1 /* 2 * linux/net/sunrpc/clnt.c 3 * 4 * This file contains the high-level RPC interface. 5 * It is modeled as a finite state machine to support both synchronous 6 * and asynchronous requests. 7 * 8 * - RPC header generation and argument serialization. 9 * - Credential refresh. 10 * - TCP connect handling. 11 * - Retry of operation when it is suspected the operation failed because 12 * of uid squashing on the server, or when the credentials were stale 13 * and need to be refreshed, or when a packet was damaged in transit. 14 * This may be have to be moved to the VFS layer. 15 * 16 * Copyright (C) 1992,1993 Rick Sladkey <jrs@world.std.com> 17 * Copyright (C) 1995,1996 Olaf Kirch <okir@monad.swb.de> 18 */ 19 20 21 #include <linux/module.h> 22 #include <linux/types.h> 23 #include <linux/kallsyms.h> 24 #include <linux/mm.h> 25 #include <linux/namei.h> 26 #include <linux/mount.h> 27 #include <linux/slab.h> 28 #include <linux/rcupdate.h> 29 #include <linux/utsname.h> 30 #include <linux/workqueue.h> 31 #include <linux/in.h> 32 #include <linux/in6.h> 33 #include <linux/un.h> 34 35 #include <linux/sunrpc/clnt.h> 36 #include <linux/sunrpc/addr.h> 37 #include <linux/sunrpc/rpc_pipe_fs.h> 38 #include <linux/sunrpc/metrics.h> 39 #include <linux/sunrpc/bc_xprt.h> 40 #include <trace/events/sunrpc.h> 41 42 #include "sunrpc.h" 43 #include "netns.h" 44 45 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 46 # define RPCDBG_FACILITY RPCDBG_CALL 47 #endif 48 49 #define dprint_status(t) \ 50 dprintk("RPC: %5u %s (status %d)\n", t->tk_pid, \ 51 __func__, t->tk_status) 52 53 /* 54 * All RPC clients are linked into this list 55 */ 56 57 static DECLARE_WAIT_QUEUE_HEAD(destroy_wait); 58 59 60 static void call_start(struct rpc_task *task); 61 static void call_reserve(struct rpc_task *task); 62 static void call_reserveresult(struct rpc_task *task); 63 static void call_allocate(struct rpc_task *task); 64 static void call_decode(struct rpc_task *task); 65 static void call_bind(struct rpc_task *task); 66 static void call_bind_status(struct rpc_task *task); 67 static void call_transmit(struct rpc_task *task); 68 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 69 static void call_bc_transmit(struct rpc_task *task); 70 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 71 static void call_status(struct rpc_task *task); 72 static void call_transmit_status(struct rpc_task *task); 73 static void call_refresh(struct rpc_task *task); 74 static void call_refreshresult(struct rpc_task *task); 75 static void call_timeout(struct rpc_task *task); 76 static void call_connect(struct rpc_task *task); 77 static void call_connect_status(struct rpc_task *task); 78 79 static __be32 *rpc_encode_header(struct rpc_task *task); 80 static __be32 *rpc_verify_header(struct rpc_task *task); 81 static int rpc_ping(struct rpc_clnt *clnt); 82 83 static void rpc_register_client(struct rpc_clnt *clnt) 84 { 85 struct net *net = rpc_net_ns(clnt); 86 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 87 88 spin_lock(&sn->rpc_client_lock); 89 list_add(&clnt->cl_clients, &sn->all_clients); 90 spin_unlock(&sn->rpc_client_lock); 91 } 92 93 static void rpc_unregister_client(struct rpc_clnt *clnt) 94 { 95 struct net *net = rpc_net_ns(clnt); 96 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 97 98 spin_lock(&sn->rpc_client_lock); 99 list_del(&clnt->cl_clients); 100 spin_unlock(&sn->rpc_client_lock); 101 } 102 103 static void __rpc_clnt_remove_pipedir(struct rpc_clnt *clnt) 104 { 105 rpc_remove_client_dir(clnt); 106 } 107 108 static void rpc_clnt_remove_pipedir(struct rpc_clnt *clnt) 109 { 110 struct net *net = rpc_net_ns(clnt); 111 struct super_block *pipefs_sb; 112 113 pipefs_sb = rpc_get_sb_net(net); 114 if (pipefs_sb) { 115 __rpc_clnt_remove_pipedir(clnt); 116 rpc_put_sb_net(net); 117 } 118 } 119 120 static struct dentry *rpc_setup_pipedir_sb(struct super_block *sb, 121 struct rpc_clnt *clnt) 122 { 123 static uint32_t clntid; 124 const char *dir_name = clnt->cl_program->pipe_dir_name; 125 char name[15]; 126 struct dentry *dir, *dentry; 127 128 dir = rpc_d_lookup_sb(sb, dir_name); 129 if (dir == NULL) { 130 pr_info("RPC: pipefs directory doesn't exist: %s\n", dir_name); 131 return dir; 132 } 133 for (;;) { 134 snprintf(name, sizeof(name), "clnt%x", (unsigned int)clntid++); 135 name[sizeof(name) - 1] = '\0'; 136 dentry = rpc_create_client_dir(dir, name, clnt); 137 if (!IS_ERR(dentry)) 138 break; 139 if (dentry == ERR_PTR(-EEXIST)) 140 continue; 141 printk(KERN_INFO "RPC: Couldn't create pipefs entry" 142 " %s/%s, error %ld\n", 143 dir_name, name, PTR_ERR(dentry)); 144 break; 145 } 146 dput(dir); 147 return dentry; 148 } 149 150 static int 151 rpc_setup_pipedir(struct super_block *pipefs_sb, struct rpc_clnt *clnt) 152 { 153 struct dentry *dentry; 154 155 if (clnt->cl_program->pipe_dir_name != NULL) { 156 dentry = rpc_setup_pipedir_sb(pipefs_sb, clnt); 157 if (IS_ERR(dentry)) 158 return PTR_ERR(dentry); 159 } 160 return 0; 161 } 162 163 static int rpc_clnt_skip_event(struct rpc_clnt *clnt, unsigned long event) 164 { 165 if (clnt->cl_program->pipe_dir_name == NULL) 166 return 1; 167 168 switch (event) { 169 case RPC_PIPEFS_MOUNT: 170 if (clnt->cl_pipedir_objects.pdh_dentry != NULL) 171 return 1; 172 if (atomic_read(&clnt->cl_count) == 0) 173 return 1; 174 break; 175 case RPC_PIPEFS_UMOUNT: 176 if (clnt->cl_pipedir_objects.pdh_dentry == NULL) 177 return 1; 178 break; 179 } 180 return 0; 181 } 182 183 static int __rpc_clnt_handle_event(struct rpc_clnt *clnt, unsigned long event, 184 struct super_block *sb) 185 { 186 struct dentry *dentry; 187 188 switch (event) { 189 case RPC_PIPEFS_MOUNT: 190 dentry = rpc_setup_pipedir_sb(sb, clnt); 191 if (!dentry) 192 return -ENOENT; 193 if (IS_ERR(dentry)) 194 return PTR_ERR(dentry); 195 break; 196 case RPC_PIPEFS_UMOUNT: 197 __rpc_clnt_remove_pipedir(clnt); 198 break; 199 default: 200 printk(KERN_ERR "%s: unknown event: %ld\n", __func__, event); 201 return -ENOTSUPP; 202 } 203 return 0; 204 } 205 206 static int __rpc_pipefs_event(struct rpc_clnt *clnt, unsigned long event, 207 struct super_block *sb) 208 { 209 int error = 0; 210 211 for (;; clnt = clnt->cl_parent) { 212 if (!rpc_clnt_skip_event(clnt, event)) 213 error = __rpc_clnt_handle_event(clnt, event, sb); 214 if (error || clnt == clnt->cl_parent) 215 break; 216 } 217 return error; 218 } 219 220 static struct rpc_clnt *rpc_get_client_for_event(struct net *net, int event) 221 { 222 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 223 struct rpc_clnt *clnt; 224 225 spin_lock(&sn->rpc_client_lock); 226 list_for_each_entry(clnt, &sn->all_clients, cl_clients) { 227 if (rpc_clnt_skip_event(clnt, event)) 228 continue; 229 spin_unlock(&sn->rpc_client_lock); 230 return clnt; 231 } 232 spin_unlock(&sn->rpc_client_lock); 233 return NULL; 234 } 235 236 static int rpc_pipefs_event(struct notifier_block *nb, unsigned long event, 237 void *ptr) 238 { 239 struct super_block *sb = ptr; 240 struct rpc_clnt *clnt; 241 int error = 0; 242 243 while ((clnt = rpc_get_client_for_event(sb->s_fs_info, event))) { 244 error = __rpc_pipefs_event(clnt, event, sb); 245 if (error) 246 break; 247 } 248 return error; 249 } 250 251 static struct notifier_block rpc_clients_block = { 252 .notifier_call = rpc_pipefs_event, 253 .priority = SUNRPC_PIPEFS_RPC_PRIO, 254 }; 255 256 int rpc_clients_notifier_register(void) 257 { 258 return rpc_pipefs_notifier_register(&rpc_clients_block); 259 } 260 261 void rpc_clients_notifier_unregister(void) 262 { 263 return rpc_pipefs_notifier_unregister(&rpc_clients_block); 264 } 265 266 static struct rpc_xprt *rpc_clnt_set_transport(struct rpc_clnt *clnt, 267 struct rpc_xprt *xprt, 268 const struct rpc_timeout *timeout) 269 { 270 struct rpc_xprt *old; 271 272 spin_lock(&clnt->cl_lock); 273 old = rcu_dereference_protected(clnt->cl_xprt, 274 lockdep_is_held(&clnt->cl_lock)); 275 276 if (!xprt_bound(xprt)) 277 clnt->cl_autobind = 1; 278 279 clnt->cl_timeout = timeout; 280 rcu_assign_pointer(clnt->cl_xprt, xprt); 281 spin_unlock(&clnt->cl_lock); 282 283 return old; 284 } 285 286 static void rpc_clnt_set_nodename(struct rpc_clnt *clnt, const char *nodename) 287 { 288 clnt->cl_nodelen = strlcpy(clnt->cl_nodename, 289 nodename, sizeof(clnt->cl_nodename)); 290 } 291 292 static int rpc_client_register(struct rpc_clnt *clnt, 293 rpc_authflavor_t pseudoflavor, 294 const char *client_name) 295 { 296 struct rpc_auth_create_args auth_args = { 297 .pseudoflavor = pseudoflavor, 298 .target_name = client_name, 299 }; 300 struct rpc_auth *auth; 301 struct net *net = rpc_net_ns(clnt); 302 struct super_block *pipefs_sb; 303 int err; 304 305 rpc_clnt_debugfs_register(clnt); 306 307 pipefs_sb = rpc_get_sb_net(net); 308 if (pipefs_sb) { 309 err = rpc_setup_pipedir(pipefs_sb, clnt); 310 if (err) 311 goto out; 312 } 313 314 rpc_register_client(clnt); 315 if (pipefs_sb) 316 rpc_put_sb_net(net); 317 318 auth = rpcauth_create(&auth_args, clnt); 319 if (IS_ERR(auth)) { 320 dprintk("RPC: Couldn't create auth handle (flavor %u)\n", 321 pseudoflavor); 322 err = PTR_ERR(auth); 323 goto err_auth; 324 } 325 return 0; 326 err_auth: 327 pipefs_sb = rpc_get_sb_net(net); 328 rpc_unregister_client(clnt); 329 __rpc_clnt_remove_pipedir(clnt); 330 out: 331 if (pipefs_sb) 332 rpc_put_sb_net(net); 333 rpc_clnt_debugfs_unregister(clnt); 334 return err; 335 } 336 337 static DEFINE_IDA(rpc_clids); 338 339 void rpc_cleanup_clids(void) 340 { 341 ida_destroy(&rpc_clids); 342 } 343 344 static int rpc_alloc_clid(struct rpc_clnt *clnt) 345 { 346 int clid; 347 348 clid = ida_simple_get(&rpc_clids, 0, 0, GFP_KERNEL); 349 if (clid < 0) 350 return clid; 351 clnt->cl_clid = clid; 352 return 0; 353 } 354 355 static void rpc_free_clid(struct rpc_clnt *clnt) 356 { 357 ida_simple_remove(&rpc_clids, clnt->cl_clid); 358 } 359 360 static struct rpc_clnt * rpc_new_client(const struct rpc_create_args *args, 361 struct rpc_xprt_switch *xps, 362 struct rpc_xprt *xprt, 363 struct rpc_clnt *parent) 364 { 365 const struct rpc_program *program = args->program; 366 const struct rpc_version *version; 367 struct rpc_clnt *clnt = NULL; 368 const struct rpc_timeout *timeout; 369 const char *nodename = args->nodename; 370 int err; 371 372 /* sanity check the name before trying to print it */ 373 dprintk("RPC: creating %s client for %s (xprt %p)\n", 374 program->name, args->servername, xprt); 375 376 err = rpciod_up(); 377 if (err) 378 goto out_no_rpciod; 379 380 err = -EINVAL; 381 if (args->version >= program->nrvers) 382 goto out_err; 383 version = program->version[args->version]; 384 if (version == NULL) 385 goto out_err; 386 387 err = -ENOMEM; 388 clnt = kzalloc(sizeof(*clnt), GFP_KERNEL); 389 if (!clnt) 390 goto out_err; 391 clnt->cl_parent = parent ? : clnt; 392 393 err = rpc_alloc_clid(clnt); 394 if (err) 395 goto out_no_clid; 396 397 clnt->cl_procinfo = version->procs; 398 clnt->cl_maxproc = version->nrprocs; 399 clnt->cl_prog = args->prognumber ? : program->number; 400 clnt->cl_vers = version->number; 401 clnt->cl_stats = program->stats; 402 clnt->cl_metrics = rpc_alloc_iostats(clnt); 403 rpc_init_pipe_dir_head(&clnt->cl_pipedir_objects); 404 err = -ENOMEM; 405 if (clnt->cl_metrics == NULL) 406 goto out_no_stats; 407 clnt->cl_program = program; 408 INIT_LIST_HEAD(&clnt->cl_tasks); 409 spin_lock_init(&clnt->cl_lock); 410 411 timeout = xprt->timeout; 412 if (args->timeout != NULL) { 413 memcpy(&clnt->cl_timeout_default, args->timeout, 414 sizeof(clnt->cl_timeout_default)); 415 timeout = &clnt->cl_timeout_default; 416 } 417 418 rpc_clnt_set_transport(clnt, xprt, timeout); 419 xprt_iter_init(&clnt->cl_xpi, xps); 420 xprt_switch_put(xps); 421 422 clnt->cl_rtt = &clnt->cl_rtt_default; 423 rpc_init_rtt(&clnt->cl_rtt_default, clnt->cl_timeout->to_initval); 424 425 atomic_set(&clnt->cl_count, 1); 426 427 if (nodename == NULL) 428 nodename = utsname()->nodename; 429 /* save the nodename */ 430 rpc_clnt_set_nodename(clnt, nodename); 431 432 err = rpc_client_register(clnt, args->authflavor, args->client_name); 433 if (err) 434 goto out_no_path; 435 if (parent) 436 atomic_inc(&parent->cl_count); 437 return clnt; 438 439 out_no_path: 440 rpc_free_iostats(clnt->cl_metrics); 441 out_no_stats: 442 rpc_free_clid(clnt); 443 out_no_clid: 444 kfree(clnt); 445 out_err: 446 rpciod_down(); 447 out_no_rpciod: 448 xprt_switch_put(xps); 449 xprt_put(xprt); 450 return ERR_PTR(err); 451 } 452 453 static struct rpc_clnt *rpc_create_xprt(struct rpc_create_args *args, 454 struct rpc_xprt *xprt) 455 { 456 struct rpc_clnt *clnt = NULL; 457 struct rpc_xprt_switch *xps; 458 459 if (args->bc_xprt && args->bc_xprt->xpt_bc_xps) { 460 WARN_ON_ONCE(!(args->protocol & XPRT_TRANSPORT_BC)); 461 xps = args->bc_xprt->xpt_bc_xps; 462 xprt_switch_get(xps); 463 } else { 464 xps = xprt_switch_alloc(xprt, GFP_KERNEL); 465 if (xps == NULL) { 466 xprt_put(xprt); 467 return ERR_PTR(-ENOMEM); 468 } 469 if (xprt->bc_xprt) { 470 xprt_switch_get(xps); 471 xprt->bc_xprt->xpt_bc_xps = xps; 472 } 473 } 474 clnt = rpc_new_client(args, xps, xprt, NULL); 475 if (IS_ERR(clnt)) 476 return clnt; 477 478 if (!(args->flags & RPC_CLNT_CREATE_NOPING)) { 479 int err = rpc_ping(clnt); 480 if (err != 0) { 481 rpc_shutdown_client(clnt); 482 return ERR_PTR(err); 483 } 484 } 485 486 clnt->cl_softrtry = 1; 487 if (args->flags & RPC_CLNT_CREATE_HARDRTRY) 488 clnt->cl_softrtry = 0; 489 490 if (args->flags & RPC_CLNT_CREATE_AUTOBIND) 491 clnt->cl_autobind = 1; 492 if (args->flags & RPC_CLNT_CREATE_NO_RETRANS_TIMEOUT) 493 clnt->cl_noretranstimeo = 1; 494 if (args->flags & RPC_CLNT_CREATE_DISCRTRY) 495 clnt->cl_discrtry = 1; 496 if (!(args->flags & RPC_CLNT_CREATE_QUIET)) 497 clnt->cl_chatty = 1; 498 499 return clnt; 500 } 501 502 /** 503 * rpc_create - create an RPC client and transport with one call 504 * @args: rpc_clnt create argument structure 505 * 506 * Creates and initializes an RPC transport and an RPC client. 507 * 508 * It can ping the server in order to determine if it is up, and to see if 509 * it supports this program and version. RPC_CLNT_CREATE_NOPING disables 510 * this behavior so asynchronous tasks can also use rpc_create. 511 */ 512 struct rpc_clnt *rpc_create(struct rpc_create_args *args) 513 { 514 struct rpc_xprt *xprt; 515 struct xprt_create xprtargs = { 516 .net = args->net, 517 .ident = args->protocol, 518 .srcaddr = args->saddress, 519 .dstaddr = args->address, 520 .addrlen = args->addrsize, 521 .servername = args->servername, 522 .bc_xprt = args->bc_xprt, 523 }; 524 char servername[48]; 525 526 if (args->bc_xprt) { 527 WARN_ON_ONCE(!(args->protocol & XPRT_TRANSPORT_BC)); 528 xprt = args->bc_xprt->xpt_bc_xprt; 529 if (xprt) { 530 xprt_get(xprt); 531 return rpc_create_xprt(args, xprt); 532 } 533 } 534 535 if (args->flags & RPC_CLNT_CREATE_INFINITE_SLOTS) 536 xprtargs.flags |= XPRT_CREATE_INFINITE_SLOTS; 537 if (args->flags & RPC_CLNT_CREATE_NO_IDLE_TIMEOUT) 538 xprtargs.flags |= XPRT_CREATE_NO_IDLE_TIMEOUT; 539 /* 540 * If the caller chooses not to specify a hostname, whip 541 * up a string representation of the passed-in address. 542 */ 543 if (xprtargs.servername == NULL) { 544 struct sockaddr_un *sun = 545 (struct sockaddr_un *)args->address; 546 struct sockaddr_in *sin = 547 (struct sockaddr_in *)args->address; 548 struct sockaddr_in6 *sin6 = 549 (struct sockaddr_in6 *)args->address; 550 551 servername[0] = '\0'; 552 switch (args->address->sa_family) { 553 case AF_LOCAL: 554 snprintf(servername, sizeof(servername), "%s", 555 sun->sun_path); 556 break; 557 case AF_INET: 558 snprintf(servername, sizeof(servername), "%pI4", 559 &sin->sin_addr.s_addr); 560 break; 561 case AF_INET6: 562 snprintf(servername, sizeof(servername), "%pI6", 563 &sin6->sin6_addr); 564 break; 565 default: 566 /* caller wants default server name, but 567 * address family isn't recognized. */ 568 return ERR_PTR(-EINVAL); 569 } 570 xprtargs.servername = servername; 571 } 572 573 xprt = xprt_create_transport(&xprtargs); 574 if (IS_ERR(xprt)) 575 return (struct rpc_clnt *)xprt; 576 577 /* 578 * By default, kernel RPC client connects from a reserved port. 579 * CAP_NET_BIND_SERVICE will not be set for unprivileged requesters, 580 * but it is always enabled for rpciod, which handles the connect 581 * operation. 582 */ 583 xprt->resvport = 1; 584 if (args->flags & RPC_CLNT_CREATE_NONPRIVPORT) 585 xprt->resvport = 0; 586 587 return rpc_create_xprt(args, xprt); 588 } 589 EXPORT_SYMBOL_GPL(rpc_create); 590 591 /* 592 * This function clones the RPC client structure. It allows us to share the 593 * same transport while varying parameters such as the authentication 594 * flavour. 595 */ 596 static struct rpc_clnt *__rpc_clone_client(struct rpc_create_args *args, 597 struct rpc_clnt *clnt) 598 { 599 struct rpc_xprt_switch *xps; 600 struct rpc_xprt *xprt; 601 struct rpc_clnt *new; 602 int err; 603 604 err = -ENOMEM; 605 rcu_read_lock(); 606 xprt = xprt_get(rcu_dereference(clnt->cl_xprt)); 607 xps = xprt_switch_get(rcu_dereference(clnt->cl_xpi.xpi_xpswitch)); 608 rcu_read_unlock(); 609 if (xprt == NULL || xps == NULL) { 610 xprt_put(xprt); 611 xprt_switch_put(xps); 612 goto out_err; 613 } 614 args->servername = xprt->servername; 615 args->nodename = clnt->cl_nodename; 616 617 new = rpc_new_client(args, xps, xprt, clnt); 618 if (IS_ERR(new)) { 619 err = PTR_ERR(new); 620 goto out_err; 621 } 622 623 /* Turn off autobind on clones */ 624 new->cl_autobind = 0; 625 new->cl_softrtry = clnt->cl_softrtry; 626 new->cl_noretranstimeo = clnt->cl_noretranstimeo; 627 new->cl_discrtry = clnt->cl_discrtry; 628 new->cl_chatty = clnt->cl_chatty; 629 return new; 630 631 out_err: 632 dprintk("RPC: %s: returned error %d\n", __func__, err); 633 return ERR_PTR(err); 634 } 635 636 /** 637 * rpc_clone_client - Clone an RPC client structure 638 * 639 * @clnt: RPC client whose parameters are copied 640 * 641 * Returns a fresh RPC client or an ERR_PTR. 642 */ 643 struct rpc_clnt *rpc_clone_client(struct rpc_clnt *clnt) 644 { 645 struct rpc_create_args args = { 646 .program = clnt->cl_program, 647 .prognumber = clnt->cl_prog, 648 .version = clnt->cl_vers, 649 .authflavor = clnt->cl_auth->au_flavor, 650 }; 651 return __rpc_clone_client(&args, clnt); 652 } 653 EXPORT_SYMBOL_GPL(rpc_clone_client); 654 655 /** 656 * rpc_clone_client_set_auth - Clone an RPC client structure and set its auth 657 * 658 * @clnt: RPC client whose parameters are copied 659 * @flavor: security flavor for new client 660 * 661 * Returns a fresh RPC client or an ERR_PTR. 662 */ 663 struct rpc_clnt * 664 rpc_clone_client_set_auth(struct rpc_clnt *clnt, rpc_authflavor_t flavor) 665 { 666 struct rpc_create_args args = { 667 .program = clnt->cl_program, 668 .prognumber = clnt->cl_prog, 669 .version = clnt->cl_vers, 670 .authflavor = flavor, 671 }; 672 return __rpc_clone_client(&args, clnt); 673 } 674 EXPORT_SYMBOL_GPL(rpc_clone_client_set_auth); 675 676 /** 677 * rpc_switch_client_transport: switch the RPC transport on the fly 678 * @clnt: pointer to a struct rpc_clnt 679 * @args: pointer to the new transport arguments 680 * @timeout: pointer to the new timeout parameters 681 * 682 * This function allows the caller to switch the RPC transport for the 683 * rpc_clnt structure 'clnt' to allow it to connect to a mirrored NFS 684 * server, for instance. It assumes that the caller has ensured that 685 * there are no active RPC tasks by using some form of locking. 686 * 687 * Returns zero if "clnt" is now using the new xprt. Otherwise a 688 * negative errno is returned, and "clnt" continues to use the old 689 * xprt. 690 */ 691 int rpc_switch_client_transport(struct rpc_clnt *clnt, 692 struct xprt_create *args, 693 const struct rpc_timeout *timeout) 694 { 695 const struct rpc_timeout *old_timeo; 696 rpc_authflavor_t pseudoflavor; 697 struct rpc_xprt_switch *xps, *oldxps; 698 struct rpc_xprt *xprt, *old; 699 struct rpc_clnt *parent; 700 int err; 701 702 xprt = xprt_create_transport(args); 703 if (IS_ERR(xprt)) { 704 dprintk("RPC: failed to create new xprt for clnt %p\n", 705 clnt); 706 return PTR_ERR(xprt); 707 } 708 709 xps = xprt_switch_alloc(xprt, GFP_KERNEL); 710 if (xps == NULL) { 711 xprt_put(xprt); 712 return -ENOMEM; 713 } 714 715 pseudoflavor = clnt->cl_auth->au_flavor; 716 717 old_timeo = clnt->cl_timeout; 718 old = rpc_clnt_set_transport(clnt, xprt, timeout); 719 oldxps = xprt_iter_xchg_switch(&clnt->cl_xpi, xps); 720 721 rpc_unregister_client(clnt); 722 __rpc_clnt_remove_pipedir(clnt); 723 rpc_clnt_debugfs_unregister(clnt); 724 725 /* 726 * A new transport was created. "clnt" therefore 727 * becomes the root of a new cl_parent tree. clnt's 728 * children, if it has any, still point to the old xprt. 729 */ 730 parent = clnt->cl_parent; 731 clnt->cl_parent = clnt; 732 733 /* 734 * The old rpc_auth cache cannot be re-used. GSS 735 * contexts in particular are between a single 736 * client and server. 737 */ 738 err = rpc_client_register(clnt, pseudoflavor, NULL); 739 if (err) 740 goto out_revert; 741 742 synchronize_rcu(); 743 if (parent != clnt) 744 rpc_release_client(parent); 745 xprt_switch_put(oldxps); 746 xprt_put(old); 747 dprintk("RPC: replaced xprt for clnt %p\n", clnt); 748 return 0; 749 750 out_revert: 751 xps = xprt_iter_xchg_switch(&clnt->cl_xpi, oldxps); 752 rpc_clnt_set_transport(clnt, old, old_timeo); 753 clnt->cl_parent = parent; 754 rpc_client_register(clnt, pseudoflavor, NULL); 755 xprt_switch_put(xps); 756 xprt_put(xprt); 757 dprintk("RPC: failed to switch xprt for clnt %p\n", clnt); 758 return err; 759 } 760 EXPORT_SYMBOL_GPL(rpc_switch_client_transport); 761 762 static 763 int rpc_clnt_xprt_iter_init(struct rpc_clnt *clnt, struct rpc_xprt_iter *xpi) 764 { 765 struct rpc_xprt_switch *xps; 766 767 rcu_read_lock(); 768 xps = xprt_switch_get(rcu_dereference(clnt->cl_xpi.xpi_xpswitch)); 769 rcu_read_unlock(); 770 if (xps == NULL) 771 return -EAGAIN; 772 xprt_iter_init_listall(xpi, xps); 773 xprt_switch_put(xps); 774 return 0; 775 } 776 777 /** 778 * rpc_clnt_iterate_for_each_xprt - Apply a function to all transports 779 * @clnt: pointer to client 780 * @fn: function to apply 781 * @data: void pointer to function data 782 * 783 * Iterates through the list of RPC transports currently attached to the 784 * client and applies the function fn(clnt, xprt, data). 785 * 786 * On error, the iteration stops, and the function returns the error value. 787 */ 788 int rpc_clnt_iterate_for_each_xprt(struct rpc_clnt *clnt, 789 int (*fn)(struct rpc_clnt *, struct rpc_xprt *, void *), 790 void *data) 791 { 792 struct rpc_xprt_iter xpi; 793 int ret; 794 795 ret = rpc_clnt_xprt_iter_init(clnt, &xpi); 796 if (ret) 797 return ret; 798 for (;;) { 799 struct rpc_xprt *xprt = xprt_iter_get_next(&xpi); 800 801 if (!xprt) 802 break; 803 ret = fn(clnt, xprt, data); 804 xprt_put(xprt); 805 if (ret < 0) 806 break; 807 } 808 xprt_iter_destroy(&xpi); 809 return ret; 810 } 811 EXPORT_SYMBOL_GPL(rpc_clnt_iterate_for_each_xprt); 812 813 /* 814 * Kill all tasks for the given client. 815 * XXX: kill their descendants as well? 816 */ 817 void rpc_killall_tasks(struct rpc_clnt *clnt) 818 { 819 struct rpc_task *rovr; 820 821 822 if (list_empty(&clnt->cl_tasks)) 823 return; 824 dprintk("RPC: killing all tasks for client %p\n", clnt); 825 /* 826 * Spin lock all_tasks to prevent changes... 827 */ 828 spin_lock(&clnt->cl_lock); 829 list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) { 830 if (!RPC_IS_ACTIVATED(rovr)) 831 continue; 832 if (!(rovr->tk_flags & RPC_TASK_KILLED)) { 833 rovr->tk_flags |= RPC_TASK_KILLED; 834 rpc_exit(rovr, -EIO); 835 if (RPC_IS_QUEUED(rovr)) 836 rpc_wake_up_queued_task(rovr->tk_waitqueue, 837 rovr); 838 } 839 } 840 spin_unlock(&clnt->cl_lock); 841 } 842 EXPORT_SYMBOL_GPL(rpc_killall_tasks); 843 844 /* 845 * Properly shut down an RPC client, terminating all outstanding 846 * requests. 847 */ 848 void rpc_shutdown_client(struct rpc_clnt *clnt) 849 { 850 might_sleep(); 851 852 dprintk_rcu("RPC: shutting down %s client for %s\n", 853 clnt->cl_program->name, 854 rcu_dereference(clnt->cl_xprt)->servername); 855 856 while (!list_empty(&clnt->cl_tasks)) { 857 rpc_killall_tasks(clnt); 858 wait_event_timeout(destroy_wait, 859 list_empty(&clnt->cl_tasks), 1*HZ); 860 } 861 862 rpc_release_client(clnt); 863 } 864 EXPORT_SYMBOL_GPL(rpc_shutdown_client); 865 866 /* 867 * Free an RPC client 868 */ 869 static struct rpc_clnt * 870 rpc_free_client(struct rpc_clnt *clnt) 871 { 872 struct rpc_clnt *parent = NULL; 873 874 dprintk_rcu("RPC: destroying %s client for %s\n", 875 clnt->cl_program->name, 876 rcu_dereference(clnt->cl_xprt)->servername); 877 if (clnt->cl_parent != clnt) 878 parent = clnt->cl_parent; 879 rpc_clnt_debugfs_unregister(clnt); 880 rpc_clnt_remove_pipedir(clnt); 881 rpc_unregister_client(clnt); 882 rpc_free_iostats(clnt->cl_metrics); 883 clnt->cl_metrics = NULL; 884 xprt_put(rcu_dereference_raw(clnt->cl_xprt)); 885 xprt_iter_destroy(&clnt->cl_xpi); 886 rpciod_down(); 887 rpc_free_clid(clnt); 888 kfree(clnt); 889 return parent; 890 } 891 892 /* 893 * Free an RPC client 894 */ 895 static struct rpc_clnt * 896 rpc_free_auth(struct rpc_clnt *clnt) 897 { 898 if (clnt->cl_auth == NULL) 899 return rpc_free_client(clnt); 900 901 /* 902 * Note: RPCSEC_GSS may need to send NULL RPC calls in order to 903 * release remaining GSS contexts. This mechanism ensures 904 * that it can do so safely. 905 */ 906 atomic_inc(&clnt->cl_count); 907 rpcauth_release(clnt->cl_auth); 908 clnt->cl_auth = NULL; 909 if (atomic_dec_and_test(&clnt->cl_count)) 910 return rpc_free_client(clnt); 911 return NULL; 912 } 913 914 /* 915 * Release reference to the RPC client 916 */ 917 void 918 rpc_release_client(struct rpc_clnt *clnt) 919 { 920 dprintk("RPC: rpc_release_client(%p)\n", clnt); 921 922 do { 923 if (list_empty(&clnt->cl_tasks)) 924 wake_up(&destroy_wait); 925 if (!atomic_dec_and_test(&clnt->cl_count)) 926 break; 927 clnt = rpc_free_auth(clnt); 928 } while (clnt != NULL); 929 } 930 EXPORT_SYMBOL_GPL(rpc_release_client); 931 932 /** 933 * rpc_bind_new_program - bind a new RPC program to an existing client 934 * @old: old rpc_client 935 * @program: rpc program to set 936 * @vers: rpc program version 937 * 938 * Clones the rpc client and sets up a new RPC program. This is mainly 939 * of use for enabling different RPC programs to share the same transport. 940 * The Sun NFSv2/v3 ACL protocol can do this. 941 */ 942 struct rpc_clnt *rpc_bind_new_program(struct rpc_clnt *old, 943 const struct rpc_program *program, 944 u32 vers) 945 { 946 struct rpc_create_args args = { 947 .program = program, 948 .prognumber = program->number, 949 .version = vers, 950 .authflavor = old->cl_auth->au_flavor, 951 }; 952 struct rpc_clnt *clnt; 953 int err; 954 955 clnt = __rpc_clone_client(&args, old); 956 if (IS_ERR(clnt)) 957 goto out; 958 err = rpc_ping(clnt); 959 if (err != 0) { 960 rpc_shutdown_client(clnt); 961 clnt = ERR_PTR(err); 962 } 963 out: 964 return clnt; 965 } 966 EXPORT_SYMBOL_GPL(rpc_bind_new_program); 967 968 void rpc_task_release_client(struct rpc_task *task) 969 { 970 struct rpc_clnt *clnt = task->tk_client; 971 struct rpc_xprt *xprt = task->tk_xprt; 972 973 if (clnt != NULL) { 974 /* Remove from client task list */ 975 spin_lock(&clnt->cl_lock); 976 list_del(&task->tk_task); 977 spin_unlock(&clnt->cl_lock); 978 task->tk_client = NULL; 979 980 rpc_release_client(clnt); 981 } 982 983 if (xprt != NULL) { 984 task->tk_xprt = NULL; 985 986 xprt_put(xprt); 987 } 988 } 989 990 static 991 void rpc_task_set_client(struct rpc_task *task, struct rpc_clnt *clnt) 992 { 993 994 if (clnt != NULL) { 995 if (task->tk_xprt == NULL) 996 task->tk_xprt = xprt_iter_get_next(&clnt->cl_xpi); 997 task->tk_client = clnt; 998 atomic_inc(&clnt->cl_count); 999 if (clnt->cl_softrtry) 1000 task->tk_flags |= RPC_TASK_SOFT; 1001 if (clnt->cl_noretranstimeo) 1002 task->tk_flags |= RPC_TASK_NO_RETRANS_TIMEOUT; 1003 if (atomic_read(&clnt->cl_swapper)) 1004 task->tk_flags |= RPC_TASK_SWAPPER; 1005 /* Add to the client's list of all tasks */ 1006 spin_lock(&clnt->cl_lock); 1007 list_add_tail(&task->tk_task, &clnt->cl_tasks); 1008 spin_unlock(&clnt->cl_lock); 1009 } 1010 } 1011 1012 static void 1013 rpc_task_set_rpc_message(struct rpc_task *task, const struct rpc_message *msg) 1014 { 1015 if (msg != NULL) { 1016 task->tk_msg.rpc_proc = msg->rpc_proc; 1017 task->tk_msg.rpc_argp = msg->rpc_argp; 1018 task->tk_msg.rpc_resp = msg->rpc_resp; 1019 if (msg->rpc_cred != NULL) 1020 task->tk_msg.rpc_cred = get_rpccred(msg->rpc_cred); 1021 } 1022 } 1023 1024 /* 1025 * Default callback for async RPC calls 1026 */ 1027 static void 1028 rpc_default_callback(struct rpc_task *task, void *data) 1029 { 1030 } 1031 1032 static const struct rpc_call_ops rpc_default_ops = { 1033 .rpc_call_done = rpc_default_callback, 1034 }; 1035 1036 /** 1037 * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it 1038 * @task_setup_data: pointer to task initialisation data 1039 */ 1040 struct rpc_task *rpc_run_task(const struct rpc_task_setup *task_setup_data) 1041 { 1042 struct rpc_task *task; 1043 1044 task = rpc_new_task(task_setup_data); 1045 if (IS_ERR(task)) 1046 goto out; 1047 1048 rpc_task_set_client(task, task_setup_data->rpc_client); 1049 rpc_task_set_rpc_message(task, task_setup_data->rpc_message); 1050 1051 if (task->tk_action == NULL) 1052 rpc_call_start(task); 1053 1054 atomic_inc(&task->tk_count); 1055 rpc_execute(task); 1056 out: 1057 return task; 1058 } 1059 EXPORT_SYMBOL_GPL(rpc_run_task); 1060 1061 /** 1062 * rpc_call_sync - Perform a synchronous RPC call 1063 * @clnt: pointer to RPC client 1064 * @msg: RPC call parameters 1065 * @flags: RPC call flags 1066 */ 1067 int rpc_call_sync(struct rpc_clnt *clnt, const struct rpc_message *msg, int flags) 1068 { 1069 struct rpc_task *task; 1070 struct rpc_task_setup task_setup_data = { 1071 .rpc_client = clnt, 1072 .rpc_message = msg, 1073 .callback_ops = &rpc_default_ops, 1074 .flags = flags, 1075 }; 1076 int status; 1077 1078 WARN_ON_ONCE(flags & RPC_TASK_ASYNC); 1079 if (flags & RPC_TASK_ASYNC) { 1080 rpc_release_calldata(task_setup_data.callback_ops, 1081 task_setup_data.callback_data); 1082 return -EINVAL; 1083 } 1084 1085 task = rpc_run_task(&task_setup_data); 1086 if (IS_ERR(task)) 1087 return PTR_ERR(task); 1088 status = task->tk_status; 1089 rpc_put_task(task); 1090 return status; 1091 } 1092 EXPORT_SYMBOL_GPL(rpc_call_sync); 1093 1094 /** 1095 * rpc_call_async - Perform an asynchronous RPC call 1096 * @clnt: pointer to RPC client 1097 * @msg: RPC call parameters 1098 * @flags: RPC call flags 1099 * @tk_ops: RPC call ops 1100 * @data: user call data 1101 */ 1102 int 1103 rpc_call_async(struct rpc_clnt *clnt, const struct rpc_message *msg, int flags, 1104 const struct rpc_call_ops *tk_ops, void *data) 1105 { 1106 struct rpc_task *task; 1107 struct rpc_task_setup task_setup_data = { 1108 .rpc_client = clnt, 1109 .rpc_message = msg, 1110 .callback_ops = tk_ops, 1111 .callback_data = data, 1112 .flags = flags|RPC_TASK_ASYNC, 1113 }; 1114 1115 task = rpc_run_task(&task_setup_data); 1116 if (IS_ERR(task)) 1117 return PTR_ERR(task); 1118 rpc_put_task(task); 1119 return 0; 1120 } 1121 EXPORT_SYMBOL_GPL(rpc_call_async); 1122 1123 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1124 /** 1125 * rpc_run_bc_task - Allocate a new RPC task for backchannel use, then run 1126 * rpc_execute against it 1127 * @req: RPC request 1128 */ 1129 struct rpc_task *rpc_run_bc_task(struct rpc_rqst *req) 1130 { 1131 struct rpc_task *task; 1132 struct xdr_buf *xbufp = &req->rq_snd_buf; 1133 struct rpc_task_setup task_setup_data = { 1134 .callback_ops = &rpc_default_ops, 1135 .flags = RPC_TASK_SOFTCONN, 1136 }; 1137 1138 dprintk("RPC: rpc_run_bc_task req= %p\n", req); 1139 /* 1140 * Create an rpc_task to send the data 1141 */ 1142 task = rpc_new_task(&task_setup_data); 1143 if (IS_ERR(task)) { 1144 xprt_free_bc_request(req); 1145 goto out; 1146 } 1147 task->tk_rqstp = req; 1148 1149 /* 1150 * Set up the xdr_buf length. 1151 * This also indicates that the buffer is XDR encoded already. 1152 */ 1153 xbufp->len = xbufp->head[0].iov_len + xbufp->page_len + 1154 xbufp->tail[0].iov_len; 1155 1156 task->tk_action = call_bc_transmit; 1157 atomic_inc(&task->tk_count); 1158 WARN_ON_ONCE(atomic_read(&task->tk_count) != 2); 1159 rpc_execute(task); 1160 1161 out: 1162 dprintk("RPC: rpc_run_bc_task: task= %p\n", task); 1163 return task; 1164 } 1165 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1166 1167 void 1168 rpc_call_start(struct rpc_task *task) 1169 { 1170 task->tk_action = call_start; 1171 } 1172 EXPORT_SYMBOL_GPL(rpc_call_start); 1173 1174 /** 1175 * rpc_peeraddr - extract remote peer address from clnt's xprt 1176 * @clnt: RPC client structure 1177 * @buf: target buffer 1178 * @bufsize: length of target buffer 1179 * 1180 * Returns the number of bytes that are actually in the stored address. 1181 */ 1182 size_t rpc_peeraddr(struct rpc_clnt *clnt, struct sockaddr *buf, size_t bufsize) 1183 { 1184 size_t bytes; 1185 struct rpc_xprt *xprt; 1186 1187 rcu_read_lock(); 1188 xprt = rcu_dereference(clnt->cl_xprt); 1189 1190 bytes = xprt->addrlen; 1191 if (bytes > bufsize) 1192 bytes = bufsize; 1193 memcpy(buf, &xprt->addr, bytes); 1194 rcu_read_unlock(); 1195 1196 return bytes; 1197 } 1198 EXPORT_SYMBOL_GPL(rpc_peeraddr); 1199 1200 /** 1201 * rpc_peeraddr2str - return remote peer address in printable format 1202 * @clnt: RPC client structure 1203 * @format: address format 1204 * 1205 * NB: the lifetime of the memory referenced by the returned pointer is 1206 * the same as the rpc_xprt itself. As long as the caller uses this 1207 * pointer, it must hold the RCU read lock. 1208 */ 1209 const char *rpc_peeraddr2str(struct rpc_clnt *clnt, 1210 enum rpc_display_format_t format) 1211 { 1212 struct rpc_xprt *xprt; 1213 1214 xprt = rcu_dereference(clnt->cl_xprt); 1215 1216 if (xprt->address_strings[format] != NULL) 1217 return xprt->address_strings[format]; 1218 else 1219 return "unprintable"; 1220 } 1221 EXPORT_SYMBOL_GPL(rpc_peeraddr2str); 1222 1223 static const struct sockaddr_in rpc_inaddr_loopback = { 1224 .sin_family = AF_INET, 1225 .sin_addr.s_addr = htonl(INADDR_ANY), 1226 }; 1227 1228 static const struct sockaddr_in6 rpc_in6addr_loopback = { 1229 .sin6_family = AF_INET6, 1230 .sin6_addr = IN6ADDR_ANY_INIT, 1231 }; 1232 1233 /* 1234 * Try a getsockname() on a connected datagram socket. Using a 1235 * connected datagram socket prevents leaving a socket in TIME_WAIT. 1236 * This conserves the ephemeral port number space. 1237 * 1238 * Returns zero and fills in "buf" if successful; otherwise, a 1239 * negative errno is returned. 1240 */ 1241 static int rpc_sockname(struct net *net, struct sockaddr *sap, size_t salen, 1242 struct sockaddr *buf, int buflen) 1243 { 1244 struct socket *sock; 1245 int err; 1246 1247 err = __sock_create(net, sap->sa_family, 1248 SOCK_DGRAM, IPPROTO_UDP, &sock, 1); 1249 if (err < 0) { 1250 dprintk("RPC: can't create UDP socket (%d)\n", err); 1251 goto out; 1252 } 1253 1254 switch (sap->sa_family) { 1255 case AF_INET: 1256 err = kernel_bind(sock, 1257 (struct sockaddr *)&rpc_inaddr_loopback, 1258 sizeof(rpc_inaddr_loopback)); 1259 break; 1260 case AF_INET6: 1261 err = kernel_bind(sock, 1262 (struct sockaddr *)&rpc_in6addr_loopback, 1263 sizeof(rpc_in6addr_loopback)); 1264 break; 1265 default: 1266 err = -EAFNOSUPPORT; 1267 goto out; 1268 } 1269 if (err < 0) { 1270 dprintk("RPC: can't bind UDP socket (%d)\n", err); 1271 goto out_release; 1272 } 1273 1274 err = kernel_connect(sock, sap, salen, 0); 1275 if (err < 0) { 1276 dprintk("RPC: can't connect UDP socket (%d)\n", err); 1277 goto out_release; 1278 } 1279 1280 err = kernel_getsockname(sock, buf, &buflen); 1281 if (err < 0) { 1282 dprintk("RPC: getsockname failed (%d)\n", err); 1283 goto out_release; 1284 } 1285 1286 err = 0; 1287 if (buf->sa_family == AF_INET6) { 1288 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)buf; 1289 sin6->sin6_scope_id = 0; 1290 } 1291 dprintk("RPC: %s succeeded\n", __func__); 1292 1293 out_release: 1294 sock_release(sock); 1295 out: 1296 return err; 1297 } 1298 1299 /* 1300 * Scraping a connected socket failed, so we don't have a useable 1301 * local address. Fallback: generate an address that will prevent 1302 * the server from calling us back. 1303 * 1304 * Returns zero and fills in "buf" if successful; otherwise, a 1305 * negative errno is returned. 1306 */ 1307 static int rpc_anyaddr(int family, struct sockaddr *buf, size_t buflen) 1308 { 1309 switch (family) { 1310 case AF_INET: 1311 if (buflen < sizeof(rpc_inaddr_loopback)) 1312 return -EINVAL; 1313 memcpy(buf, &rpc_inaddr_loopback, 1314 sizeof(rpc_inaddr_loopback)); 1315 break; 1316 case AF_INET6: 1317 if (buflen < sizeof(rpc_in6addr_loopback)) 1318 return -EINVAL; 1319 memcpy(buf, &rpc_in6addr_loopback, 1320 sizeof(rpc_in6addr_loopback)); 1321 break; 1322 default: 1323 dprintk("RPC: %s: address family not supported\n", 1324 __func__); 1325 return -EAFNOSUPPORT; 1326 } 1327 dprintk("RPC: %s: succeeded\n", __func__); 1328 return 0; 1329 } 1330 1331 /** 1332 * rpc_localaddr - discover local endpoint address for an RPC client 1333 * @clnt: RPC client structure 1334 * @buf: target buffer 1335 * @buflen: size of target buffer, in bytes 1336 * 1337 * Returns zero and fills in "buf" and "buflen" if successful; 1338 * otherwise, a negative errno is returned. 1339 * 1340 * This works even if the underlying transport is not currently connected, 1341 * or if the upper layer never previously provided a source address. 1342 * 1343 * The result of this function call is transient: multiple calls in 1344 * succession may give different results, depending on how local 1345 * networking configuration changes over time. 1346 */ 1347 int rpc_localaddr(struct rpc_clnt *clnt, struct sockaddr *buf, size_t buflen) 1348 { 1349 struct sockaddr_storage address; 1350 struct sockaddr *sap = (struct sockaddr *)&address; 1351 struct rpc_xprt *xprt; 1352 struct net *net; 1353 size_t salen; 1354 int err; 1355 1356 rcu_read_lock(); 1357 xprt = rcu_dereference(clnt->cl_xprt); 1358 salen = xprt->addrlen; 1359 memcpy(sap, &xprt->addr, salen); 1360 net = get_net(xprt->xprt_net); 1361 rcu_read_unlock(); 1362 1363 rpc_set_port(sap, 0); 1364 err = rpc_sockname(net, sap, salen, buf, buflen); 1365 put_net(net); 1366 if (err != 0) 1367 /* Couldn't discover local address, return ANYADDR */ 1368 return rpc_anyaddr(sap->sa_family, buf, buflen); 1369 return 0; 1370 } 1371 EXPORT_SYMBOL_GPL(rpc_localaddr); 1372 1373 void 1374 rpc_setbufsize(struct rpc_clnt *clnt, unsigned int sndsize, unsigned int rcvsize) 1375 { 1376 struct rpc_xprt *xprt; 1377 1378 rcu_read_lock(); 1379 xprt = rcu_dereference(clnt->cl_xprt); 1380 if (xprt->ops->set_buffer_size) 1381 xprt->ops->set_buffer_size(xprt, sndsize, rcvsize); 1382 rcu_read_unlock(); 1383 } 1384 EXPORT_SYMBOL_GPL(rpc_setbufsize); 1385 1386 /** 1387 * rpc_protocol - Get transport protocol number for an RPC client 1388 * @clnt: RPC client to query 1389 * 1390 */ 1391 int rpc_protocol(struct rpc_clnt *clnt) 1392 { 1393 int protocol; 1394 1395 rcu_read_lock(); 1396 protocol = rcu_dereference(clnt->cl_xprt)->prot; 1397 rcu_read_unlock(); 1398 return protocol; 1399 } 1400 EXPORT_SYMBOL_GPL(rpc_protocol); 1401 1402 /** 1403 * rpc_net_ns - Get the network namespace for this RPC client 1404 * @clnt: RPC client to query 1405 * 1406 */ 1407 struct net *rpc_net_ns(struct rpc_clnt *clnt) 1408 { 1409 struct net *ret; 1410 1411 rcu_read_lock(); 1412 ret = rcu_dereference(clnt->cl_xprt)->xprt_net; 1413 rcu_read_unlock(); 1414 return ret; 1415 } 1416 EXPORT_SYMBOL_GPL(rpc_net_ns); 1417 1418 /** 1419 * rpc_max_payload - Get maximum payload size for a transport, in bytes 1420 * @clnt: RPC client to query 1421 * 1422 * For stream transports, this is one RPC record fragment (see RFC 1423 * 1831), as we don't support multi-record requests yet. For datagram 1424 * transports, this is the size of an IP packet minus the IP, UDP, and 1425 * RPC header sizes. 1426 */ 1427 size_t rpc_max_payload(struct rpc_clnt *clnt) 1428 { 1429 size_t ret; 1430 1431 rcu_read_lock(); 1432 ret = rcu_dereference(clnt->cl_xprt)->max_payload; 1433 rcu_read_unlock(); 1434 return ret; 1435 } 1436 EXPORT_SYMBOL_GPL(rpc_max_payload); 1437 1438 /** 1439 * rpc_max_bc_payload - Get maximum backchannel payload size, in bytes 1440 * @clnt: RPC client to query 1441 */ 1442 size_t rpc_max_bc_payload(struct rpc_clnt *clnt) 1443 { 1444 struct rpc_xprt *xprt; 1445 size_t ret; 1446 1447 rcu_read_lock(); 1448 xprt = rcu_dereference(clnt->cl_xprt); 1449 ret = xprt->ops->bc_maxpayload(xprt); 1450 rcu_read_unlock(); 1451 return ret; 1452 } 1453 EXPORT_SYMBOL_GPL(rpc_max_bc_payload); 1454 1455 /** 1456 * rpc_force_rebind - force transport to check that remote port is unchanged 1457 * @clnt: client to rebind 1458 * 1459 */ 1460 void rpc_force_rebind(struct rpc_clnt *clnt) 1461 { 1462 if (clnt->cl_autobind) { 1463 rcu_read_lock(); 1464 xprt_clear_bound(rcu_dereference(clnt->cl_xprt)); 1465 rcu_read_unlock(); 1466 } 1467 } 1468 EXPORT_SYMBOL_GPL(rpc_force_rebind); 1469 1470 /* 1471 * Restart an (async) RPC call from the call_prepare state. 1472 * Usually called from within the exit handler. 1473 */ 1474 int 1475 rpc_restart_call_prepare(struct rpc_task *task) 1476 { 1477 if (RPC_ASSASSINATED(task)) 1478 return 0; 1479 task->tk_action = call_start; 1480 task->tk_status = 0; 1481 if (task->tk_ops->rpc_call_prepare != NULL) 1482 task->tk_action = rpc_prepare_task; 1483 return 1; 1484 } 1485 EXPORT_SYMBOL_GPL(rpc_restart_call_prepare); 1486 1487 /* 1488 * Restart an (async) RPC call. Usually called from within the 1489 * exit handler. 1490 */ 1491 int 1492 rpc_restart_call(struct rpc_task *task) 1493 { 1494 if (RPC_ASSASSINATED(task)) 1495 return 0; 1496 task->tk_action = call_start; 1497 task->tk_status = 0; 1498 return 1; 1499 } 1500 EXPORT_SYMBOL_GPL(rpc_restart_call); 1501 1502 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 1503 const char 1504 *rpc_proc_name(const struct rpc_task *task) 1505 { 1506 const struct rpc_procinfo *proc = task->tk_msg.rpc_proc; 1507 1508 if (proc) { 1509 if (proc->p_name) 1510 return proc->p_name; 1511 else 1512 return "NULL"; 1513 } else 1514 return "no proc"; 1515 } 1516 #endif 1517 1518 /* 1519 * 0. Initial state 1520 * 1521 * Other FSM states can be visited zero or more times, but 1522 * this state is visited exactly once for each RPC. 1523 */ 1524 static void 1525 call_start(struct rpc_task *task) 1526 { 1527 struct rpc_clnt *clnt = task->tk_client; 1528 1529 dprintk("RPC: %5u call_start %s%d proc %s (%s)\n", task->tk_pid, 1530 clnt->cl_program->name, clnt->cl_vers, 1531 rpc_proc_name(task), 1532 (RPC_IS_ASYNC(task) ? "async" : "sync")); 1533 1534 /* Increment call count */ 1535 task->tk_msg.rpc_proc->p_count++; 1536 clnt->cl_stats->rpccnt++; 1537 task->tk_action = call_reserve; 1538 } 1539 1540 /* 1541 * 1. Reserve an RPC call slot 1542 */ 1543 static void 1544 call_reserve(struct rpc_task *task) 1545 { 1546 dprint_status(task); 1547 1548 task->tk_status = 0; 1549 task->tk_action = call_reserveresult; 1550 xprt_reserve(task); 1551 } 1552 1553 static void call_retry_reserve(struct rpc_task *task); 1554 1555 /* 1556 * 1b. Grok the result of xprt_reserve() 1557 */ 1558 static void 1559 call_reserveresult(struct rpc_task *task) 1560 { 1561 int status = task->tk_status; 1562 1563 dprint_status(task); 1564 1565 /* 1566 * After a call to xprt_reserve(), we must have either 1567 * a request slot or else an error status. 1568 */ 1569 task->tk_status = 0; 1570 if (status >= 0) { 1571 if (task->tk_rqstp) { 1572 task->tk_action = call_refresh; 1573 return; 1574 } 1575 1576 printk(KERN_ERR "%s: status=%d, but no request slot, exiting\n", 1577 __func__, status); 1578 rpc_exit(task, -EIO); 1579 return; 1580 } 1581 1582 /* 1583 * Even though there was an error, we may have acquired 1584 * a request slot somehow. Make sure not to leak it. 1585 */ 1586 if (task->tk_rqstp) { 1587 printk(KERN_ERR "%s: status=%d, request allocated anyway\n", 1588 __func__, status); 1589 xprt_release(task); 1590 } 1591 1592 switch (status) { 1593 case -ENOMEM: 1594 rpc_delay(task, HZ >> 2); 1595 case -EAGAIN: /* woken up; retry */ 1596 task->tk_action = call_retry_reserve; 1597 return; 1598 case -EIO: /* probably a shutdown */ 1599 break; 1600 default: 1601 printk(KERN_ERR "%s: unrecognized error %d, exiting\n", 1602 __func__, status); 1603 break; 1604 } 1605 rpc_exit(task, status); 1606 } 1607 1608 /* 1609 * 1c. Retry reserving an RPC call slot 1610 */ 1611 static void 1612 call_retry_reserve(struct rpc_task *task) 1613 { 1614 dprint_status(task); 1615 1616 task->tk_status = 0; 1617 task->tk_action = call_reserveresult; 1618 xprt_retry_reserve(task); 1619 } 1620 1621 /* 1622 * 2. Bind and/or refresh the credentials 1623 */ 1624 static void 1625 call_refresh(struct rpc_task *task) 1626 { 1627 dprint_status(task); 1628 1629 task->tk_action = call_refreshresult; 1630 task->tk_status = 0; 1631 task->tk_client->cl_stats->rpcauthrefresh++; 1632 rpcauth_refreshcred(task); 1633 } 1634 1635 /* 1636 * 2a. Process the results of a credential refresh 1637 */ 1638 static void 1639 call_refreshresult(struct rpc_task *task) 1640 { 1641 int status = task->tk_status; 1642 1643 dprint_status(task); 1644 1645 task->tk_status = 0; 1646 task->tk_action = call_refresh; 1647 switch (status) { 1648 case 0: 1649 if (rpcauth_uptodatecred(task)) { 1650 task->tk_action = call_allocate; 1651 return; 1652 } 1653 /* Use rate-limiting and a max number of retries if refresh 1654 * had status 0 but failed to update the cred. 1655 */ 1656 case -ETIMEDOUT: 1657 rpc_delay(task, 3*HZ); 1658 case -EAGAIN: 1659 status = -EACCES; 1660 case -EKEYEXPIRED: 1661 if (!task->tk_cred_retry) 1662 break; 1663 task->tk_cred_retry--; 1664 dprintk("RPC: %5u %s: retry refresh creds\n", 1665 task->tk_pid, __func__); 1666 return; 1667 } 1668 dprintk("RPC: %5u %s: refresh creds failed with error %d\n", 1669 task->tk_pid, __func__, status); 1670 rpc_exit(task, status); 1671 } 1672 1673 /* 1674 * 2b. Allocate the buffer. For details, see sched.c:rpc_malloc. 1675 * (Note: buffer memory is freed in xprt_release). 1676 */ 1677 static void 1678 call_allocate(struct rpc_task *task) 1679 { 1680 unsigned int slack = task->tk_rqstp->rq_cred->cr_auth->au_cslack; 1681 struct rpc_rqst *req = task->tk_rqstp; 1682 struct rpc_xprt *xprt = req->rq_xprt; 1683 struct rpc_procinfo *proc = task->tk_msg.rpc_proc; 1684 int status; 1685 1686 dprint_status(task); 1687 1688 task->tk_status = 0; 1689 task->tk_action = call_bind; 1690 1691 if (req->rq_buffer) 1692 return; 1693 1694 if (proc->p_proc != 0) { 1695 BUG_ON(proc->p_arglen == 0); 1696 if (proc->p_decode != NULL) 1697 BUG_ON(proc->p_replen == 0); 1698 } 1699 1700 /* 1701 * Calculate the size (in quads) of the RPC call 1702 * and reply headers, and convert both values 1703 * to byte sizes. 1704 */ 1705 req->rq_callsize = RPC_CALLHDRSIZE + (slack << 1) + proc->p_arglen; 1706 req->rq_callsize <<= 2; 1707 req->rq_rcvsize = RPC_REPHDRSIZE + slack + proc->p_replen; 1708 req->rq_rcvsize <<= 2; 1709 1710 status = xprt->ops->buf_alloc(task); 1711 xprt_inject_disconnect(xprt); 1712 if (status == 0) 1713 return; 1714 if (status != -ENOMEM) { 1715 rpc_exit(task, status); 1716 return; 1717 } 1718 1719 dprintk("RPC: %5u rpc_buffer allocation failed\n", task->tk_pid); 1720 1721 if (RPC_IS_ASYNC(task) || !fatal_signal_pending(current)) { 1722 task->tk_action = call_allocate; 1723 rpc_delay(task, HZ>>4); 1724 return; 1725 } 1726 1727 rpc_exit(task, -ERESTARTSYS); 1728 } 1729 1730 static inline int 1731 rpc_task_need_encode(struct rpc_task *task) 1732 { 1733 return task->tk_rqstp->rq_snd_buf.len == 0; 1734 } 1735 1736 static inline void 1737 rpc_task_force_reencode(struct rpc_task *task) 1738 { 1739 task->tk_rqstp->rq_snd_buf.len = 0; 1740 task->tk_rqstp->rq_bytes_sent = 0; 1741 } 1742 1743 /* 1744 * 3. Encode arguments of an RPC call 1745 */ 1746 static void 1747 rpc_xdr_encode(struct rpc_task *task) 1748 { 1749 struct rpc_rqst *req = task->tk_rqstp; 1750 kxdreproc_t encode; 1751 __be32 *p; 1752 1753 dprint_status(task); 1754 1755 xdr_buf_init(&req->rq_snd_buf, 1756 req->rq_buffer, 1757 req->rq_callsize); 1758 xdr_buf_init(&req->rq_rcv_buf, 1759 req->rq_rbuffer, 1760 req->rq_rcvsize); 1761 1762 p = rpc_encode_header(task); 1763 if (p == NULL) { 1764 printk(KERN_INFO "RPC: couldn't encode RPC header, exit EIO\n"); 1765 rpc_exit(task, -EIO); 1766 return; 1767 } 1768 1769 encode = task->tk_msg.rpc_proc->p_encode; 1770 if (encode == NULL) 1771 return; 1772 1773 task->tk_status = rpcauth_wrap_req(task, encode, req, p, 1774 task->tk_msg.rpc_argp); 1775 } 1776 1777 /* 1778 * 4. Get the server port number if not yet set 1779 */ 1780 static void 1781 call_bind(struct rpc_task *task) 1782 { 1783 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; 1784 1785 dprint_status(task); 1786 1787 task->tk_action = call_connect; 1788 if (!xprt_bound(xprt)) { 1789 task->tk_action = call_bind_status; 1790 task->tk_timeout = xprt->bind_timeout; 1791 xprt->ops->rpcbind(task); 1792 } 1793 } 1794 1795 /* 1796 * 4a. Sort out bind result 1797 */ 1798 static void 1799 call_bind_status(struct rpc_task *task) 1800 { 1801 int status = -EIO; 1802 1803 if (task->tk_status >= 0) { 1804 dprint_status(task); 1805 task->tk_status = 0; 1806 task->tk_action = call_connect; 1807 return; 1808 } 1809 1810 trace_rpc_bind_status(task); 1811 switch (task->tk_status) { 1812 case -ENOMEM: 1813 dprintk("RPC: %5u rpcbind out of memory\n", task->tk_pid); 1814 rpc_delay(task, HZ >> 2); 1815 goto retry_timeout; 1816 case -EACCES: 1817 dprintk("RPC: %5u remote rpcbind: RPC program/version " 1818 "unavailable\n", task->tk_pid); 1819 /* fail immediately if this is an RPC ping */ 1820 if (task->tk_msg.rpc_proc->p_proc == 0) { 1821 status = -EOPNOTSUPP; 1822 break; 1823 } 1824 if (task->tk_rebind_retry == 0) 1825 break; 1826 task->tk_rebind_retry--; 1827 rpc_delay(task, 3*HZ); 1828 goto retry_timeout; 1829 case -ETIMEDOUT: 1830 dprintk("RPC: %5u rpcbind request timed out\n", 1831 task->tk_pid); 1832 goto retry_timeout; 1833 case -EPFNOSUPPORT: 1834 /* server doesn't support any rpcbind version we know of */ 1835 dprintk("RPC: %5u unrecognized remote rpcbind service\n", 1836 task->tk_pid); 1837 break; 1838 case -EPROTONOSUPPORT: 1839 dprintk("RPC: %5u remote rpcbind version unavailable, retrying\n", 1840 task->tk_pid); 1841 goto retry_timeout; 1842 case -ECONNREFUSED: /* connection problems */ 1843 case -ECONNRESET: 1844 case -ECONNABORTED: 1845 case -ENOTCONN: 1846 case -EHOSTDOWN: 1847 case -EHOSTUNREACH: 1848 case -ENETUNREACH: 1849 case -ENOBUFS: 1850 case -EPIPE: 1851 dprintk("RPC: %5u remote rpcbind unreachable: %d\n", 1852 task->tk_pid, task->tk_status); 1853 if (!RPC_IS_SOFTCONN(task)) { 1854 rpc_delay(task, 5*HZ); 1855 goto retry_timeout; 1856 } 1857 status = task->tk_status; 1858 break; 1859 default: 1860 dprintk("RPC: %5u unrecognized rpcbind error (%d)\n", 1861 task->tk_pid, -task->tk_status); 1862 } 1863 1864 rpc_exit(task, status); 1865 return; 1866 1867 retry_timeout: 1868 task->tk_status = 0; 1869 task->tk_action = call_timeout; 1870 } 1871 1872 /* 1873 * 4b. Connect to the RPC server 1874 */ 1875 static void 1876 call_connect(struct rpc_task *task) 1877 { 1878 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; 1879 1880 dprintk("RPC: %5u call_connect xprt %p %s connected\n", 1881 task->tk_pid, xprt, 1882 (xprt_connected(xprt) ? "is" : "is not")); 1883 1884 task->tk_action = call_transmit; 1885 if (!xprt_connected(xprt)) { 1886 task->tk_action = call_connect_status; 1887 if (task->tk_status < 0) 1888 return; 1889 if (task->tk_flags & RPC_TASK_NOCONNECT) { 1890 rpc_exit(task, -ENOTCONN); 1891 return; 1892 } 1893 xprt_connect(task); 1894 } 1895 } 1896 1897 /* 1898 * 4c. Sort out connect result 1899 */ 1900 static void 1901 call_connect_status(struct rpc_task *task) 1902 { 1903 struct rpc_clnt *clnt = task->tk_client; 1904 int status = task->tk_status; 1905 1906 dprint_status(task); 1907 1908 trace_rpc_connect_status(task, status); 1909 task->tk_status = 0; 1910 switch (status) { 1911 case -ECONNREFUSED: 1912 case -ECONNRESET: 1913 case -ECONNABORTED: 1914 case -ENETUNREACH: 1915 case -EHOSTUNREACH: 1916 case -EADDRINUSE: 1917 case -ENOBUFS: 1918 case -EPIPE: 1919 xprt_conditional_disconnect(task->tk_rqstp->rq_xprt, 1920 task->tk_rqstp->rq_connect_cookie); 1921 if (RPC_IS_SOFTCONN(task)) 1922 break; 1923 /* retry with existing socket, after a delay */ 1924 rpc_delay(task, 3*HZ); 1925 case -EAGAIN: 1926 /* Check for timeouts before looping back to call_bind */ 1927 case -ETIMEDOUT: 1928 task->tk_action = call_timeout; 1929 return; 1930 case 0: 1931 clnt->cl_stats->netreconn++; 1932 task->tk_action = call_transmit; 1933 return; 1934 } 1935 rpc_exit(task, status); 1936 } 1937 1938 /* 1939 * 5. Transmit the RPC request, and wait for reply 1940 */ 1941 static void 1942 call_transmit(struct rpc_task *task) 1943 { 1944 int is_retrans = RPC_WAS_SENT(task); 1945 1946 dprint_status(task); 1947 1948 task->tk_action = call_status; 1949 if (task->tk_status < 0) 1950 return; 1951 if (!xprt_prepare_transmit(task)) 1952 return; 1953 task->tk_action = call_transmit_status; 1954 /* Encode here so that rpcsec_gss can use correct sequence number. */ 1955 if (rpc_task_need_encode(task)) { 1956 rpc_xdr_encode(task); 1957 /* Did the encode result in an error condition? */ 1958 if (task->tk_status != 0) { 1959 /* Was the error nonfatal? */ 1960 if (task->tk_status == -EAGAIN) 1961 rpc_delay(task, HZ >> 4); 1962 else 1963 rpc_exit(task, task->tk_status); 1964 return; 1965 } 1966 } 1967 xprt_transmit(task); 1968 if (task->tk_status < 0) 1969 return; 1970 if (is_retrans) 1971 task->tk_client->cl_stats->rpcretrans++; 1972 /* 1973 * On success, ensure that we call xprt_end_transmit() before sleeping 1974 * in order to allow access to the socket to other RPC requests. 1975 */ 1976 call_transmit_status(task); 1977 if (rpc_reply_expected(task)) 1978 return; 1979 task->tk_action = rpc_exit_task; 1980 rpc_wake_up_queued_task(&task->tk_rqstp->rq_xprt->pending, task); 1981 } 1982 1983 /* 1984 * 5a. Handle cleanup after a transmission 1985 */ 1986 static void 1987 call_transmit_status(struct rpc_task *task) 1988 { 1989 task->tk_action = call_status; 1990 1991 /* 1992 * Common case: success. Force the compiler to put this 1993 * test first. 1994 */ 1995 if (task->tk_status == 0) { 1996 xprt_end_transmit(task); 1997 rpc_task_force_reencode(task); 1998 return; 1999 } 2000 2001 switch (task->tk_status) { 2002 case -EAGAIN: 2003 case -ENOBUFS: 2004 break; 2005 default: 2006 dprint_status(task); 2007 xprt_end_transmit(task); 2008 rpc_task_force_reencode(task); 2009 break; 2010 /* 2011 * Special cases: if we've been waiting on the 2012 * socket's write_space() callback, or if the 2013 * socket just returned a connection error, 2014 * then hold onto the transport lock. 2015 */ 2016 case -ECONNREFUSED: 2017 case -EHOSTDOWN: 2018 case -EHOSTUNREACH: 2019 case -ENETUNREACH: 2020 case -EPERM: 2021 if (RPC_IS_SOFTCONN(task)) { 2022 xprt_end_transmit(task); 2023 rpc_exit(task, task->tk_status); 2024 break; 2025 } 2026 case -ECONNRESET: 2027 case -ECONNABORTED: 2028 case -EADDRINUSE: 2029 case -ENOTCONN: 2030 case -EPIPE: 2031 rpc_task_force_reencode(task); 2032 } 2033 } 2034 2035 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 2036 /* 2037 * 5b. Send the backchannel RPC reply. On error, drop the reply. In 2038 * addition, disconnect on connectivity errors. 2039 */ 2040 static void 2041 call_bc_transmit(struct rpc_task *task) 2042 { 2043 struct rpc_rqst *req = task->tk_rqstp; 2044 2045 if (!xprt_prepare_transmit(task)) 2046 goto out_retry; 2047 2048 if (task->tk_status < 0) { 2049 printk(KERN_NOTICE "RPC: Could not send backchannel reply " 2050 "error: %d\n", task->tk_status); 2051 goto out_done; 2052 } 2053 if (req->rq_connect_cookie != req->rq_xprt->connect_cookie) 2054 req->rq_bytes_sent = 0; 2055 2056 xprt_transmit(task); 2057 2058 if (task->tk_status == -EAGAIN) 2059 goto out_nospace; 2060 2061 xprt_end_transmit(task); 2062 dprint_status(task); 2063 switch (task->tk_status) { 2064 case 0: 2065 /* Success */ 2066 case -EHOSTDOWN: 2067 case -EHOSTUNREACH: 2068 case -ENETUNREACH: 2069 case -ECONNRESET: 2070 case -ECONNREFUSED: 2071 case -EADDRINUSE: 2072 case -ENOTCONN: 2073 case -EPIPE: 2074 break; 2075 case -ETIMEDOUT: 2076 /* 2077 * Problem reaching the server. Disconnect and let the 2078 * forechannel reestablish the connection. The server will 2079 * have to retransmit the backchannel request and we'll 2080 * reprocess it. Since these ops are idempotent, there's no 2081 * need to cache our reply at this time. 2082 */ 2083 printk(KERN_NOTICE "RPC: Could not send backchannel reply " 2084 "error: %d\n", task->tk_status); 2085 xprt_conditional_disconnect(req->rq_xprt, 2086 req->rq_connect_cookie); 2087 break; 2088 default: 2089 /* 2090 * We were unable to reply and will have to drop the 2091 * request. The server should reconnect and retransmit. 2092 */ 2093 WARN_ON_ONCE(task->tk_status == -EAGAIN); 2094 printk(KERN_NOTICE "RPC: Could not send backchannel reply " 2095 "error: %d\n", task->tk_status); 2096 break; 2097 } 2098 rpc_wake_up_queued_task(&req->rq_xprt->pending, task); 2099 out_done: 2100 task->tk_action = rpc_exit_task; 2101 return; 2102 out_nospace: 2103 req->rq_connect_cookie = req->rq_xprt->connect_cookie; 2104 out_retry: 2105 task->tk_status = 0; 2106 } 2107 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 2108 2109 /* 2110 * 6. Sort out the RPC call status 2111 */ 2112 static void 2113 call_status(struct rpc_task *task) 2114 { 2115 struct rpc_clnt *clnt = task->tk_client; 2116 struct rpc_rqst *req = task->tk_rqstp; 2117 int status; 2118 2119 if (req->rq_reply_bytes_recvd > 0 && !req->rq_bytes_sent) 2120 task->tk_status = req->rq_reply_bytes_recvd; 2121 2122 dprint_status(task); 2123 2124 status = task->tk_status; 2125 if (status >= 0) { 2126 task->tk_action = call_decode; 2127 return; 2128 } 2129 2130 trace_rpc_call_status(task); 2131 task->tk_status = 0; 2132 switch(status) { 2133 case -EHOSTDOWN: 2134 case -EHOSTUNREACH: 2135 case -ENETUNREACH: 2136 case -EPERM: 2137 if (RPC_IS_SOFTCONN(task)) { 2138 rpc_exit(task, status); 2139 break; 2140 } 2141 /* 2142 * Delay any retries for 3 seconds, then handle as if it 2143 * were a timeout. 2144 */ 2145 rpc_delay(task, 3*HZ); 2146 case -ETIMEDOUT: 2147 task->tk_action = call_timeout; 2148 if (!(task->tk_flags & RPC_TASK_NO_RETRANS_TIMEOUT) 2149 && task->tk_client->cl_discrtry) 2150 xprt_conditional_disconnect(req->rq_xprt, 2151 req->rq_connect_cookie); 2152 break; 2153 case -ECONNREFUSED: 2154 case -ECONNRESET: 2155 case -ECONNABORTED: 2156 rpc_force_rebind(clnt); 2157 case -EADDRINUSE: 2158 rpc_delay(task, 3*HZ); 2159 case -EPIPE: 2160 case -ENOTCONN: 2161 task->tk_action = call_bind; 2162 break; 2163 case -ENOBUFS: 2164 rpc_delay(task, HZ>>2); 2165 case -EAGAIN: 2166 task->tk_action = call_transmit; 2167 break; 2168 case -EIO: 2169 /* shutdown or soft timeout */ 2170 rpc_exit(task, status); 2171 break; 2172 default: 2173 if (clnt->cl_chatty) 2174 printk("%s: RPC call returned error %d\n", 2175 clnt->cl_program->name, -status); 2176 rpc_exit(task, status); 2177 } 2178 } 2179 2180 /* 2181 * 6a. Handle RPC timeout 2182 * We do not release the request slot, so we keep using the 2183 * same XID for all retransmits. 2184 */ 2185 static void 2186 call_timeout(struct rpc_task *task) 2187 { 2188 struct rpc_clnt *clnt = task->tk_client; 2189 2190 if (xprt_adjust_timeout(task->tk_rqstp) == 0) { 2191 dprintk("RPC: %5u call_timeout (minor)\n", task->tk_pid); 2192 goto retry; 2193 } 2194 2195 dprintk("RPC: %5u call_timeout (major)\n", task->tk_pid); 2196 task->tk_timeouts++; 2197 2198 if (RPC_IS_SOFTCONN(task)) { 2199 rpc_exit(task, -ETIMEDOUT); 2200 return; 2201 } 2202 if (RPC_IS_SOFT(task)) { 2203 if (clnt->cl_chatty) { 2204 printk(KERN_NOTICE "%s: server %s not responding, timed out\n", 2205 clnt->cl_program->name, 2206 task->tk_xprt->servername); 2207 } 2208 if (task->tk_flags & RPC_TASK_TIMEOUT) 2209 rpc_exit(task, -ETIMEDOUT); 2210 else 2211 rpc_exit(task, -EIO); 2212 return; 2213 } 2214 2215 if (!(task->tk_flags & RPC_CALL_MAJORSEEN)) { 2216 task->tk_flags |= RPC_CALL_MAJORSEEN; 2217 if (clnt->cl_chatty) { 2218 printk(KERN_NOTICE "%s: server %s not responding, still trying\n", 2219 clnt->cl_program->name, 2220 task->tk_xprt->servername); 2221 } 2222 } 2223 rpc_force_rebind(clnt); 2224 /* 2225 * Did our request time out due to an RPCSEC_GSS out-of-sequence 2226 * event? RFC2203 requires the server to drop all such requests. 2227 */ 2228 rpcauth_invalcred(task); 2229 2230 retry: 2231 task->tk_action = call_bind; 2232 task->tk_status = 0; 2233 } 2234 2235 /* 2236 * 7. Decode the RPC reply 2237 */ 2238 static void 2239 call_decode(struct rpc_task *task) 2240 { 2241 struct rpc_clnt *clnt = task->tk_client; 2242 struct rpc_rqst *req = task->tk_rqstp; 2243 kxdrdproc_t decode = task->tk_msg.rpc_proc->p_decode; 2244 __be32 *p; 2245 2246 dprint_status(task); 2247 2248 if (task->tk_flags & RPC_CALL_MAJORSEEN) { 2249 if (clnt->cl_chatty) { 2250 printk(KERN_NOTICE "%s: server %s OK\n", 2251 clnt->cl_program->name, 2252 task->tk_xprt->servername); 2253 } 2254 task->tk_flags &= ~RPC_CALL_MAJORSEEN; 2255 } 2256 2257 /* 2258 * Ensure that we see all writes made by xprt_complete_rqst() 2259 * before it changed req->rq_reply_bytes_recvd. 2260 */ 2261 smp_rmb(); 2262 req->rq_rcv_buf.len = req->rq_private_buf.len; 2263 2264 /* Check that the softirq receive buffer is valid */ 2265 WARN_ON(memcmp(&req->rq_rcv_buf, &req->rq_private_buf, 2266 sizeof(req->rq_rcv_buf)) != 0); 2267 2268 if (req->rq_rcv_buf.len < 12) { 2269 if (!RPC_IS_SOFT(task)) { 2270 task->tk_action = call_bind; 2271 goto out_retry; 2272 } 2273 dprintk("RPC: %s: too small RPC reply size (%d bytes)\n", 2274 clnt->cl_program->name, task->tk_status); 2275 task->tk_action = call_timeout; 2276 goto out_retry; 2277 } 2278 2279 p = rpc_verify_header(task); 2280 if (IS_ERR(p)) { 2281 if (p == ERR_PTR(-EAGAIN)) 2282 goto out_retry; 2283 return; 2284 } 2285 2286 task->tk_action = rpc_exit_task; 2287 2288 if (decode) { 2289 task->tk_status = rpcauth_unwrap_resp(task, decode, req, p, 2290 task->tk_msg.rpc_resp); 2291 } 2292 dprintk("RPC: %5u call_decode result %d\n", task->tk_pid, 2293 task->tk_status); 2294 return; 2295 out_retry: 2296 task->tk_status = 0; 2297 /* Note: rpc_verify_header() may have freed the RPC slot */ 2298 if (task->tk_rqstp == req) { 2299 req->rq_reply_bytes_recvd = req->rq_rcv_buf.len = 0; 2300 if (task->tk_client->cl_discrtry) 2301 xprt_conditional_disconnect(req->rq_xprt, 2302 req->rq_connect_cookie); 2303 } 2304 } 2305 2306 static __be32 * 2307 rpc_encode_header(struct rpc_task *task) 2308 { 2309 struct rpc_clnt *clnt = task->tk_client; 2310 struct rpc_rqst *req = task->tk_rqstp; 2311 __be32 *p = req->rq_svec[0].iov_base; 2312 2313 /* FIXME: check buffer size? */ 2314 2315 p = xprt_skip_transport_header(req->rq_xprt, p); 2316 *p++ = req->rq_xid; /* XID */ 2317 *p++ = htonl(RPC_CALL); /* CALL */ 2318 *p++ = htonl(RPC_VERSION); /* RPC version */ 2319 *p++ = htonl(clnt->cl_prog); /* program number */ 2320 *p++ = htonl(clnt->cl_vers); /* program version */ 2321 *p++ = htonl(task->tk_msg.rpc_proc->p_proc); /* procedure */ 2322 p = rpcauth_marshcred(task, p); 2323 req->rq_slen = xdr_adjust_iovec(&req->rq_svec[0], p); 2324 return p; 2325 } 2326 2327 static __be32 * 2328 rpc_verify_header(struct rpc_task *task) 2329 { 2330 struct rpc_clnt *clnt = task->tk_client; 2331 struct kvec *iov = &task->tk_rqstp->rq_rcv_buf.head[0]; 2332 int len = task->tk_rqstp->rq_rcv_buf.len >> 2; 2333 __be32 *p = iov->iov_base; 2334 u32 n; 2335 int error = -EACCES; 2336 2337 if ((task->tk_rqstp->rq_rcv_buf.len & 3) != 0) { 2338 /* RFC-1014 says that the representation of XDR data must be a 2339 * multiple of four bytes 2340 * - if it isn't pointer subtraction in the NFS client may give 2341 * undefined results 2342 */ 2343 dprintk("RPC: %5u %s: XDR representation not a multiple of" 2344 " 4 bytes: 0x%x\n", task->tk_pid, __func__, 2345 task->tk_rqstp->rq_rcv_buf.len); 2346 error = -EIO; 2347 goto out_err; 2348 } 2349 if ((len -= 3) < 0) 2350 goto out_overflow; 2351 2352 p += 1; /* skip XID */ 2353 if ((n = ntohl(*p++)) != RPC_REPLY) { 2354 dprintk("RPC: %5u %s: not an RPC reply: %x\n", 2355 task->tk_pid, __func__, n); 2356 error = -EIO; 2357 goto out_garbage; 2358 } 2359 2360 if ((n = ntohl(*p++)) != RPC_MSG_ACCEPTED) { 2361 if (--len < 0) 2362 goto out_overflow; 2363 switch ((n = ntohl(*p++))) { 2364 case RPC_AUTH_ERROR: 2365 break; 2366 case RPC_MISMATCH: 2367 dprintk("RPC: %5u %s: RPC call version mismatch!\n", 2368 task->tk_pid, __func__); 2369 error = -EPROTONOSUPPORT; 2370 goto out_err; 2371 default: 2372 dprintk("RPC: %5u %s: RPC call rejected, " 2373 "unknown error: %x\n", 2374 task->tk_pid, __func__, n); 2375 error = -EIO; 2376 goto out_err; 2377 } 2378 if (--len < 0) 2379 goto out_overflow; 2380 switch ((n = ntohl(*p++))) { 2381 case RPC_AUTH_REJECTEDCRED: 2382 case RPC_AUTH_REJECTEDVERF: 2383 case RPCSEC_GSS_CREDPROBLEM: 2384 case RPCSEC_GSS_CTXPROBLEM: 2385 if (!task->tk_cred_retry) 2386 break; 2387 task->tk_cred_retry--; 2388 dprintk("RPC: %5u %s: retry stale creds\n", 2389 task->tk_pid, __func__); 2390 rpcauth_invalcred(task); 2391 /* Ensure we obtain a new XID! */ 2392 xprt_release(task); 2393 task->tk_action = call_reserve; 2394 goto out_retry; 2395 case RPC_AUTH_BADCRED: 2396 case RPC_AUTH_BADVERF: 2397 /* possibly garbled cred/verf? */ 2398 if (!task->tk_garb_retry) 2399 break; 2400 task->tk_garb_retry--; 2401 dprintk("RPC: %5u %s: retry garbled creds\n", 2402 task->tk_pid, __func__); 2403 task->tk_action = call_bind; 2404 goto out_retry; 2405 case RPC_AUTH_TOOWEAK: 2406 printk(KERN_NOTICE "RPC: server %s requires stronger " 2407 "authentication.\n", 2408 task->tk_xprt->servername); 2409 break; 2410 default: 2411 dprintk("RPC: %5u %s: unknown auth error: %x\n", 2412 task->tk_pid, __func__, n); 2413 error = -EIO; 2414 } 2415 dprintk("RPC: %5u %s: call rejected %d\n", 2416 task->tk_pid, __func__, n); 2417 goto out_err; 2418 } 2419 p = rpcauth_checkverf(task, p); 2420 if (IS_ERR(p)) { 2421 error = PTR_ERR(p); 2422 dprintk("RPC: %5u %s: auth check failed with %d\n", 2423 task->tk_pid, __func__, error); 2424 goto out_garbage; /* bad verifier, retry */ 2425 } 2426 len = p - (__be32 *)iov->iov_base - 1; 2427 if (len < 0) 2428 goto out_overflow; 2429 switch ((n = ntohl(*p++))) { 2430 case RPC_SUCCESS: 2431 return p; 2432 case RPC_PROG_UNAVAIL: 2433 dprintk("RPC: %5u %s: program %u is unsupported " 2434 "by server %s\n", task->tk_pid, __func__, 2435 (unsigned int)clnt->cl_prog, 2436 task->tk_xprt->servername); 2437 error = -EPFNOSUPPORT; 2438 goto out_err; 2439 case RPC_PROG_MISMATCH: 2440 dprintk("RPC: %5u %s: program %u, version %u unsupported " 2441 "by server %s\n", task->tk_pid, __func__, 2442 (unsigned int)clnt->cl_prog, 2443 (unsigned int)clnt->cl_vers, 2444 task->tk_xprt->servername); 2445 error = -EPROTONOSUPPORT; 2446 goto out_err; 2447 case RPC_PROC_UNAVAIL: 2448 dprintk("RPC: %5u %s: proc %s unsupported by program %u, " 2449 "version %u on server %s\n", 2450 task->tk_pid, __func__, 2451 rpc_proc_name(task), 2452 clnt->cl_prog, clnt->cl_vers, 2453 task->tk_xprt->servername); 2454 error = -EOPNOTSUPP; 2455 goto out_err; 2456 case RPC_GARBAGE_ARGS: 2457 dprintk("RPC: %5u %s: server saw garbage\n", 2458 task->tk_pid, __func__); 2459 break; /* retry */ 2460 default: 2461 dprintk("RPC: %5u %s: server accept status: %x\n", 2462 task->tk_pid, __func__, n); 2463 /* Also retry */ 2464 } 2465 2466 out_garbage: 2467 clnt->cl_stats->rpcgarbage++; 2468 if (task->tk_garb_retry) { 2469 task->tk_garb_retry--; 2470 dprintk("RPC: %5u %s: retrying\n", 2471 task->tk_pid, __func__); 2472 task->tk_action = call_bind; 2473 out_retry: 2474 return ERR_PTR(-EAGAIN); 2475 } 2476 out_err: 2477 rpc_exit(task, error); 2478 dprintk("RPC: %5u %s: call failed with error %d\n", task->tk_pid, 2479 __func__, error); 2480 return ERR_PTR(error); 2481 out_overflow: 2482 dprintk("RPC: %5u %s: server reply was truncated.\n", task->tk_pid, 2483 __func__); 2484 goto out_garbage; 2485 } 2486 2487 static void rpcproc_encode_null(void *rqstp, struct xdr_stream *xdr, void *obj) 2488 { 2489 } 2490 2491 static int rpcproc_decode_null(void *rqstp, struct xdr_stream *xdr, void *obj) 2492 { 2493 return 0; 2494 } 2495 2496 static struct rpc_procinfo rpcproc_null = { 2497 .p_encode = rpcproc_encode_null, 2498 .p_decode = rpcproc_decode_null, 2499 }; 2500 2501 static int rpc_ping(struct rpc_clnt *clnt) 2502 { 2503 struct rpc_message msg = { 2504 .rpc_proc = &rpcproc_null, 2505 }; 2506 int err; 2507 msg.rpc_cred = authnull_ops.lookup_cred(NULL, NULL, 0); 2508 err = rpc_call_sync(clnt, &msg, RPC_TASK_SOFT | RPC_TASK_SOFTCONN); 2509 put_rpccred(msg.rpc_cred); 2510 return err; 2511 } 2512 2513 static 2514 struct rpc_task *rpc_call_null_helper(struct rpc_clnt *clnt, 2515 struct rpc_xprt *xprt, struct rpc_cred *cred, int flags, 2516 const struct rpc_call_ops *ops, void *data) 2517 { 2518 struct rpc_message msg = { 2519 .rpc_proc = &rpcproc_null, 2520 .rpc_cred = cred, 2521 }; 2522 struct rpc_task_setup task_setup_data = { 2523 .rpc_client = clnt, 2524 .rpc_xprt = xprt, 2525 .rpc_message = &msg, 2526 .callback_ops = (ops != NULL) ? ops : &rpc_default_ops, 2527 .callback_data = data, 2528 .flags = flags, 2529 }; 2530 2531 return rpc_run_task(&task_setup_data); 2532 } 2533 2534 struct rpc_task *rpc_call_null(struct rpc_clnt *clnt, struct rpc_cred *cred, int flags) 2535 { 2536 return rpc_call_null_helper(clnt, NULL, cred, flags, NULL, NULL); 2537 } 2538 EXPORT_SYMBOL_GPL(rpc_call_null); 2539 2540 struct rpc_cb_add_xprt_calldata { 2541 struct rpc_xprt_switch *xps; 2542 struct rpc_xprt *xprt; 2543 }; 2544 2545 static void rpc_cb_add_xprt_done(struct rpc_task *task, void *calldata) 2546 { 2547 struct rpc_cb_add_xprt_calldata *data = calldata; 2548 2549 if (task->tk_status == 0) 2550 rpc_xprt_switch_add_xprt(data->xps, data->xprt); 2551 } 2552 2553 static void rpc_cb_add_xprt_release(void *calldata) 2554 { 2555 struct rpc_cb_add_xprt_calldata *data = calldata; 2556 2557 xprt_put(data->xprt); 2558 xprt_switch_put(data->xps); 2559 kfree(data); 2560 } 2561 2562 static const struct rpc_call_ops rpc_cb_add_xprt_call_ops = { 2563 .rpc_call_done = rpc_cb_add_xprt_done, 2564 .rpc_release = rpc_cb_add_xprt_release, 2565 }; 2566 2567 /** 2568 * rpc_clnt_test_and_add_xprt - Test and add a new transport to a rpc_clnt 2569 * @clnt: pointer to struct rpc_clnt 2570 * @xps: pointer to struct rpc_xprt_switch, 2571 * @xprt: pointer struct rpc_xprt 2572 * @dummy: unused 2573 */ 2574 int rpc_clnt_test_and_add_xprt(struct rpc_clnt *clnt, 2575 struct rpc_xprt_switch *xps, struct rpc_xprt *xprt, 2576 void *dummy) 2577 { 2578 struct rpc_cb_add_xprt_calldata *data; 2579 struct rpc_cred *cred; 2580 struct rpc_task *task; 2581 2582 data = kmalloc(sizeof(*data), GFP_NOFS); 2583 if (!data) 2584 return -ENOMEM; 2585 data->xps = xprt_switch_get(xps); 2586 data->xprt = xprt_get(xprt); 2587 2588 cred = authnull_ops.lookup_cred(NULL, NULL, 0); 2589 task = rpc_call_null_helper(clnt, xprt, cred, 2590 RPC_TASK_SOFT|RPC_TASK_SOFTCONN|RPC_TASK_ASYNC, 2591 &rpc_cb_add_xprt_call_ops, data); 2592 put_rpccred(cred); 2593 if (IS_ERR(task)) 2594 return PTR_ERR(task); 2595 rpc_put_task(task); 2596 return 1; 2597 } 2598 EXPORT_SYMBOL_GPL(rpc_clnt_test_and_add_xprt); 2599 2600 /** 2601 * rpc_clnt_setup_test_and_add_xprt() 2602 * 2603 * This is an rpc_clnt_add_xprt setup() function which returns 1 so: 2604 * 1) caller of the test function must dereference the rpc_xprt_switch 2605 * and the rpc_xprt. 2606 * 2) test function must call rpc_xprt_switch_add_xprt, usually in 2607 * the rpc_call_done routine. 2608 * 2609 * Upon success (return of 1), the test function adds the new 2610 * transport to the rpc_clnt xprt switch 2611 * 2612 * @clnt: struct rpc_clnt to get the new transport 2613 * @xps: the rpc_xprt_switch to hold the new transport 2614 * @xprt: the rpc_xprt to test 2615 * @data: a struct rpc_add_xprt_test pointer that holds the test function 2616 * and test function call data 2617 */ 2618 int rpc_clnt_setup_test_and_add_xprt(struct rpc_clnt *clnt, 2619 struct rpc_xprt_switch *xps, 2620 struct rpc_xprt *xprt, 2621 void *data) 2622 { 2623 struct rpc_cred *cred; 2624 struct rpc_task *task; 2625 struct rpc_add_xprt_test *xtest = (struct rpc_add_xprt_test *)data; 2626 int status = -EADDRINUSE; 2627 2628 xprt = xprt_get(xprt); 2629 xprt_switch_get(xps); 2630 2631 if (rpc_xprt_switch_has_addr(xps, (struct sockaddr *)&xprt->addr)) 2632 goto out_err; 2633 2634 /* Test the connection */ 2635 cred = authnull_ops.lookup_cred(NULL, NULL, 0); 2636 task = rpc_call_null_helper(clnt, xprt, cred, 2637 RPC_TASK_SOFT | RPC_TASK_SOFTCONN, 2638 NULL, NULL); 2639 put_rpccred(cred); 2640 if (IS_ERR(task)) { 2641 status = PTR_ERR(task); 2642 goto out_err; 2643 } 2644 status = task->tk_status; 2645 rpc_put_task(task); 2646 2647 if (status < 0) 2648 goto out_err; 2649 2650 /* rpc_xprt_switch and rpc_xprt are deferrenced by add_xprt_test() */ 2651 xtest->add_xprt_test(clnt, xprt, xtest->data); 2652 2653 /* so that rpc_clnt_add_xprt does not call rpc_xprt_switch_add_xprt */ 2654 return 1; 2655 out_err: 2656 xprt_put(xprt); 2657 xprt_switch_put(xps); 2658 pr_info("RPC: rpc_clnt_test_xprt failed: %d addr %s not added\n", 2659 status, xprt->address_strings[RPC_DISPLAY_ADDR]); 2660 return status; 2661 } 2662 EXPORT_SYMBOL_GPL(rpc_clnt_setup_test_and_add_xprt); 2663 2664 /** 2665 * rpc_clnt_add_xprt - Add a new transport to a rpc_clnt 2666 * @clnt: pointer to struct rpc_clnt 2667 * @xprtargs: pointer to struct xprt_create 2668 * @setup: callback to test and/or set up the connection 2669 * @data: pointer to setup function data 2670 * 2671 * Creates a new transport using the parameters set in args and 2672 * adds it to clnt. 2673 * If ping is set, then test that connectivity succeeds before 2674 * adding the new transport. 2675 * 2676 */ 2677 int rpc_clnt_add_xprt(struct rpc_clnt *clnt, 2678 struct xprt_create *xprtargs, 2679 int (*setup)(struct rpc_clnt *, 2680 struct rpc_xprt_switch *, 2681 struct rpc_xprt *, 2682 void *), 2683 void *data) 2684 { 2685 struct rpc_xprt_switch *xps; 2686 struct rpc_xprt *xprt; 2687 unsigned long connect_timeout; 2688 unsigned long reconnect_timeout; 2689 unsigned char resvport; 2690 int ret = 0; 2691 2692 rcu_read_lock(); 2693 xps = xprt_switch_get(rcu_dereference(clnt->cl_xpi.xpi_xpswitch)); 2694 xprt = xprt_iter_xprt(&clnt->cl_xpi); 2695 if (xps == NULL || xprt == NULL) { 2696 rcu_read_unlock(); 2697 return -EAGAIN; 2698 } 2699 resvport = xprt->resvport; 2700 connect_timeout = xprt->connect_timeout; 2701 reconnect_timeout = xprt->max_reconnect_timeout; 2702 rcu_read_unlock(); 2703 2704 xprt = xprt_create_transport(xprtargs); 2705 if (IS_ERR(xprt)) { 2706 ret = PTR_ERR(xprt); 2707 goto out_put_switch; 2708 } 2709 xprt->resvport = resvport; 2710 if (xprt->ops->set_connect_timeout != NULL) 2711 xprt->ops->set_connect_timeout(xprt, 2712 connect_timeout, 2713 reconnect_timeout); 2714 2715 rpc_xprt_switch_set_roundrobin(xps); 2716 if (setup) { 2717 ret = setup(clnt, xps, xprt, data); 2718 if (ret != 0) 2719 goto out_put_xprt; 2720 } 2721 rpc_xprt_switch_add_xprt(xps, xprt); 2722 out_put_xprt: 2723 xprt_put(xprt); 2724 out_put_switch: 2725 xprt_switch_put(xps); 2726 return ret; 2727 } 2728 EXPORT_SYMBOL_GPL(rpc_clnt_add_xprt); 2729 2730 struct connect_timeout_data { 2731 unsigned long connect_timeout; 2732 unsigned long reconnect_timeout; 2733 }; 2734 2735 static int 2736 rpc_xprt_set_connect_timeout(struct rpc_clnt *clnt, 2737 struct rpc_xprt *xprt, 2738 void *data) 2739 { 2740 struct connect_timeout_data *timeo = data; 2741 2742 if (xprt->ops->set_connect_timeout) 2743 xprt->ops->set_connect_timeout(xprt, 2744 timeo->connect_timeout, 2745 timeo->reconnect_timeout); 2746 return 0; 2747 } 2748 2749 void 2750 rpc_set_connect_timeout(struct rpc_clnt *clnt, 2751 unsigned long connect_timeout, 2752 unsigned long reconnect_timeout) 2753 { 2754 struct connect_timeout_data timeout = { 2755 .connect_timeout = connect_timeout, 2756 .reconnect_timeout = reconnect_timeout, 2757 }; 2758 rpc_clnt_iterate_for_each_xprt(clnt, 2759 rpc_xprt_set_connect_timeout, 2760 &timeout); 2761 } 2762 EXPORT_SYMBOL_GPL(rpc_set_connect_timeout); 2763 2764 void rpc_clnt_xprt_switch_put(struct rpc_clnt *clnt) 2765 { 2766 rcu_read_lock(); 2767 xprt_switch_put(rcu_dereference(clnt->cl_xpi.xpi_xpswitch)); 2768 rcu_read_unlock(); 2769 } 2770 EXPORT_SYMBOL_GPL(rpc_clnt_xprt_switch_put); 2771 2772 void rpc_clnt_xprt_switch_add_xprt(struct rpc_clnt *clnt, struct rpc_xprt *xprt) 2773 { 2774 rcu_read_lock(); 2775 rpc_xprt_switch_add_xprt(rcu_dereference(clnt->cl_xpi.xpi_xpswitch), 2776 xprt); 2777 rcu_read_unlock(); 2778 } 2779 EXPORT_SYMBOL_GPL(rpc_clnt_xprt_switch_add_xprt); 2780 2781 bool rpc_clnt_xprt_switch_has_addr(struct rpc_clnt *clnt, 2782 const struct sockaddr *sap) 2783 { 2784 struct rpc_xprt_switch *xps; 2785 bool ret; 2786 2787 rcu_read_lock(); 2788 xps = rcu_dereference(clnt->cl_xpi.xpi_xpswitch); 2789 ret = rpc_xprt_switch_has_addr(xps, sap); 2790 rcu_read_unlock(); 2791 return ret; 2792 } 2793 EXPORT_SYMBOL_GPL(rpc_clnt_xprt_switch_has_addr); 2794 2795 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 2796 static void rpc_show_header(void) 2797 { 2798 printk(KERN_INFO "-pid- flgs status -client- --rqstp- " 2799 "-timeout ---ops--\n"); 2800 } 2801 2802 static void rpc_show_task(const struct rpc_clnt *clnt, 2803 const struct rpc_task *task) 2804 { 2805 const char *rpc_waitq = "none"; 2806 2807 if (RPC_IS_QUEUED(task)) 2808 rpc_waitq = rpc_qname(task->tk_waitqueue); 2809 2810 printk(KERN_INFO "%5u %04x %6d %8p %8p %8ld %8p %sv%u %s a:%ps q:%s\n", 2811 task->tk_pid, task->tk_flags, task->tk_status, 2812 clnt, task->tk_rqstp, task->tk_timeout, task->tk_ops, 2813 clnt->cl_program->name, clnt->cl_vers, rpc_proc_name(task), 2814 task->tk_action, rpc_waitq); 2815 } 2816 2817 void rpc_show_tasks(struct net *net) 2818 { 2819 struct rpc_clnt *clnt; 2820 struct rpc_task *task; 2821 int header = 0; 2822 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 2823 2824 spin_lock(&sn->rpc_client_lock); 2825 list_for_each_entry(clnt, &sn->all_clients, cl_clients) { 2826 spin_lock(&clnt->cl_lock); 2827 list_for_each_entry(task, &clnt->cl_tasks, tk_task) { 2828 if (!header) { 2829 rpc_show_header(); 2830 header++; 2831 } 2832 rpc_show_task(clnt, task); 2833 } 2834 spin_unlock(&clnt->cl_lock); 2835 } 2836 spin_unlock(&sn->rpc_client_lock); 2837 } 2838 #endif 2839 2840 #if IS_ENABLED(CONFIG_SUNRPC_SWAP) 2841 static int 2842 rpc_clnt_swap_activate_callback(struct rpc_clnt *clnt, 2843 struct rpc_xprt *xprt, 2844 void *dummy) 2845 { 2846 return xprt_enable_swap(xprt); 2847 } 2848 2849 int 2850 rpc_clnt_swap_activate(struct rpc_clnt *clnt) 2851 { 2852 if (atomic_inc_return(&clnt->cl_swapper) == 1) 2853 return rpc_clnt_iterate_for_each_xprt(clnt, 2854 rpc_clnt_swap_activate_callback, NULL); 2855 return 0; 2856 } 2857 EXPORT_SYMBOL_GPL(rpc_clnt_swap_activate); 2858 2859 static int 2860 rpc_clnt_swap_deactivate_callback(struct rpc_clnt *clnt, 2861 struct rpc_xprt *xprt, 2862 void *dummy) 2863 { 2864 xprt_disable_swap(xprt); 2865 return 0; 2866 } 2867 2868 void 2869 rpc_clnt_swap_deactivate(struct rpc_clnt *clnt) 2870 { 2871 if (atomic_dec_if_positive(&clnt->cl_swapper) == 0) 2872 rpc_clnt_iterate_for_each_xprt(clnt, 2873 rpc_clnt_swap_deactivate_callback, NULL); 2874 } 2875 EXPORT_SYMBOL_GPL(rpc_clnt_swap_deactivate); 2876 #endif /* CONFIG_SUNRPC_SWAP */ 2877