xref: /linux/net/sunrpc/clnt.c (revision f24e9f586b377749dff37554696cf3a105540c94)
1 /*
2  *  linux/net/sunrpc/clnt.c
3  *
4  *  This file contains the high-level RPC interface.
5  *  It is modeled as a finite state machine to support both synchronous
6  *  and asynchronous requests.
7  *
8  *  -	RPC header generation and argument serialization.
9  *  -	Credential refresh.
10  *  -	TCP connect handling.
11  *  -	Retry of operation when it is suspected the operation failed because
12  *	of uid squashing on the server, or when the credentials were stale
13  *	and need to be refreshed, or when a packet was damaged in transit.
14  *	This may be have to be moved to the VFS layer.
15  *
16  *  NB: BSD uses a more intelligent approach to guessing when a request
17  *  or reply has been lost by keeping the RTO estimate for each procedure.
18  *  We currently make do with a constant timeout value.
19  *
20  *  Copyright (C) 1992,1993 Rick Sladkey <jrs@world.std.com>
21  *  Copyright (C) 1995,1996 Olaf Kirch <okir@monad.swb.de>
22  */
23 
24 #include <asm/system.h>
25 
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/mm.h>
29 #include <linux/slab.h>
30 #include <linux/utsname.h>
31 #include <linux/workqueue.h>
32 
33 #include <linux/sunrpc/clnt.h>
34 #include <linux/sunrpc/rpc_pipe_fs.h>
35 #include <linux/sunrpc/metrics.h>
36 
37 
38 #define RPC_SLACK_SPACE		(1024)	/* total overkill */
39 
40 #ifdef RPC_DEBUG
41 # define RPCDBG_FACILITY	RPCDBG_CALL
42 #endif
43 
44 static DECLARE_WAIT_QUEUE_HEAD(destroy_wait);
45 
46 
47 static void	call_start(struct rpc_task *task);
48 static void	call_reserve(struct rpc_task *task);
49 static void	call_reserveresult(struct rpc_task *task);
50 static void	call_allocate(struct rpc_task *task);
51 static void	call_encode(struct rpc_task *task);
52 static void	call_decode(struct rpc_task *task);
53 static void	call_bind(struct rpc_task *task);
54 static void	call_bind_status(struct rpc_task *task);
55 static void	call_transmit(struct rpc_task *task);
56 static void	call_status(struct rpc_task *task);
57 static void	call_transmit_status(struct rpc_task *task);
58 static void	call_refresh(struct rpc_task *task);
59 static void	call_refreshresult(struct rpc_task *task);
60 static void	call_timeout(struct rpc_task *task);
61 static void	call_connect(struct rpc_task *task);
62 static void	call_connect_status(struct rpc_task *task);
63 static u32 *	call_header(struct rpc_task *task);
64 static u32 *	call_verify(struct rpc_task *task);
65 
66 
67 static int
68 rpc_setup_pipedir(struct rpc_clnt *clnt, char *dir_name)
69 {
70 	static uint32_t clntid;
71 	int error;
72 
73 	clnt->cl_vfsmnt = ERR_PTR(-ENOENT);
74 	clnt->cl_dentry = ERR_PTR(-ENOENT);
75 	if (dir_name == NULL)
76 		return 0;
77 
78 	clnt->cl_vfsmnt = rpc_get_mount();
79 	if (IS_ERR(clnt->cl_vfsmnt))
80 		return PTR_ERR(clnt->cl_vfsmnt);
81 
82 	for (;;) {
83 		snprintf(clnt->cl_pathname, sizeof(clnt->cl_pathname),
84 				"%s/clnt%x", dir_name,
85 				(unsigned int)clntid++);
86 		clnt->cl_pathname[sizeof(clnt->cl_pathname) - 1] = '\0';
87 		clnt->cl_dentry = rpc_mkdir(clnt->cl_pathname, clnt);
88 		if (!IS_ERR(clnt->cl_dentry))
89 			return 0;
90 		error = PTR_ERR(clnt->cl_dentry);
91 		if (error != -EEXIST) {
92 			printk(KERN_INFO "RPC: Couldn't create pipefs entry %s, error %d\n",
93 					clnt->cl_pathname, error);
94 			rpc_put_mount();
95 			return error;
96 		}
97 	}
98 }
99 
100 /*
101  * Create an RPC client
102  * FIXME: This should also take a flags argument (as in task->tk_flags).
103  * It's called (among others) from pmap_create_client, which may in
104  * turn be called by an async task. In this case, rpciod should not be
105  * made to sleep too long.
106  */
107 struct rpc_clnt *
108 rpc_new_client(struct rpc_xprt *xprt, char *servname,
109 		  struct rpc_program *program, u32 vers,
110 		  rpc_authflavor_t flavor)
111 {
112 	struct rpc_version	*version;
113 	struct rpc_clnt		*clnt = NULL;
114 	struct rpc_auth		*auth;
115 	int err;
116 	int len;
117 
118 	dprintk("RPC: creating %s client for %s (xprt %p)\n",
119 		program->name, servname, xprt);
120 
121 	err = -EINVAL;
122 	if (!xprt)
123 		goto out_no_xprt;
124 	if (vers >= program->nrvers || !(version = program->version[vers]))
125 		goto out_err;
126 
127 	err = -ENOMEM;
128 	clnt = kzalloc(sizeof(*clnt), GFP_KERNEL);
129 	if (!clnt)
130 		goto out_err;
131 	atomic_set(&clnt->cl_users, 0);
132 	atomic_set(&clnt->cl_count, 1);
133 	clnt->cl_parent = clnt;
134 
135 	clnt->cl_server = clnt->cl_inline_name;
136 	len = strlen(servname) + 1;
137 	if (len > sizeof(clnt->cl_inline_name)) {
138 		char *buf = kmalloc(len, GFP_KERNEL);
139 		if (buf != 0)
140 			clnt->cl_server = buf;
141 		else
142 			len = sizeof(clnt->cl_inline_name);
143 	}
144 	strlcpy(clnt->cl_server, servname, len);
145 
146 	clnt->cl_xprt     = xprt;
147 	clnt->cl_procinfo = version->procs;
148 	clnt->cl_maxproc  = version->nrprocs;
149 	clnt->cl_protname = program->name;
150 	clnt->cl_pmap	  = &clnt->cl_pmap_default;
151 	clnt->cl_port     = xprt->addr.sin_port;
152 	clnt->cl_prog     = program->number;
153 	clnt->cl_vers     = version->number;
154 	clnt->cl_prot     = xprt->prot;
155 	clnt->cl_stats    = program->stats;
156 	clnt->cl_metrics  = rpc_alloc_iostats(clnt);
157 	rpc_init_wait_queue(&clnt->cl_pmap_default.pm_bindwait, "bindwait");
158 
159 	if (!clnt->cl_port)
160 		clnt->cl_autobind = 1;
161 
162 	clnt->cl_rtt = &clnt->cl_rtt_default;
163 	rpc_init_rtt(&clnt->cl_rtt_default, xprt->timeout.to_initval);
164 
165 	err = rpc_setup_pipedir(clnt, program->pipe_dir_name);
166 	if (err < 0)
167 		goto out_no_path;
168 
169 	auth = rpcauth_create(flavor, clnt);
170 	if (IS_ERR(auth)) {
171 		printk(KERN_INFO "RPC: Couldn't create auth handle (flavor %u)\n",
172 				flavor);
173 		err = PTR_ERR(auth);
174 		goto out_no_auth;
175 	}
176 
177 	/* save the nodename */
178 	clnt->cl_nodelen = strlen(system_utsname.nodename);
179 	if (clnt->cl_nodelen > UNX_MAXNODENAME)
180 		clnt->cl_nodelen = UNX_MAXNODENAME;
181 	memcpy(clnt->cl_nodename, system_utsname.nodename, clnt->cl_nodelen);
182 	return clnt;
183 
184 out_no_auth:
185 	if (!IS_ERR(clnt->cl_dentry)) {
186 		rpc_rmdir(clnt->cl_dentry);
187 		rpc_put_mount();
188 	}
189 out_no_path:
190 	if (clnt->cl_server != clnt->cl_inline_name)
191 		kfree(clnt->cl_server);
192 	kfree(clnt);
193 out_err:
194 	xprt_destroy(xprt);
195 out_no_xprt:
196 	return ERR_PTR(err);
197 }
198 
199 /**
200  * Create an RPC client
201  * @xprt - pointer to xprt struct
202  * @servname - name of server
203  * @info - rpc_program
204  * @version - rpc_program version
205  * @authflavor - rpc_auth flavour to use
206  *
207  * Creates an RPC client structure, then pings the server in order to
208  * determine if it is up, and if it supports this program and version.
209  *
210  * This function should never be called by asynchronous tasks such as
211  * the portmapper.
212  */
213 struct rpc_clnt *rpc_create_client(struct rpc_xprt *xprt, char *servname,
214 		struct rpc_program *info, u32 version, rpc_authflavor_t authflavor)
215 {
216 	struct rpc_clnt *clnt;
217 	int err;
218 
219 	clnt = rpc_new_client(xprt, servname, info, version, authflavor);
220 	if (IS_ERR(clnt))
221 		return clnt;
222 	err = rpc_ping(clnt, RPC_TASK_SOFT|RPC_TASK_NOINTR);
223 	if (err == 0)
224 		return clnt;
225 	rpc_shutdown_client(clnt);
226 	return ERR_PTR(err);
227 }
228 
229 /*
230  * This function clones the RPC client structure. It allows us to share the
231  * same transport while varying parameters such as the authentication
232  * flavour.
233  */
234 struct rpc_clnt *
235 rpc_clone_client(struct rpc_clnt *clnt)
236 {
237 	struct rpc_clnt *new;
238 
239 	new = kmalloc(sizeof(*new), GFP_KERNEL);
240 	if (!new)
241 		goto out_no_clnt;
242 	memcpy(new, clnt, sizeof(*new));
243 	atomic_set(&new->cl_count, 1);
244 	atomic_set(&new->cl_users, 0);
245 	new->cl_parent = clnt;
246 	atomic_inc(&clnt->cl_count);
247 	/* Duplicate portmapper */
248 	rpc_init_wait_queue(&new->cl_pmap_default.pm_bindwait, "bindwait");
249 	/* Turn off autobind on clones */
250 	new->cl_autobind = 0;
251 	new->cl_oneshot = 0;
252 	new->cl_dead = 0;
253 	if (!IS_ERR(new->cl_dentry))
254 		dget(new->cl_dentry);
255 	rpc_init_rtt(&new->cl_rtt_default, clnt->cl_xprt->timeout.to_initval);
256 	if (new->cl_auth)
257 		atomic_inc(&new->cl_auth->au_count);
258 	new->cl_pmap		= &new->cl_pmap_default;
259 	new->cl_metrics         = rpc_alloc_iostats(clnt);
260 	return new;
261 out_no_clnt:
262 	printk(KERN_INFO "RPC: out of memory in %s\n", __FUNCTION__);
263 	return ERR_PTR(-ENOMEM);
264 }
265 
266 /*
267  * Properly shut down an RPC client, terminating all outstanding
268  * requests. Note that we must be certain that cl_oneshot and
269  * cl_dead are cleared, or else the client would be destroyed
270  * when the last task releases it.
271  */
272 int
273 rpc_shutdown_client(struct rpc_clnt *clnt)
274 {
275 	dprintk("RPC: shutting down %s client for %s, tasks=%d\n",
276 			clnt->cl_protname, clnt->cl_server,
277 			atomic_read(&clnt->cl_users));
278 
279 	while (atomic_read(&clnt->cl_users) > 0) {
280 		/* Don't let rpc_release_client destroy us */
281 		clnt->cl_oneshot = 0;
282 		clnt->cl_dead = 0;
283 		rpc_killall_tasks(clnt);
284 		wait_event_timeout(destroy_wait,
285 			!atomic_read(&clnt->cl_users), 1*HZ);
286 	}
287 
288 	if (atomic_read(&clnt->cl_users) < 0) {
289 		printk(KERN_ERR "RPC: rpc_shutdown_client clnt %p tasks=%d\n",
290 				clnt, atomic_read(&clnt->cl_users));
291 #ifdef RPC_DEBUG
292 		rpc_show_tasks();
293 #endif
294 		BUG();
295 	}
296 
297 	return rpc_destroy_client(clnt);
298 }
299 
300 /*
301  * Delete an RPC client
302  */
303 int
304 rpc_destroy_client(struct rpc_clnt *clnt)
305 {
306 	if (!atomic_dec_and_test(&clnt->cl_count))
307 		return 1;
308 	BUG_ON(atomic_read(&clnt->cl_users) != 0);
309 
310 	dprintk("RPC: destroying %s client for %s\n",
311 			clnt->cl_protname, clnt->cl_server);
312 	if (clnt->cl_auth) {
313 		rpcauth_destroy(clnt->cl_auth);
314 		clnt->cl_auth = NULL;
315 	}
316 	if (clnt->cl_parent != clnt) {
317 		if (!IS_ERR(clnt->cl_dentry))
318 			dput(clnt->cl_dentry);
319 		rpc_destroy_client(clnt->cl_parent);
320 		goto out_free;
321 	}
322 	if (!IS_ERR(clnt->cl_dentry)) {
323 		rpc_rmdir(clnt->cl_dentry);
324 		rpc_put_mount();
325 	}
326 	if (clnt->cl_xprt) {
327 		xprt_destroy(clnt->cl_xprt);
328 		clnt->cl_xprt = NULL;
329 	}
330 	if (clnt->cl_server != clnt->cl_inline_name)
331 		kfree(clnt->cl_server);
332 out_free:
333 	rpc_free_iostats(clnt->cl_metrics);
334 	clnt->cl_metrics = NULL;
335 	kfree(clnt);
336 	return 0;
337 }
338 
339 /*
340  * Release an RPC client
341  */
342 void
343 rpc_release_client(struct rpc_clnt *clnt)
344 {
345 	dprintk("RPC:      rpc_release_client(%p, %d)\n",
346 				clnt, atomic_read(&clnt->cl_users));
347 
348 	if (!atomic_dec_and_test(&clnt->cl_users))
349 		return;
350 	wake_up(&destroy_wait);
351 	if (clnt->cl_oneshot || clnt->cl_dead)
352 		rpc_destroy_client(clnt);
353 }
354 
355 /**
356  * rpc_bind_new_program - bind a new RPC program to an existing client
357  * @old - old rpc_client
358  * @program - rpc program to set
359  * @vers - rpc program version
360  *
361  * Clones the rpc client and sets up a new RPC program. This is mainly
362  * of use for enabling different RPC programs to share the same transport.
363  * The Sun NFSv2/v3 ACL protocol can do this.
364  */
365 struct rpc_clnt *rpc_bind_new_program(struct rpc_clnt *old,
366 				      struct rpc_program *program,
367 				      int vers)
368 {
369 	struct rpc_clnt *clnt;
370 	struct rpc_version *version;
371 	int err;
372 
373 	BUG_ON(vers >= program->nrvers || !program->version[vers]);
374 	version = program->version[vers];
375 	clnt = rpc_clone_client(old);
376 	if (IS_ERR(clnt))
377 		goto out;
378 	clnt->cl_procinfo = version->procs;
379 	clnt->cl_maxproc  = version->nrprocs;
380 	clnt->cl_protname = program->name;
381 	clnt->cl_prog     = program->number;
382 	clnt->cl_vers     = version->number;
383 	clnt->cl_stats    = program->stats;
384 	err = rpc_ping(clnt, RPC_TASK_SOFT|RPC_TASK_NOINTR);
385 	if (err != 0) {
386 		rpc_shutdown_client(clnt);
387 		clnt = ERR_PTR(err);
388 	}
389 out:
390 	return clnt;
391 }
392 
393 /*
394  * Default callback for async RPC calls
395  */
396 static void
397 rpc_default_callback(struct rpc_task *task, void *data)
398 {
399 }
400 
401 static const struct rpc_call_ops rpc_default_ops = {
402 	.rpc_call_done = rpc_default_callback,
403 };
404 
405 /*
406  *	Export the signal mask handling for synchronous code that
407  *	sleeps on RPC calls
408  */
409 #define RPC_INTR_SIGNALS (sigmask(SIGHUP) | sigmask(SIGINT) | sigmask(SIGQUIT) | sigmask(SIGTERM))
410 
411 static void rpc_save_sigmask(sigset_t *oldset, int intr)
412 {
413 	unsigned long	sigallow = sigmask(SIGKILL);
414 	sigset_t sigmask;
415 
416 	/* Block all signals except those listed in sigallow */
417 	if (intr)
418 		sigallow |= RPC_INTR_SIGNALS;
419 	siginitsetinv(&sigmask, sigallow);
420 	sigprocmask(SIG_BLOCK, &sigmask, oldset);
421 }
422 
423 static inline void rpc_task_sigmask(struct rpc_task *task, sigset_t *oldset)
424 {
425 	rpc_save_sigmask(oldset, !RPC_TASK_UNINTERRUPTIBLE(task));
426 }
427 
428 static inline void rpc_restore_sigmask(sigset_t *oldset)
429 {
430 	sigprocmask(SIG_SETMASK, oldset, NULL);
431 }
432 
433 void rpc_clnt_sigmask(struct rpc_clnt *clnt, sigset_t *oldset)
434 {
435 	rpc_save_sigmask(oldset, clnt->cl_intr);
436 }
437 
438 void rpc_clnt_sigunmask(struct rpc_clnt *clnt, sigset_t *oldset)
439 {
440 	rpc_restore_sigmask(oldset);
441 }
442 
443 /*
444  * New rpc_call implementation
445  */
446 int rpc_call_sync(struct rpc_clnt *clnt, struct rpc_message *msg, int flags)
447 {
448 	struct rpc_task	*task;
449 	sigset_t	oldset;
450 	int		status;
451 
452 	/* If this client is slain all further I/O fails */
453 	if (clnt->cl_dead)
454 		return -EIO;
455 
456 	BUG_ON(flags & RPC_TASK_ASYNC);
457 
458 	status = -ENOMEM;
459 	task = rpc_new_task(clnt, flags, &rpc_default_ops, NULL);
460 	if (task == NULL)
461 		goto out;
462 
463 	/* Mask signals on RPC calls _and_ GSS_AUTH upcalls */
464 	rpc_task_sigmask(task, &oldset);
465 
466 	rpc_call_setup(task, msg, 0);
467 
468 	/* Set up the call info struct and execute the task */
469 	status = task->tk_status;
470 	if (status == 0) {
471 		atomic_inc(&task->tk_count);
472 		status = rpc_execute(task);
473 		if (status == 0)
474 			status = task->tk_status;
475 	}
476 	rpc_restore_sigmask(&oldset);
477 	rpc_release_task(task);
478 out:
479 	return status;
480 }
481 
482 /*
483  * New rpc_call implementation
484  */
485 int
486 rpc_call_async(struct rpc_clnt *clnt, struct rpc_message *msg, int flags,
487 	       const struct rpc_call_ops *tk_ops, void *data)
488 {
489 	struct rpc_task	*task;
490 	sigset_t	oldset;
491 	int		status;
492 
493 	/* If this client is slain all further I/O fails */
494 	status = -EIO;
495 	if (clnt->cl_dead)
496 		goto out_release;
497 
498 	flags |= RPC_TASK_ASYNC;
499 
500 	/* Create/initialize a new RPC task */
501 	status = -ENOMEM;
502 	if (!(task = rpc_new_task(clnt, flags, tk_ops, data)))
503 		goto out_release;
504 
505 	/* Mask signals on GSS_AUTH upcalls */
506 	rpc_task_sigmask(task, &oldset);
507 
508 	rpc_call_setup(task, msg, 0);
509 
510 	/* Set up the call info struct and execute the task */
511 	status = task->tk_status;
512 	if (status == 0)
513 		rpc_execute(task);
514 	else
515 		rpc_release_task(task);
516 
517 	rpc_restore_sigmask(&oldset);
518 	return status;
519 out_release:
520 	if (tk_ops->rpc_release != NULL)
521 		tk_ops->rpc_release(data);
522 	return status;
523 }
524 
525 
526 void
527 rpc_call_setup(struct rpc_task *task, struct rpc_message *msg, int flags)
528 {
529 	task->tk_msg   = *msg;
530 	task->tk_flags |= flags;
531 	/* Bind the user cred */
532 	if (task->tk_msg.rpc_cred != NULL)
533 		rpcauth_holdcred(task);
534 	else
535 		rpcauth_bindcred(task);
536 
537 	if (task->tk_status == 0)
538 		task->tk_action = call_start;
539 	else
540 		task->tk_action = rpc_exit_task;
541 }
542 
543 void
544 rpc_setbufsize(struct rpc_clnt *clnt, unsigned int sndsize, unsigned int rcvsize)
545 {
546 	struct rpc_xprt *xprt = clnt->cl_xprt;
547 	if (xprt->ops->set_buffer_size)
548 		xprt->ops->set_buffer_size(xprt, sndsize, rcvsize);
549 }
550 
551 /*
552  * Return size of largest payload RPC client can support, in bytes
553  *
554  * For stream transports, this is one RPC record fragment (see RFC
555  * 1831), as we don't support multi-record requests yet.  For datagram
556  * transports, this is the size of an IP packet minus the IP, UDP, and
557  * RPC header sizes.
558  */
559 size_t rpc_max_payload(struct rpc_clnt *clnt)
560 {
561 	return clnt->cl_xprt->max_payload;
562 }
563 EXPORT_SYMBOL(rpc_max_payload);
564 
565 /**
566  * rpc_force_rebind - force transport to check that remote port is unchanged
567  * @clnt: client to rebind
568  *
569  */
570 void rpc_force_rebind(struct rpc_clnt *clnt)
571 {
572 	if (clnt->cl_autobind)
573 		clnt->cl_port = 0;
574 }
575 EXPORT_SYMBOL(rpc_force_rebind);
576 
577 /*
578  * Restart an (async) RPC call. Usually called from within the
579  * exit handler.
580  */
581 void
582 rpc_restart_call(struct rpc_task *task)
583 {
584 	if (RPC_ASSASSINATED(task))
585 		return;
586 
587 	task->tk_action = call_start;
588 }
589 
590 /*
591  * 0.  Initial state
592  *
593  *     Other FSM states can be visited zero or more times, but
594  *     this state is visited exactly once for each RPC.
595  */
596 static void
597 call_start(struct rpc_task *task)
598 {
599 	struct rpc_clnt	*clnt = task->tk_client;
600 
601 	dprintk("RPC: %4d call_start %s%d proc %d (%s)\n", task->tk_pid,
602 		clnt->cl_protname, clnt->cl_vers, task->tk_msg.rpc_proc->p_proc,
603 		(RPC_IS_ASYNC(task) ? "async" : "sync"));
604 
605 	/* Increment call count */
606 	task->tk_msg.rpc_proc->p_count++;
607 	clnt->cl_stats->rpccnt++;
608 	task->tk_action = call_reserve;
609 }
610 
611 /*
612  * 1.	Reserve an RPC call slot
613  */
614 static void
615 call_reserve(struct rpc_task *task)
616 {
617 	dprintk("RPC: %4d call_reserve\n", task->tk_pid);
618 
619 	if (!rpcauth_uptodatecred(task)) {
620 		task->tk_action = call_refresh;
621 		return;
622 	}
623 
624 	task->tk_status  = 0;
625 	task->tk_action  = call_reserveresult;
626 	xprt_reserve(task);
627 }
628 
629 /*
630  * 1b.	Grok the result of xprt_reserve()
631  */
632 static void
633 call_reserveresult(struct rpc_task *task)
634 {
635 	int status = task->tk_status;
636 
637 	dprintk("RPC: %4d call_reserveresult (status %d)\n",
638 				task->tk_pid, task->tk_status);
639 
640 	/*
641 	 * After a call to xprt_reserve(), we must have either
642 	 * a request slot or else an error status.
643 	 */
644 	task->tk_status = 0;
645 	if (status >= 0) {
646 		if (task->tk_rqstp) {
647 			task->tk_action = call_allocate;
648 			return;
649 		}
650 
651 		printk(KERN_ERR "%s: status=%d, but no request slot, exiting\n",
652 				__FUNCTION__, status);
653 		rpc_exit(task, -EIO);
654 		return;
655 	}
656 
657 	/*
658 	 * Even though there was an error, we may have acquired
659 	 * a request slot somehow.  Make sure not to leak it.
660 	 */
661 	if (task->tk_rqstp) {
662 		printk(KERN_ERR "%s: status=%d, request allocated anyway\n",
663 				__FUNCTION__, status);
664 		xprt_release(task);
665 	}
666 
667 	switch (status) {
668 	case -EAGAIN:	/* woken up; retry */
669 		task->tk_action = call_reserve;
670 		return;
671 	case -EIO:	/* probably a shutdown */
672 		break;
673 	default:
674 		printk(KERN_ERR "%s: unrecognized error %d, exiting\n",
675 				__FUNCTION__, status);
676 		break;
677 	}
678 	rpc_exit(task, status);
679 }
680 
681 /*
682  * 2.	Allocate the buffer. For details, see sched.c:rpc_malloc.
683  *	(Note: buffer memory is freed in xprt_release).
684  */
685 static void
686 call_allocate(struct rpc_task *task)
687 {
688 	struct rpc_rqst *req = task->tk_rqstp;
689 	struct rpc_xprt *xprt = task->tk_xprt;
690 	unsigned int	bufsiz;
691 
692 	dprintk("RPC: %4d call_allocate (status %d)\n",
693 				task->tk_pid, task->tk_status);
694 	task->tk_action = call_bind;
695 	if (req->rq_buffer)
696 		return;
697 
698 	/* FIXME: compute buffer requirements more exactly using
699 	 * auth->au_wslack */
700 	bufsiz = task->tk_msg.rpc_proc->p_bufsiz + RPC_SLACK_SPACE;
701 
702 	if (xprt->ops->buf_alloc(task, bufsiz << 1) != NULL)
703 		return;
704 	printk(KERN_INFO "RPC: buffer allocation failed for task %p\n", task);
705 
706 	if (RPC_IS_ASYNC(task) || !signalled()) {
707 		xprt_release(task);
708 		task->tk_action = call_reserve;
709 		rpc_delay(task, HZ>>4);
710 		return;
711 	}
712 
713 	rpc_exit(task, -ERESTARTSYS);
714 }
715 
716 static inline int
717 rpc_task_need_encode(struct rpc_task *task)
718 {
719 	return task->tk_rqstp->rq_snd_buf.len == 0;
720 }
721 
722 static inline void
723 rpc_task_force_reencode(struct rpc_task *task)
724 {
725 	task->tk_rqstp->rq_snd_buf.len = 0;
726 }
727 
728 /*
729  * 3.	Encode arguments of an RPC call
730  */
731 static void
732 call_encode(struct rpc_task *task)
733 {
734 	struct rpc_rqst	*req = task->tk_rqstp;
735 	struct xdr_buf *sndbuf = &req->rq_snd_buf;
736 	struct xdr_buf *rcvbuf = &req->rq_rcv_buf;
737 	unsigned int	bufsiz;
738 	kxdrproc_t	encode;
739 	u32		*p;
740 
741 	dprintk("RPC: %4d call_encode (status %d)\n",
742 				task->tk_pid, task->tk_status);
743 
744 	/* Default buffer setup */
745 	bufsiz = req->rq_bufsize >> 1;
746 	sndbuf->head[0].iov_base = (void *)req->rq_buffer;
747 	sndbuf->head[0].iov_len  = bufsiz;
748 	sndbuf->tail[0].iov_len  = 0;
749 	sndbuf->page_len	 = 0;
750 	sndbuf->len		 = 0;
751 	sndbuf->buflen		 = bufsiz;
752 	rcvbuf->head[0].iov_base = (void *)((char *)req->rq_buffer + bufsiz);
753 	rcvbuf->head[0].iov_len  = bufsiz;
754 	rcvbuf->tail[0].iov_len  = 0;
755 	rcvbuf->page_len	 = 0;
756 	rcvbuf->len		 = 0;
757 	rcvbuf->buflen		 = bufsiz;
758 
759 	/* Encode header and provided arguments */
760 	encode = task->tk_msg.rpc_proc->p_encode;
761 	if (!(p = call_header(task))) {
762 		printk(KERN_INFO "RPC: call_header failed, exit EIO\n");
763 		rpc_exit(task, -EIO);
764 		return;
765 	}
766 	if (encode == NULL)
767 		return;
768 
769 	task->tk_status = rpcauth_wrap_req(task, encode, req, p,
770 			task->tk_msg.rpc_argp);
771 	if (task->tk_status == -ENOMEM) {
772 		/* XXX: Is this sane? */
773 		rpc_delay(task, 3*HZ);
774 		task->tk_status = -EAGAIN;
775 	}
776 }
777 
778 /*
779  * 4.	Get the server port number if not yet set
780  */
781 static void
782 call_bind(struct rpc_task *task)
783 {
784 	struct rpc_clnt	*clnt = task->tk_client;
785 
786 	dprintk("RPC: %4d call_bind (status %d)\n",
787 				task->tk_pid, task->tk_status);
788 
789 	task->tk_action = call_connect;
790 	if (!clnt->cl_port) {
791 		task->tk_action = call_bind_status;
792 		task->tk_timeout = task->tk_xprt->bind_timeout;
793 		rpc_getport(task, clnt);
794 	}
795 }
796 
797 /*
798  * 4a.	Sort out bind result
799  */
800 static void
801 call_bind_status(struct rpc_task *task)
802 {
803 	int status = -EACCES;
804 
805 	if (task->tk_status >= 0) {
806 		dprintk("RPC: %4d call_bind_status (status %d)\n",
807 					task->tk_pid, task->tk_status);
808 		task->tk_status = 0;
809 		task->tk_action = call_connect;
810 		return;
811 	}
812 
813 	switch (task->tk_status) {
814 	case -EACCES:
815 		dprintk("RPC: %4d remote rpcbind: RPC program/version unavailable\n",
816 				task->tk_pid);
817 		rpc_delay(task, 3*HZ);
818 		goto retry_bind;
819 	case -ETIMEDOUT:
820 		dprintk("RPC: %4d rpcbind request timed out\n",
821 				task->tk_pid);
822 		if (RPC_IS_SOFT(task)) {
823 			status = -EIO;
824 			break;
825 		}
826 		goto retry_bind;
827 	case -EPFNOSUPPORT:
828 		dprintk("RPC: %4d remote rpcbind service unavailable\n",
829 				task->tk_pid);
830 		break;
831 	case -EPROTONOSUPPORT:
832 		dprintk("RPC: %4d remote rpcbind version 2 unavailable\n",
833 				task->tk_pid);
834 		break;
835 	default:
836 		dprintk("RPC: %4d unrecognized rpcbind error (%d)\n",
837 				task->tk_pid, -task->tk_status);
838 		status = -EIO;
839 		break;
840 	}
841 
842 	rpc_exit(task, status);
843 	return;
844 
845 retry_bind:
846 	task->tk_status = 0;
847 	task->tk_action = call_bind;
848 	return;
849 }
850 
851 /*
852  * 4b.	Connect to the RPC server
853  */
854 static void
855 call_connect(struct rpc_task *task)
856 {
857 	struct rpc_xprt *xprt = task->tk_xprt;
858 
859 	dprintk("RPC: %4d call_connect xprt %p %s connected\n",
860 			task->tk_pid, xprt,
861 			(xprt_connected(xprt) ? "is" : "is not"));
862 
863 	task->tk_action = call_transmit;
864 	if (!xprt_connected(xprt)) {
865 		task->tk_action = call_connect_status;
866 		if (task->tk_status < 0)
867 			return;
868 		xprt_connect(task);
869 	}
870 }
871 
872 /*
873  * 4c.	Sort out connect result
874  */
875 static void
876 call_connect_status(struct rpc_task *task)
877 {
878 	struct rpc_clnt *clnt = task->tk_client;
879 	int status = task->tk_status;
880 
881 	dprintk("RPC: %5u call_connect_status (status %d)\n",
882 				task->tk_pid, task->tk_status);
883 
884 	task->tk_status = 0;
885 	if (status >= 0) {
886 		clnt->cl_stats->netreconn++;
887 		task->tk_action = call_transmit;
888 		return;
889 	}
890 
891 	/* Something failed: remote service port may have changed */
892 	rpc_force_rebind(clnt);
893 
894 	switch (status) {
895 	case -ENOTCONN:
896 	case -ETIMEDOUT:
897 	case -EAGAIN:
898 		task->tk_action = call_bind;
899 		break;
900 	default:
901 		rpc_exit(task, -EIO);
902 		break;
903 	}
904 }
905 
906 /*
907  * 5.	Transmit the RPC request, and wait for reply
908  */
909 static void
910 call_transmit(struct rpc_task *task)
911 {
912 	dprintk("RPC: %4d call_transmit (status %d)\n",
913 				task->tk_pid, task->tk_status);
914 
915 	task->tk_action = call_status;
916 	if (task->tk_status < 0)
917 		return;
918 	task->tk_status = xprt_prepare_transmit(task);
919 	if (task->tk_status != 0)
920 		return;
921 	task->tk_action = call_transmit_status;
922 	/* Encode here so that rpcsec_gss can use correct sequence number. */
923 	if (rpc_task_need_encode(task)) {
924 		BUG_ON(task->tk_rqstp->rq_bytes_sent != 0);
925 		call_encode(task);
926 		/* Did the encode result in an error condition? */
927 		if (task->tk_status != 0)
928 			return;
929 	}
930 	xprt_transmit(task);
931 	if (task->tk_status < 0)
932 		return;
933 	/*
934 	 * On success, ensure that we call xprt_end_transmit() before sleeping
935 	 * in order to allow access to the socket to other RPC requests.
936 	 */
937 	call_transmit_status(task);
938 	if (task->tk_msg.rpc_proc->p_decode != NULL)
939 		return;
940 	task->tk_action = rpc_exit_task;
941 	rpc_wake_up_task(task);
942 }
943 
944 /*
945  * 5a.	Handle cleanup after a transmission
946  */
947 static void
948 call_transmit_status(struct rpc_task *task)
949 {
950 	task->tk_action = call_status;
951 	/*
952 	 * Special case: if we've been waiting on the socket's write_space()
953 	 * callback, then don't call xprt_end_transmit().
954 	 */
955 	if (task->tk_status == -EAGAIN)
956 		return;
957 	xprt_end_transmit(task);
958 	rpc_task_force_reencode(task);
959 }
960 
961 /*
962  * 6.	Sort out the RPC call status
963  */
964 static void
965 call_status(struct rpc_task *task)
966 {
967 	struct rpc_clnt	*clnt = task->tk_client;
968 	struct rpc_rqst	*req = task->tk_rqstp;
969 	int		status;
970 
971 	if (req->rq_received > 0 && !req->rq_bytes_sent)
972 		task->tk_status = req->rq_received;
973 
974 	dprintk("RPC: %4d call_status (status %d)\n",
975 				task->tk_pid, task->tk_status);
976 
977 	status = task->tk_status;
978 	if (status >= 0) {
979 		task->tk_action = call_decode;
980 		return;
981 	}
982 
983 	task->tk_status = 0;
984 	switch(status) {
985 	case -ETIMEDOUT:
986 		task->tk_action = call_timeout;
987 		break;
988 	case -ECONNREFUSED:
989 	case -ENOTCONN:
990 		rpc_force_rebind(clnt);
991 		task->tk_action = call_bind;
992 		break;
993 	case -EAGAIN:
994 		task->tk_action = call_transmit;
995 		break;
996 	case -EIO:
997 		/* shutdown or soft timeout */
998 		rpc_exit(task, status);
999 		break;
1000 	default:
1001 		printk("%s: RPC call returned error %d\n",
1002 			       clnt->cl_protname, -status);
1003 		rpc_exit(task, status);
1004 		break;
1005 	}
1006 }
1007 
1008 /*
1009  * 6a.	Handle RPC timeout
1010  * 	We do not release the request slot, so we keep using the
1011  *	same XID for all retransmits.
1012  */
1013 static void
1014 call_timeout(struct rpc_task *task)
1015 {
1016 	struct rpc_clnt	*clnt = task->tk_client;
1017 
1018 	if (xprt_adjust_timeout(task->tk_rqstp) == 0) {
1019 		dprintk("RPC: %4d call_timeout (minor)\n", task->tk_pid);
1020 		goto retry;
1021 	}
1022 
1023 	dprintk("RPC: %4d call_timeout (major)\n", task->tk_pid);
1024 	task->tk_timeouts++;
1025 
1026 	if (RPC_IS_SOFT(task)) {
1027 		printk(KERN_NOTICE "%s: server %s not responding, timed out\n",
1028 				clnt->cl_protname, clnt->cl_server);
1029 		rpc_exit(task, -EIO);
1030 		return;
1031 	}
1032 
1033 	if (!(task->tk_flags & RPC_CALL_MAJORSEEN)) {
1034 		task->tk_flags |= RPC_CALL_MAJORSEEN;
1035 		printk(KERN_NOTICE "%s: server %s not responding, still trying\n",
1036 			clnt->cl_protname, clnt->cl_server);
1037 	}
1038 	rpc_force_rebind(clnt);
1039 
1040 retry:
1041 	clnt->cl_stats->rpcretrans++;
1042 	task->tk_action = call_bind;
1043 	task->tk_status = 0;
1044 }
1045 
1046 /*
1047  * 7.	Decode the RPC reply
1048  */
1049 static void
1050 call_decode(struct rpc_task *task)
1051 {
1052 	struct rpc_clnt	*clnt = task->tk_client;
1053 	struct rpc_rqst	*req = task->tk_rqstp;
1054 	kxdrproc_t	decode = task->tk_msg.rpc_proc->p_decode;
1055 	u32		*p;
1056 
1057 	dprintk("RPC: %4d call_decode (status %d)\n",
1058 				task->tk_pid, task->tk_status);
1059 
1060 	if (task->tk_flags & RPC_CALL_MAJORSEEN) {
1061 		printk(KERN_NOTICE "%s: server %s OK\n",
1062 			clnt->cl_protname, clnt->cl_server);
1063 		task->tk_flags &= ~RPC_CALL_MAJORSEEN;
1064 	}
1065 
1066 	if (task->tk_status < 12) {
1067 		if (!RPC_IS_SOFT(task)) {
1068 			task->tk_action = call_bind;
1069 			clnt->cl_stats->rpcretrans++;
1070 			goto out_retry;
1071 		}
1072 		printk(KERN_WARNING "%s: too small RPC reply size (%d bytes)\n",
1073 			clnt->cl_protname, task->tk_status);
1074 		rpc_exit(task, -EIO);
1075 		return;
1076 	}
1077 
1078 	/*
1079 	 * Ensure that we see all writes made by xprt_complete_rqst()
1080 	 * before it changed req->rq_received.
1081 	 */
1082 	smp_rmb();
1083 	req->rq_rcv_buf.len = req->rq_private_buf.len;
1084 
1085 	/* Check that the softirq receive buffer is valid */
1086 	WARN_ON(memcmp(&req->rq_rcv_buf, &req->rq_private_buf,
1087 				sizeof(req->rq_rcv_buf)) != 0);
1088 
1089 	/* Verify the RPC header */
1090 	p = call_verify(task);
1091 	if (IS_ERR(p)) {
1092 		if (p == ERR_PTR(-EAGAIN))
1093 			goto out_retry;
1094 		return;
1095 	}
1096 
1097 	task->tk_action = rpc_exit_task;
1098 
1099 	if (decode)
1100 		task->tk_status = rpcauth_unwrap_resp(task, decode, req, p,
1101 						      task->tk_msg.rpc_resp);
1102 	dprintk("RPC: %4d call_decode result %d\n", task->tk_pid,
1103 					task->tk_status);
1104 	return;
1105 out_retry:
1106 	req->rq_received = req->rq_private_buf.len = 0;
1107 	task->tk_status = 0;
1108 }
1109 
1110 /*
1111  * 8.	Refresh the credentials if rejected by the server
1112  */
1113 static void
1114 call_refresh(struct rpc_task *task)
1115 {
1116 	dprintk("RPC: %4d call_refresh\n", task->tk_pid);
1117 
1118 	xprt_release(task);	/* Must do to obtain new XID */
1119 	task->tk_action = call_refreshresult;
1120 	task->tk_status = 0;
1121 	task->tk_client->cl_stats->rpcauthrefresh++;
1122 	rpcauth_refreshcred(task);
1123 }
1124 
1125 /*
1126  * 8a.	Process the results of a credential refresh
1127  */
1128 static void
1129 call_refreshresult(struct rpc_task *task)
1130 {
1131 	int status = task->tk_status;
1132 	dprintk("RPC: %4d call_refreshresult (status %d)\n",
1133 				task->tk_pid, task->tk_status);
1134 
1135 	task->tk_status = 0;
1136 	task->tk_action = call_reserve;
1137 	if (status >= 0 && rpcauth_uptodatecred(task))
1138 		return;
1139 	if (status == -EACCES) {
1140 		rpc_exit(task, -EACCES);
1141 		return;
1142 	}
1143 	task->tk_action = call_refresh;
1144 	if (status != -ETIMEDOUT)
1145 		rpc_delay(task, 3*HZ);
1146 	return;
1147 }
1148 
1149 /*
1150  * Call header serialization
1151  */
1152 static u32 *
1153 call_header(struct rpc_task *task)
1154 {
1155 	struct rpc_clnt *clnt = task->tk_client;
1156 	struct rpc_rqst	*req = task->tk_rqstp;
1157 	u32		*p = req->rq_svec[0].iov_base;
1158 
1159 	/* FIXME: check buffer size? */
1160 
1161 	p = xprt_skip_transport_header(task->tk_xprt, p);
1162 	*p++ = req->rq_xid;		/* XID */
1163 	*p++ = htonl(RPC_CALL);		/* CALL */
1164 	*p++ = htonl(RPC_VERSION);	/* RPC version */
1165 	*p++ = htonl(clnt->cl_prog);	/* program number */
1166 	*p++ = htonl(clnt->cl_vers);	/* program version */
1167 	*p++ = htonl(task->tk_msg.rpc_proc->p_proc);	/* procedure */
1168 	p = rpcauth_marshcred(task, p);
1169 	req->rq_slen = xdr_adjust_iovec(&req->rq_svec[0], p);
1170 	return p;
1171 }
1172 
1173 /*
1174  * Reply header verification
1175  */
1176 static u32 *
1177 call_verify(struct rpc_task *task)
1178 {
1179 	struct kvec *iov = &task->tk_rqstp->rq_rcv_buf.head[0];
1180 	int len = task->tk_rqstp->rq_rcv_buf.len >> 2;
1181 	u32	*p = iov->iov_base, n;
1182 	int error = -EACCES;
1183 
1184 	if ((task->tk_rqstp->rq_rcv_buf.len & 3) != 0) {
1185 		/* RFC-1014 says that the representation of XDR data must be a
1186 		 * multiple of four bytes
1187 		 * - if it isn't pointer subtraction in the NFS client may give
1188 		 *   undefined results
1189 		 */
1190 		printk(KERN_WARNING
1191 		       "call_verify: XDR representation not a multiple of"
1192 		       " 4 bytes: 0x%x\n", task->tk_rqstp->rq_rcv_buf.len);
1193 		goto out_eio;
1194 	}
1195 	if ((len -= 3) < 0)
1196 		goto out_overflow;
1197 	p += 1;	/* skip XID */
1198 
1199 	if ((n = ntohl(*p++)) != RPC_REPLY) {
1200 		printk(KERN_WARNING "call_verify: not an RPC reply: %x\n", n);
1201 		goto out_garbage;
1202 	}
1203 	if ((n = ntohl(*p++)) != RPC_MSG_ACCEPTED) {
1204 		if (--len < 0)
1205 			goto out_overflow;
1206 		switch ((n = ntohl(*p++))) {
1207 			case RPC_AUTH_ERROR:
1208 				break;
1209 			case RPC_MISMATCH:
1210 				dprintk("%s: RPC call version mismatch!\n", __FUNCTION__);
1211 				error = -EPROTONOSUPPORT;
1212 				goto out_err;
1213 			default:
1214 				dprintk("%s: RPC call rejected, unknown error: %x\n", __FUNCTION__, n);
1215 				goto out_eio;
1216 		}
1217 		if (--len < 0)
1218 			goto out_overflow;
1219 		switch ((n = ntohl(*p++))) {
1220 		case RPC_AUTH_REJECTEDCRED:
1221 		case RPC_AUTH_REJECTEDVERF:
1222 		case RPCSEC_GSS_CREDPROBLEM:
1223 		case RPCSEC_GSS_CTXPROBLEM:
1224 			if (!task->tk_cred_retry)
1225 				break;
1226 			task->tk_cred_retry--;
1227 			dprintk("RPC: %4d call_verify: retry stale creds\n",
1228 							task->tk_pid);
1229 			rpcauth_invalcred(task);
1230 			task->tk_action = call_refresh;
1231 			goto out_retry;
1232 		case RPC_AUTH_BADCRED:
1233 		case RPC_AUTH_BADVERF:
1234 			/* possibly garbled cred/verf? */
1235 			if (!task->tk_garb_retry)
1236 				break;
1237 			task->tk_garb_retry--;
1238 			dprintk("RPC: %4d call_verify: retry garbled creds\n",
1239 							task->tk_pid);
1240 			task->tk_action = call_bind;
1241 			goto out_retry;
1242 		case RPC_AUTH_TOOWEAK:
1243 			printk(KERN_NOTICE "call_verify: server %s requires stronger "
1244 			       "authentication.\n", task->tk_client->cl_server);
1245 			break;
1246 		default:
1247 			printk(KERN_WARNING "call_verify: unknown auth error: %x\n", n);
1248 			error = -EIO;
1249 		}
1250 		dprintk("RPC: %4d call_verify: call rejected %d\n",
1251 						task->tk_pid, n);
1252 		goto out_err;
1253 	}
1254 	if (!(p = rpcauth_checkverf(task, p))) {
1255 		printk(KERN_WARNING "call_verify: auth check failed\n");
1256 		goto out_garbage;		/* bad verifier, retry */
1257 	}
1258 	len = p - (u32 *)iov->iov_base - 1;
1259 	if (len < 0)
1260 		goto out_overflow;
1261 	switch ((n = ntohl(*p++))) {
1262 	case RPC_SUCCESS:
1263 		return p;
1264 	case RPC_PROG_UNAVAIL:
1265 		dprintk("RPC: call_verify: program %u is unsupported by server %s\n",
1266 				(unsigned int)task->tk_client->cl_prog,
1267 				task->tk_client->cl_server);
1268 		error = -EPFNOSUPPORT;
1269 		goto out_err;
1270 	case RPC_PROG_MISMATCH:
1271 		dprintk("RPC: call_verify: program %u, version %u unsupported by server %s\n",
1272 				(unsigned int)task->tk_client->cl_prog,
1273 				(unsigned int)task->tk_client->cl_vers,
1274 				task->tk_client->cl_server);
1275 		error = -EPROTONOSUPPORT;
1276 		goto out_err;
1277 	case RPC_PROC_UNAVAIL:
1278 		dprintk("RPC: call_verify: proc %p unsupported by program %u, version %u on server %s\n",
1279 				task->tk_msg.rpc_proc,
1280 				task->tk_client->cl_prog,
1281 				task->tk_client->cl_vers,
1282 				task->tk_client->cl_server);
1283 		error = -EOPNOTSUPP;
1284 		goto out_err;
1285 	case RPC_GARBAGE_ARGS:
1286 		dprintk("RPC: %4d %s: server saw garbage\n", task->tk_pid, __FUNCTION__);
1287 		break;			/* retry */
1288 	default:
1289 		printk(KERN_WARNING "call_verify: server accept status: %x\n", n);
1290 		/* Also retry */
1291 	}
1292 
1293 out_garbage:
1294 	task->tk_client->cl_stats->rpcgarbage++;
1295 	if (task->tk_garb_retry) {
1296 		task->tk_garb_retry--;
1297 		dprintk("RPC %s: retrying %4d\n", __FUNCTION__, task->tk_pid);
1298 		task->tk_action = call_bind;
1299 out_retry:
1300 		return ERR_PTR(-EAGAIN);
1301 	}
1302 	printk(KERN_WARNING "RPC %s: retry failed, exit EIO\n", __FUNCTION__);
1303 out_eio:
1304 	error = -EIO;
1305 out_err:
1306 	rpc_exit(task, error);
1307 	return ERR_PTR(error);
1308 out_overflow:
1309 	printk(KERN_WARNING "RPC %s: server reply was truncated.\n", __FUNCTION__);
1310 	goto out_garbage;
1311 }
1312 
1313 static int rpcproc_encode_null(void *rqstp, u32 *data, void *obj)
1314 {
1315 	return 0;
1316 }
1317 
1318 static int rpcproc_decode_null(void *rqstp, u32 *data, void *obj)
1319 {
1320 	return 0;
1321 }
1322 
1323 static struct rpc_procinfo rpcproc_null = {
1324 	.p_encode = rpcproc_encode_null,
1325 	.p_decode = rpcproc_decode_null,
1326 };
1327 
1328 int rpc_ping(struct rpc_clnt *clnt, int flags)
1329 {
1330 	struct rpc_message msg = {
1331 		.rpc_proc = &rpcproc_null,
1332 	};
1333 	int err;
1334 	msg.rpc_cred = authnull_ops.lookup_cred(NULL, NULL, 0);
1335 	err = rpc_call_sync(clnt, &msg, flags);
1336 	put_rpccred(msg.rpc_cred);
1337 	return err;
1338 }
1339