1 /* 2 * net/sunrpc/cache.c 3 * 4 * Generic code for various authentication-related caches 5 * used by sunrpc clients and servers. 6 * 7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 8 * 9 * Released under terms in GPL version 2. See COPYING. 10 * 11 */ 12 13 #include <linux/types.h> 14 #include <linux/fs.h> 15 #include <linux/file.h> 16 #include <linux/slab.h> 17 #include <linux/signal.h> 18 #include <linux/sched.h> 19 #include <linux/kmod.h> 20 #include <linux/list.h> 21 #include <linux/module.h> 22 #include <linux/ctype.h> 23 #include <asm/uaccess.h> 24 #include <linux/poll.h> 25 #include <linux/seq_file.h> 26 #include <linux/proc_fs.h> 27 #include <linux/net.h> 28 #include <linux/workqueue.h> 29 #include <linux/mutex.h> 30 #include <asm/ioctls.h> 31 #include <linux/sunrpc/types.h> 32 #include <linux/sunrpc/cache.h> 33 #include <linux/sunrpc/stats.h> 34 35 #define RPCDBG_FACILITY RPCDBG_CACHE 36 37 static int cache_defer_req(struct cache_req *req, struct cache_head *item); 38 static void cache_revisit_request(struct cache_head *item); 39 40 static void cache_init(struct cache_head *h) 41 { 42 time_t now = get_seconds(); 43 h->next = NULL; 44 h->flags = 0; 45 kref_init(&h->ref); 46 h->expiry_time = now + CACHE_NEW_EXPIRY; 47 h->last_refresh = now; 48 } 49 50 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail, 51 struct cache_head *key, int hash) 52 { 53 struct cache_head **head, **hp; 54 struct cache_head *new = NULL; 55 56 head = &detail->hash_table[hash]; 57 58 read_lock(&detail->hash_lock); 59 60 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 61 struct cache_head *tmp = *hp; 62 if (detail->match(tmp, key)) { 63 cache_get(tmp); 64 read_unlock(&detail->hash_lock); 65 return tmp; 66 } 67 } 68 read_unlock(&detail->hash_lock); 69 /* Didn't find anything, insert an empty entry */ 70 71 new = detail->alloc(); 72 if (!new) 73 return NULL; 74 /* must fully initialise 'new', else 75 * we might get lose if we need to 76 * cache_put it soon. 77 */ 78 cache_init(new); 79 detail->init(new, key); 80 81 write_lock(&detail->hash_lock); 82 83 /* check if entry appeared while we slept */ 84 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 85 struct cache_head *tmp = *hp; 86 if (detail->match(tmp, key)) { 87 cache_get(tmp); 88 write_unlock(&detail->hash_lock); 89 cache_put(new, detail); 90 return tmp; 91 } 92 } 93 new->next = *head; 94 *head = new; 95 detail->entries++; 96 cache_get(new); 97 write_unlock(&detail->hash_lock); 98 99 return new; 100 } 101 EXPORT_SYMBOL(sunrpc_cache_lookup); 102 103 104 static void queue_loose(struct cache_detail *detail, struct cache_head *ch); 105 106 static int cache_fresh_locked(struct cache_head *head, time_t expiry) 107 { 108 head->expiry_time = expiry; 109 head->last_refresh = get_seconds(); 110 return !test_and_set_bit(CACHE_VALID, &head->flags); 111 } 112 113 static void cache_fresh_unlocked(struct cache_head *head, 114 struct cache_detail *detail, int new) 115 { 116 if (new) 117 cache_revisit_request(head); 118 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 119 cache_revisit_request(head); 120 queue_loose(detail, head); 121 } 122 } 123 124 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 125 struct cache_head *new, struct cache_head *old, int hash) 126 { 127 /* The 'old' entry is to be replaced by 'new'. 128 * If 'old' is not VALID, we update it directly, 129 * otherwise we need to replace it 130 */ 131 struct cache_head **head; 132 struct cache_head *tmp; 133 int is_new; 134 135 if (!test_bit(CACHE_VALID, &old->flags)) { 136 write_lock(&detail->hash_lock); 137 if (!test_bit(CACHE_VALID, &old->flags)) { 138 if (test_bit(CACHE_NEGATIVE, &new->flags)) 139 set_bit(CACHE_NEGATIVE, &old->flags); 140 else 141 detail->update(old, new); 142 is_new = cache_fresh_locked(old, new->expiry_time); 143 write_unlock(&detail->hash_lock); 144 cache_fresh_unlocked(old, detail, is_new); 145 return old; 146 } 147 write_unlock(&detail->hash_lock); 148 } 149 /* We need to insert a new entry */ 150 tmp = detail->alloc(); 151 if (!tmp) { 152 cache_put(old, detail); 153 return NULL; 154 } 155 cache_init(tmp); 156 detail->init(tmp, old); 157 head = &detail->hash_table[hash]; 158 159 write_lock(&detail->hash_lock); 160 if (test_bit(CACHE_NEGATIVE, &new->flags)) 161 set_bit(CACHE_NEGATIVE, &tmp->flags); 162 else 163 detail->update(tmp, new); 164 tmp->next = *head; 165 *head = tmp; 166 detail->entries++; 167 cache_get(tmp); 168 is_new = cache_fresh_locked(tmp, new->expiry_time); 169 cache_fresh_locked(old, 0); 170 write_unlock(&detail->hash_lock); 171 cache_fresh_unlocked(tmp, detail, is_new); 172 cache_fresh_unlocked(old, detail, 0); 173 cache_put(old, detail); 174 return tmp; 175 } 176 EXPORT_SYMBOL(sunrpc_cache_update); 177 178 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h); 179 /* 180 * This is the generic cache management routine for all 181 * the authentication caches. 182 * It checks the currency of a cache item and will (later) 183 * initiate an upcall to fill it if needed. 184 * 185 * 186 * Returns 0 if the cache_head can be used, or cache_puts it and returns 187 * -EAGAIN if upcall is pending, 188 * -ETIMEDOUT if upcall failed and should be retried, 189 * -ENOENT if cache entry was negative 190 */ 191 int cache_check(struct cache_detail *detail, 192 struct cache_head *h, struct cache_req *rqstp) 193 { 194 int rv; 195 long refresh_age, age; 196 197 /* First decide return status as best we can */ 198 if (!test_bit(CACHE_VALID, &h->flags) || 199 h->expiry_time < get_seconds()) 200 rv = -EAGAIN; 201 else if (detail->flush_time > h->last_refresh) 202 rv = -EAGAIN; 203 else { 204 /* entry is valid */ 205 if (test_bit(CACHE_NEGATIVE, &h->flags)) 206 rv = -ENOENT; 207 else rv = 0; 208 } 209 210 /* now see if we want to start an upcall */ 211 refresh_age = (h->expiry_time - h->last_refresh); 212 age = get_seconds() - h->last_refresh; 213 214 if (rqstp == NULL) { 215 if (rv == -EAGAIN) 216 rv = -ENOENT; 217 } else if (rv == -EAGAIN || age > refresh_age/2) { 218 dprintk("RPC: Want update, refage=%ld, age=%ld\n", 219 refresh_age, age); 220 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) { 221 switch (cache_make_upcall(detail, h)) { 222 case -EINVAL: 223 clear_bit(CACHE_PENDING, &h->flags); 224 if (rv == -EAGAIN) { 225 set_bit(CACHE_NEGATIVE, &h->flags); 226 cache_fresh_unlocked(h, detail, 227 cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY)); 228 rv = -ENOENT; 229 } 230 break; 231 232 case -EAGAIN: 233 clear_bit(CACHE_PENDING, &h->flags); 234 cache_revisit_request(h); 235 break; 236 } 237 } 238 } 239 240 if (rv == -EAGAIN) 241 if (cache_defer_req(rqstp, h) != 0) 242 rv = -ETIMEDOUT; 243 244 if (rv) 245 cache_put(h, detail); 246 return rv; 247 } 248 EXPORT_SYMBOL(cache_check); 249 250 /* 251 * caches need to be periodically cleaned. 252 * For this we maintain a list of cache_detail and 253 * a current pointer into that list and into the table 254 * for that entry. 255 * 256 * Each time clean_cache is called it finds the next non-empty entry 257 * in the current table and walks the list in that entry 258 * looking for entries that can be removed. 259 * 260 * An entry gets removed if: 261 * - The expiry is before current time 262 * - The last_refresh time is before the flush_time for that cache 263 * 264 * later we might drop old entries with non-NEVER expiry if that table 265 * is getting 'full' for some definition of 'full' 266 * 267 * The question of "how often to scan a table" is an interesting one 268 * and is answered in part by the use of the "nextcheck" field in the 269 * cache_detail. 270 * When a scan of a table begins, the nextcheck field is set to a time 271 * that is well into the future. 272 * While scanning, if an expiry time is found that is earlier than the 273 * current nextcheck time, nextcheck is set to that expiry time. 274 * If the flush_time is ever set to a time earlier than the nextcheck 275 * time, the nextcheck time is then set to that flush_time. 276 * 277 * A table is then only scanned if the current time is at least 278 * the nextcheck time. 279 * 280 */ 281 282 static LIST_HEAD(cache_list); 283 static DEFINE_SPINLOCK(cache_list_lock); 284 static struct cache_detail *current_detail; 285 static int current_index; 286 287 static const struct file_operations cache_file_operations; 288 static const struct file_operations content_file_operations; 289 static const struct file_operations cache_flush_operations; 290 291 static void do_cache_clean(struct work_struct *work); 292 static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean); 293 294 static void remove_cache_proc_entries(struct cache_detail *cd) 295 { 296 if (cd->proc_ent == NULL) 297 return; 298 if (cd->flush_ent) 299 remove_proc_entry("flush", cd->proc_ent); 300 if (cd->channel_ent) 301 remove_proc_entry("channel", cd->proc_ent); 302 if (cd->content_ent) 303 remove_proc_entry("content", cd->proc_ent); 304 cd->proc_ent = NULL; 305 remove_proc_entry(cd->name, proc_net_rpc); 306 } 307 308 #ifdef CONFIG_PROC_FS 309 static int create_cache_proc_entries(struct cache_detail *cd) 310 { 311 struct proc_dir_entry *p; 312 313 cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc); 314 if (cd->proc_ent == NULL) 315 goto out_nomem; 316 cd->proc_ent->owner = cd->owner; 317 cd->channel_ent = cd->content_ent = NULL; 318 319 p = proc_create("flush", S_IFREG|S_IRUSR|S_IWUSR, 320 cd->proc_ent, &cache_flush_operations); 321 cd->flush_ent = p; 322 if (p == NULL) 323 goto out_nomem; 324 p->owner = cd->owner; 325 p->data = cd; 326 327 if (cd->cache_request || cd->cache_parse) { 328 p = proc_create("channel", S_IFREG|S_IRUSR|S_IWUSR, 329 cd->proc_ent, &cache_file_operations); 330 cd->channel_ent = p; 331 if (p == NULL) 332 goto out_nomem; 333 p->owner = cd->owner; 334 p->data = cd; 335 } 336 if (cd->cache_show) { 337 p = proc_create("content", S_IFREG|S_IRUSR|S_IWUSR, 338 cd->proc_ent, &content_file_operations); 339 cd->content_ent = p; 340 if (p == NULL) 341 goto out_nomem; 342 p->owner = cd->owner; 343 p->data = cd; 344 } 345 return 0; 346 out_nomem: 347 remove_cache_proc_entries(cd); 348 return -ENOMEM; 349 } 350 #else /* CONFIG_PROC_FS */ 351 static int create_cache_proc_entries(struct cache_detail *cd) 352 { 353 return 0; 354 } 355 #endif 356 357 int cache_register(struct cache_detail *cd) 358 { 359 int ret; 360 361 ret = create_cache_proc_entries(cd); 362 if (ret) 363 return ret; 364 rwlock_init(&cd->hash_lock); 365 INIT_LIST_HEAD(&cd->queue); 366 spin_lock(&cache_list_lock); 367 cd->nextcheck = 0; 368 cd->entries = 0; 369 atomic_set(&cd->readers, 0); 370 cd->last_close = 0; 371 cd->last_warn = -1; 372 list_add(&cd->others, &cache_list); 373 spin_unlock(&cache_list_lock); 374 375 /* start the cleaning process */ 376 schedule_delayed_work(&cache_cleaner, 0); 377 return 0; 378 } 379 EXPORT_SYMBOL(cache_register); 380 381 void cache_unregister(struct cache_detail *cd) 382 { 383 cache_purge(cd); 384 spin_lock(&cache_list_lock); 385 write_lock(&cd->hash_lock); 386 if (cd->entries || atomic_read(&cd->inuse)) { 387 write_unlock(&cd->hash_lock); 388 spin_unlock(&cache_list_lock); 389 goto out; 390 } 391 if (current_detail == cd) 392 current_detail = NULL; 393 list_del_init(&cd->others); 394 write_unlock(&cd->hash_lock); 395 spin_unlock(&cache_list_lock); 396 remove_cache_proc_entries(cd); 397 if (list_empty(&cache_list)) { 398 /* module must be being unloaded so its safe to kill the worker */ 399 cancel_delayed_work_sync(&cache_cleaner); 400 } 401 return; 402 out: 403 printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name); 404 } 405 EXPORT_SYMBOL(cache_unregister); 406 407 /* clean cache tries to find something to clean 408 * and cleans it. 409 * It returns 1 if it cleaned something, 410 * 0 if it didn't find anything this time 411 * -1 if it fell off the end of the list. 412 */ 413 static int cache_clean(void) 414 { 415 int rv = 0; 416 struct list_head *next; 417 418 spin_lock(&cache_list_lock); 419 420 /* find a suitable table if we don't already have one */ 421 while (current_detail == NULL || 422 current_index >= current_detail->hash_size) { 423 if (current_detail) 424 next = current_detail->others.next; 425 else 426 next = cache_list.next; 427 if (next == &cache_list) { 428 current_detail = NULL; 429 spin_unlock(&cache_list_lock); 430 return -1; 431 } 432 current_detail = list_entry(next, struct cache_detail, others); 433 if (current_detail->nextcheck > get_seconds()) 434 current_index = current_detail->hash_size; 435 else { 436 current_index = 0; 437 current_detail->nextcheck = get_seconds()+30*60; 438 } 439 } 440 441 /* find a non-empty bucket in the table */ 442 while (current_detail && 443 current_index < current_detail->hash_size && 444 current_detail->hash_table[current_index] == NULL) 445 current_index++; 446 447 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 448 449 if (current_detail && current_index < current_detail->hash_size) { 450 struct cache_head *ch, **cp; 451 struct cache_detail *d; 452 453 write_lock(¤t_detail->hash_lock); 454 455 /* Ok, now to clean this strand */ 456 457 cp = & current_detail->hash_table[current_index]; 458 ch = *cp; 459 for (; ch; cp= & ch->next, ch= *cp) { 460 if (current_detail->nextcheck > ch->expiry_time) 461 current_detail->nextcheck = ch->expiry_time+1; 462 if (ch->expiry_time >= get_seconds() 463 && ch->last_refresh >= current_detail->flush_time 464 ) 465 continue; 466 if (test_and_clear_bit(CACHE_PENDING, &ch->flags)) 467 queue_loose(current_detail, ch); 468 469 if (atomic_read(&ch->ref.refcount) == 1) 470 break; 471 } 472 if (ch) { 473 *cp = ch->next; 474 ch->next = NULL; 475 current_detail->entries--; 476 rv = 1; 477 } 478 write_unlock(¤t_detail->hash_lock); 479 d = current_detail; 480 if (!ch) 481 current_index ++; 482 spin_unlock(&cache_list_lock); 483 if (ch) 484 cache_put(ch, d); 485 } else 486 spin_unlock(&cache_list_lock); 487 488 return rv; 489 } 490 491 /* 492 * We want to regularly clean the cache, so we need to schedule some work ... 493 */ 494 static void do_cache_clean(struct work_struct *work) 495 { 496 int delay = 5; 497 if (cache_clean() == -1) 498 delay = 30*HZ; 499 500 if (list_empty(&cache_list)) 501 delay = 0; 502 503 if (delay) 504 schedule_delayed_work(&cache_cleaner, delay); 505 } 506 507 508 /* 509 * Clean all caches promptly. This just calls cache_clean 510 * repeatedly until we are sure that every cache has had a chance to 511 * be fully cleaned 512 */ 513 void cache_flush(void) 514 { 515 while (cache_clean() != -1) 516 cond_resched(); 517 while (cache_clean() != -1) 518 cond_resched(); 519 } 520 EXPORT_SYMBOL(cache_flush); 521 522 void cache_purge(struct cache_detail *detail) 523 { 524 detail->flush_time = LONG_MAX; 525 detail->nextcheck = get_seconds(); 526 cache_flush(); 527 detail->flush_time = 1; 528 } 529 EXPORT_SYMBOL(cache_purge); 530 531 532 /* 533 * Deferral and Revisiting of Requests. 534 * 535 * If a cache lookup finds a pending entry, we 536 * need to defer the request and revisit it later. 537 * All deferred requests are stored in a hash table, 538 * indexed by "struct cache_head *". 539 * As it may be wasteful to store a whole request 540 * structure, we allow the request to provide a 541 * deferred form, which must contain a 542 * 'struct cache_deferred_req' 543 * This cache_deferred_req contains a method to allow 544 * it to be revisited when cache info is available 545 */ 546 547 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 548 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 549 550 #define DFR_MAX 300 /* ??? */ 551 552 static DEFINE_SPINLOCK(cache_defer_lock); 553 static LIST_HEAD(cache_defer_list); 554 static struct list_head cache_defer_hash[DFR_HASHSIZE]; 555 static int cache_defer_cnt; 556 557 static int cache_defer_req(struct cache_req *req, struct cache_head *item) 558 { 559 struct cache_deferred_req *dreq; 560 int hash = DFR_HASH(item); 561 562 if (cache_defer_cnt >= DFR_MAX) { 563 /* too much in the cache, randomly drop this one, 564 * or continue and drop the oldest below 565 */ 566 if (net_random()&1) 567 return -ETIMEDOUT; 568 } 569 dreq = req->defer(req); 570 if (dreq == NULL) 571 return -ETIMEDOUT; 572 573 dreq->item = item; 574 575 spin_lock(&cache_defer_lock); 576 577 list_add(&dreq->recent, &cache_defer_list); 578 579 if (cache_defer_hash[hash].next == NULL) 580 INIT_LIST_HEAD(&cache_defer_hash[hash]); 581 list_add(&dreq->hash, &cache_defer_hash[hash]); 582 583 /* it is in, now maybe clean up */ 584 dreq = NULL; 585 if (++cache_defer_cnt > DFR_MAX) { 586 dreq = list_entry(cache_defer_list.prev, 587 struct cache_deferred_req, recent); 588 list_del(&dreq->recent); 589 list_del(&dreq->hash); 590 cache_defer_cnt--; 591 } 592 spin_unlock(&cache_defer_lock); 593 594 if (dreq) { 595 /* there was one too many */ 596 dreq->revisit(dreq, 1); 597 } 598 if (!test_bit(CACHE_PENDING, &item->flags)) { 599 /* must have just been validated... */ 600 cache_revisit_request(item); 601 } 602 return 0; 603 } 604 605 static void cache_revisit_request(struct cache_head *item) 606 { 607 struct cache_deferred_req *dreq; 608 struct list_head pending; 609 610 struct list_head *lp; 611 int hash = DFR_HASH(item); 612 613 INIT_LIST_HEAD(&pending); 614 spin_lock(&cache_defer_lock); 615 616 lp = cache_defer_hash[hash].next; 617 if (lp) { 618 while (lp != &cache_defer_hash[hash]) { 619 dreq = list_entry(lp, struct cache_deferred_req, hash); 620 lp = lp->next; 621 if (dreq->item == item) { 622 list_del(&dreq->hash); 623 list_move(&dreq->recent, &pending); 624 cache_defer_cnt--; 625 } 626 } 627 } 628 spin_unlock(&cache_defer_lock); 629 630 while (!list_empty(&pending)) { 631 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 632 list_del_init(&dreq->recent); 633 dreq->revisit(dreq, 0); 634 } 635 } 636 637 void cache_clean_deferred(void *owner) 638 { 639 struct cache_deferred_req *dreq, *tmp; 640 struct list_head pending; 641 642 643 INIT_LIST_HEAD(&pending); 644 spin_lock(&cache_defer_lock); 645 646 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 647 if (dreq->owner == owner) { 648 list_del(&dreq->hash); 649 list_move(&dreq->recent, &pending); 650 cache_defer_cnt--; 651 } 652 } 653 spin_unlock(&cache_defer_lock); 654 655 while (!list_empty(&pending)) { 656 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 657 list_del_init(&dreq->recent); 658 dreq->revisit(dreq, 1); 659 } 660 } 661 662 /* 663 * communicate with user-space 664 * 665 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel. 666 * On read, you get a full request, or block. 667 * On write, an update request is processed. 668 * Poll works if anything to read, and always allows write. 669 * 670 * Implemented by linked list of requests. Each open file has 671 * a ->private that also exists in this list. New requests are added 672 * to the end and may wakeup and preceding readers. 673 * New readers are added to the head. If, on read, an item is found with 674 * CACHE_UPCALLING clear, we free it from the list. 675 * 676 */ 677 678 static DEFINE_SPINLOCK(queue_lock); 679 static DEFINE_MUTEX(queue_io_mutex); 680 681 struct cache_queue { 682 struct list_head list; 683 int reader; /* if 0, then request */ 684 }; 685 struct cache_request { 686 struct cache_queue q; 687 struct cache_head *item; 688 char * buf; 689 int len; 690 int readers; 691 }; 692 struct cache_reader { 693 struct cache_queue q; 694 int offset; /* if non-0, we have a refcnt on next request */ 695 }; 696 697 static ssize_t 698 cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos) 699 { 700 struct cache_reader *rp = filp->private_data; 701 struct cache_request *rq; 702 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 703 int err; 704 705 if (count == 0) 706 return 0; 707 708 mutex_lock(&queue_io_mutex); /* protect against multiple concurrent 709 * readers on this file */ 710 again: 711 spin_lock(&queue_lock); 712 /* need to find next request */ 713 while (rp->q.list.next != &cd->queue && 714 list_entry(rp->q.list.next, struct cache_queue, list) 715 ->reader) { 716 struct list_head *next = rp->q.list.next; 717 list_move(&rp->q.list, next); 718 } 719 if (rp->q.list.next == &cd->queue) { 720 spin_unlock(&queue_lock); 721 mutex_unlock(&queue_io_mutex); 722 BUG_ON(rp->offset); 723 return 0; 724 } 725 rq = container_of(rp->q.list.next, struct cache_request, q.list); 726 BUG_ON(rq->q.reader); 727 if (rp->offset == 0) 728 rq->readers++; 729 spin_unlock(&queue_lock); 730 731 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 732 err = -EAGAIN; 733 spin_lock(&queue_lock); 734 list_move(&rp->q.list, &rq->q.list); 735 spin_unlock(&queue_lock); 736 } else { 737 if (rp->offset + count > rq->len) 738 count = rq->len - rp->offset; 739 err = -EFAULT; 740 if (copy_to_user(buf, rq->buf + rp->offset, count)) 741 goto out; 742 rp->offset += count; 743 if (rp->offset >= rq->len) { 744 rp->offset = 0; 745 spin_lock(&queue_lock); 746 list_move(&rp->q.list, &rq->q.list); 747 spin_unlock(&queue_lock); 748 } 749 err = 0; 750 } 751 out: 752 if (rp->offset == 0) { 753 /* need to release rq */ 754 spin_lock(&queue_lock); 755 rq->readers--; 756 if (rq->readers == 0 && 757 !test_bit(CACHE_PENDING, &rq->item->flags)) { 758 list_del(&rq->q.list); 759 spin_unlock(&queue_lock); 760 cache_put(rq->item, cd); 761 kfree(rq->buf); 762 kfree(rq); 763 } else 764 spin_unlock(&queue_lock); 765 } 766 if (err == -EAGAIN) 767 goto again; 768 mutex_unlock(&queue_io_mutex); 769 return err ? err : count; 770 } 771 772 static char write_buf[8192]; /* protected by queue_io_mutex */ 773 774 static ssize_t 775 cache_write(struct file *filp, const char __user *buf, size_t count, 776 loff_t *ppos) 777 { 778 int err; 779 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 780 781 if (count == 0) 782 return 0; 783 if (count >= sizeof(write_buf)) 784 return -EINVAL; 785 786 mutex_lock(&queue_io_mutex); 787 788 if (copy_from_user(write_buf, buf, count)) { 789 mutex_unlock(&queue_io_mutex); 790 return -EFAULT; 791 } 792 write_buf[count] = '\0'; 793 if (cd->cache_parse) 794 err = cd->cache_parse(cd, write_buf, count); 795 else 796 err = -EINVAL; 797 798 mutex_unlock(&queue_io_mutex); 799 return err ? err : count; 800 } 801 802 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 803 804 static unsigned int 805 cache_poll(struct file *filp, poll_table *wait) 806 { 807 unsigned int mask; 808 struct cache_reader *rp = filp->private_data; 809 struct cache_queue *cq; 810 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 811 812 poll_wait(filp, &queue_wait, wait); 813 814 /* alway allow write */ 815 mask = POLL_OUT | POLLWRNORM; 816 817 if (!rp) 818 return mask; 819 820 spin_lock(&queue_lock); 821 822 for (cq= &rp->q; &cq->list != &cd->queue; 823 cq = list_entry(cq->list.next, struct cache_queue, list)) 824 if (!cq->reader) { 825 mask |= POLLIN | POLLRDNORM; 826 break; 827 } 828 spin_unlock(&queue_lock); 829 return mask; 830 } 831 832 static int 833 cache_ioctl(struct inode *ino, struct file *filp, 834 unsigned int cmd, unsigned long arg) 835 { 836 int len = 0; 837 struct cache_reader *rp = filp->private_data; 838 struct cache_queue *cq; 839 struct cache_detail *cd = PDE(ino)->data; 840 841 if (cmd != FIONREAD || !rp) 842 return -EINVAL; 843 844 spin_lock(&queue_lock); 845 846 /* only find the length remaining in current request, 847 * or the length of the next request 848 */ 849 for (cq= &rp->q; &cq->list != &cd->queue; 850 cq = list_entry(cq->list.next, struct cache_queue, list)) 851 if (!cq->reader) { 852 struct cache_request *cr = 853 container_of(cq, struct cache_request, q); 854 len = cr->len - rp->offset; 855 break; 856 } 857 spin_unlock(&queue_lock); 858 859 return put_user(len, (int __user *)arg); 860 } 861 862 static int 863 cache_open(struct inode *inode, struct file *filp) 864 { 865 struct cache_reader *rp = NULL; 866 867 nonseekable_open(inode, filp); 868 if (filp->f_mode & FMODE_READ) { 869 struct cache_detail *cd = PDE(inode)->data; 870 871 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 872 if (!rp) 873 return -ENOMEM; 874 rp->offset = 0; 875 rp->q.reader = 1; 876 atomic_inc(&cd->readers); 877 spin_lock(&queue_lock); 878 list_add(&rp->q.list, &cd->queue); 879 spin_unlock(&queue_lock); 880 } 881 filp->private_data = rp; 882 return 0; 883 } 884 885 static int 886 cache_release(struct inode *inode, struct file *filp) 887 { 888 struct cache_reader *rp = filp->private_data; 889 struct cache_detail *cd = PDE(inode)->data; 890 891 if (rp) { 892 spin_lock(&queue_lock); 893 if (rp->offset) { 894 struct cache_queue *cq; 895 for (cq= &rp->q; &cq->list != &cd->queue; 896 cq = list_entry(cq->list.next, struct cache_queue, list)) 897 if (!cq->reader) { 898 container_of(cq, struct cache_request, q) 899 ->readers--; 900 break; 901 } 902 rp->offset = 0; 903 } 904 list_del(&rp->q.list); 905 spin_unlock(&queue_lock); 906 907 filp->private_data = NULL; 908 kfree(rp); 909 910 cd->last_close = get_seconds(); 911 atomic_dec(&cd->readers); 912 } 913 return 0; 914 } 915 916 917 918 static const struct file_operations cache_file_operations = { 919 .owner = THIS_MODULE, 920 .llseek = no_llseek, 921 .read = cache_read, 922 .write = cache_write, 923 .poll = cache_poll, 924 .ioctl = cache_ioctl, /* for FIONREAD */ 925 .open = cache_open, 926 .release = cache_release, 927 }; 928 929 930 static void queue_loose(struct cache_detail *detail, struct cache_head *ch) 931 { 932 struct cache_queue *cq; 933 spin_lock(&queue_lock); 934 list_for_each_entry(cq, &detail->queue, list) 935 if (!cq->reader) { 936 struct cache_request *cr = container_of(cq, struct cache_request, q); 937 if (cr->item != ch) 938 continue; 939 if (cr->readers != 0) 940 continue; 941 list_del(&cr->q.list); 942 spin_unlock(&queue_lock); 943 cache_put(cr->item, detail); 944 kfree(cr->buf); 945 kfree(cr); 946 return; 947 } 948 spin_unlock(&queue_lock); 949 } 950 951 /* 952 * Support routines for text-based upcalls. 953 * Fields are separated by spaces. 954 * Fields are either mangled to quote space tab newline slosh with slosh 955 * or a hexified with a leading \x 956 * Record is terminated with newline. 957 * 958 */ 959 960 void qword_add(char **bpp, int *lp, char *str) 961 { 962 char *bp = *bpp; 963 int len = *lp; 964 char c; 965 966 if (len < 0) return; 967 968 while ((c=*str++) && len) 969 switch(c) { 970 case ' ': 971 case '\t': 972 case '\n': 973 case '\\': 974 if (len >= 4) { 975 *bp++ = '\\'; 976 *bp++ = '0' + ((c & 0300)>>6); 977 *bp++ = '0' + ((c & 0070)>>3); 978 *bp++ = '0' + ((c & 0007)>>0); 979 } 980 len -= 4; 981 break; 982 default: 983 *bp++ = c; 984 len--; 985 } 986 if (c || len <1) len = -1; 987 else { 988 *bp++ = ' '; 989 len--; 990 } 991 *bpp = bp; 992 *lp = len; 993 } 994 EXPORT_SYMBOL(qword_add); 995 996 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 997 { 998 char *bp = *bpp; 999 int len = *lp; 1000 1001 if (len < 0) return; 1002 1003 if (len > 2) { 1004 *bp++ = '\\'; 1005 *bp++ = 'x'; 1006 len -= 2; 1007 while (blen && len >= 2) { 1008 unsigned char c = *buf++; 1009 *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1); 1010 *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1); 1011 len -= 2; 1012 blen--; 1013 } 1014 } 1015 if (blen || len<1) len = -1; 1016 else { 1017 *bp++ = ' '; 1018 len--; 1019 } 1020 *bpp = bp; 1021 *lp = len; 1022 } 1023 EXPORT_SYMBOL(qword_addhex); 1024 1025 static void warn_no_listener(struct cache_detail *detail) 1026 { 1027 if (detail->last_warn != detail->last_close) { 1028 detail->last_warn = detail->last_close; 1029 if (detail->warn_no_listener) 1030 detail->warn_no_listener(detail); 1031 } 1032 } 1033 1034 /* 1035 * register an upcall request to user-space. 1036 * Each request is at most one page long. 1037 */ 1038 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h) 1039 { 1040 1041 char *buf; 1042 struct cache_request *crq; 1043 char *bp; 1044 int len; 1045 1046 if (detail->cache_request == NULL) 1047 return -EINVAL; 1048 1049 if (atomic_read(&detail->readers) == 0 && 1050 detail->last_close < get_seconds() - 30) { 1051 warn_no_listener(detail); 1052 return -EINVAL; 1053 } 1054 1055 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1056 if (!buf) 1057 return -EAGAIN; 1058 1059 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1060 if (!crq) { 1061 kfree(buf); 1062 return -EAGAIN; 1063 } 1064 1065 bp = buf; len = PAGE_SIZE; 1066 1067 detail->cache_request(detail, h, &bp, &len); 1068 1069 if (len < 0) { 1070 kfree(buf); 1071 kfree(crq); 1072 return -EAGAIN; 1073 } 1074 crq->q.reader = 0; 1075 crq->item = cache_get(h); 1076 crq->buf = buf; 1077 crq->len = PAGE_SIZE - len; 1078 crq->readers = 0; 1079 spin_lock(&queue_lock); 1080 list_add_tail(&crq->q.list, &detail->queue); 1081 spin_unlock(&queue_lock); 1082 wake_up(&queue_wait); 1083 return 0; 1084 } 1085 1086 /* 1087 * parse a message from user-space and pass it 1088 * to an appropriate cache 1089 * Messages are, like requests, separated into fields by 1090 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1091 * 1092 * Message is 1093 * reply cachename expiry key ... content.... 1094 * 1095 * key and content are both parsed by cache 1096 */ 1097 1098 #define isodigit(c) (isdigit(c) && c <= '7') 1099 int qword_get(char **bpp, char *dest, int bufsize) 1100 { 1101 /* return bytes copied, or -1 on error */ 1102 char *bp = *bpp; 1103 int len = 0; 1104 1105 while (*bp == ' ') bp++; 1106 1107 if (bp[0] == '\\' && bp[1] == 'x') { 1108 /* HEX STRING */ 1109 bp += 2; 1110 while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) { 1111 int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10; 1112 bp++; 1113 byte <<= 4; 1114 byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10; 1115 *dest++ = byte; 1116 bp++; 1117 len++; 1118 } 1119 } else { 1120 /* text with \nnn octal quoting */ 1121 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1122 if (*bp == '\\' && 1123 isodigit(bp[1]) && (bp[1] <= '3') && 1124 isodigit(bp[2]) && 1125 isodigit(bp[3])) { 1126 int byte = (*++bp -'0'); 1127 bp++; 1128 byte = (byte << 3) | (*bp++ - '0'); 1129 byte = (byte << 3) | (*bp++ - '0'); 1130 *dest++ = byte; 1131 len++; 1132 } else { 1133 *dest++ = *bp++; 1134 len++; 1135 } 1136 } 1137 } 1138 1139 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1140 return -1; 1141 while (*bp == ' ') bp++; 1142 *bpp = bp; 1143 *dest = '\0'; 1144 return len; 1145 } 1146 EXPORT_SYMBOL(qword_get); 1147 1148 1149 /* 1150 * support /proc/sunrpc/cache/$CACHENAME/content 1151 * as a seqfile. 1152 * We call ->cache_show passing NULL for the item to 1153 * get a header, then pass each real item in the cache 1154 */ 1155 1156 struct handle { 1157 struct cache_detail *cd; 1158 }; 1159 1160 static void *c_start(struct seq_file *m, loff_t *pos) 1161 __acquires(cd->hash_lock) 1162 { 1163 loff_t n = *pos; 1164 unsigned hash, entry; 1165 struct cache_head *ch; 1166 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1167 1168 1169 read_lock(&cd->hash_lock); 1170 if (!n--) 1171 return SEQ_START_TOKEN; 1172 hash = n >> 32; 1173 entry = n & ((1LL<<32) - 1); 1174 1175 for (ch=cd->hash_table[hash]; ch; ch=ch->next) 1176 if (!entry--) 1177 return ch; 1178 n &= ~((1LL<<32) - 1); 1179 do { 1180 hash++; 1181 n += 1LL<<32; 1182 } while(hash < cd->hash_size && 1183 cd->hash_table[hash]==NULL); 1184 if (hash >= cd->hash_size) 1185 return NULL; 1186 *pos = n+1; 1187 return cd->hash_table[hash]; 1188 } 1189 1190 static void *c_next(struct seq_file *m, void *p, loff_t *pos) 1191 { 1192 struct cache_head *ch = p; 1193 int hash = (*pos >> 32); 1194 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1195 1196 if (p == SEQ_START_TOKEN) 1197 hash = 0; 1198 else if (ch->next == NULL) { 1199 hash++; 1200 *pos += 1LL<<32; 1201 } else { 1202 ++*pos; 1203 return ch->next; 1204 } 1205 *pos &= ~((1LL<<32) - 1); 1206 while (hash < cd->hash_size && 1207 cd->hash_table[hash] == NULL) { 1208 hash++; 1209 *pos += 1LL<<32; 1210 } 1211 if (hash >= cd->hash_size) 1212 return NULL; 1213 ++*pos; 1214 return cd->hash_table[hash]; 1215 } 1216 1217 static void c_stop(struct seq_file *m, void *p) 1218 __releases(cd->hash_lock) 1219 { 1220 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1221 read_unlock(&cd->hash_lock); 1222 } 1223 1224 static int c_show(struct seq_file *m, void *p) 1225 { 1226 struct cache_head *cp = p; 1227 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1228 1229 if (p == SEQ_START_TOKEN) 1230 return cd->cache_show(m, cd, NULL); 1231 1232 ifdebug(CACHE) 1233 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n", 1234 cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags); 1235 cache_get(cp); 1236 if (cache_check(cd, cp, NULL)) 1237 /* cache_check does a cache_put on failure */ 1238 seq_printf(m, "# "); 1239 else 1240 cache_put(cp, cd); 1241 1242 return cd->cache_show(m, cd, cp); 1243 } 1244 1245 static const struct seq_operations cache_content_op = { 1246 .start = c_start, 1247 .next = c_next, 1248 .stop = c_stop, 1249 .show = c_show, 1250 }; 1251 1252 static int content_open(struct inode *inode, struct file *file) 1253 { 1254 struct handle *han; 1255 struct cache_detail *cd = PDE(inode)->data; 1256 1257 han = __seq_open_private(file, &cache_content_op, sizeof(*han)); 1258 if (han == NULL) 1259 return -ENOMEM; 1260 1261 han->cd = cd; 1262 return 0; 1263 } 1264 1265 static const struct file_operations content_file_operations = { 1266 .open = content_open, 1267 .read = seq_read, 1268 .llseek = seq_lseek, 1269 .release = seq_release_private, 1270 }; 1271 1272 static ssize_t read_flush(struct file *file, char __user *buf, 1273 size_t count, loff_t *ppos) 1274 { 1275 struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data; 1276 char tbuf[20]; 1277 unsigned long p = *ppos; 1278 size_t len; 1279 1280 sprintf(tbuf, "%lu\n", cd->flush_time); 1281 len = strlen(tbuf); 1282 if (p >= len) 1283 return 0; 1284 len -= p; 1285 if (len > count) 1286 len = count; 1287 if (copy_to_user(buf, (void*)(tbuf+p), len)) 1288 return -EFAULT; 1289 *ppos += len; 1290 return len; 1291 } 1292 1293 static ssize_t write_flush(struct file * file, const char __user * buf, 1294 size_t count, loff_t *ppos) 1295 { 1296 struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data; 1297 char tbuf[20]; 1298 char *ep; 1299 long flushtime; 1300 if (*ppos || count > sizeof(tbuf)-1) 1301 return -EINVAL; 1302 if (copy_from_user(tbuf, buf, count)) 1303 return -EFAULT; 1304 tbuf[count] = 0; 1305 flushtime = simple_strtoul(tbuf, &ep, 0); 1306 if (*ep && *ep != '\n') 1307 return -EINVAL; 1308 1309 cd->flush_time = flushtime; 1310 cd->nextcheck = get_seconds(); 1311 cache_flush(); 1312 1313 *ppos += count; 1314 return count; 1315 } 1316 1317 static const struct file_operations cache_flush_operations = { 1318 .open = nonseekable_open, 1319 .read = read_flush, 1320 .write = write_flush, 1321 }; 1322