126 					     NULL);
1127 	if (!rpc_task_slabp)
1128 		goto err_nomem;
1129 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1130 					     RPC_BUFFER_MAXSIZE,
1131 					     0, SLAB_HWCACHE_ALIGN,
1132 					     NULL);
1133 	if (!rpc_buffer_slabp)
1134 		goto err_nomem;
1135 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1136 						    rpc_task_slabp);
1137 	if (!rpc_task_mempool)
1138 		goto err_nomem;
1139 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1140 						      rpc_buffer_slabp);
1141 	if (!rpc_buffer_mempool)
1142 		goto err_nomem;
1143 	return 0;
1144 err_nomem:
1145 	rpc_destroy_mempool();
1146 	return -ENOMEM;
1147 }
1148