1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/sched.c 4 * 5 * Scheduling for synchronous and asynchronous RPC requests. 6 * 7 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> 8 * 9 * TCP NFS related read + write fixes 10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 11 */ 12 13 #include <linux/module.h> 14 15 #include <linux/sched.h> 16 #include <linux/interrupt.h> 17 #include <linux/slab.h> 18 #include <linux/mempool.h> 19 #include <linux/smp.h> 20 #include <linux/spinlock.h> 21 #include <linux/mutex.h> 22 #include <linux/freezer.h> 23 #include <linux/sched/mm.h> 24 25 #include <linux/sunrpc/clnt.h> 26 27 #include "sunrpc.h" 28 29 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 30 #define RPCDBG_FACILITY RPCDBG_SCHED 31 #endif 32 33 #define CREATE_TRACE_POINTS 34 #include <trace/events/sunrpc.h> 35 36 /* 37 * RPC slabs and memory pools 38 */ 39 #define RPC_BUFFER_MAXSIZE (2048) 40 #define RPC_BUFFER_POOLSIZE (8) 41 #define RPC_TASK_POOLSIZE (8) 42 static struct kmem_cache *rpc_task_slabp __read_mostly; 43 static struct kmem_cache *rpc_buffer_slabp __read_mostly; 44 static mempool_t *rpc_task_mempool __read_mostly; 45 static mempool_t *rpc_buffer_mempool __read_mostly; 46 47 static void rpc_async_schedule(struct work_struct *); 48 static void rpc_release_task(struct rpc_task *task); 49 static void __rpc_queue_timer_fn(struct timer_list *t); 50 51 /* 52 * RPC tasks sit here while waiting for conditions to improve. 53 */ 54 static struct rpc_wait_queue delay_queue; 55 56 /* 57 * rpciod-related stuff 58 */ 59 struct workqueue_struct *rpciod_workqueue __read_mostly; 60 struct workqueue_struct *xprtiod_workqueue __read_mostly; 61 62 unsigned long 63 rpc_task_timeout(const struct rpc_task *task) 64 { 65 unsigned long timeout = READ_ONCE(task->tk_timeout); 66 67 if (timeout != 0) { 68 unsigned long now = jiffies; 69 if (time_before(now, timeout)) 70 return timeout - now; 71 } 72 return 0; 73 } 74 EXPORT_SYMBOL_GPL(rpc_task_timeout); 75 76 /* 77 * Disable the timer for a given RPC task. Should be called with 78 * queue->lock and bh_disabled in order to avoid races within 79 * rpc_run_timer(). 80 */ 81 static void 82 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 83 { 84 if (list_empty(&task->u.tk_wait.timer_list)) 85 return; 86 dprintk("RPC: %5u disabling timer\n", task->tk_pid); 87 task->tk_timeout = 0; 88 list_del(&task->u.tk_wait.timer_list); 89 if (list_empty(&queue->timer_list.list)) 90 del_timer(&queue->timer_list.timer); 91 } 92 93 static void 94 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires) 95 { 96 timer_reduce(&queue->timer_list.timer, expires); 97 } 98 99 /* 100 * Set up a timer for the current task. 101 */ 102 static void 103 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task, 104 unsigned long timeout) 105 { 106 dprintk("RPC: %5u setting alarm for %u ms\n", 107 task->tk_pid, jiffies_to_msecs(timeout - jiffies)); 108 109 task->tk_timeout = timeout; 110 rpc_set_queue_timer(queue, timeout); 111 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list); 112 } 113 114 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) 115 { 116 if (queue->priority != priority) { 117 queue->priority = priority; 118 queue->nr = 1U << priority; 119 } 120 } 121 122 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) 123 { 124 rpc_set_waitqueue_priority(queue, queue->maxpriority); 125 } 126 127 /* 128 * Add a request to a queue list 129 */ 130 static void 131 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task) 132 { 133 struct rpc_task *t; 134 135 list_for_each_entry(t, q, u.tk_wait.list) { 136 if (t->tk_owner == task->tk_owner) { 137 list_add_tail(&task->u.tk_wait.links, 138 &t->u.tk_wait.links); 139 /* Cache the queue head in task->u.tk_wait.list */ 140 task->u.tk_wait.list.next = q; 141 task->u.tk_wait.list.prev = NULL; 142 return; 143 } 144 } 145 INIT_LIST_HEAD(&task->u.tk_wait.links); 146 list_add_tail(&task->u.tk_wait.list, q); 147 } 148 149 /* 150 * Remove request from a queue list 151 */ 152 static void 153 __rpc_list_dequeue_task(struct rpc_task *task) 154 { 155 struct list_head *q; 156 struct rpc_task *t; 157 158 if (task->u.tk_wait.list.prev == NULL) { 159 list_del(&task->u.tk_wait.links); 160 return; 161 } 162 if (!list_empty(&task->u.tk_wait.links)) { 163 t = list_first_entry(&task->u.tk_wait.links, 164 struct rpc_task, 165 u.tk_wait.links); 166 /* Assume __rpc_list_enqueue_task() cached the queue head */ 167 q = t->u.tk_wait.list.next; 168 list_add_tail(&t->u.tk_wait.list, q); 169 list_del(&task->u.tk_wait.links); 170 } 171 list_del(&task->u.tk_wait.list); 172 } 173 174 /* 175 * Add new request to a priority queue. 176 */ 177 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, 178 struct rpc_task *task, 179 unsigned char queue_priority) 180 { 181 if (unlikely(queue_priority > queue->maxpriority)) 182 queue_priority = queue->maxpriority; 183 __rpc_list_enqueue_task(&queue->tasks[queue_priority], task); 184 } 185 186 /* 187 * Add new request to wait queue. 188 * 189 * Swapper tasks always get inserted at the head of the queue. 190 * This should avoid many nasty memory deadlocks and hopefully 191 * improve overall performance. 192 * Everyone else gets appended to the queue to ensure proper FIFO behavior. 193 */ 194 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, 195 struct rpc_task *task, 196 unsigned char queue_priority) 197 { 198 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 199 if (RPC_IS_QUEUED(task)) 200 return; 201 202 INIT_LIST_HEAD(&task->u.tk_wait.timer_list); 203 if (RPC_IS_PRIORITY(queue)) 204 __rpc_add_wait_queue_priority(queue, task, queue_priority); 205 else if (RPC_IS_SWAPPER(task)) 206 list_add(&task->u.tk_wait.list, &queue->tasks[0]); 207 else 208 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); 209 task->tk_waitqueue = queue; 210 queue->qlen++; 211 /* barrier matches the read in rpc_wake_up_task_queue_locked() */ 212 smp_wmb(); 213 rpc_set_queued(task); 214 215 dprintk("RPC: %5u added to queue %p \"%s\"\n", 216 task->tk_pid, queue, rpc_qname(queue)); 217 } 218 219 /* 220 * Remove request from a priority queue. 221 */ 222 static void __rpc_remove_wait_queue_priority(struct rpc_task *task) 223 { 224 __rpc_list_dequeue_task(task); 225 } 226 227 /* 228 * Remove request from queue. 229 * Note: must be called with spin lock held. 230 */ 231 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 232 { 233 __rpc_disable_timer(queue, task); 234 if (RPC_IS_PRIORITY(queue)) 235 __rpc_remove_wait_queue_priority(task); 236 else 237 list_del(&task->u.tk_wait.list); 238 queue->qlen--; 239 dprintk("RPC: %5u removed from queue %p \"%s\"\n", 240 task->tk_pid, queue, rpc_qname(queue)); 241 } 242 243 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues) 244 { 245 int i; 246 247 spin_lock_init(&queue->lock); 248 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) 249 INIT_LIST_HEAD(&queue->tasks[i]); 250 queue->maxpriority = nr_queues - 1; 251 rpc_reset_waitqueue_priority(queue); 252 queue->qlen = 0; 253 timer_setup(&queue->timer_list.timer, __rpc_queue_timer_fn, 0); 254 INIT_LIST_HEAD(&queue->timer_list.list); 255 rpc_assign_waitqueue_name(queue, qname); 256 } 257 258 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) 259 { 260 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY); 261 } 262 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue); 263 264 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) 265 { 266 __rpc_init_priority_wait_queue(queue, qname, 1); 267 } 268 EXPORT_SYMBOL_GPL(rpc_init_wait_queue); 269 270 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue) 271 { 272 del_timer_sync(&queue->timer_list.timer); 273 } 274 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue); 275 276 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode) 277 { 278 freezable_schedule_unsafe(); 279 if (signal_pending_state(mode, current)) 280 return -ERESTARTSYS; 281 return 0; 282 } 283 284 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS) 285 static void rpc_task_set_debuginfo(struct rpc_task *task) 286 { 287 static atomic_t rpc_pid; 288 289 task->tk_pid = atomic_inc_return(&rpc_pid); 290 } 291 #else 292 static inline void rpc_task_set_debuginfo(struct rpc_task *task) 293 { 294 } 295 #endif 296 297 static void rpc_set_active(struct rpc_task *task) 298 { 299 rpc_task_set_debuginfo(task); 300 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 301 trace_rpc_task_begin(task, NULL); 302 } 303 304 /* 305 * Mark an RPC call as having completed by clearing the 'active' bit 306 * and then waking up all tasks that were sleeping. 307 */ 308 static int rpc_complete_task(struct rpc_task *task) 309 { 310 void *m = &task->tk_runstate; 311 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE); 312 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE); 313 unsigned long flags; 314 int ret; 315 316 trace_rpc_task_complete(task, NULL); 317 318 spin_lock_irqsave(&wq->lock, flags); 319 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 320 ret = atomic_dec_and_test(&task->tk_count); 321 if (waitqueue_active(wq)) 322 __wake_up_locked_key(wq, TASK_NORMAL, &k); 323 spin_unlock_irqrestore(&wq->lock, flags); 324 return ret; 325 } 326 327 /* 328 * Allow callers to wait for completion of an RPC call 329 * 330 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit() 331 * to enforce taking of the wq->lock and hence avoid races with 332 * rpc_complete_task(). 333 */ 334 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action) 335 { 336 if (action == NULL) 337 action = rpc_wait_bit_killable; 338 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, 339 action, TASK_KILLABLE); 340 } 341 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task); 342 343 /* 344 * Make an RPC task runnable. 345 * 346 * Note: If the task is ASYNC, and is being made runnable after sitting on an 347 * rpc_wait_queue, this must be called with the queue spinlock held to protect 348 * the wait queue operation. 349 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(), 350 * which is needed to ensure that __rpc_execute() doesn't loop (due to the 351 * lockless RPC_IS_QUEUED() test) before we've had a chance to test 352 * the RPC_TASK_RUNNING flag. 353 */ 354 static void rpc_make_runnable(struct workqueue_struct *wq, 355 struct rpc_task *task) 356 { 357 bool need_wakeup = !rpc_test_and_set_running(task); 358 359 rpc_clear_queued(task); 360 if (!need_wakeup) 361 return; 362 if (RPC_IS_ASYNC(task)) { 363 INIT_WORK(&task->u.tk_work, rpc_async_schedule); 364 queue_work(wq, &task->u.tk_work); 365 } else 366 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); 367 } 368 369 /* 370 * Prepare for sleeping on a wait queue. 371 * By always appending tasks to the list we ensure FIFO behavior. 372 * NB: An RPC task will only receive interrupt-driven events as long 373 * as it's on a wait queue. 374 */ 375 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q, 376 struct rpc_task *task, 377 unsigned char queue_priority) 378 { 379 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n", 380 task->tk_pid, rpc_qname(q), jiffies); 381 382 trace_rpc_task_sleep(task, q); 383 384 __rpc_add_wait_queue(q, task, queue_priority); 385 386 } 387 388 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q, 389 struct rpc_task *task, unsigned long timeout, 390 unsigned char queue_priority) 391 { 392 if (time_is_after_jiffies(timeout)) { 393 __rpc_sleep_on_priority(q, task, queue_priority); 394 __rpc_add_timer(q, task, timeout); 395 } else 396 task->tk_status = -ETIMEDOUT; 397 } 398 399 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action) 400 { 401 if (action && !WARN_ON_ONCE(task->tk_callback != NULL)) 402 task->tk_callback = action; 403 } 404 405 static bool rpc_sleep_check_activated(struct rpc_task *task) 406 { 407 /* We shouldn't ever put an inactive task to sleep */ 408 if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) { 409 task->tk_status = -EIO; 410 rpc_put_task_async(task); 411 return false; 412 } 413 return true; 414 } 415 416 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task, 417 rpc_action action, unsigned long timeout) 418 { 419 if (!rpc_sleep_check_activated(task)) 420 return; 421 422 rpc_set_tk_callback(task, action); 423 424 /* 425 * Protect the queue operations. 426 */ 427 spin_lock_bh(&q->lock); 428 __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority); 429 spin_unlock_bh(&q->lock); 430 } 431 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout); 432 433 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 434 rpc_action action) 435 { 436 if (!rpc_sleep_check_activated(task)) 437 return; 438 439 rpc_set_tk_callback(task, action); 440 441 WARN_ON_ONCE(task->tk_timeout != 0); 442 /* 443 * Protect the queue operations. 444 */ 445 spin_lock_bh(&q->lock); 446 __rpc_sleep_on_priority(q, task, task->tk_priority); 447 spin_unlock_bh(&q->lock); 448 } 449 EXPORT_SYMBOL_GPL(rpc_sleep_on); 450 451 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q, 452 struct rpc_task *task, unsigned long timeout, int priority) 453 { 454 if (!rpc_sleep_check_activated(task)) 455 return; 456 457 priority -= RPC_PRIORITY_LOW; 458 /* 459 * Protect the queue operations. 460 */ 461 spin_lock_bh(&q->lock); 462 __rpc_sleep_on_priority_timeout(q, task, timeout, priority); 463 spin_unlock_bh(&q->lock); 464 } 465 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout); 466 467 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task, 468 int priority) 469 { 470 if (!rpc_sleep_check_activated(task)) 471 return; 472 473 WARN_ON_ONCE(task->tk_timeout != 0); 474 priority -= RPC_PRIORITY_LOW; 475 /* 476 * Protect the queue operations. 477 */ 478 spin_lock_bh(&q->lock); 479 __rpc_sleep_on_priority(q, task, priority); 480 spin_unlock_bh(&q->lock); 481 } 482 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority); 483 484 /** 485 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task 486 * @wq: workqueue on which to run task 487 * @queue: wait queue 488 * @task: task to be woken up 489 * 490 * Caller must hold queue->lock, and have cleared the task queued flag. 491 */ 492 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq, 493 struct rpc_wait_queue *queue, 494 struct rpc_task *task) 495 { 496 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n", 497 task->tk_pid, jiffies); 498 499 /* Has the task been executed yet? If not, we cannot wake it up! */ 500 if (!RPC_IS_ACTIVATED(task)) { 501 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); 502 return; 503 } 504 505 trace_rpc_task_wakeup(task, queue); 506 507 __rpc_remove_wait_queue(queue, task); 508 509 rpc_make_runnable(wq, task); 510 511 dprintk("RPC: __rpc_wake_up_task done\n"); 512 } 513 514 /* 515 * Wake up a queued task while the queue lock is being held 516 */ 517 static struct rpc_task * 518 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq, 519 struct rpc_wait_queue *queue, struct rpc_task *task, 520 bool (*action)(struct rpc_task *, void *), void *data) 521 { 522 if (RPC_IS_QUEUED(task)) { 523 smp_rmb(); 524 if (task->tk_waitqueue == queue) { 525 if (action == NULL || action(task, data)) { 526 __rpc_do_wake_up_task_on_wq(wq, queue, task); 527 return task; 528 } 529 } 530 } 531 return NULL; 532 } 533 534 static void 535 rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq, 536 struct rpc_wait_queue *queue, struct rpc_task *task) 537 { 538 rpc_wake_up_task_on_wq_queue_action_locked(wq, queue, task, NULL, NULL); 539 } 540 541 /* 542 * Wake up a queued task while the queue lock is being held 543 */ 544 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task) 545 { 546 rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task); 547 } 548 549 /* 550 * Wake up a task on a specific queue 551 */ 552 void rpc_wake_up_queued_task_on_wq(struct workqueue_struct *wq, 553 struct rpc_wait_queue *queue, 554 struct rpc_task *task) 555 { 556 if (!RPC_IS_QUEUED(task)) 557 return; 558 spin_lock_bh(&queue->lock); 559 rpc_wake_up_task_on_wq_queue_locked(wq, queue, task); 560 spin_unlock_bh(&queue->lock); 561 } 562 563 /* 564 * Wake up a task on a specific queue 565 */ 566 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task) 567 { 568 if (!RPC_IS_QUEUED(task)) 569 return; 570 spin_lock_bh(&queue->lock); 571 rpc_wake_up_task_queue_locked(queue, task); 572 spin_unlock_bh(&queue->lock); 573 } 574 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task); 575 576 static bool rpc_task_action_set_status(struct rpc_task *task, void *status) 577 { 578 task->tk_status = *(int *)status; 579 return true; 580 } 581 582 static void 583 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue, 584 struct rpc_task *task, int status) 585 { 586 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue, 587 task, rpc_task_action_set_status, &status); 588 } 589 590 /** 591 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status 592 * @queue: pointer to rpc_wait_queue 593 * @task: pointer to rpc_task 594 * @status: integer error value 595 * 596 * If @task is queued on @queue, then it is woken up, and @task->tk_status is 597 * set to the value of @status. 598 */ 599 void 600 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue, 601 struct rpc_task *task, int status) 602 { 603 if (!RPC_IS_QUEUED(task)) 604 return; 605 spin_lock_bh(&queue->lock); 606 rpc_wake_up_task_queue_set_status_locked(queue, task, status); 607 spin_unlock_bh(&queue->lock); 608 } 609 610 /* 611 * Wake up the next task on a priority queue. 612 */ 613 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue) 614 { 615 struct list_head *q; 616 struct rpc_task *task; 617 618 /* 619 * Service a batch of tasks from a single owner. 620 */ 621 q = &queue->tasks[queue->priority]; 622 if (!list_empty(q) && --queue->nr) { 623 task = list_first_entry(q, struct rpc_task, u.tk_wait.list); 624 goto out; 625 } 626 627 /* 628 * Service the next queue. 629 */ 630 do { 631 if (q == &queue->tasks[0]) 632 q = &queue->tasks[queue->maxpriority]; 633 else 634 q = q - 1; 635 if (!list_empty(q)) { 636 task = list_first_entry(q, struct rpc_task, u.tk_wait.list); 637 goto new_queue; 638 } 639 } while (q != &queue->tasks[queue->priority]); 640 641 rpc_reset_waitqueue_priority(queue); 642 return NULL; 643 644 new_queue: 645 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); 646 out: 647 return task; 648 } 649 650 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue) 651 { 652 if (RPC_IS_PRIORITY(queue)) 653 return __rpc_find_next_queued_priority(queue); 654 if (!list_empty(&queue->tasks[0])) 655 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list); 656 return NULL; 657 } 658 659 /* 660 * Wake up the first task on the wait queue. 661 */ 662 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq, 663 struct rpc_wait_queue *queue, 664 bool (*func)(struct rpc_task *, void *), void *data) 665 { 666 struct rpc_task *task = NULL; 667 668 dprintk("RPC: wake_up_first(%p \"%s\")\n", 669 queue, rpc_qname(queue)); 670 spin_lock_bh(&queue->lock); 671 task = __rpc_find_next_queued(queue); 672 if (task != NULL) 673 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue, 674 task, func, data); 675 spin_unlock_bh(&queue->lock); 676 677 return task; 678 } 679 680 /* 681 * Wake up the first task on the wait queue. 682 */ 683 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue, 684 bool (*func)(struct rpc_task *, void *), void *data) 685 { 686 return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data); 687 } 688 EXPORT_SYMBOL_GPL(rpc_wake_up_first); 689 690 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data) 691 { 692 return true; 693 } 694 695 /* 696 * Wake up the next task on the wait queue. 697 */ 698 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue) 699 { 700 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL); 701 } 702 EXPORT_SYMBOL_GPL(rpc_wake_up_next); 703 704 /** 705 * rpc_wake_up - wake up all rpc_tasks 706 * @queue: rpc_wait_queue on which the tasks are sleeping 707 * 708 * Grabs queue->lock 709 */ 710 void rpc_wake_up(struct rpc_wait_queue *queue) 711 { 712 struct list_head *head; 713 714 spin_lock_bh(&queue->lock); 715 head = &queue->tasks[queue->maxpriority]; 716 for (;;) { 717 while (!list_empty(head)) { 718 struct rpc_task *task; 719 task = list_first_entry(head, 720 struct rpc_task, 721 u.tk_wait.list); 722 rpc_wake_up_task_queue_locked(queue, task); 723 } 724 if (head == &queue->tasks[0]) 725 break; 726 head--; 727 } 728 spin_unlock_bh(&queue->lock); 729 } 730 EXPORT_SYMBOL_GPL(rpc_wake_up); 731 732 /** 733 * rpc_wake_up_status - wake up all rpc_tasks and set their status value. 734 * @queue: rpc_wait_queue on which the tasks are sleeping 735 * @status: status value to set 736 * 737 * Grabs queue->lock 738 */ 739 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) 740 { 741 struct list_head *head; 742 743 spin_lock_bh(&queue->lock); 744 head = &queue->tasks[queue->maxpriority]; 745 for (;;) { 746 while (!list_empty(head)) { 747 struct rpc_task *task; 748 task = list_first_entry(head, 749 struct rpc_task, 750 u.tk_wait.list); 751 task->tk_status = status; 752 rpc_wake_up_task_queue_locked(queue, task); 753 } 754 if (head == &queue->tasks[0]) 755 break; 756 head--; 757 } 758 spin_unlock_bh(&queue->lock); 759 } 760 EXPORT_SYMBOL_GPL(rpc_wake_up_status); 761 762 static void __rpc_queue_timer_fn(struct timer_list *t) 763 { 764 struct rpc_wait_queue *queue = from_timer(queue, t, timer_list.timer); 765 struct rpc_task *task, *n; 766 unsigned long expires, now, timeo; 767 768 spin_lock(&queue->lock); 769 expires = now = jiffies; 770 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) { 771 timeo = task->tk_timeout; 772 if (time_after_eq(now, timeo)) { 773 dprintk("RPC: %5u timeout\n", task->tk_pid); 774 task->tk_status = -ETIMEDOUT; 775 rpc_wake_up_task_queue_locked(queue, task); 776 continue; 777 } 778 if (expires == now || time_after(expires, timeo)) 779 expires = timeo; 780 } 781 if (!list_empty(&queue->timer_list.list)) 782 rpc_set_queue_timer(queue, expires); 783 spin_unlock(&queue->lock); 784 } 785 786 static void __rpc_atrun(struct rpc_task *task) 787 { 788 if (task->tk_status == -ETIMEDOUT) 789 task->tk_status = 0; 790 } 791 792 /* 793 * Run a task at a later time 794 */ 795 void rpc_delay(struct rpc_task *task, unsigned long delay) 796 { 797 rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay); 798 } 799 EXPORT_SYMBOL_GPL(rpc_delay); 800 801 /* 802 * Helper to call task->tk_ops->rpc_call_prepare 803 */ 804 void rpc_prepare_task(struct rpc_task *task) 805 { 806 task->tk_ops->rpc_call_prepare(task, task->tk_calldata); 807 } 808 809 static void 810 rpc_init_task_statistics(struct rpc_task *task) 811 { 812 /* Initialize retry counters */ 813 task->tk_garb_retry = 2; 814 task->tk_cred_retry = 2; 815 task->tk_rebind_retry = 2; 816 817 /* starting timestamp */ 818 task->tk_start = ktime_get(); 819 } 820 821 static void 822 rpc_reset_task_statistics(struct rpc_task *task) 823 { 824 task->tk_timeouts = 0; 825 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT); 826 rpc_init_task_statistics(task); 827 } 828 829 /* 830 * Helper that calls task->tk_ops->rpc_call_done if it exists 831 */ 832 void rpc_exit_task(struct rpc_task *task) 833 { 834 task->tk_action = NULL; 835 if (task->tk_ops->rpc_call_done != NULL) { 836 task->tk_ops->rpc_call_done(task, task->tk_calldata); 837 if (task->tk_action != NULL) { 838 /* Always release the RPC slot and buffer memory */ 839 xprt_release(task); 840 rpc_reset_task_statistics(task); 841 } 842 } 843 } 844 845 void rpc_signal_task(struct rpc_task *task) 846 { 847 struct rpc_wait_queue *queue; 848 849 if (!RPC_IS_ACTIVATED(task)) 850 return; 851 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate); 852 smp_mb__after_atomic(); 853 queue = READ_ONCE(task->tk_waitqueue); 854 if (queue) 855 rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS); 856 } 857 858 void rpc_exit(struct rpc_task *task, int status) 859 { 860 task->tk_status = status; 861 task->tk_action = rpc_exit_task; 862 rpc_wake_up_queued_task(task->tk_waitqueue, task); 863 } 864 EXPORT_SYMBOL_GPL(rpc_exit); 865 866 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata) 867 { 868 if (ops->rpc_release != NULL) 869 ops->rpc_release(calldata); 870 } 871 872 /* 873 * This is the RPC `scheduler' (or rather, the finite state machine). 874 */ 875 static void __rpc_execute(struct rpc_task *task) 876 { 877 struct rpc_wait_queue *queue; 878 int task_is_async = RPC_IS_ASYNC(task); 879 int status = 0; 880 881 dprintk("RPC: %5u __rpc_execute flags=0x%x\n", 882 task->tk_pid, task->tk_flags); 883 884 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 885 if (RPC_IS_QUEUED(task)) 886 return; 887 888 for (;;) { 889 void (*do_action)(struct rpc_task *); 890 891 /* 892 * Perform the next FSM step or a pending callback. 893 * 894 * tk_action may be NULL if the task has been killed. 895 * In particular, note that rpc_killall_tasks may 896 * do this at any time, so beware when dereferencing. 897 */ 898 do_action = task->tk_action; 899 if (task->tk_callback) { 900 do_action = task->tk_callback; 901 task->tk_callback = NULL; 902 } 903 if (!do_action) 904 break; 905 trace_rpc_task_run_action(task, do_action); 906 do_action(task); 907 908 /* 909 * Lockless check for whether task is sleeping or not. 910 */ 911 if (!RPC_IS_QUEUED(task)) 912 continue; 913 914 /* 915 * Signalled tasks should exit rather than sleep. 916 */ 917 if (RPC_SIGNALLED(task)) 918 rpc_exit(task, -ERESTARTSYS); 919 920 /* 921 * The queue->lock protects against races with 922 * rpc_make_runnable(). 923 * 924 * Note that once we clear RPC_TASK_RUNNING on an asynchronous 925 * rpc_task, rpc_make_runnable() can assign it to a 926 * different workqueue. We therefore cannot assume that the 927 * rpc_task pointer may still be dereferenced. 928 */ 929 queue = task->tk_waitqueue; 930 spin_lock_bh(&queue->lock); 931 if (!RPC_IS_QUEUED(task)) { 932 spin_unlock_bh(&queue->lock); 933 continue; 934 } 935 rpc_clear_running(task); 936 spin_unlock_bh(&queue->lock); 937 if (task_is_async) 938 return; 939 940 /* sync task: sleep here */ 941 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid); 942 status = out_of_line_wait_on_bit(&task->tk_runstate, 943 RPC_TASK_QUEUED, rpc_wait_bit_killable, 944 TASK_KILLABLE); 945 if (status < 0) { 946 /* 947 * When a sync task receives a signal, it exits with 948 * -ERESTARTSYS. In order to catch any callbacks that 949 * clean up after sleeping on some queue, we don't 950 * break the loop here, but go around once more. 951 */ 952 dprintk("RPC: %5u got signal\n", task->tk_pid); 953 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate); 954 rpc_exit(task, -ERESTARTSYS); 955 } 956 dprintk("RPC: %5u sync task resuming\n", task->tk_pid); 957 } 958 959 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status, 960 task->tk_status); 961 /* Release all resources associated with the task */ 962 rpc_release_task(task); 963 } 964 965 /* 966 * User-visible entry point to the scheduler. 967 * 968 * This may be called recursively if e.g. an async NFS task updates 969 * the attributes and finds that dirty pages must be flushed. 970 * NOTE: Upon exit of this function the task is guaranteed to be 971 * released. In particular note that tk_release() will have 972 * been called, so your task memory may have been freed. 973 */ 974 void rpc_execute(struct rpc_task *task) 975 { 976 bool is_async = RPC_IS_ASYNC(task); 977 978 rpc_set_active(task); 979 rpc_make_runnable(rpciod_workqueue, task); 980 if (!is_async) 981 __rpc_execute(task); 982 } 983 984 static void rpc_async_schedule(struct work_struct *work) 985 { 986 unsigned int pflags = memalloc_nofs_save(); 987 988 __rpc_execute(container_of(work, struct rpc_task, u.tk_work)); 989 memalloc_nofs_restore(pflags); 990 } 991 992 /** 993 * rpc_malloc - allocate RPC buffer resources 994 * @task: RPC task 995 * 996 * A single memory region is allocated, which is split between the 997 * RPC call and RPC reply that this task is being used for. When 998 * this RPC is retired, the memory is released by calling rpc_free. 999 * 1000 * To prevent rpciod from hanging, this allocator never sleeps, 1001 * returning -ENOMEM and suppressing warning if the request cannot 1002 * be serviced immediately. The caller can arrange to sleep in a 1003 * way that is safe for rpciod. 1004 * 1005 * Most requests are 'small' (under 2KiB) and can be serviced from a 1006 * mempool, ensuring that NFS reads and writes can always proceed, 1007 * and that there is good locality of reference for these buffers. 1008 */ 1009 int rpc_malloc(struct rpc_task *task) 1010 { 1011 struct rpc_rqst *rqst = task->tk_rqstp; 1012 size_t size = rqst->rq_callsize + rqst->rq_rcvsize; 1013 struct rpc_buffer *buf; 1014 gfp_t gfp = GFP_NOFS; 1015 1016 if (RPC_IS_SWAPPER(task)) 1017 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN; 1018 1019 size += sizeof(struct rpc_buffer); 1020 if (size <= RPC_BUFFER_MAXSIZE) 1021 buf = mempool_alloc(rpc_buffer_mempool, gfp); 1022 else 1023 buf = kmalloc(size, gfp); 1024 1025 if (!buf) 1026 return -ENOMEM; 1027 1028 buf->len = size; 1029 dprintk("RPC: %5u allocated buffer of size %zu at %p\n", 1030 task->tk_pid, size, buf); 1031 rqst->rq_buffer = buf->data; 1032 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize; 1033 return 0; 1034 } 1035 EXPORT_SYMBOL_GPL(rpc_malloc); 1036 1037 /** 1038 * rpc_free - free RPC buffer resources allocated via rpc_malloc 1039 * @task: RPC task 1040 * 1041 */ 1042 void rpc_free(struct rpc_task *task) 1043 { 1044 void *buffer = task->tk_rqstp->rq_buffer; 1045 size_t size; 1046 struct rpc_buffer *buf; 1047 1048 buf = container_of(buffer, struct rpc_buffer, data); 1049 size = buf->len; 1050 1051 dprintk("RPC: freeing buffer of size %zu at %p\n", 1052 size, buf); 1053 1054 if (size <= RPC_BUFFER_MAXSIZE) 1055 mempool_free(buf, rpc_buffer_mempool); 1056 else 1057 kfree(buf); 1058 } 1059 EXPORT_SYMBOL_GPL(rpc_free); 1060 1061 /* 1062 * Creation and deletion of RPC task structures 1063 */ 1064 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data) 1065 { 1066 memset(task, 0, sizeof(*task)); 1067 atomic_set(&task->tk_count, 1); 1068 task->tk_flags = task_setup_data->flags; 1069 task->tk_ops = task_setup_data->callback_ops; 1070 task->tk_calldata = task_setup_data->callback_data; 1071 INIT_LIST_HEAD(&task->tk_task); 1072 1073 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW; 1074 task->tk_owner = current->tgid; 1075 1076 /* Initialize workqueue for async tasks */ 1077 task->tk_workqueue = task_setup_data->workqueue; 1078 1079 task->tk_xprt = xprt_get(task_setup_data->rpc_xprt); 1080 1081 task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred); 1082 1083 if (task->tk_ops->rpc_call_prepare != NULL) 1084 task->tk_action = rpc_prepare_task; 1085 1086 rpc_init_task_statistics(task); 1087 1088 dprintk("RPC: new task initialized, procpid %u\n", 1089 task_pid_nr(current)); 1090 } 1091 1092 static struct rpc_task * 1093 rpc_alloc_task(void) 1094 { 1095 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS); 1096 } 1097 1098 /* 1099 * Create a new task for the specified client. 1100 */ 1101 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data) 1102 { 1103 struct rpc_task *task = setup_data->task; 1104 unsigned short flags = 0; 1105 1106 if (task == NULL) { 1107 task = rpc_alloc_task(); 1108 flags = RPC_TASK_DYNAMIC; 1109 } 1110 1111 rpc_init_task(task, setup_data); 1112 task->tk_flags |= flags; 1113 dprintk("RPC: allocated task %p\n", task); 1114 return task; 1115 } 1116 1117 /* 1118 * rpc_free_task - release rpc task and perform cleanups 1119 * 1120 * Note that we free up the rpc_task _after_ rpc_release_calldata() 1121 * in order to work around a workqueue dependency issue. 1122 * 1123 * Tejun Heo states: 1124 * "Workqueue currently considers two work items to be the same if they're 1125 * on the same address and won't execute them concurrently - ie. it 1126 * makes a work item which is queued again while being executed wait 1127 * for the previous execution to complete. 1128 * 1129 * If a work function frees the work item, and then waits for an event 1130 * which should be performed by another work item and *that* work item 1131 * recycles the freed work item, it can create a false dependency loop. 1132 * There really is no reliable way to detect this short of verifying 1133 * every memory free." 1134 * 1135 */ 1136 static void rpc_free_task(struct rpc_task *task) 1137 { 1138 unsigned short tk_flags = task->tk_flags; 1139 1140 put_rpccred(task->tk_op_cred); 1141 rpc_release_calldata(task->tk_ops, task->tk_calldata); 1142 1143 if (tk_flags & RPC_TASK_DYNAMIC) { 1144 dprintk("RPC: %5u freeing task\n", task->tk_pid); 1145 mempool_free(task, rpc_task_mempool); 1146 } 1147 } 1148 1149 static void rpc_async_release(struct work_struct *work) 1150 { 1151 unsigned int pflags = memalloc_nofs_save(); 1152 1153 rpc_free_task(container_of(work, struct rpc_task, u.tk_work)); 1154 memalloc_nofs_restore(pflags); 1155 } 1156 1157 static void rpc_release_resources_task(struct rpc_task *task) 1158 { 1159 xprt_release(task); 1160 if (task->tk_msg.rpc_cred) { 1161 put_cred(task->tk_msg.rpc_cred); 1162 task->tk_msg.rpc_cred = NULL; 1163 } 1164 rpc_task_release_client(task); 1165 } 1166 1167 static void rpc_final_put_task(struct rpc_task *task, 1168 struct workqueue_struct *q) 1169 { 1170 if (q != NULL) { 1171 INIT_WORK(&task->u.tk_work, rpc_async_release); 1172 queue_work(q, &task->u.tk_work); 1173 } else 1174 rpc_free_task(task); 1175 } 1176 1177 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q) 1178 { 1179 if (atomic_dec_and_test(&task->tk_count)) { 1180 rpc_release_resources_task(task); 1181 rpc_final_put_task(task, q); 1182 } 1183 } 1184 1185 void rpc_put_task(struct rpc_task *task) 1186 { 1187 rpc_do_put_task(task, NULL); 1188 } 1189 EXPORT_SYMBOL_GPL(rpc_put_task); 1190 1191 void rpc_put_task_async(struct rpc_task *task) 1192 { 1193 rpc_do_put_task(task, task->tk_workqueue); 1194 } 1195 EXPORT_SYMBOL_GPL(rpc_put_task_async); 1196 1197 static void rpc_release_task(struct rpc_task *task) 1198 { 1199 dprintk("RPC: %5u release task\n", task->tk_pid); 1200 1201 WARN_ON_ONCE(RPC_IS_QUEUED(task)); 1202 1203 rpc_release_resources_task(task); 1204 1205 /* 1206 * Note: at this point we have been removed from rpc_clnt->cl_tasks, 1207 * so it should be safe to use task->tk_count as a test for whether 1208 * or not any other processes still hold references to our rpc_task. 1209 */ 1210 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) { 1211 /* Wake up anyone who may be waiting for task completion */ 1212 if (!rpc_complete_task(task)) 1213 return; 1214 } else { 1215 if (!atomic_dec_and_test(&task->tk_count)) 1216 return; 1217 } 1218 rpc_final_put_task(task, task->tk_workqueue); 1219 } 1220 1221 int rpciod_up(void) 1222 { 1223 return try_module_get(THIS_MODULE) ? 0 : -EINVAL; 1224 } 1225 1226 void rpciod_down(void) 1227 { 1228 module_put(THIS_MODULE); 1229 } 1230 1231 /* 1232 * Start up the rpciod workqueue. 1233 */ 1234 static int rpciod_start(void) 1235 { 1236 struct workqueue_struct *wq; 1237 1238 /* 1239 * Create the rpciod thread and wait for it to start. 1240 */ 1241 dprintk("RPC: creating workqueue rpciod\n"); 1242 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0); 1243 if (!wq) 1244 goto out_failed; 1245 rpciod_workqueue = wq; 1246 /* Note: highpri because network receive is latency sensitive */ 1247 wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0); 1248 if (!wq) 1249 goto free_rpciod; 1250 xprtiod_workqueue = wq; 1251 return 1; 1252 free_rpciod: 1253 wq = rpciod_workqueue; 1254 rpciod_workqueue = NULL; 1255 destroy_workqueue(wq); 1256 out_failed: 1257 return 0; 1258 } 1259 1260 static void rpciod_stop(void) 1261 { 1262 struct workqueue_struct *wq = NULL; 1263 1264 if (rpciod_workqueue == NULL) 1265 return; 1266 dprintk("RPC: destroying workqueue rpciod\n"); 1267 1268 wq = rpciod_workqueue; 1269 rpciod_workqueue = NULL; 1270 destroy_workqueue(wq); 1271 wq = xprtiod_workqueue; 1272 xprtiod_workqueue = NULL; 1273 destroy_workqueue(wq); 1274 } 1275 1276 void 1277 rpc_destroy_mempool(void) 1278 { 1279 rpciod_stop(); 1280 mempool_destroy(rpc_buffer_mempool); 1281 mempool_destroy(rpc_task_mempool); 1282 kmem_cache_destroy(rpc_task_slabp); 1283 kmem_cache_destroy(rpc_buffer_slabp); 1284 rpc_destroy_wait_queue(&delay_queue); 1285 } 1286 1287 int 1288 rpc_init_mempool(void) 1289 { 1290 /* 1291 * The following is not strictly a mempool initialisation, 1292 * but there is no harm in doing it here 1293 */ 1294 rpc_init_wait_queue(&delay_queue, "delayq"); 1295 if (!rpciod_start()) 1296 goto err_nomem; 1297 1298 rpc_task_slabp = kmem_cache_create("rpc_tasks", 1299 sizeof(struct rpc_task), 1300 0, SLAB_HWCACHE_ALIGN, 1301 NULL); 1302 if (!rpc_task_slabp) 1303 goto err_nomem; 1304 rpc_buffer_slabp = kmem_cache_create("rpc_buffers", 1305 RPC_BUFFER_MAXSIZE, 1306 0, SLAB_HWCACHE_ALIGN, 1307 NULL); 1308 if (!rpc_buffer_slabp) 1309 goto err_nomem; 1310 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE, 1311 rpc_task_slabp); 1312 if (!rpc_task_mempool) 1313 goto err_nomem; 1314 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE, 1315 rpc_buffer_slabp); 1316 if (!rpc_buffer_mempool) 1317 goto err_nomem; 1318 return 0; 1319 err_nomem: 1320 rpc_destroy_mempool(); 1321 return -ENOMEM; 1322 } 1323