1 /* 2 * linux/net/sunrpc/clnt.c 3 * 4 * This file contains the high-level RPC interface. 5 * It is modeled as a finite state machine to support both synchronous 6 * and asynchronous requests. 7 * 8 * - RPC header generation and argument serialization. 9 * - Credential refresh. 10 * - TCP connect handling. 11 * - Retry of operation when it is suspected the operation failed because 12 * of uid squashing on the server, or when the credentials were stale 13 * and need to be refreshed, or when a packet was damaged in transit. 14 * This may be have to be moved to the VFS layer. 15 * 16 * Copyright (C) 1992,1993 Rick Sladkey <jrs@world.std.com> 17 * Copyright (C) 1995,1996 Olaf Kirch <okir@monad.swb.de> 18 */ 19 20 21 #include <linux/module.h> 22 #include <linux/types.h> 23 #include <linux/kallsyms.h> 24 #include <linux/mm.h> 25 #include <linux/namei.h> 26 #include <linux/mount.h> 27 #include <linux/slab.h> 28 #include <linux/rcupdate.h> 29 #include <linux/utsname.h> 30 #include <linux/workqueue.h> 31 #include <linux/in.h> 32 #include <linux/in6.h> 33 #include <linux/un.h> 34 35 #include <linux/sunrpc/clnt.h> 36 #include <linux/sunrpc/addr.h> 37 #include <linux/sunrpc/rpc_pipe_fs.h> 38 #include <linux/sunrpc/metrics.h> 39 #include <linux/sunrpc/bc_xprt.h> 40 #include <trace/events/sunrpc.h> 41 42 #include "sunrpc.h" 43 #include "netns.h" 44 45 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 46 # define RPCDBG_FACILITY RPCDBG_CALL 47 #endif 48 49 #define dprint_status(t) \ 50 dprintk("RPC: %5u %s (status %d)\n", t->tk_pid, \ 51 __func__, t->tk_status) 52 53 /* 54 * All RPC clients are linked into this list 55 */ 56 57 static DECLARE_WAIT_QUEUE_HEAD(destroy_wait); 58 59 60 static void call_start(struct rpc_task *task); 61 static void call_reserve(struct rpc_task *task); 62 static void call_reserveresult(struct rpc_task *task); 63 static void call_allocate(struct rpc_task *task); 64 static void call_decode(struct rpc_task *task); 65 static void call_bind(struct rpc_task *task); 66 static void call_bind_status(struct rpc_task *task); 67 static void call_transmit(struct rpc_task *task); 68 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 69 static void call_bc_transmit(struct rpc_task *task); 70 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 71 static void call_status(struct rpc_task *task); 72 static void call_transmit_status(struct rpc_task *task); 73 static void call_refresh(struct rpc_task *task); 74 static void call_refreshresult(struct rpc_task *task); 75 static void call_timeout(struct rpc_task *task); 76 static void call_connect(struct rpc_task *task); 77 static void call_connect_status(struct rpc_task *task); 78 79 static __be32 *rpc_encode_header(struct rpc_task *task); 80 static __be32 *rpc_verify_header(struct rpc_task *task); 81 static int rpc_ping(struct rpc_clnt *clnt); 82 83 static void rpc_register_client(struct rpc_clnt *clnt) 84 { 85 struct net *net = rpc_net_ns(clnt); 86 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 87 88 spin_lock(&sn->rpc_client_lock); 89 list_add(&clnt->cl_clients, &sn->all_clients); 90 spin_unlock(&sn->rpc_client_lock); 91 } 92 93 static void rpc_unregister_client(struct rpc_clnt *clnt) 94 { 95 struct net *net = rpc_net_ns(clnt); 96 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 97 98 spin_lock(&sn->rpc_client_lock); 99 list_del(&clnt->cl_clients); 100 spin_unlock(&sn->rpc_client_lock); 101 } 102 103 static void __rpc_clnt_remove_pipedir(struct rpc_clnt *clnt) 104 { 105 rpc_remove_client_dir(clnt); 106 } 107 108 static void rpc_clnt_remove_pipedir(struct rpc_clnt *clnt) 109 { 110 struct net *net = rpc_net_ns(clnt); 111 struct super_block *pipefs_sb; 112 113 pipefs_sb = rpc_get_sb_net(net); 114 if (pipefs_sb) { 115 __rpc_clnt_remove_pipedir(clnt); 116 rpc_put_sb_net(net); 117 } 118 } 119 120 static struct dentry *rpc_setup_pipedir_sb(struct super_block *sb, 121 struct rpc_clnt *clnt) 122 { 123 static uint32_t clntid; 124 const char *dir_name = clnt->cl_program->pipe_dir_name; 125 char name[15]; 126 struct dentry *dir, *dentry; 127 128 dir = rpc_d_lookup_sb(sb, dir_name); 129 if (dir == NULL) { 130 pr_info("RPC: pipefs directory doesn't exist: %s\n", dir_name); 131 return dir; 132 } 133 for (;;) { 134 snprintf(name, sizeof(name), "clnt%x", (unsigned int)clntid++); 135 name[sizeof(name) - 1] = '\0'; 136 dentry = rpc_create_client_dir(dir, name, clnt); 137 if (!IS_ERR(dentry)) 138 break; 139 if (dentry == ERR_PTR(-EEXIST)) 140 continue; 141 printk(KERN_INFO "RPC: Couldn't create pipefs entry" 142 " %s/%s, error %ld\n", 143 dir_name, name, PTR_ERR(dentry)); 144 break; 145 } 146 dput(dir); 147 return dentry; 148 } 149 150 static int 151 rpc_setup_pipedir(struct super_block *pipefs_sb, struct rpc_clnt *clnt) 152 { 153 struct dentry *dentry; 154 155 if (clnt->cl_program->pipe_dir_name != NULL) { 156 dentry = rpc_setup_pipedir_sb(pipefs_sb, clnt); 157 if (IS_ERR(dentry)) 158 return PTR_ERR(dentry); 159 } 160 return 0; 161 } 162 163 static int rpc_clnt_skip_event(struct rpc_clnt *clnt, unsigned long event) 164 { 165 if (clnt->cl_program->pipe_dir_name == NULL) 166 return 1; 167 168 switch (event) { 169 case RPC_PIPEFS_MOUNT: 170 if (clnt->cl_pipedir_objects.pdh_dentry != NULL) 171 return 1; 172 if (atomic_read(&clnt->cl_count) == 0) 173 return 1; 174 break; 175 case RPC_PIPEFS_UMOUNT: 176 if (clnt->cl_pipedir_objects.pdh_dentry == NULL) 177 return 1; 178 break; 179 } 180 return 0; 181 } 182 183 static int __rpc_clnt_handle_event(struct rpc_clnt *clnt, unsigned long event, 184 struct super_block *sb) 185 { 186 struct dentry *dentry; 187 188 switch (event) { 189 case RPC_PIPEFS_MOUNT: 190 dentry = rpc_setup_pipedir_sb(sb, clnt); 191 if (!dentry) 192 return -ENOENT; 193 if (IS_ERR(dentry)) 194 return PTR_ERR(dentry); 195 break; 196 case RPC_PIPEFS_UMOUNT: 197 __rpc_clnt_remove_pipedir(clnt); 198 break; 199 default: 200 printk(KERN_ERR "%s: unknown event: %ld\n", __func__, event); 201 return -ENOTSUPP; 202 } 203 return 0; 204 } 205 206 static int __rpc_pipefs_event(struct rpc_clnt *clnt, unsigned long event, 207 struct super_block *sb) 208 { 209 int error = 0; 210 211 for (;; clnt = clnt->cl_parent) { 212 if (!rpc_clnt_skip_event(clnt, event)) 213 error = __rpc_clnt_handle_event(clnt, event, sb); 214 if (error || clnt == clnt->cl_parent) 215 break; 216 } 217 return error; 218 } 219 220 static struct rpc_clnt *rpc_get_client_for_event(struct net *net, int event) 221 { 222 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 223 struct rpc_clnt *clnt; 224 225 spin_lock(&sn->rpc_client_lock); 226 list_for_each_entry(clnt, &sn->all_clients, cl_clients) { 227 if (rpc_clnt_skip_event(clnt, event)) 228 continue; 229 spin_unlock(&sn->rpc_client_lock); 230 return clnt; 231 } 232 spin_unlock(&sn->rpc_client_lock); 233 return NULL; 234 } 235 236 static int rpc_pipefs_event(struct notifier_block *nb, unsigned long event, 237 void *ptr) 238 { 239 struct super_block *sb = ptr; 240 struct rpc_clnt *clnt; 241 int error = 0; 242 243 while ((clnt = rpc_get_client_for_event(sb->s_fs_info, event))) { 244 error = __rpc_pipefs_event(clnt, event, sb); 245 if (error) 246 break; 247 } 248 return error; 249 } 250 251 static struct notifier_block rpc_clients_block = { 252 .notifier_call = rpc_pipefs_event, 253 .priority = SUNRPC_PIPEFS_RPC_PRIO, 254 }; 255 256 int rpc_clients_notifier_register(void) 257 { 258 return rpc_pipefs_notifier_register(&rpc_clients_block); 259 } 260 261 void rpc_clients_notifier_unregister(void) 262 { 263 return rpc_pipefs_notifier_unregister(&rpc_clients_block); 264 } 265 266 static struct rpc_xprt *rpc_clnt_set_transport(struct rpc_clnt *clnt, 267 struct rpc_xprt *xprt, 268 const struct rpc_timeout *timeout) 269 { 270 struct rpc_xprt *old; 271 272 spin_lock(&clnt->cl_lock); 273 old = rcu_dereference_protected(clnt->cl_xprt, 274 lockdep_is_held(&clnt->cl_lock)); 275 276 if (!xprt_bound(xprt)) 277 clnt->cl_autobind = 1; 278 279 clnt->cl_timeout = timeout; 280 rcu_assign_pointer(clnt->cl_xprt, xprt); 281 spin_unlock(&clnt->cl_lock); 282 283 return old; 284 } 285 286 static void rpc_clnt_set_nodename(struct rpc_clnt *clnt, const char *nodename) 287 { 288 clnt->cl_nodelen = strlcpy(clnt->cl_nodename, 289 nodename, sizeof(clnt->cl_nodename)); 290 } 291 292 static int rpc_client_register(struct rpc_clnt *clnt, 293 rpc_authflavor_t pseudoflavor, 294 const char *client_name) 295 { 296 struct rpc_auth_create_args auth_args = { 297 .pseudoflavor = pseudoflavor, 298 .target_name = client_name, 299 }; 300 struct rpc_auth *auth; 301 struct net *net = rpc_net_ns(clnt); 302 struct super_block *pipefs_sb; 303 int err; 304 305 rpc_clnt_debugfs_register(clnt); 306 307 pipefs_sb = rpc_get_sb_net(net); 308 if (pipefs_sb) { 309 err = rpc_setup_pipedir(pipefs_sb, clnt); 310 if (err) 311 goto out; 312 } 313 314 rpc_register_client(clnt); 315 if (pipefs_sb) 316 rpc_put_sb_net(net); 317 318 auth = rpcauth_create(&auth_args, clnt); 319 if (IS_ERR(auth)) { 320 dprintk("RPC: Couldn't create auth handle (flavor %u)\n", 321 pseudoflavor); 322 err = PTR_ERR(auth); 323 goto err_auth; 324 } 325 return 0; 326 err_auth: 327 pipefs_sb = rpc_get_sb_net(net); 328 rpc_unregister_client(clnt); 329 __rpc_clnt_remove_pipedir(clnt); 330 out: 331 if (pipefs_sb) 332 rpc_put_sb_net(net); 333 rpc_clnt_debugfs_unregister(clnt); 334 return err; 335 } 336 337 static DEFINE_IDA(rpc_clids); 338 339 void rpc_cleanup_clids(void) 340 { 341 ida_destroy(&rpc_clids); 342 } 343 344 static int rpc_alloc_clid(struct rpc_clnt *clnt) 345 { 346 int clid; 347 348 clid = ida_simple_get(&rpc_clids, 0, 0, GFP_KERNEL); 349 if (clid < 0) 350 return clid; 351 clnt->cl_clid = clid; 352 return 0; 353 } 354 355 static void rpc_free_clid(struct rpc_clnt *clnt) 356 { 357 ida_simple_remove(&rpc_clids, clnt->cl_clid); 358 } 359 360 static struct rpc_clnt * rpc_new_client(const struct rpc_create_args *args, 361 struct rpc_xprt_switch *xps, 362 struct rpc_xprt *xprt, 363 struct rpc_clnt *parent) 364 { 365 const struct rpc_program *program = args->program; 366 const struct rpc_version *version; 367 struct rpc_clnt *clnt = NULL; 368 const struct rpc_timeout *timeout; 369 const char *nodename = args->nodename; 370 int err; 371 372 /* sanity check the name before trying to print it */ 373 dprintk("RPC: creating %s client for %s (xprt %p)\n", 374 program->name, args->servername, xprt); 375 376 err = rpciod_up(); 377 if (err) 378 goto out_no_rpciod; 379 380 err = -EINVAL; 381 if (args->version >= program->nrvers) 382 goto out_err; 383 version = program->version[args->version]; 384 if (version == NULL) 385 goto out_err; 386 387 err = -ENOMEM; 388 clnt = kzalloc(sizeof(*clnt), GFP_KERNEL); 389 if (!clnt) 390 goto out_err; 391 clnt->cl_parent = parent ? : clnt; 392 393 err = rpc_alloc_clid(clnt); 394 if (err) 395 goto out_no_clid; 396 397 clnt->cl_procinfo = version->procs; 398 clnt->cl_maxproc = version->nrprocs; 399 clnt->cl_prog = args->prognumber ? : program->number; 400 clnt->cl_vers = version->number; 401 clnt->cl_stats = program->stats; 402 clnt->cl_metrics = rpc_alloc_iostats(clnt); 403 rpc_init_pipe_dir_head(&clnt->cl_pipedir_objects); 404 err = -ENOMEM; 405 if (clnt->cl_metrics == NULL) 406 goto out_no_stats; 407 clnt->cl_program = program; 408 INIT_LIST_HEAD(&clnt->cl_tasks); 409 spin_lock_init(&clnt->cl_lock); 410 411 timeout = xprt->timeout; 412 if (args->timeout != NULL) { 413 memcpy(&clnt->cl_timeout_default, args->timeout, 414 sizeof(clnt->cl_timeout_default)); 415 timeout = &clnt->cl_timeout_default; 416 } 417 418 rpc_clnt_set_transport(clnt, xprt, timeout); 419 xprt_iter_init(&clnt->cl_xpi, xps); 420 xprt_switch_put(xps); 421 422 clnt->cl_rtt = &clnt->cl_rtt_default; 423 rpc_init_rtt(&clnt->cl_rtt_default, clnt->cl_timeout->to_initval); 424 425 atomic_set(&clnt->cl_count, 1); 426 427 if (nodename == NULL) 428 nodename = utsname()->nodename; 429 /* save the nodename */ 430 rpc_clnt_set_nodename(clnt, nodename); 431 432 err = rpc_client_register(clnt, args->authflavor, args->client_name); 433 if (err) 434 goto out_no_path; 435 if (parent) 436 atomic_inc(&parent->cl_count); 437 return clnt; 438 439 out_no_path: 440 rpc_free_iostats(clnt->cl_metrics); 441 out_no_stats: 442 rpc_free_clid(clnt); 443 out_no_clid: 444 kfree(clnt); 445 out_err: 446 rpciod_down(); 447 out_no_rpciod: 448 xprt_switch_put(xps); 449 xprt_put(xprt); 450 return ERR_PTR(err); 451 } 452 453 static struct rpc_clnt *rpc_create_xprt(struct rpc_create_args *args, 454 struct rpc_xprt *xprt) 455 { 456 struct rpc_clnt *clnt = NULL; 457 struct rpc_xprt_switch *xps; 458 459 if (args->bc_xprt && args->bc_xprt->xpt_bc_xps) { 460 WARN_ON_ONCE(!(args->protocol & XPRT_TRANSPORT_BC)); 461 xps = args->bc_xprt->xpt_bc_xps; 462 xprt_switch_get(xps); 463 } else { 464 xps = xprt_switch_alloc(xprt, GFP_KERNEL); 465 if (xps == NULL) { 466 xprt_put(xprt); 467 return ERR_PTR(-ENOMEM); 468 } 469 if (xprt->bc_xprt) { 470 xprt_switch_get(xps); 471 xprt->bc_xprt->xpt_bc_xps = xps; 472 } 473 } 474 clnt = rpc_new_client(args, xps, xprt, NULL); 475 if (IS_ERR(clnt)) 476 return clnt; 477 478 if (!(args->flags & RPC_CLNT_CREATE_NOPING)) { 479 int err = rpc_ping(clnt); 480 if (err != 0) { 481 rpc_shutdown_client(clnt); 482 return ERR_PTR(err); 483 } 484 } 485 486 clnt->cl_softrtry = 1; 487 if (args->flags & RPC_CLNT_CREATE_HARDRTRY) 488 clnt->cl_softrtry = 0; 489 490 if (args->flags & RPC_CLNT_CREATE_AUTOBIND) 491 clnt->cl_autobind = 1; 492 if (args->flags & RPC_CLNT_CREATE_NO_RETRANS_TIMEOUT) 493 clnt->cl_noretranstimeo = 1; 494 if (args->flags & RPC_CLNT_CREATE_DISCRTRY) 495 clnt->cl_discrtry = 1; 496 if (!(args->flags & RPC_CLNT_CREATE_QUIET)) 497 clnt->cl_chatty = 1; 498 499 return clnt; 500 } 501 502 /** 503 * rpc_create - create an RPC client and transport with one call 504 * @args: rpc_clnt create argument structure 505 * 506 * Creates and initializes an RPC transport and an RPC client. 507 * 508 * It can ping the server in order to determine if it is up, and to see if 509 * it supports this program and version. RPC_CLNT_CREATE_NOPING disables 510 * this behavior so asynchronous tasks can also use rpc_create. 511 */ 512 struct rpc_clnt *rpc_create(struct rpc_create_args *args) 513 { 514 struct rpc_xprt *xprt; 515 struct xprt_create xprtargs = { 516 .net = args->net, 517 .ident = args->protocol, 518 .srcaddr = args->saddress, 519 .dstaddr = args->address, 520 .addrlen = args->addrsize, 521 .servername = args->servername, 522 .bc_xprt = args->bc_xprt, 523 }; 524 char servername[48]; 525 526 if (args->bc_xprt) { 527 WARN_ON_ONCE(!(args->protocol & XPRT_TRANSPORT_BC)); 528 xprt = args->bc_xprt->xpt_bc_xprt; 529 if (xprt) { 530 xprt_get(xprt); 531 return rpc_create_xprt(args, xprt); 532 } 533 } 534 535 if (args->flags & RPC_CLNT_CREATE_INFINITE_SLOTS) 536 xprtargs.flags |= XPRT_CREATE_INFINITE_SLOTS; 537 if (args->flags & RPC_CLNT_CREATE_NO_IDLE_TIMEOUT) 538 xprtargs.flags |= XPRT_CREATE_NO_IDLE_TIMEOUT; 539 /* 540 * If the caller chooses not to specify a hostname, whip 541 * up a string representation of the passed-in address. 542 */ 543 if (xprtargs.servername == NULL) { 544 struct sockaddr_un *sun = 545 (struct sockaddr_un *)args->address; 546 struct sockaddr_in *sin = 547 (struct sockaddr_in *)args->address; 548 struct sockaddr_in6 *sin6 = 549 (struct sockaddr_in6 *)args->address; 550 551 servername[0] = '\0'; 552 switch (args->address->sa_family) { 553 case AF_LOCAL: 554 snprintf(servername, sizeof(servername), "%s", 555 sun->sun_path); 556 break; 557 case AF_INET: 558 snprintf(servername, sizeof(servername), "%pI4", 559 &sin->sin_addr.s_addr); 560 break; 561 case AF_INET6: 562 snprintf(servername, sizeof(servername), "%pI6", 563 &sin6->sin6_addr); 564 break; 565 default: 566 /* caller wants default server name, but 567 * address family isn't recognized. */ 568 return ERR_PTR(-EINVAL); 569 } 570 xprtargs.servername = servername; 571 } 572 573 xprt = xprt_create_transport(&xprtargs); 574 if (IS_ERR(xprt)) 575 return (struct rpc_clnt *)xprt; 576 577 /* 578 * By default, kernel RPC client connects from a reserved port. 579 * CAP_NET_BIND_SERVICE will not be set for unprivileged requesters, 580 * but it is always enabled for rpciod, which handles the connect 581 * operation. 582 */ 583 xprt->resvport = 1; 584 if (args->flags & RPC_CLNT_CREATE_NONPRIVPORT) 585 xprt->resvport = 0; 586 587 return rpc_create_xprt(args, xprt); 588 } 589 EXPORT_SYMBOL_GPL(rpc_create); 590 591 /* 592 * This function clones the RPC client structure. It allows us to share the 593 * same transport while varying parameters such as the authentication 594 * flavour. 595 */ 596 static struct rpc_clnt *__rpc_clone_client(struct rpc_create_args *args, 597 struct rpc_clnt *clnt) 598 { 599 struct rpc_xprt_switch *xps; 600 struct rpc_xprt *xprt; 601 struct rpc_clnt *new; 602 int err; 603 604 err = -ENOMEM; 605 rcu_read_lock(); 606 xprt = xprt_get(rcu_dereference(clnt->cl_xprt)); 607 xps = xprt_switch_get(rcu_dereference(clnt->cl_xpi.xpi_xpswitch)); 608 rcu_read_unlock(); 609 if (xprt == NULL || xps == NULL) { 610 xprt_put(xprt); 611 xprt_switch_put(xps); 612 goto out_err; 613 } 614 args->servername = xprt->servername; 615 args->nodename = clnt->cl_nodename; 616 617 new = rpc_new_client(args, xps, xprt, clnt); 618 if (IS_ERR(new)) { 619 err = PTR_ERR(new); 620 goto out_err; 621 } 622 623 /* Turn off autobind on clones */ 624 new->cl_autobind = 0; 625 new->cl_softrtry = clnt->cl_softrtry; 626 new->cl_noretranstimeo = clnt->cl_noretranstimeo; 627 new->cl_discrtry = clnt->cl_discrtry; 628 new->cl_chatty = clnt->cl_chatty; 629 return new; 630 631 out_err: 632 dprintk("RPC: %s: returned error %d\n", __func__, err); 633 return ERR_PTR(err); 634 } 635 636 /** 637 * rpc_clone_client - Clone an RPC client structure 638 * 639 * @clnt: RPC client whose parameters are copied 640 * 641 * Returns a fresh RPC client or an ERR_PTR. 642 */ 643 struct rpc_clnt *rpc_clone_client(struct rpc_clnt *clnt) 644 { 645 struct rpc_create_args args = { 646 .program = clnt->cl_program, 647 .prognumber = clnt->cl_prog, 648 .version = clnt->cl_vers, 649 .authflavor = clnt->cl_auth->au_flavor, 650 }; 651 return __rpc_clone_client(&args, clnt); 652 } 653 EXPORT_SYMBOL_GPL(rpc_clone_client); 654 655 /** 656 * rpc_clone_client_set_auth - Clone an RPC client structure and set its auth 657 * 658 * @clnt: RPC client whose parameters are copied 659 * @flavor: security flavor for new client 660 * 661 * Returns a fresh RPC client or an ERR_PTR. 662 */ 663 struct rpc_clnt * 664 rpc_clone_client_set_auth(struct rpc_clnt *clnt, rpc_authflavor_t flavor) 665 { 666 struct rpc_create_args args = { 667 .program = clnt->cl_program, 668 .prognumber = clnt->cl_prog, 669 .version = clnt->cl_vers, 670 .authflavor = flavor, 671 }; 672 return __rpc_clone_client(&args, clnt); 673 } 674 EXPORT_SYMBOL_GPL(rpc_clone_client_set_auth); 675 676 /** 677 * rpc_switch_client_transport: switch the RPC transport on the fly 678 * @clnt: pointer to a struct rpc_clnt 679 * @args: pointer to the new transport arguments 680 * @timeout: pointer to the new timeout parameters 681 * 682 * This function allows the caller to switch the RPC transport for the 683 * rpc_clnt structure 'clnt' to allow it to connect to a mirrored NFS 684 * server, for instance. It assumes that the caller has ensured that 685 * there are no active RPC tasks by using some form of locking. 686 * 687 * Returns zero if "clnt" is now using the new xprt. Otherwise a 688 * negative errno is returned, and "clnt" continues to use the old 689 * xprt. 690 */ 691 int rpc_switch_client_transport(struct rpc_clnt *clnt, 692 struct xprt_create *args, 693 const struct rpc_timeout *timeout) 694 { 695 const struct rpc_timeout *old_timeo; 696 rpc_authflavor_t pseudoflavor; 697 struct rpc_xprt_switch *xps, *oldxps; 698 struct rpc_xprt *xprt, *old; 699 struct rpc_clnt *parent; 700 int err; 701 702 xprt = xprt_create_transport(args); 703 if (IS_ERR(xprt)) { 704 dprintk("RPC: failed to create new xprt for clnt %p\n", 705 clnt); 706 return PTR_ERR(xprt); 707 } 708 709 xps = xprt_switch_alloc(xprt, GFP_KERNEL); 710 if (xps == NULL) { 711 xprt_put(xprt); 712 return -ENOMEM; 713 } 714 715 pseudoflavor = clnt->cl_auth->au_flavor; 716 717 old_timeo = clnt->cl_timeout; 718 old = rpc_clnt_set_transport(clnt, xprt, timeout); 719 oldxps = xprt_iter_xchg_switch(&clnt->cl_xpi, xps); 720 721 rpc_unregister_client(clnt); 722 __rpc_clnt_remove_pipedir(clnt); 723 rpc_clnt_debugfs_unregister(clnt); 724 725 /* 726 * A new transport was created. "clnt" therefore 727 * becomes the root of a new cl_parent tree. clnt's 728 * children, if it has any, still point to the old xprt. 729 */ 730 parent = clnt->cl_parent; 731 clnt->cl_parent = clnt; 732 733 /* 734 * The old rpc_auth cache cannot be re-used. GSS 735 * contexts in particular are between a single 736 * client and server. 737 */ 738 err = rpc_client_register(clnt, pseudoflavor, NULL); 739 if (err) 740 goto out_revert; 741 742 synchronize_rcu(); 743 if (parent != clnt) 744 rpc_release_client(parent); 745 xprt_switch_put(oldxps); 746 xprt_put(old); 747 dprintk("RPC: replaced xprt for clnt %p\n", clnt); 748 return 0; 749 750 out_revert: 751 xps = xprt_iter_xchg_switch(&clnt->cl_xpi, oldxps); 752 rpc_clnt_set_transport(clnt, old, old_timeo); 753 clnt->cl_parent = parent; 754 rpc_client_register(clnt, pseudoflavor, NULL); 755 xprt_switch_put(xps); 756 xprt_put(xprt); 757 dprintk("RPC: failed to switch xprt for clnt %p\n", clnt); 758 return err; 759 } 760 EXPORT_SYMBOL_GPL(rpc_switch_client_transport); 761 762 static 763 int rpc_clnt_xprt_iter_init(struct rpc_clnt *clnt, struct rpc_xprt_iter *xpi) 764 { 765 struct rpc_xprt_switch *xps; 766 767 rcu_read_lock(); 768 xps = xprt_switch_get(rcu_dereference(clnt->cl_xpi.xpi_xpswitch)); 769 rcu_read_unlock(); 770 if (xps == NULL) 771 return -EAGAIN; 772 xprt_iter_init_listall(xpi, xps); 773 xprt_switch_put(xps); 774 return 0; 775 } 776 777 /** 778 * rpc_clnt_iterate_for_each_xprt - Apply a function to all transports 779 * @clnt: pointer to client 780 * @fn: function to apply 781 * @data: void pointer to function data 782 * 783 * Iterates through the list of RPC transports currently attached to the 784 * client and applies the function fn(clnt, xprt, data). 785 * 786 * On error, the iteration stops, and the function returns the error value. 787 */ 788 int rpc_clnt_iterate_for_each_xprt(struct rpc_clnt *clnt, 789 int (*fn)(struct rpc_clnt *, struct rpc_xprt *, void *), 790 void *data) 791 { 792 struct rpc_xprt_iter xpi; 793 int ret; 794 795 ret = rpc_clnt_xprt_iter_init(clnt, &xpi); 796 if (ret) 797 return ret; 798 for (;;) { 799 struct rpc_xprt *xprt = xprt_iter_get_next(&xpi); 800 801 if (!xprt) 802 break; 803 ret = fn(clnt, xprt, data); 804 xprt_put(xprt); 805 if (ret < 0) 806 break; 807 } 808 xprt_iter_destroy(&xpi); 809 return ret; 810 } 811 EXPORT_SYMBOL_GPL(rpc_clnt_iterate_for_each_xprt); 812 813 /* 814 * Kill all tasks for the given client. 815 * XXX: kill their descendants as well? 816 */ 817 void rpc_killall_tasks(struct rpc_clnt *clnt) 818 { 819 struct rpc_task *rovr; 820 821 822 if (list_empty(&clnt->cl_tasks)) 823 return; 824 dprintk("RPC: killing all tasks for client %p\n", clnt); 825 /* 826 * Spin lock all_tasks to prevent changes... 827 */ 828 spin_lock(&clnt->cl_lock); 829 list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) { 830 if (!RPC_IS_ACTIVATED(rovr)) 831 continue; 832 if (!(rovr->tk_flags & RPC_TASK_KILLED)) { 833 rovr->tk_flags |= RPC_TASK_KILLED; 834 rpc_exit(rovr, -EIO); 835 if (RPC_IS_QUEUED(rovr)) 836 rpc_wake_up_queued_task(rovr->tk_waitqueue, 837 rovr); 838 } 839 } 840 spin_unlock(&clnt->cl_lock); 841 } 842 EXPORT_SYMBOL_GPL(rpc_killall_tasks); 843 844 /* 845 * Properly shut down an RPC client, terminating all outstanding 846 * requests. 847 */ 848 void rpc_shutdown_client(struct rpc_clnt *clnt) 849 { 850 might_sleep(); 851 852 dprintk_rcu("RPC: shutting down %s client for %s\n", 853 clnt->cl_program->name, 854 rcu_dereference(clnt->cl_xprt)->servername); 855 856 while (!list_empty(&clnt->cl_tasks)) { 857 rpc_killall_tasks(clnt); 858 wait_event_timeout(destroy_wait, 859 list_empty(&clnt->cl_tasks), 1*HZ); 860 } 861 862 rpc_release_client(clnt); 863 } 864 EXPORT_SYMBOL_GPL(rpc_shutdown_client); 865 866 /* 867 * Free an RPC client 868 */ 869 static struct rpc_clnt * 870 rpc_free_client(struct rpc_clnt *clnt) 871 { 872 struct rpc_clnt *parent = NULL; 873 874 dprintk_rcu("RPC: destroying %s client for %s\n", 875 clnt->cl_program->name, 876 rcu_dereference(clnt->cl_xprt)->servername); 877 if (clnt->cl_parent != clnt) 878 parent = clnt->cl_parent; 879 rpc_clnt_debugfs_unregister(clnt); 880 rpc_clnt_remove_pipedir(clnt); 881 rpc_unregister_client(clnt); 882 rpc_free_iostats(clnt->cl_metrics); 883 clnt->cl_metrics = NULL; 884 xprt_put(rcu_dereference_raw(clnt->cl_xprt)); 885 xprt_iter_destroy(&clnt->cl_xpi); 886 rpciod_down(); 887 rpc_free_clid(clnt); 888 kfree(clnt); 889 return parent; 890 } 891 892 /* 893 * Free an RPC client 894 */ 895 static struct rpc_clnt * 896 rpc_free_auth(struct rpc_clnt *clnt) 897 { 898 if (clnt->cl_auth == NULL) 899 return rpc_free_client(clnt); 900 901 /* 902 * Note: RPCSEC_GSS may need to send NULL RPC calls in order to 903 * release remaining GSS contexts. This mechanism ensures 904 * that it can do so safely. 905 */ 906 atomic_inc(&clnt->cl_count); 907 rpcauth_release(clnt->cl_auth); 908 clnt->cl_auth = NULL; 909 if (atomic_dec_and_test(&clnt->cl_count)) 910 return rpc_free_client(clnt); 911 return NULL; 912 } 913 914 /* 915 * Release reference to the RPC client 916 */ 917 void 918 rpc_release_client(struct rpc_clnt *clnt) 919 { 920 dprintk("RPC: rpc_release_client(%p)\n", clnt); 921 922 do { 923 if (list_empty(&clnt->cl_tasks)) 924 wake_up(&destroy_wait); 925 if (!atomic_dec_and_test(&clnt->cl_count)) 926 break; 927 clnt = rpc_free_auth(clnt); 928 } while (clnt != NULL); 929 } 930 EXPORT_SYMBOL_GPL(rpc_release_client); 931 932 /** 933 * rpc_bind_new_program - bind a new RPC program to an existing client 934 * @old: old rpc_client 935 * @program: rpc program to set 936 * @vers: rpc program version 937 * 938 * Clones the rpc client and sets up a new RPC program. This is mainly 939 * of use for enabling different RPC programs to share the same transport. 940 * The Sun NFSv2/v3 ACL protocol can do this. 941 */ 942 struct rpc_clnt *rpc_bind_new_program(struct rpc_clnt *old, 943 const struct rpc_program *program, 944 u32 vers) 945 { 946 struct rpc_create_args args = { 947 .program = program, 948 .prognumber = program->number, 949 .version = vers, 950 .authflavor = old->cl_auth->au_flavor, 951 }; 952 struct rpc_clnt *clnt; 953 int err; 954 955 clnt = __rpc_clone_client(&args, old); 956 if (IS_ERR(clnt)) 957 goto out; 958 err = rpc_ping(clnt); 959 if (err != 0) { 960 rpc_shutdown_client(clnt); 961 clnt = ERR_PTR(err); 962 } 963 out: 964 return clnt; 965 } 966 EXPORT_SYMBOL_GPL(rpc_bind_new_program); 967 968 void rpc_task_release_client(struct rpc_task *task) 969 { 970 struct rpc_clnt *clnt = task->tk_client; 971 struct rpc_xprt *xprt = task->tk_xprt; 972 973 if (clnt != NULL) { 974 /* Remove from client task list */ 975 spin_lock(&clnt->cl_lock); 976 list_del(&task->tk_task); 977 spin_unlock(&clnt->cl_lock); 978 task->tk_client = NULL; 979 980 rpc_release_client(clnt); 981 } 982 983 if (xprt != NULL) { 984 task->tk_xprt = NULL; 985 986 xprt_put(xprt); 987 } 988 } 989 990 static 991 void rpc_task_set_client(struct rpc_task *task, struct rpc_clnt *clnt) 992 { 993 994 if (clnt != NULL) { 995 if (task->tk_xprt == NULL) 996 task->tk_xprt = xprt_iter_get_next(&clnt->cl_xpi); 997 task->tk_client = clnt; 998 atomic_inc(&clnt->cl_count); 999 if (clnt->cl_softrtry) 1000 task->tk_flags |= RPC_TASK_SOFT; 1001 if (clnt->cl_noretranstimeo) 1002 task->tk_flags |= RPC_TASK_NO_RETRANS_TIMEOUT; 1003 if (atomic_read(&clnt->cl_swapper)) 1004 task->tk_flags |= RPC_TASK_SWAPPER; 1005 /* Add to the client's list of all tasks */ 1006 spin_lock(&clnt->cl_lock); 1007 list_add_tail(&task->tk_task, &clnt->cl_tasks); 1008 spin_unlock(&clnt->cl_lock); 1009 } 1010 } 1011 1012 static void 1013 rpc_task_set_rpc_message(struct rpc_task *task, const struct rpc_message *msg) 1014 { 1015 if (msg != NULL) { 1016 task->tk_msg.rpc_proc = msg->rpc_proc; 1017 task->tk_msg.rpc_argp = msg->rpc_argp; 1018 task->tk_msg.rpc_resp = msg->rpc_resp; 1019 if (msg->rpc_cred != NULL) 1020 task->tk_msg.rpc_cred = get_rpccred(msg->rpc_cred); 1021 } 1022 } 1023 1024 /* 1025 * Default callback for async RPC calls 1026 */ 1027 static void 1028 rpc_default_callback(struct rpc_task *task, void *data) 1029 { 1030 } 1031 1032 static const struct rpc_call_ops rpc_default_ops = { 1033 .rpc_call_done = rpc_default_callback, 1034 }; 1035 1036 /** 1037 * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it 1038 * @task_setup_data: pointer to task initialisation data 1039 */ 1040 struct rpc_task *rpc_run_task(const struct rpc_task_setup *task_setup_data) 1041 { 1042 struct rpc_task *task; 1043 1044 task = rpc_new_task(task_setup_data); 1045 1046 rpc_task_set_client(task, task_setup_data->rpc_client); 1047 rpc_task_set_rpc_message(task, task_setup_data->rpc_message); 1048 1049 if (task->tk_action == NULL) 1050 rpc_call_start(task); 1051 1052 atomic_inc(&task->tk_count); 1053 rpc_execute(task); 1054 return task; 1055 } 1056 EXPORT_SYMBOL_GPL(rpc_run_task); 1057 1058 /** 1059 * rpc_call_sync - Perform a synchronous RPC call 1060 * @clnt: pointer to RPC client 1061 * @msg: RPC call parameters 1062 * @flags: RPC call flags 1063 */ 1064 int rpc_call_sync(struct rpc_clnt *clnt, const struct rpc_message *msg, int flags) 1065 { 1066 struct rpc_task *task; 1067 struct rpc_task_setup task_setup_data = { 1068 .rpc_client = clnt, 1069 .rpc_message = msg, 1070 .callback_ops = &rpc_default_ops, 1071 .flags = flags, 1072 }; 1073 int status; 1074 1075 WARN_ON_ONCE(flags & RPC_TASK_ASYNC); 1076 if (flags & RPC_TASK_ASYNC) { 1077 rpc_release_calldata(task_setup_data.callback_ops, 1078 task_setup_data.callback_data); 1079 return -EINVAL; 1080 } 1081 1082 task = rpc_run_task(&task_setup_data); 1083 if (IS_ERR(task)) 1084 return PTR_ERR(task); 1085 status = task->tk_status; 1086 rpc_put_task(task); 1087 return status; 1088 } 1089 EXPORT_SYMBOL_GPL(rpc_call_sync); 1090 1091 /** 1092 * rpc_call_async - Perform an asynchronous RPC call 1093 * @clnt: pointer to RPC client 1094 * @msg: RPC call parameters 1095 * @flags: RPC call flags 1096 * @tk_ops: RPC call ops 1097 * @data: user call data 1098 */ 1099 int 1100 rpc_call_async(struct rpc_clnt *clnt, const struct rpc_message *msg, int flags, 1101 const struct rpc_call_ops *tk_ops, void *data) 1102 { 1103 struct rpc_task *task; 1104 struct rpc_task_setup task_setup_data = { 1105 .rpc_client = clnt, 1106 .rpc_message = msg, 1107 .callback_ops = tk_ops, 1108 .callback_data = data, 1109 .flags = flags|RPC_TASK_ASYNC, 1110 }; 1111 1112 task = rpc_run_task(&task_setup_data); 1113 if (IS_ERR(task)) 1114 return PTR_ERR(task); 1115 rpc_put_task(task); 1116 return 0; 1117 } 1118 EXPORT_SYMBOL_GPL(rpc_call_async); 1119 1120 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1121 /** 1122 * rpc_run_bc_task - Allocate a new RPC task for backchannel use, then run 1123 * rpc_execute against it 1124 * @req: RPC request 1125 */ 1126 struct rpc_task *rpc_run_bc_task(struct rpc_rqst *req) 1127 { 1128 struct rpc_task *task; 1129 struct xdr_buf *xbufp = &req->rq_snd_buf; 1130 struct rpc_task_setup task_setup_data = { 1131 .callback_ops = &rpc_default_ops, 1132 .flags = RPC_TASK_SOFTCONN, 1133 }; 1134 1135 dprintk("RPC: rpc_run_bc_task req= %p\n", req); 1136 /* 1137 * Create an rpc_task to send the data 1138 */ 1139 task = rpc_new_task(&task_setup_data); 1140 task->tk_rqstp = req; 1141 1142 /* 1143 * Set up the xdr_buf length. 1144 * This also indicates that the buffer is XDR encoded already. 1145 */ 1146 xbufp->len = xbufp->head[0].iov_len + xbufp->page_len + 1147 xbufp->tail[0].iov_len; 1148 1149 task->tk_action = call_bc_transmit; 1150 atomic_inc(&task->tk_count); 1151 WARN_ON_ONCE(atomic_read(&task->tk_count) != 2); 1152 rpc_execute(task); 1153 1154 dprintk("RPC: rpc_run_bc_task: task= %p\n", task); 1155 return task; 1156 } 1157 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1158 1159 void 1160 rpc_call_start(struct rpc_task *task) 1161 { 1162 task->tk_action = call_start; 1163 } 1164 EXPORT_SYMBOL_GPL(rpc_call_start); 1165 1166 /** 1167 * rpc_peeraddr - extract remote peer address from clnt's xprt 1168 * @clnt: RPC client structure 1169 * @buf: target buffer 1170 * @bufsize: length of target buffer 1171 * 1172 * Returns the number of bytes that are actually in the stored address. 1173 */ 1174 size_t rpc_peeraddr(struct rpc_clnt *clnt, struct sockaddr *buf, size_t bufsize) 1175 { 1176 size_t bytes; 1177 struct rpc_xprt *xprt; 1178 1179 rcu_read_lock(); 1180 xprt = rcu_dereference(clnt->cl_xprt); 1181 1182 bytes = xprt->addrlen; 1183 if (bytes > bufsize) 1184 bytes = bufsize; 1185 memcpy(buf, &xprt->addr, bytes); 1186 rcu_read_unlock(); 1187 1188 return bytes; 1189 } 1190 EXPORT_SYMBOL_GPL(rpc_peeraddr); 1191 1192 /** 1193 * rpc_peeraddr2str - return remote peer address in printable format 1194 * @clnt: RPC client structure 1195 * @format: address format 1196 * 1197 * NB: the lifetime of the memory referenced by the returned pointer is 1198 * the same as the rpc_xprt itself. As long as the caller uses this 1199 * pointer, it must hold the RCU read lock. 1200 */ 1201 const char *rpc_peeraddr2str(struct rpc_clnt *clnt, 1202 enum rpc_display_format_t format) 1203 { 1204 struct rpc_xprt *xprt; 1205 1206 xprt = rcu_dereference(clnt->cl_xprt); 1207 1208 if (xprt->address_strings[format] != NULL) 1209 return xprt->address_strings[format]; 1210 else 1211 return "unprintable"; 1212 } 1213 EXPORT_SYMBOL_GPL(rpc_peeraddr2str); 1214 1215 static const struct sockaddr_in rpc_inaddr_loopback = { 1216 .sin_family = AF_INET, 1217 .sin_addr.s_addr = htonl(INADDR_ANY), 1218 }; 1219 1220 static const struct sockaddr_in6 rpc_in6addr_loopback = { 1221 .sin6_family = AF_INET6, 1222 .sin6_addr = IN6ADDR_ANY_INIT, 1223 }; 1224 1225 /* 1226 * Try a getsockname() on a connected datagram socket. Using a 1227 * connected datagram socket prevents leaving a socket in TIME_WAIT. 1228 * This conserves the ephemeral port number space. 1229 * 1230 * Returns zero and fills in "buf" if successful; otherwise, a 1231 * negative errno is returned. 1232 */ 1233 static int rpc_sockname(struct net *net, struct sockaddr *sap, size_t salen, 1234 struct sockaddr *buf, int buflen) 1235 { 1236 struct socket *sock; 1237 int err; 1238 1239 err = __sock_create(net, sap->sa_family, 1240 SOCK_DGRAM, IPPROTO_UDP, &sock, 1); 1241 if (err < 0) { 1242 dprintk("RPC: can't create UDP socket (%d)\n", err); 1243 goto out; 1244 } 1245 1246 switch (sap->sa_family) { 1247 case AF_INET: 1248 err = kernel_bind(sock, 1249 (struct sockaddr *)&rpc_inaddr_loopback, 1250 sizeof(rpc_inaddr_loopback)); 1251 break; 1252 case AF_INET6: 1253 err = kernel_bind(sock, 1254 (struct sockaddr *)&rpc_in6addr_loopback, 1255 sizeof(rpc_in6addr_loopback)); 1256 break; 1257 default: 1258 err = -EAFNOSUPPORT; 1259 goto out; 1260 } 1261 if (err < 0) { 1262 dprintk("RPC: can't bind UDP socket (%d)\n", err); 1263 goto out_release; 1264 } 1265 1266 err = kernel_connect(sock, sap, salen, 0); 1267 if (err < 0) { 1268 dprintk("RPC: can't connect UDP socket (%d)\n", err); 1269 goto out_release; 1270 } 1271 1272 err = kernel_getsockname(sock, buf, &buflen); 1273 if (err < 0) { 1274 dprintk("RPC: getsockname failed (%d)\n", err); 1275 goto out_release; 1276 } 1277 1278 err = 0; 1279 if (buf->sa_family == AF_INET6) { 1280 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)buf; 1281 sin6->sin6_scope_id = 0; 1282 } 1283 dprintk("RPC: %s succeeded\n", __func__); 1284 1285 out_release: 1286 sock_release(sock); 1287 out: 1288 return err; 1289 } 1290 1291 /* 1292 * Scraping a connected socket failed, so we don't have a useable 1293 * local address. Fallback: generate an address that will prevent 1294 * the server from calling us back. 1295 * 1296 * Returns zero and fills in "buf" if successful; otherwise, a 1297 * negative errno is returned. 1298 */ 1299 static int rpc_anyaddr(int family, struct sockaddr *buf, size_t buflen) 1300 { 1301 switch (family) { 1302 case AF_INET: 1303 if (buflen < sizeof(rpc_inaddr_loopback)) 1304 return -EINVAL; 1305 memcpy(buf, &rpc_inaddr_loopback, 1306 sizeof(rpc_inaddr_loopback)); 1307 break; 1308 case AF_INET6: 1309 if (buflen < sizeof(rpc_in6addr_loopback)) 1310 return -EINVAL; 1311 memcpy(buf, &rpc_in6addr_loopback, 1312 sizeof(rpc_in6addr_loopback)); 1313 break; 1314 default: 1315 dprintk("RPC: %s: address family not supported\n", 1316 __func__); 1317 return -EAFNOSUPPORT; 1318 } 1319 dprintk("RPC: %s: succeeded\n", __func__); 1320 return 0; 1321 } 1322 1323 /** 1324 * rpc_localaddr - discover local endpoint address for an RPC client 1325 * @clnt: RPC client structure 1326 * @buf: target buffer 1327 * @buflen: size of target buffer, in bytes 1328 * 1329 * Returns zero and fills in "buf" and "buflen" if successful; 1330 * otherwise, a negative errno is returned. 1331 * 1332 * This works even if the underlying transport is not currently connected, 1333 * or if the upper layer never previously provided a source address. 1334 * 1335 * The result of this function call is transient: multiple calls in 1336 * succession may give different results, depending on how local 1337 * networking configuration changes over time. 1338 */ 1339 int rpc_localaddr(struct rpc_clnt *clnt, struct sockaddr *buf, size_t buflen) 1340 { 1341 struct sockaddr_storage address; 1342 struct sockaddr *sap = (struct sockaddr *)&address; 1343 struct rpc_xprt *xprt; 1344 struct net *net; 1345 size_t salen; 1346 int err; 1347 1348 rcu_read_lock(); 1349 xprt = rcu_dereference(clnt->cl_xprt); 1350 salen = xprt->addrlen; 1351 memcpy(sap, &xprt->addr, salen); 1352 net = get_net(xprt->xprt_net); 1353 rcu_read_unlock(); 1354 1355 rpc_set_port(sap, 0); 1356 err = rpc_sockname(net, sap, salen, buf, buflen); 1357 put_net(net); 1358 if (err != 0) 1359 /* Couldn't discover local address, return ANYADDR */ 1360 return rpc_anyaddr(sap->sa_family, buf, buflen); 1361 return 0; 1362 } 1363 EXPORT_SYMBOL_GPL(rpc_localaddr); 1364 1365 void 1366 rpc_setbufsize(struct rpc_clnt *clnt, unsigned int sndsize, unsigned int rcvsize) 1367 { 1368 struct rpc_xprt *xprt; 1369 1370 rcu_read_lock(); 1371 xprt = rcu_dereference(clnt->cl_xprt); 1372 if (xprt->ops->set_buffer_size) 1373 xprt->ops->set_buffer_size(xprt, sndsize, rcvsize); 1374 rcu_read_unlock(); 1375 } 1376 EXPORT_SYMBOL_GPL(rpc_setbufsize); 1377 1378 /** 1379 * rpc_protocol - Get transport protocol number for an RPC client 1380 * @clnt: RPC client to query 1381 * 1382 */ 1383 int rpc_protocol(struct rpc_clnt *clnt) 1384 { 1385 int protocol; 1386 1387 rcu_read_lock(); 1388 protocol = rcu_dereference(clnt->cl_xprt)->prot; 1389 rcu_read_unlock(); 1390 return protocol; 1391 } 1392 EXPORT_SYMBOL_GPL(rpc_protocol); 1393 1394 /** 1395 * rpc_net_ns - Get the network namespace for this RPC client 1396 * @clnt: RPC client to query 1397 * 1398 */ 1399 struct net *rpc_net_ns(struct rpc_clnt *clnt) 1400 { 1401 struct net *ret; 1402 1403 rcu_read_lock(); 1404 ret = rcu_dereference(clnt->cl_xprt)->xprt_net; 1405 rcu_read_unlock(); 1406 return ret; 1407 } 1408 EXPORT_SYMBOL_GPL(rpc_net_ns); 1409 1410 /** 1411 * rpc_max_payload - Get maximum payload size for a transport, in bytes 1412 * @clnt: RPC client to query 1413 * 1414 * For stream transports, this is one RPC record fragment (see RFC 1415 * 1831), as we don't support multi-record requests yet. For datagram 1416 * transports, this is the size of an IP packet minus the IP, UDP, and 1417 * RPC header sizes. 1418 */ 1419 size_t rpc_max_payload(struct rpc_clnt *clnt) 1420 { 1421 size_t ret; 1422 1423 rcu_read_lock(); 1424 ret = rcu_dereference(clnt->cl_xprt)->max_payload; 1425 rcu_read_unlock(); 1426 return ret; 1427 } 1428 EXPORT_SYMBOL_GPL(rpc_max_payload); 1429 1430 /** 1431 * rpc_max_bc_payload - Get maximum backchannel payload size, in bytes 1432 * @clnt: RPC client to query 1433 */ 1434 size_t rpc_max_bc_payload(struct rpc_clnt *clnt) 1435 { 1436 struct rpc_xprt *xprt; 1437 size_t ret; 1438 1439 rcu_read_lock(); 1440 xprt = rcu_dereference(clnt->cl_xprt); 1441 ret = xprt->ops->bc_maxpayload(xprt); 1442 rcu_read_unlock(); 1443 return ret; 1444 } 1445 EXPORT_SYMBOL_GPL(rpc_max_bc_payload); 1446 1447 /** 1448 * rpc_force_rebind - force transport to check that remote port is unchanged 1449 * @clnt: client to rebind 1450 * 1451 */ 1452 void rpc_force_rebind(struct rpc_clnt *clnt) 1453 { 1454 if (clnt->cl_autobind) { 1455 rcu_read_lock(); 1456 xprt_clear_bound(rcu_dereference(clnt->cl_xprt)); 1457 rcu_read_unlock(); 1458 } 1459 } 1460 EXPORT_SYMBOL_GPL(rpc_force_rebind); 1461 1462 /* 1463 * Restart an (async) RPC call from the call_prepare state. 1464 * Usually called from within the exit handler. 1465 */ 1466 int 1467 rpc_restart_call_prepare(struct rpc_task *task) 1468 { 1469 if (RPC_ASSASSINATED(task)) 1470 return 0; 1471 task->tk_action = call_start; 1472 task->tk_status = 0; 1473 if (task->tk_ops->rpc_call_prepare != NULL) 1474 task->tk_action = rpc_prepare_task; 1475 return 1; 1476 } 1477 EXPORT_SYMBOL_GPL(rpc_restart_call_prepare); 1478 1479 /* 1480 * Restart an (async) RPC call. Usually called from within the 1481 * exit handler. 1482 */ 1483 int 1484 rpc_restart_call(struct rpc_task *task) 1485 { 1486 if (RPC_ASSASSINATED(task)) 1487 return 0; 1488 task->tk_action = call_start; 1489 task->tk_status = 0; 1490 return 1; 1491 } 1492 EXPORT_SYMBOL_GPL(rpc_restart_call); 1493 1494 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 1495 const char 1496 *rpc_proc_name(const struct rpc_task *task) 1497 { 1498 const struct rpc_procinfo *proc = task->tk_msg.rpc_proc; 1499 1500 if (proc) { 1501 if (proc->p_name) 1502 return proc->p_name; 1503 else 1504 return "NULL"; 1505 } else 1506 return "no proc"; 1507 } 1508 #endif 1509 1510 /* 1511 * 0. Initial state 1512 * 1513 * Other FSM states can be visited zero or more times, but 1514 * this state is visited exactly once for each RPC. 1515 */ 1516 static void 1517 call_start(struct rpc_task *task) 1518 { 1519 struct rpc_clnt *clnt = task->tk_client; 1520 int idx = task->tk_msg.rpc_proc->p_statidx; 1521 1522 dprintk("RPC: %5u call_start %s%d proc %s (%s)\n", task->tk_pid, 1523 clnt->cl_program->name, clnt->cl_vers, 1524 rpc_proc_name(task), 1525 (RPC_IS_ASYNC(task) ? "async" : "sync")); 1526 1527 /* Increment call count (version might not be valid for ping) */ 1528 if (clnt->cl_program->version[clnt->cl_vers]) 1529 clnt->cl_program->version[clnt->cl_vers]->counts[idx]++; 1530 clnt->cl_stats->rpccnt++; 1531 task->tk_action = call_reserve; 1532 } 1533 1534 /* 1535 * 1. Reserve an RPC call slot 1536 */ 1537 static void 1538 call_reserve(struct rpc_task *task) 1539 { 1540 dprint_status(task); 1541 1542 task->tk_status = 0; 1543 task->tk_action = call_reserveresult; 1544 xprt_reserve(task); 1545 } 1546 1547 static void call_retry_reserve(struct rpc_task *task); 1548 1549 /* 1550 * 1b. Grok the result of xprt_reserve() 1551 */ 1552 static void 1553 call_reserveresult(struct rpc_task *task) 1554 { 1555 int status = task->tk_status; 1556 1557 dprint_status(task); 1558 1559 /* 1560 * After a call to xprt_reserve(), we must have either 1561 * a request slot or else an error status. 1562 */ 1563 task->tk_status = 0; 1564 if (status >= 0) { 1565 if (task->tk_rqstp) { 1566 task->tk_action = call_refresh; 1567 return; 1568 } 1569 1570 printk(KERN_ERR "%s: status=%d, but no request slot, exiting\n", 1571 __func__, status); 1572 rpc_exit(task, -EIO); 1573 return; 1574 } 1575 1576 /* 1577 * Even though there was an error, we may have acquired 1578 * a request slot somehow. Make sure not to leak it. 1579 */ 1580 if (task->tk_rqstp) { 1581 printk(KERN_ERR "%s: status=%d, request allocated anyway\n", 1582 __func__, status); 1583 xprt_release(task); 1584 } 1585 1586 switch (status) { 1587 case -ENOMEM: 1588 rpc_delay(task, HZ >> 2); 1589 case -EAGAIN: /* woken up; retry */ 1590 task->tk_action = call_retry_reserve; 1591 return; 1592 case -EIO: /* probably a shutdown */ 1593 break; 1594 default: 1595 printk(KERN_ERR "%s: unrecognized error %d, exiting\n", 1596 __func__, status); 1597 break; 1598 } 1599 rpc_exit(task, status); 1600 } 1601 1602 /* 1603 * 1c. Retry reserving an RPC call slot 1604 */ 1605 static void 1606 call_retry_reserve(struct rpc_task *task) 1607 { 1608 dprint_status(task); 1609 1610 task->tk_status = 0; 1611 task->tk_action = call_reserveresult; 1612 xprt_retry_reserve(task); 1613 } 1614 1615 /* 1616 * 2. Bind and/or refresh the credentials 1617 */ 1618 static void 1619 call_refresh(struct rpc_task *task) 1620 { 1621 dprint_status(task); 1622 1623 task->tk_action = call_refreshresult; 1624 task->tk_status = 0; 1625 task->tk_client->cl_stats->rpcauthrefresh++; 1626 rpcauth_refreshcred(task); 1627 } 1628 1629 /* 1630 * 2a. Process the results of a credential refresh 1631 */ 1632 static void 1633 call_refreshresult(struct rpc_task *task) 1634 { 1635 int status = task->tk_status; 1636 1637 dprint_status(task); 1638 1639 task->tk_status = 0; 1640 task->tk_action = call_refresh; 1641 switch (status) { 1642 case 0: 1643 if (rpcauth_uptodatecred(task)) { 1644 task->tk_action = call_allocate; 1645 return; 1646 } 1647 /* Use rate-limiting and a max number of retries if refresh 1648 * had status 0 but failed to update the cred. 1649 */ 1650 case -ETIMEDOUT: 1651 rpc_delay(task, 3*HZ); 1652 case -EAGAIN: 1653 status = -EACCES; 1654 case -EKEYEXPIRED: 1655 if (!task->tk_cred_retry) 1656 break; 1657 task->tk_cred_retry--; 1658 dprintk("RPC: %5u %s: retry refresh creds\n", 1659 task->tk_pid, __func__); 1660 return; 1661 } 1662 dprintk("RPC: %5u %s: refresh creds failed with error %d\n", 1663 task->tk_pid, __func__, status); 1664 rpc_exit(task, status); 1665 } 1666 1667 /* 1668 * 2b. Allocate the buffer. For details, see sched.c:rpc_malloc. 1669 * (Note: buffer memory is freed in xprt_release). 1670 */ 1671 static void 1672 call_allocate(struct rpc_task *task) 1673 { 1674 unsigned int slack = task->tk_rqstp->rq_cred->cr_auth->au_cslack; 1675 struct rpc_rqst *req = task->tk_rqstp; 1676 struct rpc_xprt *xprt = req->rq_xprt; 1677 const struct rpc_procinfo *proc = task->tk_msg.rpc_proc; 1678 int status; 1679 1680 dprint_status(task); 1681 1682 task->tk_status = 0; 1683 task->tk_action = call_bind; 1684 1685 if (req->rq_buffer) 1686 return; 1687 1688 if (proc->p_proc != 0) { 1689 BUG_ON(proc->p_arglen == 0); 1690 if (proc->p_decode != NULL) 1691 BUG_ON(proc->p_replen == 0); 1692 } 1693 1694 /* 1695 * Calculate the size (in quads) of the RPC call 1696 * and reply headers, and convert both values 1697 * to byte sizes. 1698 */ 1699 req->rq_callsize = RPC_CALLHDRSIZE + (slack << 1) + proc->p_arglen; 1700 req->rq_callsize <<= 2; 1701 req->rq_rcvsize = RPC_REPHDRSIZE + slack + proc->p_replen; 1702 req->rq_rcvsize <<= 2; 1703 1704 status = xprt->ops->buf_alloc(task); 1705 xprt_inject_disconnect(xprt); 1706 if (status == 0) 1707 return; 1708 if (status != -ENOMEM) { 1709 rpc_exit(task, status); 1710 return; 1711 } 1712 1713 dprintk("RPC: %5u rpc_buffer allocation failed\n", task->tk_pid); 1714 1715 if (RPC_IS_ASYNC(task) || !fatal_signal_pending(current)) { 1716 task->tk_action = call_allocate; 1717 rpc_delay(task, HZ>>4); 1718 return; 1719 } 1720 1721 rpc_exit(task, -ERESTARTSYS); 1722 } 1723 1724 static inline int 1725 rpc_task_need_encode(struct rpc_task *task) 1726 { 1727 return task->tk_rqstp->rq_snd_buf.len == 0; 1728 } 1729 1730 static inline void 1731 rpc_task_force_reencode(struct rpc_task *task) 1732 { 1733 task->tk_rqstp->rq_snd_buf.len = 0; 1734 task->tk_rqstp->rq_bytes_sent = 0; 1735 } 1736 1737 /* 1738 * 3. Encode arguments of an RPC call 1739 */ 1740 static void 1741 rpc_xdr_encode(struct rpc_task *task) 1742 { 1743 struct rpc_rqst *req = task->tk_rqstp; 1744 kxdreproc_t encode; 1745 __be32 *p; 1746 1747 dprint_status(task); 1748 1749 xdr_buf_init(&req->rq_snd_buf, 1750 req->rq_buffer, 1751 req->rq_callsize); 1752 xdr_buf_init(&req->rq_rcv_buf, 1753 req->rq_rbuffer, 1754 req->rq_rcvsize); 1755 1756 p = rpc_encode_header(task); 1757 if (p == NULL) { 1758 printk(KERN_INFO "RPC: couldn't encode RPC header, exit EIO\n"); 1759 rpc_exit(task, -EIO); 1760 return; 1761 } 1762 1763 encode = task->tk_msg.rpc_proc->p_encode; 1764 if (encode == NULL) 1765 return; 1766 1767 task->tk_status = rpcauth_wrap_req(task, encode, req, p, 1768 task->tk_msg.rpc_argp); 1769 } 1770 1771 /* 1772 * 4. Get the server port number if not yet set 1773 */ 1774 static void 1775 call_bind(struct rpc_task *task) 1776 { 1777 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; 1778 1779 dprint_status(task); 1780 1781 task->tk_action = call_connect; 1782 if (!xprt_bound(xprt)) { 1783 task->tk_action = call_bind_status; 1784 task->tk_timeout = xprt->bind_timeout; 1785 xprt->ops->rpcbind(task); 1786 } 1787 } 1788 1789 /* 1790 * 4a. Sort out bind result 1791 */ 1792 static void 1793 call_bind_status(struct rpc_task *task) 1794 { 1795 int status = -EIO; 1796 1797 if (task->tk_status >= 0) { 1798 dprint_status(task); 1799 task->tk_status = 0; 1800 task->tk_action = call_connect; 1801 return; 1802 } 1803 1804 trace_rpc_bind_status(task); 1805 switch (task->tk_status) { 1806 case -ENOMEM: 1807 dprintk("RPC: %5u rpcbind out of memory\n", task->tk_pid); 1808 rpc_delay(task, HZ >> 2); 1809 goto retry_timeout; 1810 case -EACCES: 1811 dprintk("RPC: %5u remote rpcbind: RPC program/version " 1812 "unavailable\n", task->tk_pid); 1813 /* fail immediately if this is an RPC ping */ 1814 if (task->tk_msg.rpc_proc->p_proc == 0) { 1815 status = -EOPNOTSUPP; 1816 break; 1817 } 1818 if (task->tk_rebind_retry == 0) 1819 break; 1820 task->tk_rebind_retry--; 1821 rpc_delay(task, 3*HZ); 1822 goto retry_timeout; 1823 case -ETIMEDOUT: 1824 dprintk("RPC: %5u rpcbind request timed out\n", 1825 task->tk_pid); 1826 goto retry_timeout; 1827 case -EPFNOSUPPORT: 1828 /* server doesn't support any rpcbind version we know of */ 1829 dprintk("RPC: %5u unrecognized remote rpcbind service\n", 1830 task->tk_pid); 1831 break; 1832 case -EPROTONOSUPPORT: 1833 dprintk("RPC: %5u remote rpcbind version unavailable, retrying\n", 1834 task->tk_pid); 1835 goto retry_timeout; 1836 case -ECONNREFUSED: /* connection problems */ 1837 case -ECONNRESET: 1838 case -ECONNABORTED: 1839 case -ENOTCONN: 1840 case -EHOSTDOWN: 1841 case -EHOSTUNREACH: 1842 case -ENETUNREACH: 1843 case -ENOBUFS: 1844 case -EPIPE: 1845 dprintk("RPC: %5u remote rpcbind unreachable: %d\n", 1846 task->tk_pid, task->tk_status); 1847 if (!RPC_IS_SOFTCONN(task)) { 1848 rpc_delay(task, 5*HZ); 1849 goto retry_timeout; 1850 } 1851 status = task->tk_status; 1852 break; 1853 default: 1854 dprintk("RPC: %5u unrecognized rpcbind error (%d)\n", 1855 task->tk_pid, -task->tk_status); 1856 } 1857 1858 rpc_exit(task, status); 1859 return; 1860 1861 retry_timeout: 1862 task->tk_status = 0; 1863 task->tk_action = call_timeout; 1864 } 1865 1866 /* 1867 * 4b. Connect to the RPC server 1868 */ 1869 static void 1870 call_connect(struct rpc_task *task) 1871 { 1872 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; 1873 1874 dprintk("RPC: %5u call_connect xprt %p %s connected\n", 1875 task->tk_pid, xprt, 1876 (xprt_connected(xprt) ? "is" : "is not")); 1877 1878 task->tk_action = call_transmit; 1879 if (!xprt_connected(xprt)) { 1880 task->tk_action = call_connect_status; 1881 if (task->tk_status < 0) 1882 return; 1883 if (task->tk_flags & RPC_TASK_NOCONNECT) { 1884 rpc_exit(task, -ENOTCONN); 1885 return; 1886 } 1887 xprt_connect(task); 1888 } 1889 } 1890 1891 /* 1892 * 4c. Sort out connect result 1893 */ 1894 static void 1895 call_connect_status(struct rpc_task *task) 1896 { 1897 struct rpc_clnt *clnt = task->tk_client; 1898 int status = task->tk_status; 1899 1900 dprint_status(task); 1901 1902 trace_rpc_connect_status(task, status); 1903 task->tk_status = 0; 1904 switch (status) { 1905 case -ECONNREFUSED: 1906 case -ECONNRESET: 1907 case -ECONNABORTED: 1908 case -ENETUNREACH: 1909 case -EHOSTUNREACH: 1910 case -EADDRINUSE: 1911 case -ENOBUFS: 1912 case -EPIPE: 1913 xprt_conditional_disconnect(task->tk_rqstp->rq_xprt, 1914 task->tk_rqstp->rq_connect_cookie); 1915 if (RPC_IS_SOFTCONN(task)) 1916 break; 1917 /* retry with existing socket, after a delay */ 1918 rpc_delay(task, 3*HZ); 1919 case -EAGAIN: 1920 /* Check for timeouts before looping back to call_bind */ 1921 case -ETIMEDOUT: 1922 task->tk_action = call_timeout; 1923 return; 1924 case 0: 1925 clnt->cl_stats->netreconn++; 1926 task->tk_action = call_transmit; 1927 return; 1928 } 1929 rpc_exit(task, status); 1930 } 1931 1932 /* 1933 * 5. Transmit the RPC request, and wait for reply 1934 */ 1935 static void 1936 call_transmit(struct rpc_task *task) 1937 { 1938 int is_retrans = RPC_WAS_SENT(task); 1939 1940 dprint_status(task); 1941 1942 task->tk_action = call_status; 1943 if (task->tk_status < 0) 1944 return; 1945 if (!xprt_prepare_transmit(task)) 1946 return; 1947 task->tk_action = call_transmit_status; 1948 /* Encode here so that rpcsec_gss can use correct sequence number. */ 1949 if (rpc_task_need_encode(task)) { 1950 rpc_xdr_encode(task); 1951 /* Did the encode result in an error condition? */ 1952 if (task->tk_status != 0) { 1953 /* Was the error nonfatal? */ 1954 if (task->tk_status == -EAGAIN) 1955 rpc_delay(task, HZ >> 4); 1956 else 1957 rpc_exit(task, task->tk_status); 1958 return; 1959 } 1960 } 1961 xprt_transmit(task); 1962 if (task->tk_status < 0) 1963 return; 1964 if (is_retrans) 1965 task->tk_client->cl_stats->rpcretrans++; 1966 /* 1967 * On success, ensure that we call xprt_end_transmit() before sleeping 1968 * in order to allow access to the socket to other RPC requests. 1969 */ 1970 call_transmit_status(task); 1971 if (rpc_reply_expected(task)) 1972 return; 1973 task->tk_action = rpc_exit_task; 1974 rpc_wake_up_queued_task(&task->tk_rqstp->rq_xprt->pending, task); 1975 } 1976 1977 /* 1978 * 5a. Handle cleanup after a transmission 1979 */ 1980 static void 1981 call_transmit_status(struct rpc_task *task) 1982 { 1983 task->tk_action = call_status; 1984 1985 /* 1986 * Common case: success. Force the compiler to put this 1987 * test first. 1988 */ 1989 if (task->tk_status == 0) { 1990 xprt_end_transmit(task); 1991 rpc_task_force_reencode(task); 1992 return; 1993 } 1994 1995 switch (task->tk_status) { 1996 case -EAGAIN: 1997 case -ENOBUFS: 1998 break; 1999 default: 2000 dprint_status(task); 2001 xprt_end_transmit(task); 2002 rpc_task_force_reencode(task); 2003 break; 2004 /* 2005 * Special cases: if we've been waiting on the 2006 * socket's write_space() callback, or if the 2007 * socket just returned a connection error, 2008 * then hold onto the transport lock. 2009 */ 2010 case -ECONNREFUSED: 2011 case -EHOSTDOWN: 2012 case -EHOSTUNREACH: 2013 case -ENETUNREACH: 2014 case -EPERM: 2015 if (RPC_IS_SOFTCONN(task)) { 2016 xprt_end_transmit(task); 2017 rpc_exit(task, task->tk_status); 2018 break; 2019 } 2020 case -ECONNRESET: 2021 case -ECONNABORTED: 2022 case -EADDRINUSE: 2023 case -ENOTCONN: 2024 case -EPIPE: 2025 rpc_task_force_reencode(task); 2026 } 2027 } 2028 2029 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 2030 /* 2031 * 5b. Send the backchannel RPC reply. On error, drop the reply. In 2032 * addition, disconnect on connectivity errors. 2033 */ 2034 static void 2035 call_bc_transmit(struct rpc_task *task) 2036 { 2037 struct rpc_rqst *req = task->tk_rqstp; 2038 2039 if (!xprt_prepare_transmit(task)) 2040 goto out_retry; 2041 2042 if (task->tk_status < 0) { 2043 printk(KERN_NOTICE "RPC: Could not send backchannel reply " 2044 "error: %d\n", task->tk_status); 2045 goto out_done; 2046 } 2047 if (req->rq_connect_cookie != req->rq_xprt->connect_cookie) 2048 req->rq_bytes_sent = 0; 2049 2050 xprt_transmit(task); 2051 2052 if (task->tk_status == -EAGAIN) 2053 goto out_nospace; 2054 2055 xprt_end_transmit(task); 2056 dprint_status(task); 2057 switch (task->tk_status) { 2058 case 0: 2059 /* Success */ 2060 case -EHOSTDOWN: 2061 case -EHOSTUNREACH: 2062 case -ENETUNREACH: 2063 case -ECONNRESET: 2064 case -ECONNREFUSED: 2065 case -EADDRINUSE: 2066 case -ENOTCONN: 2067 case -EPIPE: 2068 break; 2069 case -ETIMEDOUT: 2070 /* 2071 * Problem reaching the server. Disconnect and let the 2072 * forechannel reestablish the connection. The server will 2073 * have to retransmit the backchannel request and we'll 2074 * reprocess it. Since these ops are idempotent, there's no 2075 * need to cache our reply at this time. 2076 */ 2077 printk(KERN_NOTICE "RPC: Could not send backchannel reply " 2078 "error: %d\n", task->tk_status); 2079 xprt_conditional_disconnect(req->rq_xprt, 2080 req->rq_connect_cookie); 2081 break; 2082 default: 2083 /* 2084 * We were unable to reply and will have to drop the 2085 * request. The server should reconnect and retransmit. 2086 */ 2087 WARN_ON_ONCE(task->tk_status == -EAGAIN); 2088 printk(KERN_NOTICE "RPC: Could not send backchannel reply " 2089 "error: %d\n", task->tk_status); 2090 break; 2091 } 2092 rpc_wake_up_queued_task(&req->rq_xprt->pending, task); 2093 out_done: 2094 task->tk_action = rpc_exit_task; 2095 return; 2096 out_nospace: 2097 req->rq_connect_cookie = req->rq_xprt->connect_cookie; 2098 out_retry: 2099 task->tk_status = 0; 2100 } 2101 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 2102 2103 /* 2104 * 6. Sort out the RPC call status 2105 */ 2106 static void 2107 call_status(struct rpc_task *task) 2108 { 2109 struct rpc_clnt *clnt = task->tk_client; 2110 struct rpc_rqst *req = task->tk_rqstp; 2111 int status; 2112 2113 if (req->rq_reply_bytes_recvd > 0 && !req->rq_bytes_sent) 2114 task->tk_status = req->rq_reply_bytes_recvd; 2115 2116 dprint_status(task); 2117 2118 status = task->tk_status; 2119 if (status >= 0) { 2120 task->tk_action = call_decode; 2121 return; 2122 } 2123 2124 trace_rpc_call_status(task); 2125 task->tk_status = 0; 2126 switch(status) { 2127 case -EHOSTDOWN: 2128 case -EHOSTUNREACH: 2129 case -ENETUNREACH: 2130 case -EPERM: 2131 if (RPC_IS_SOFTCONN(task)) { 2132 rpc_exit(task, status); 2133 break; 2134 } 2135 /* 2136 * Delay any retries for 3 seconds, then handle as if it 2137 * were a timeout. 2138 */ 2139 rpc_delay(task, 3*HZ); 2140 case -ETIMEDOUT: 2141 task->tk_action = call_timeout; 2142 if (!(task->tk_flags & RPC_TASK_NO_RETRANS_TIMEOUT) 2143 && task->tk_client->cl_discrtry) 2144 xprt_conditional_disconnect(req->rq_xprt, 2145 req->rq_connect_cookie); 2146 break; 2147 case -ECONNREFUSED: 2148 case -ECONNRESET: 2149 case -ECONNABORTED: 2150 rpc_force_rebind(clnt); 2151 case -EADDRINUSE: 2152 rpc_delay(task, 3*HZ); 2153 case -EPIPE: 2154 case -ENOTCONN: 2155 task->tk_action = call_bind; 2156 break; 2157 case -ENOBUFS: 2158 rpc_delay(task, HZ>>2); 2159 case -EAGAIN: 2160 task->tk_action = call_transmit; 2161 break; 2162 case -EIO: 2163 /* shutdown or soft timeout */ 2164 rpc_exit(task, status); 2165 break; 2166 default: 2167 if (clnt->cl_chatty) 2168 printk("%s: RPC call returned error %d\n", 2169 clnt->cl_program->name, -status); 2170 rpc_exit(task, status); 2171 } 2172 } 2173 2174 /* 2175 * 6a. Handle RPC timeout 2176 * We do not release the request slot, so we keep using the 2177 * same XID for all retransmits. 2178 */ 2179 static void 2180 call_timeout(struct rpc_task *task) 2181 { 2182 struct rpc_clnt *clnt = task->tk_client; 2183 2184 if (xprt_adjust_timeout(task->tk_rqstp) == 0) { 2185 dprintk("RPC: %5u call_timeout (minor)\n", task->tk_pid); 2186 goto retry; 2187 } 2188 2189 dprintk("RPC: %5u call_timeout (major)\n", task->tk_pid); 2190 task->tk_timeouts++; 2191 2192 if (RPC_IS_SOFTCONN(task)) { 2193 rpc_exit(task, -ETIMEDOUT); 2194 return; 2195 } 2196 if (RPC_IS_SOFT(task)) { 2197 if (clnt->cl_chatty) { 2198 printk(KERN_NOTICE "%s: server %s not responding, timed out\n", 2199 clnt->cl_program->name, 2200 task->tk_xprt->servername); 2201 } 2202 if (task->tk_flags & RPC_TASK_TIMEOUT) 2203 rpc_exit(task, -ETIMEDOUT); 2204 else 2205 rpc_exit(task, -EIO); 2206 return; 2207 } 2208 2209 if (!(task->tk_flags & RPC_CALL_MAJORSEEN)) { 2210 task->tk_flags |= RPC_CALL_MAJORSEEN; 2211 if (clnt->cl_chatty) { 2212 printk(KERN_NOTICE "%s: server %s not responding, still trying\n", 2213 clnt->cl_program->name, 2214 task->tk_xprt->servername); 2215 } 2216 } 2217 rpc_force_rebind(clnt); 2218 /* 2219 * Did our request time out due to an RPCSEC_GSS out-of-sequence 2220 * event? RFC2203 requires the server to drop all such requests. 2221 */ 2222 rpcauth_invalcred(task); 2223 2224 retry: 2225 task->tk_action = call_bind; 2226 task->tk_status = 0; 2227 } 2228 2229 /* 2230 * 7. Decode the RPC reply 2231 */ 2232 static void 2233 call_decode(struct rpc_task *task) 2234 { 2235 struct rpc_clnt *clnt = task->tk_client; 2236 struct rpc_rqst *req = task->tk_rqstp; 2237 kxdrdproc_t decode = task->tk_msg.rpc_proc->p_decode; 2238 __be32 *p; 2239 2240 dprint_status(task); 2241 2242 if (task->tk_flags & RPC_CALL_MAJORSEEN) { 2243 if (clnt->cl_chatty) { 2244 printk(KERN_NOTICE "%s: server %s OK\n", 2245 clnt->cl_program->name, 2246 task->tk_xprt->servername); 2247 } 2248 task->tk_flags &= ~RPC_CALL_MAJORSEEN; 2249 } 2250 2251 /* 2252 * Ensure that we see all writes made by xprt_complete_rqst() 2253 * before it changed req->rq_reply_bytes_recvd. 2254 */ 2255 smp_rmb(); 2256 req->rq_rcv_buf.len = req->rq_private_buf.len; 2257 2258 /* Check that the softirq receive buffer is valid */ 2259 WARN_ON(memcmp(&req->rq_rcv_buf, &req->rq_private_buf, 2260 sizeof(req->rq_rcv_buf)) != 0); 2261 2262 if (req->rq_rcv_buf.len < 12) { 2263 if (!RPC_IS_SOFT(task)) { 2264 task->tk_action = call_bind; 2265 goto out_retry; 2266 } 2267 dprintk("RPC: %s: too small RPC reply size (%d bytes)\n", 2268 clnt->cl_program->name, task->tk_status); 2269 task->tk_action = call_timeout; 2270 goto out_retry; 2271 } 2272 2273 p = rpc_verify_header(task); 2274 if (IS_ERR(p)) { 2275 if (p == ERR_PTR(-EAGAIN)) 2276 goto out_retry; 2277 return; 2278 } 2279 2280 task->tk_action = rpc_exit_task; 2281 2282 if (decode) { 2283 task->tk_status = rpcauth_unwrap_resp(task, decode, req, p, 2284 task->tk_msg.rpc_resp); 2285 } 2286 dprintk("RPC: %5u call_decode result %d\n", task->tk_pid, 2287 task->tk_status); 2288 return; 2289 out_retry: 2290 task->tk_status = 0; 2291 /* Note: rpc_verify_header() may have freed the RPC slot */ 2292 if (task->tk_rqstp == req) { 2293 req->rq_reply_bytes_recvd = req->rq_rcv_buf.len = 0; 2294 if (task->tk_client->cl_discrtry) 2295 xprt_conditional_disconnect(req->rq_xprt, 2296 req->rq_connect_cookie); 2297 } 2298 } 2299 2300 static __be32 * 2301 rpc_encode_header(struct rpc_task *task) 2302 { 2303 struct rpc_clnt *clnt = task->tk_client; 2304 struct rpc_rqst *req = task->tk_rqstp; 2305 __be32 *p = req->rq_svec[0].iov_base; 2306 2307 /* FIXME: check buffer size? */ 2308 2309 p = xprt_skip_transport_header(req->rq_xprt, p); 2310 *p++ = req->rq_xid; /* XID */ 2311 *p++ = htonl(RPC_CALL); /* CALL */ 2312 *p++ = htonl(RPC_VERSION); /* RPC version */ 2313 *p++ = htonl(clnt->cl_prog); /* program number */ 2314 *p++ = htonl(clnt->cl_vers); /* program version */ 2315 *p++ = htonl(task->tk_msg.rpc_proc->p_proc); /* procedure */ 2316 p = rpcauth_marshcred(task, p); 2317 req->rq_slen = xdr_adjust_iovec(&req->rq_svec[0], p); 2318 return p; 2319 } 2320 2321 static __be32 * 2322 rpc_verify_header(struct rpc_task *task) 2323 { 2324 struct rpc_clnt *clnt = task->tk_client; 2325 struct kvec *iov = &task->tk_rqstp->rq_rcv_buf.head[0]; 2326 int len = task->tk_rqstp->rq_rcv_buf.len >> 2; 2327 __be32 *p = iov->iov_base; 2328 u32 n; 2329 int error = -EACCES; 2330 2331 if ((task->tk_rqstp->rq_rcv_buf.len & 3) != 0) { 2332 /* RFC-1014 says that the representation of XDR data must be a 2333 * multiple of four bytes 2334 * - if it isn't pointer subtraction in the NFS client may give 2335 * undefined results 2336 */ 2337 dprintk("RPC: %5u %s: XDR representation not a multiple of" 2338 " 4 bytes: 0x%x\n", task->tk_pid, __func__, 2339 task->tk_rqstp->rq_rcv_buf.len); 2340 error = -EIO; 2341 goto out_err; 2342 } 2343 if ((len -= 3) < 0) 2344 goto out_overflow; 2345 2346 p += 1; /* skip XID */ 2347 if ((n = ntohl(*p++)) != RPC_REPLY) { 2348 dprintk("RPC: %5u %s: not an RPC reply: %x\n", 2349 task->tk_pid, __func__, n); 2350 error = -EIO; 2351 goto out_garbage; 2352 } 2353 2354 if ((n = ntohl(*p++)) != RPC_MSG_ACCEPTED) { 2355 if (--len < 0) 2356 goto out_overflow; 2357 switch ((n = ntohl(*p++))) { 2358 case RPC_AUTH_ERROR: 2359 break; 2360 case RPC_MISMATCH: 2361 dprintk("RPC: %5u %s: RPC call version mismatch!\n", 2362 task->tk_pid, __func__); 2363 error = -EPROTONOSUPPORT; 2364 goto out_err; 2365 default: 2366 dprintk("RPC: %5u %s: RPC call rejected, " 2367 "unknown error: %x\n", 2368 task->tk_pid, __func__, n); 2369 error = -EIO; 2370 goto out_err; 2371 } 2372 if (--len < 0) 2373 goto out_overflow; 2374 switch ((n = ntohl(*p++))) { 2375 case RPC_AUTH_REJECTEDCRED: 2376 case RPC_AUTH_REJECTEDVERF: 2377 case RPCSEC_GSS_CREDPROBLEM: 2378 case RPCSEC_GSS_CTXPROBLEM: 2379 if (!task->tk_cred_retry) 2380 break; 2381 task->tk_cred_retry--; 2382 dprintk("RPC: %5u %s: retry stale creds\n", 2383 task->tk_pid, __func__); 2384 rpcauth_invalcred(task); 2385 /* Ensure we obtain a new XID! */ 2386 xprt_release(task); 2387 task->tk_action = call_reserve; 2388 goto out_retry; 2389 case RPC_AUTH_BADCRED: 2390 case RPC_AUTH_BADVERF: 2391 /* possibly garbled cred/verf? */ 2392 if (!task->tk_garb_retry) 2393 break; 2394 task->tk_garb_retry--; 2395 dprintk("RPC: %5u %s: retry garbled creds\n", 2396 task->tk_pid, __func__); 2397 task->tk_action = call_bind; 2398 goto out_retry; 2399 case RPC_AUTH_TOOWEAK: 2400 printk(KERN_NOTICE "RPC: server %s requires stronger " 2401 "authentication.\n", 2402 task->tk_xprt->servername); 2403 break; 2404 default: 2405 dprintk("RPC: %5u %s: unknown auth error: %x\n", 2406 task->tk_pid, __func__, n); 2407 error = -EIO; 2408 } 2409 dprintk("RPC: %5u %s: call rejected %d\n", 2410 task->tk_pid, __func__, n); 2411 goto out_err; 2412 } 2413 p = rpcauth_checkverf(task, p); 2414 if (IS_ERR(p)) { 2415 error = PTR_ERR(p); 2416 dprintk("RPC: %5u %s: auth check failed with %d\n", 2417 task->tk_pid, __func__, error); 2418 goto out_garbage; /* bad verifier, retry */ 2419 } 2420 len = p - (__be32 *)iov->iov_base - 1; 2421 if (len < 0) 2422 goto out_overflow; 2423 switch ((n = ntohl(*p++))) { 2424 case RPC_SUCCESS: 2425 return p; 2426 case RPC_PROG_UNAVAIL: 2427 dprintk("RPC: %5u %s: program %u is unsupported " 2428 "by server %s\n", task->tk_pid, __func__, 2429 (unsigned int)clnt->cl_prog, 2430 task->tk_xprt->servername); 2431 error = -EPFNOSUPPORT; 2432 goto out_err; 2433 case RPC_PROG_MISMATCH: 2434 dprintk("RPC: %5u %s: program %u, version %u unsupported " 2435 "by server %s\n", task->tk_pid, __func__, 2436 (unsigned int)clnt->cl_prog, 2437 (unsigned int)clnt->cl_vers, 2438 task->tk_xprt->servername); 2439 error = -EPROTONOSUPPORT; 2440 goto out_err; 2441 case RPC_PROC_UNAVAIL: 2442 dprintk("RPC: %5u %s: proc %s unsupported by program %u, " 2443 "version %u on server %s\n", 2444 task->tk_pid, __func__, 2445 rpc_proc_name(task), 2446 clnt->cl_prog, clnt->cl_vers, 2447 task->tk_xprt->servername); 2448 error = -EOPNOTSUPP; 2449 goto out_err; 2450 case RPC_GARBAGE_ARGS: 2451 dprintk("RPC: %5u %s: server saw garbage\n", 2452 task->tk_pid, __func__); 2453 break; /* retry */ 2454 default: 2455 dprintk("RPC: %5u %s: server accept status: %x\n", 2456 task->tk_pid, __func__, n); 2457 /* Also retry */ 2458 } 2459 2460 out_garbage: 2461 clnt->cl_stats->rpcgarbage++; 2462 if (task->tk_garb_retry) { 2463 task->tk_garb_retry--; 2464 dprintk("RPC: %5u %s: retrying\n", 2465 task->tk_pid, __func__); 2466 task->tk_action = call_bind; 2467 out_retry: 2468 return ERR_PTR(-EAGAIN); 2469 } 2470 out_err: 2471 rpc_exit(task, error); 2472 dprintk("RPC: %5u %s: call failed with error %d\n", task->tk_pid, 2473 __func__, error); 2474 return ERR_PTR(error); 2475 out_overflow: 2476 dprintk("RPC: %5u %s: server reply was truncated.\n", task->tk_pid, 2477 __func__); 2478 goto out_garbage; 2479 } 2480 2481 static void rpcproc_encode_null(struct rpc_rqst *rqstp, struct xdr_stream *xdr, 2482 const void *obj) 2483 { 2484 } 2485 2486 static int rpcproc_decode_null(struct rpc_rqst *rqstp, struct xdr_stream *xdr, 2487 void *obj) 2488 { 2489 return 0; 2490 } 2491 2492 static const struct rpc_procinfo rpcproc_null = { 2493 .p_encode = rpcproc_encode_null, 2494 .p_decode = rpcproc_decode_null, 2495 }; 2496 2497 static int rpc_ping(struct rpc_clnt *clnt) 2498 { 2499 struct rpc_message msg = { 2500 .rpc_proc = &rpcproc_null, 2501 }; 2502 int err; 2503 msg.rpc_cred = authnull_ops.lookup_cred(NULL, NULL, 0); 2504 err = rpc_call_sync(clnt, &msg, RPC_TASK_SOFT | RPC_TASK_SOFTCONN); 2505 put_rpccred(msg.rpc_cred); 2506 return err; 2507 } 2508 2509 static 2510 struct rpc_task *rpc_call_null_helper(struct rpc_clnt *clnt, 2511 struct rpc_xprt *xprt, struct rpc_cred *cred, int flags, 2512 const struct rpc_call_ops *ops, void *data) 2513 { 2514 struct rpc_message msg = { 2515 .rpc_proc = &rpcproc_null, 2516 .rpc_cred = cred, 2517 }; 2518 struct rpc_task_setup task_setup_data = { 2519 .rpc_client = clnt, 2520 .rpc_xprt = xprt, 2521 .rpc_message = &msg, 2522 .callback_ops = (ops != NULL) ? ops : &rpc_default_ops, 2523 .callback_data = data, 2524 .flags = flags, 2525 }; 2526 2527 return rpc_run_task(&task_setup_data); 2528 } 2529 2530 struct rpc_task *rpc_call_null(struct rpc_clnt *clnt, struct rpc_cred *cred, int flags) 2531 { 2532 return rpc_call_null_helper(clnt, NULL, cred, flags, NULL, NULL); 2533 } 2534 EXPORT_SYMBOL_GPL(rpc_call_null); 2535 2536 struct rpc_cb_add_xprt_calldata { 2537 struct rpc_xprt_switch *xps; 2538 struct rpc_xprt *xprt; 2539 }; 2540 2541 static void rpc_cb_add_xprt_done(struct rpc_task *task, void *calldata) 2542 { 2543 struct rpc_cb_add_xprt_calldata *data = calldata; 2544 2545 if (task->tk_status == 0) 2546 rpc_xprt_switch_add_xprt(data->xps, data->xprt); 2547 } 2548 2549 static void rpc_cb_add_xprt_release(void *calldata) 2550 { 2551 struct rpc_cb_add_xprt_calldata *data = calldata; 2552 2553 xprt_put(data->xprt); 2554 xprt_switch_put(data->xps); 2555 kfree(data); 2556 } 2557 2558 static const struct rpc_call_ops rpc_cb_add_xprt_call_ops = { 2559 .rpc_call_done = rpc_cb_add_xprt_done, 2560 .rpc_release = rpc_cb_add_xprt_release, 2561 }; 2562 2563 /** 2564 * rpc_clnt_test_and_add_xprt - Test and add a new transport to a rpc_clnt 2565 * @clnt: pointer to struct rpc_clnt 2566 * @xps: pointer to struct rpc_xprt_switch, 2567 * @xprt: pointer struct rpc_xprt 2568 * @dummy: unused 2569 */ 2570 int rpc_clnt_test_and_add_xprt(struct rpc_clnt *clnt, 2571 struct rpc_xprt_switch *xps, struct rpc_xprt *xprt, 2572 void *dummy) 2573 { 2574 struct rpc_cb_add_xprt_calldata *data; 2575 struct rpc_cred *cred; 2576 struct rpc_task *task; 2577 2578 data = kmalloc(sizeof(*data), GFP_NOFS); 2579 if (!data) 2580 return -ENOMEM; 2581 data->xps = xprt_switch_get(xps); 2582 data->xprt = xprt_get(xprt); 2583 2584 cred = authnull_ops.lookup_cred(NULL, NULL, 0); 2585 task = rpc_call_null_helper(clnt, xprt, cred, 2586 RPC_TASK_SOFT|RPC_TASK_SOFTCONN|RPC_TASK_ASYNC, 2587 &rpc_cb_add_xprt_call_ops, data); 2588 put_rpccred(cred); 2589 if (IS_ERR(task)) 2590 return PTR_ERR(task); 2591 rpc_put_task(task); 2592 return 1; 2593 } 2594 EXPORT_SYMBOL_GPL(rpc_clnt_test_and_add_xprt); 2595 2596 /** 2597 * rpc_clnt_setup_test_and_add_xprt() 2598 * 2599 * This is an rpc_clnt_add_xprt setup() function which returns 1 so: 2600 * 1) caller of the test function must dereference the rpc_xprt_switch 2601 * and the rpc_xprt. 2602 * 2) test function must call rpc_xprt_switch_add_xprt, usually in 2603 * the rpc_call_done routine. 2604 * 2605 * Upon success (return of 1), the test function adds the new 2606 * transport to the rpc_clnt xprt switch 2607 * 2608 * @clnt: struct rpc_clnt to get the new transport 2609 * @xps: the rpc_xprt_switch to hold the new transport 2610 * @xprt: the rpc_xprt to test 2611 * @data: a struct rpc_add_xprt_test pointer that holds the test function 2612 * and test function call data 2613 */ 2614 int rpc_clnt_setup_test_and_add_xprt(struct rpc_clnt *clnt, 2615 struct rpc_xprt_switch *xps, 2616 struct rpc_xprt *xprt, 2617 void *data) 2618 { 2619 struct rpc_cred *cred; 2620 struct rpc_task *task; 2621 struct rpc_add_xprt_test *xtest = (struct rpc_add_xprt_test *)data; 2622 int status = -EADDRINUSE; 2623 2624 xprt = xprt_get(xprt); 2625 xprt_switch_get(xps); 2626 2627 if (rpc_xprt_switch_has_addr(xps, (struct sockaddr *)&xprt->addr)) 2628 goto out_err; 2629 2630 /* Test the connection */ 2631 cred = authnull_ops.lookup_cred(NULL, NULL, 0); 2632 task = rpc_call_null_helper(clnt, xprt, cred, 2633 RPC_TASK_SOFT | RPC_TASK_SOFTCONN, 2634 NULL, NULL); 2635 put_rpccred(cred); 2636 if (IS_ERR(task)) { 2637 status = PTR_ERR(task); 2638 goto out_err; 2639 } 2640 status = task->tk_status; 2641 rpc_put_task(task); 2642 2643 if (status < 0) 2644 goto out_err; 2645 2646 /* rpc_xprt_switch and rpc_xprt are deferrenced by add_xprt_test() */ 2647 xtest->add_xprt_test(clnt, xprt, xtest->data); 2648 2649 /* so that rpc_clnt_add_xprt does not call rpc_xprt_switch_add_xprt */ 2650 return 1; 2651 out_err: 2652 xprt_put(xprt); 2653 xprt_switch_put(xps); 2654 pr_info("RPC: rpc_clnt_test_xprt failed: %d addr %s not added\n", 2655 status, xprt->address_strings[RPC_DISPLAY_ADDR]); 2656 return status; 2657 } 2658 EXPORT_SYMBOL_GPL(rpc_clnt_setup_test_and_add_xprt); 2659 2660 /** 2661 * rpc_clnt_add_xprt - Add a new transport to a rpc_clnt 2662 * @clnt: pointer to struct rpc_clnt 2663 * @xprtargs: pointer to struct xprt_create 2664 * @setup: callback to test and/or set up the connection 2665 * @data: pointer to setup function data 2666 * 2667 * Creates a new transport using the parameters set in args and 2668 * adds it to clnt. 2669 * If ping is set, then test that connectivity succeeds before 2670 * adding the new transport. 2671 * 2672 */ 2673 int rpc_clnt_add_xprt(struct rpc_clnt *clnt, 2674 struct xprt_create *xprtargs, 2675 int (*setup)(struct rpc_clnt *, 2676 struct rpc_xprt_switch *, 2677 struct rpc_xprt *, 2678 void *), 2679 void *data) 2680 { 2681 struct rpc_xprt_switch *xps; 2682 struct rpc_xprt *xprt; 2683 unsigned long connect_timeout; 2684 unsigned long reconnect_timeout; 2685 unsigned char resvport; 2686 int ret = 0; 2687 2688 rcu_read_lock(); 2689 xps = xprt_switch_get(rcu_dereference(clnt->cl_xpi.xpi_xpswitch)); 2690 xprt = xprt_iter_xprt(&clnt->cl_xpi); 2691 if (xps == NULL || xprt == NULL) { 2692 rcu_read_unlock(); 2693 return -EAGAIN; 2694 } 2695 resvport = xprt->resvport; 2696 connect_timeout = xprt->connect_timeout; 2697 reconnect_timeout = xprt->max_reconnect_timeout; 2698 rcu_read_unlock(); 2699 2700 xprt = xprt_create_transport(xprtargs); 2701 if (IS_ERR(xprt)) { 2702 ret = PTR_ERR(xprt); 2703 goto out_put_switch; 2704 } 2705 xprt->resvport = resvport; 2706 if (xprt->ops->set_connect_timeout != NULL) 2707 xprt->ops->set_connect_timeout(xprt, 2708 connect_timeout, 2709 reconnect_timeout); 2710 2711 rpc_xprt_switch_set_roundrobin(xps); 2712 if (setup) { 2713 ret = setup(clnt, xps, xprt, data); 2714 if (ret != 0) 2715 goto out_put_xprt; 2716 } 2717 rpc_xprt_switch_add_xprt(xps, xprt); 2718 out_put_xprt: 2719 xprt_put(xprt); 2720 out_put_switch: 2721 xprt_switch_put(xps); 2722 return ret; 2723 } 2724 EXPORT_SYMBOL_GPL(rpc_clnt_add_xprt); 2725 2726 struct connect_timeout_data { 2727 unsigned long connect_timeout; 2728 unsigned long reconnect_timeout; 2729 }; 2730 2731 static int 2732 rpc_xprt_set_connect_timeout(struct rpc_clnt *clnt, 2733 struct rpc_xprt *xprt, 2734 void *data) 2735 { 2736 struct connect_timeout_data *timeo = data; 2737 2738 if (xprt->ops->set_connect_timeout) 2739 xprt->ops->set_connect_timeout(xprt, 2740 timeo->connect_timeout, 2741 timeo->reconnect_timeout); 2742 return 0; 2743 } 2744 2745 void 2746 rpc_set_connect_timeout(struct rpc_clnt *clnt, 2747 unsigned long connect_timeout, 2748 unsigned long reconnect_timeout) 2749 { 2750 struct connect_timeout_data timeout = { 2751 .connect_timeout = connect_timeout, 2752 .reconnect_timeout = reconnect_timeout, 2753 }; 2754 rpc_clnt_iterate_for_each_xprt(clnt, 2755 rpc_xprt_set_connect_timeout, 2756 &timeout); 2757 } 2758 EXPORT_SYMBOL_GPL(rpc_set_connect_timeout); 2759 2760 void rpc_clnt_xprt_switch_put(struct rpc_clnt *clnt) 2761 { 2762 rcu_read_lock(); 2763 xprt_switch_put(rcu_dereference(clnt->cl_xpi.xpi_xpswitch)); 2764 rcu_read_unlock(); 2765 } 2766 EXPORT_SYMBOL_GPL(rpc_clnt_xprt_switch_put); 2767 2768 void rpc_clnt_xprt_switch_add_xprt(struct rpc_clnt *clnt, struct rpc_xprt *xprt) 2769 { 2770 rcu_read_lock(); 2771 rpc_xprt_switch_add_xprt(rcu_dereference(clnt->cl_xpi.xpi_xpswitch), 2772 xprt); 2773 rcu_read_unlock(); 2774 } 2775 EXPORT_SYMBOL_GPL(rpc_clnt_xprt_switch_add_xprt); 2776 2777 bool rpc_clnt_xprt_switch_has_addr(struct rpc_clnt *clnt, 2778 const struct sockaddr *sap) 2779 { 2780 struct rpc_xprt_switch *xps; 2781 bool ret; 2782 2783 rcu_read_lock(); 2784 xps = rcu_dereference(clnt->cl_xpi.xpi_xpswitch); 2785 ret = rpc_xprt_switch_has_addr(xps, sap); 2786 rcu_read_unlock(); 2787 return ret; 2788 } 2789 EXPORT_SYMBOL_GPL(rpc_clnt_xprt_switch_has_addr); 2790 2791 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 2792 static void rpc_show_header(void) 2793 { 2794 printk(KERN_INFO "-pid- flgs status -client- --rqstp- " 2795 "-timeout ---ops--\n"); 2796 } 2797 2798 static void rpc_show_task(const struct rpc_clnt *clnt, 2799 const struct rpc_task *task) 2800 { 2801 const char *rpc_waitq = "none"; 2802 2803 if (RPC_IS_QUEUED(task)) 2804 rpc_waitq = rpc_qname(task->tk_waitqueue); 2805 2806 printk(KERN_INFO "%5u %04x %6d %8p %8p %8ld %8p %sv%u %s a:%ps q:%s\n", 2807 task->tk_pid, task->tk_flags, task->tk_status, 2808 clnt, task->tk_rqstp, task->tk_timeout, task->tk_ops, 2809 clnt->cl_program->name, clnt->cl_vers, rpc_proc_name(task), 2810 task->tk_action, rpc_waitq); 2811 } 2812 2813 void rpc_show_tasks(struct net *net) 2814 { 2815 struct rpc_clnt *clnt; 2816 struct rpc_task *task; 2817 int header = 0; 2818 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 2819 2820 spin_lock(&sn->rpc_client_lock); 2821 list_for_each_entry(clnt, &sn->all_clients, cl_clients) { 2822 spin_lock(&clnt->cl_lock); 2823 list_for_each_entry(task, &clnt->cl_tasks, tk_task) { 2824 if (!header) { 2825 rpc_show_header(); 2826 header++; 2827 } 2828 rpc_show_task(clnt, task); 2829 } 2830 spin_unlock(&clnt->cl_lock); 2831 } 2832 spin_unlock(&sn->rpc_client_lock); 2833 } 2834 #endif 2835 2836 #if IS_ENABLED(CONFIG_SUNRPC_SWAP) 2837 static int 2838 rpc_clnt_swap_activate_callback(struct rpc_clnt *clnt, 2839 struct rpc_xprt *xprt, 2840 void *dummy) 2841 { 2842 return xprt_enable_swap(xprt); 2843 } 2844 2845 int 2846 rpc_clnt_swap_activate(struct rpc_clnt *clnt) 2847 { 2848 if (atomic_inc_return(&clnt->cl_swapper) == 1) 2849 return rpc_clnt_iterate_for_each_xprt(clnt, 2850 rpc_clnt_swap_activate_callback, NULL); 2851 return 0; 2852 } 2853 EXPORT_SYMBOL_GPL(rpc_clnt_swap_activate); 2854 2855 static int 2856 rpc_clnt_swap_deactivate_callback(struct rpc_clnt *clnt, 2857 struct rpc_xprt *xprt, 2858 void *dummy) 2859 { 2860 xprt_disable_swap(xprt); 2861 return 0; 2862 } 2863 2864 void 2865 rpc_clnt_swap_deactivate(struct rpc_clnt *clnt) 2866 { 2867 if (atomic_dec_if_positive(&clnt->cl_swapper) == 0) 2868 rpc_clnt_iterate_for_each_xprt(clnt, 2869 rpc_clnt_swap_deactivate_callback, NULL); 2870 } 2871 EXPORT_SYMBOL_GPL(rpc_clnt_swap_deactivate); 2872 #endif /* CONFIG_SUNRPC_SWAP */ 2873