xref: /linux/net/sunrpc/cache.c (revision f24e9f586b377749dff37554696cf3a105540c94)
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12 
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
34 
35 #define	 RPCDBG_FACILITY RPCDBG_CACHE
36 
37 static void cache_defer_req(struct cache_req *req, struct cache_head *item);
38 static void cache_revisit_request(struct cache_head *item);
39 
40 static void cache_init(struct cache_head *h)
41 {
42 	time_t now = get_seconds();
43 	h->next = NULL;
44 	h->flags = 0;
45 	kref_init(&h->ref);
46 	h->expiry_time = now + CACHE_NEW_EXPIRY;
47 	h->last_refresh = now;
48 }
49 
50 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
51 				       struct cache_head *key, int hash)
52 {
53 	struct cache_head **head,  **hp;
54 	struct cache_head *new = NULL;
55 
56 	head = &detail->hash_table[hash];
57 
58 	read_lock(&detail->hash_lock);
59 
60 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
61 		struct cache_head *tmp = *hp;
62 		if (detail->match(tmp, key)) {
63 			cache_get(tmp);
64 			read_unlock(&detail->hash_lock);
65 			return tmp;
66 		}
67 	}
68 	read_unlock(&detail->hash_lock);
69 	/* Didn't find anything, insert an empty entry */
70 
71 	new = detail->alloc();
72 	if (!new)
73 		return NULL;
74 	/* must fully initialise 'new', else
75 	 * we might get lose if we need to
76 	 * cache_put it soon.
77 	 */
78 	cache_init(new);
79 	detail->init(new, key);
80 
81 	write_lock(&detail->hash_lock);
82 
83 	/* check if entry appeared while we slept */
84 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
85 		struct cache_head *tmp = *hp;
86 		if (detail->match(tmp, key)) {
87 			cache_get(tmp);
88 			write_unlock(&detail->hash_lock);
89 			cache_put(new, detail);
90 			return tmp;
91 		}
92 	}
93 	new->next = *head;
94 	*head = new;
95 	detail->entries++;
96 	cache_get(new);
97 	write_unlock(&detail->hash_lock);
98 
99 	return new;
100 }
101 EXPORT_SYMBOL(sunrpc_cache_lookup);
102 
103 
104 static void queue_loose(struct cache_detail *detail, struct cache_head *ch);
105 
106 static int cache_fresh_locked(struct cache_head *head, time_t expiry)
107 {
108 	head->expiry_time = expiry;
109 	head->last_refresh = get_seconds();
110 	return !test_and_set_bit(CACHE_VALID, &head->flags);
111 }
112 
113 static void cache_fresh_unlocked(struct cache_head *head,
114 			struct cache_detail *detail, int new)
115 {
116 	if (new)
117 		cache_revisit_request(head);
118 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
119 		cache_revisit_request(head);
120 		queue_loose(detail, head);
121 	}
122 }
123 
124 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
125 				       struct cache_head *new, struct cache_head *old, int hash)
126 {
127 	/* The 'old' entry is to be replaced by 'new'.
128 	 * If 'old' is not VALID, we update it directly,
129 	 * otherwise we need to replace it
130 	 */
131 	struct cache_head **head;
132 	struct cache_head *tmp;
133 	int is_new;
134 
135 	if (!test_bit(CACHE_VALID, &old->flags)) {
136 		write_lock(&detail->hash_lock);
137 		if (!test_bit(CACHE_VALID, &old->flags)) {
138 			if (test_bit(CACHE_NEGATIVE, &new->flags))
139 				set_bit(CACHE_NEGATIVE, &old->flags);
140 			else
141 				detail->update(old, new);
142 			is_new = cache_fresh_locked(old, new->expiry_time);
143 			write_unlock(&detail->hash_lock);
144 			cache_fresh_unlocked(old, detail, is_new);
145 			return old;
146 		}
147 		write_unlock(&detail->hash_lock);
148 	}
149 	/* We need to insert a new entry */
150 	tmp = detail->alloc();
151 	if (!tmp) {
152 		cache_put(old, detail);
153 		return NULL;
154 	}
155 	cache_init(tmp);
156 	detail->init(tmp, old);
157 	head = &detail->hash_table[hash];
158 
159 	write_lock(&detail->hash_lock);
160 	if (test_bit(CACHE_NEGATIVE, &new->flags))
161 		set_bit(CACHE_NEGATIVE, &tmp->flags);
162 	else
163 		detail->update(tmp, new);
164 	tmp->next = *head;
165 	*head = tmp;
166 	detail->entries++;
167 	cache_get(tmp);
168 	is_new = cache_fresh_locked(tmp, new->expiry_time);
169 	cache_fresh_locked(old, 0);
170 	write_unlock(&detail->hash_lock);
171 	cache_fresh_unlocked(tmp, detail, is_new);
172 	cache_fresh_unlocked(old, detail, 0);
173 	cache_put(old, detail);
174 	return tmp;
175 }
176 EXPORT_SYMBOL(sunrpc_cache_update);
177 
178 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h);
179 /*
180  * This is the generic cache management routine for all
181  * the authentication caches.
182  * It checks the currency of a cache item and will (later)
183  * initiate an upcall to fill it if needed.
184  *
185  *
186  * Returns 0 if the cache_head can be used, or cache_puts it and returns
187  * -EAGAIN if upcall is pending,
188  * -ENOENT if cache entry was negative
189  */
190 int cache_check(struct cache_detail *detail,
191 		    struct cache_head *h, struct cache_req *rqstp)
192 {
193 	int rv;
194 	long refresh_age, age;
195 
196 	/* First decide return status as best we can */
197 	if (!test_bit(CACHE_VALID, &h->flags) ||
198 	    h->expiry_time < get_seconds())
199 		rv = -EAGAIN;
200 	else if (detail->flush_time > h->last_refresh)
201 		rv = -EAGAIN;
202 	else {
203 		/* entry is valid */
204 		if (test_bit(CACHE_NEGATIVE, &h->flags))
205 			rv = -ENOENT;
206 		else rv = 0;
207 	}
208 
209 	/* now see if we want to start an upcall */
210 	refresh_age = (h->expiry_time - h->last_refresh);
211 	age = get_seconds() - h->last_refresh;
212 
213 	if (rqstp == NULL) {
214 		if (rv == -EAGAIN)
215 			rv = -ENOENT;
216 	} else if (rv == -EAGAIN || age > refresh_age/2) {
217 		dprintk("Want update, refage=%ld, age=%ld\n", refresh_age, age);
218 		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
219 			switch (cache_make_upcall(detail, h)) {
220 			case -EINVAL:
221 				clear_bit(CACHE_PENDING, &h->flags);
222 				if (rv == -EAGAIN) {
223 					set_bit(CACHE_NEGATIVE, &h->flags);
224 					cache_fresh_unlocked(h, detail,
225 					     cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY));
226 					rv = -ENOENT;
227 				}
228 				break;
229 
230 			case -EAGAIN:
231 				clear_bit(CACHE_PENDING, &h->flags);
232 				cache_revisit_request(h);
233 				break;
234 			}
235 		}
236 	}
237 
238 	if (rv == -EAGAIN)
239 		cache_defer_req(rqstp, h);
240 
241 	if (rv)
242 		cache_put(h, detail);
243 	return rv;
244 }
245 
246 /*
247  * caches need to be periodically cleaned.
248  * For this we maintain a list of cache_detail and
249  * a current pointer into that list and into the table
250  * for that entry.
251  *
252  * Each time clean_cache is called it finds the next non-empty entry
253  * in the current table and walks the list in that entry
254  * looking for entries that can be removed.
255  *
256  * An entry gets removed if:
257  * - The expiry is before current time
258  * - The last_refresh time is before the flush_time for that cache
259  *
260  * later we might drop old entries with non-NEVER expiry if that table
261  * is getting 'full' for some definition of 'full'
262  *
263  * The question of "how often to scan a table" is an interesting one
264  * and is answered in part by the use of the "nextcheck" field in the
265  * cache_detail.
266  * When a scan of a table begins, the nextcheck field is set to a time
267  * that is well into the future.
268  * While scanning, if an expiry time is found that is earlier than the
269  * current nextcheck time, nextcheck is set to that expiry time.
270  * If the flush_time is ever set to a time earlier than the nextcheck
271  * time, the nextcheck time is then set to that flush_time.
272  *
273  * A table is then only scanned if the current time is at least
274  * the nextcheck time.
275  *
276  */
277 
278 static LIST_HEAD(cache_list);
279 static DEFINE_SPINLOCK(cache_list_lock);
280 static struct cache_detail *current_detail;
281 static int current_index;
282 
283 static struct file_operations cache_file_operations;
284 static struct file_operations content_file_operations;
285 static struct file_operations cache_flush_operations;
286 
287 static void do_cache_clean(void *data);
288 static DECLARE_WORK(cache_cleaner, do_cache_clean, NULL);
289 
290 void cache_register(struct cache_detail *cd)
291 {
292 	cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc);
293 	if (cd->proc_ent) {
294 		struct proc_dir_entry *p;
295 		cd->proc_ent->owner = cd->owner;
296 		cd->channel_ent = cd->content_ent = NULL;
297 
298  		p = create_proc_entry("flush", S_IFREG|S_IRUSR|S_IWUSR,
299  				      cd->proc_ent);
300 		cd->flush_ent =  p;
301  		if (p) {
302  			p->proc_fops = &cache_flush_operations;
303  			p->owner = cd->owner;
304  			p->data = cd;
305  		}
306 
307 		if (cd->cache_request || cd->cache_parse) {
308 			p = create_proc_entry("channel", S_IFREG|S_IRUSR|S_IWUSR,
309 					      cd->proc_ent);
310 			cd->channel_ent = p;
311 			if (p) {
312 				p->proc_fops = &cache_file_operations;
313 				p->owner = cd->owner;
314 				p->data = cd;
315 			}
316 		}
317  		if (cd->cache_show) {
318  			p = create_proc_entry("content", S_IFREG|S_IRUSR|S_IWUSR,
319  					      cd->proc_ent);
320 			cd->content_ent = p;
321  			if (p) {
322  				p->proc_fops = &content_file_operations;
323  				p->owner = cd->owner;
324  				p->data = cd;
325  			}
326  		}
327 	}
328 	rwlock_init(&cd->hash_lock);
329 	INIT_LIST_HEAD(&cd->queue);
330 	spin_lock(&cache_list_lock);
331 	cd->nextcheck = 0;
332 	cd->entries = 0;
333 	atomic_set(&cd->readers, 0);
334 	cd->last_close = 0;
335 	cd->last_warn = -1;
336 	list_add(&cd->others, &cache_list);
337 	spin_unlock(&cache_list_lock);
338 
339 	/* start the cleaning process */
340 	schedule_work(&cache_cleaner);
341 }
342 
343 int cache_unregister(struct cache_detail *cd)
344 {
345 	cache_purge(cd);
346 	spin_lock(&cache_list_lock);
347 	write_lock(&cd->hash_lock);
348 	if (cd->entries || atomic_read(&cd->inuse)) {
349 		write_unlock(&cd->hash_lock);
350 		spin_unlock(&cache_list_lock);
351 		return -EBUSY;
352 	}
353 	if (current_detail == cd)
354 		current_detail = NULL;
355 	list_del_init(&cd->others);
356 	write_unlock(&cd->hash_lock);
357 	spin_unlock(&cache_list_lock);
358 	if (cd->proc_ent) {
359 		if (cd->flush_ent)
360 			remove_proc_entry("flush", cd->proc_ent);
361 		if (cd->channel_ent)
362 			remove_proc_entry("channel", cd->proc_ent);
363 		if (cd->content_ent)
364 			remove_proc_entry("content", cd->proc_ent);
365 
366 		cd->proc_ent = NULL;
367 		remove_proc_entry(cd->name, proc_net_rpc);
368 	}
369 	if (list_empty(&cache_list)) {
370 		/* module must be being unloaded so its safe to kill the worker */
371 		cancel_delayed_work(&cache_cleaner);
372 		flush_scheduled_work();
373 	}
374 	return 0;
375 }
376 
377 /* clean cache tries to find something to clean
378  * and cleans it.
379  * It returns 1 if it cleaned something,
380  *            0 if it didn't find anything this time
381  *           -1 if it fell off the end of the list.
382  */
383 static int cache_clean(void)
384 {
385 	int rv = 0;
386 	struct list_head *next;
387 
388 	spin_lock(&cache_list_lock);
389 
390 	/* find a suitable table if we don't already have one */
391 	while (current_detail == NULL ||
392 	    current_index >= current_detail->hash_size) {
393 		if (current_detail)
394 			next = current_detail->others.next;
395 		else
396 			next = cache_list.next;
397 		if (next == &cache_list) {
398 			current_detail = NULL;
399 			spin_unlock(&cache_list_lock);
400 			return -1;
401 		}
402 		current_detail = list_entry(next, struct cache_detail, others);
403 		if (current_detail->nextcheck > get_seconds())
404 			current_index = current_detail->hash_size;
405 		else {
406 			current_index = 0;
407 			current_detail->nextcheck = get_seconds()+30*60;
408 		}
409 	}
410 
411 	/* find a non-empty bucket in the table */
412 	while (current_detail &&
413 	       current_index < current_detail->hash_size &&
414 	       current_detail->hash_table[current_index] == NULL)
415 		current_index++;
416 
417 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
418 
419 	if (current_detail && current_index < current_detail->hash_size) {
420 		struct cache_head *ch, **cp;
421 		struct cache_detail *d;
422 
423 		write_lock(&current_detail->hash_lock);
424 
425 		/* Ok, now to clean this strand */
426 
427 		cp = & current_detail->hash_table[current_index];
428 		ch = *cp;
429 		for (; ch; cp= & ch->next, ch= *cp) {
430 			if (current_detail->nextcheck > ch->expiry_time)
431 				current_detail->nextcheck = ch->expiry_time+1;
432 			if (ch->expiry_time >= get_seconds()
433 			    && ch->last_refresh >= current_detail->flush_time
434 				)
435 				continue;
436 			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
437 				queue_loose(current_detail, ch);
438 
439 			if (atomic_read(&ch->ref.refcount) == 1)
440 				break;
441 		}
442 		if (ch) {
443 			*cp = ch->next;
444 			ch->next = NULL;
445 			current_detail->entries--;
446 			rv = 1;
447 		}
448 		write_unlock(&current_detail->hash_lock);
449 		d = current_detail;
450 		if (!ch)
451 			current_index ++;
452 		spin_unlock(&cache_list_lock);
453 		if (ch)
454 			cache_put(ch, d);
455 	} else
456 		spin_unlock(&cache_list_lock);
457 
458 	return rv;
459 }
460 
461 /*
462  * We want to regularly clean the cache, so we need to schedule some work ...
463  */
464 static void do_cache_clean(void *data)
465 {
466 	int delay = 5;
467 	if (cache_clean() == -1)
468 		delay = 30*HZ;
469 
470 	if (list_empty(&cache_list))
471 		delay = 0;
472 
473 	if (delay)
474 		schedule_delayed_work(&cache_cleaner, delay);
475 }
476 
477 
478 /*
479  * Clean all caches promptly.  This just calls cache_clean
480  * repeatedly until we are sure that every cache has had a chance to
481  * be fully cleaned
482  */
483 void cache_flush(void)
484 {
485 	while (cache_clean() != -1)
486 		cond_resched();
487 	while (cache_clean() != -1)
488 		cond_resched();
489 }
490 
491 void cache_purge(struct cache_detail *detail)
492 {
493 	detail->flush_time = LONG_MAX;
494 	detail->nextcheck = get_seconds();
495 	cache_flush();
496 	detail->flush_time = 1;
497 }
498 
499 
500 
501 /*
502  * Deferral and Revisiting of Requests.
503  *
504  * If a cache lookup finds a pending entry, we
505  * need to defer the request and revisit it later.
506  * All deferred requests are stored in a hash table,
507  * indexed by "struct cache_head *".
508  * As it may be wasteful to store a whole request
509  * structure, we allow the request to provide a
510  * deferred form, which must contain a
511  * 'struct cache_deferred_req'
512  * This cache_deferred_req contains a method to allow
513  * it to be revisited when cache info is available
514  */
515 
516 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
517 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
518 
519 #define	DFR_MAX	300	/* ??? */
520 
521 static DEFINE_SPINLOCK(cache_defer_lock);
522 static LIST_HEAD(cache_defer_list);
523 static struct list_head cache_defer_hash[DFR_HASHSIZE];
524 static int cache_defer_cnt;
525 
526 static void cache_defer_req(struct cache_req *req, struct cache_head *item)
527 {
528 	struct cache_deferred_req *dreq;
529 	int hash = DFR_HASH(item);
530 
531 	dreq = req->defer(req);
532 	if (dreq == NULL)
533 		return;
534 
535 	dreq->item = item;
536 	dreq->recv_time = get_seconds();
537 
538 	spin_lock(&cache_defer_lock);
539 
540 	list_add(&dreq->recent, &cache_defer_list);
541 
542 	if (cache_defer_hash[hash].next == NULL)
543 		INIT_LIST_HEAD(&cache_defer_hash[hash]);
544 	list_add(&dreq->hash, &cache_defer_hash[hash]);
545 
546 	/* it is in, now maybe clean up */
547 	dreq = NULL;
548 	if (++cache_defer_cnt > DFR_MAX) {
549 		/* too much in the cache, randomly drop
550 		 * first or last
551 		 */
552 		if (net_random()&1)
553 			dreq = list_entry(cache_defer_list.next,
554 					  struct cache_deferred_req,
555 					  recent);
556 		else
557 			dreq = list_entry(cache_defer_list.prev,
558 					  struct cache_deferred_req,
559 					  recent);
560 		list_del(&dreq->recent);
561 		list_del(&dreq->hash);
562 		cache_defer_cnt--;
563 	}
564 	spin_unlock(&cache_defer_lock);
565 
566 	if (dreq) {
567 		/* there was one too many */
568 		dreq->revisit(dreq, 1);
569 	}
570 	if (!test_bit(CACHE_PENDING, &item->flags)) {
571 		/* must have just been validated... */
572 		cache_revisit_request(item);
573 	}
574 }
575 
576 static void cache_revisit_request(struct cache_head *item)
577 {
578 	struct cache_deferred_req *dreq;
579 	struct list_head pending;
580 
581 	struct list_head *lp;
582 	int hash = DFR_HASH(item);
583 
584 	INIT_LIST_HEAD(&pending);
585 	spin_lock(&cache_defer_lock);
586 
587 	lp = cache_defer_hash[hash].next;
588 	if (lp) {
589 		while (lp != &cache_defer_hash[hash]) {
590 			dreq = list_entry(lp, struct cache_deferred_req, hash);
591 			lp = lp->next;
592 			if (dreq->item == item) {
593 				list_del(&dreq->hash);
594 				list_move(&dreq->recent, &pending);
595 				cache_defer_cnt--;
596 			}
597 		}
598 	}
599 	spin_unlock(&cache_defer_lock);
600 
601 	while (!list_empty(&pending)) {
602 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
603 		list_del_init(&dreq->recent);
604 		dreq->revisit(dreq, 0);
605 	}
606 }
607 
608 void cache_clean_deferred(void *owner)
609 {
610 	struct cache_deferred_req *dreq, *tmp;
611 	struct list_head pending;
612 
613 
614 	INIT_LIST_HEAD(&pending);
615 	spin_lock(&cache_defer_lock);
616 
617 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
618 		if (dreq->owner == owner) {
619 			list_del(&dreq->hash);
620 			list_move(&dreq->recent, &pending);
621 			cache_defer_cnt--;
622 		}
623 	}
624 	spin_unlock(&cache_defer_lock);
625 
626 	while (!list_empty(&pending)) {
627 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
628 		list_del_init(&dreq->recent);
629 		dreq->revisit(dreq, 1);
630 	}
631 }
632 
633 /*
634  * communicate with user-space
635  *
636  * We have a magic /proc file - /proc/sunrpc/cache
637  * On read, you get a full request, or block
638  * On write, an update request is processed
639  * Poll works if anything to read, and always allows write
640  *
641  * Implemented by linked list of requests.  Each open file has
642  * a ->private that also exists in this list.  New request are added
643  * to the end and may wakeup and preceding readers.
644  * New readers are added to the head.  If, on read, an item is found with
645  * CACHE_UPCALLING clear, we free it from the list.
646  *
647  */
648 
649 static DEFINE_SPINLOCK(queue_lock);
650 static DEFINE_MUTEX(queue_io_mutex);
651 
652 struct cache_queue {
653 	struct list_head	list;
654 	int			reader;	/* if 0, then request */
655 };
656 struct cache_request {
657 	struct cache_queue	q;
658 	struct cache_head	*item;
659 	char			* buf;
660 	int			len;
661 	int			readers;
662 };
663 struct cache_reader {
664 	struct cache_queue	q;
665 	int			offset;	/* if non-0, we have a refcnt on next request */
666 };
667 
668 static ssize_t
669 cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
670 {
671 	struct cache_reader *rp = filp->private_data;
672 	struct cache_request *rq;
673 	struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
674 	int err;
675 
676 	if (count == 0)
677 		return 0;
678 
679 	mutex_lock(&queue_io_mutex); /* protect against multiple concurrent
680 			      * readers on this file */
681  again:
682 	spin_lock(&queue_lock);
683 	/* need to find next request */
684 	while (rp->q.list.next != &cd->queue &&
685 	       list_entry(rp->q.list.next, struct cache_queue, list)
686 	       ->reader) {
687 		struct list_head *next = rp->q.list.next;
688 		list_move(&rp->q.list, next);
689 	}
690 	if (rp->q.list.next == &cd->queue) {
691 		spin_unlock(&queue_lock);
692 		mutex_unlock(&queue_io_mutex);
693 		BUG_ON(rp->offset);
694 		return 0;
695 	}
696 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
697 	BUG_ON(rq->q.reader);
698 	if (rp->offset == 0)
699 		rq->readers++;
700 	spin_unlock(&queue_lock);
701 
702 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
703 		err = -EAGAIN;
704 		spin_lock(&queue_lock);
705 		list_move(&rp->q.list, &rq->q.list);
706 		spin_unlock(&queue_lock);
707 	} else {
708 		if (rp->offset + count > rq->len)
709 			count = rq->len - rp->offset;
710 		err = -EFAULT;
711 		if (copy_to_user(buf, rq->buf + rp->offset, count))
712 			goto out;
713 		rp->offset += count;
714 		if (rp->offset >= rq->len) {
715 			rp->offset = 0;
716 			spin_lock(&queue_lock);
717 			list_move(&rp->q.list, &rq->q.list);
718 			spin_unlock(&queue_lock);
719 		}
720 		err = 0;
721 	}
722  out:
723 	if (rp->offset == 0) {
724 		/* need to release rq */
725 		spin_lock(&queue_lock);
726 		rq->readers--;
727 		if (rq->readers == 0 &&
728 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
729 			list_del(&rq->q.list);
730 			spin_unlock(&queue_lock);
731 			cache_put(rq->item, cd);
732 			kfree(rq->buf);
733 			kfree(rq);
734 		} else
735 			spin_unlock(&queue_lock);
736 	}
737 	if (err == -EAGAIN)
738 		goto again;
739 	mutex_unlock(&queue_io_mutex);
740 	return err ? err :  count;
741 }
742 
743 static char write_buf[8192]; /* protected by queue_io_mutex */
744 
745 static ssize_t
746 cache_write(struct file *filp, const char __user *buf, size_t count,
747 	    loff_t *ppos)
748 {
749 	int err;
750 	struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
751 
752 	if (count == 0)
753 		return 0;
754 	if (count >= sizeof(write_buf))
755 		return -EINVAL;
756 
757 	mutex_lock(&queue_io_mutex);
758 
759 	if (copy_from_user(write_buf, buf, count)) {
760 		mutex_unlock(&queue_io_mutex);
761 		return -EFAULT;
762 	}
763 	write_buf[count] = '\0';
764 	if (cd->cache_parse)
765 		err = cd->cache_parse(cd, write_buf, count);
766 	else
767 		err = -EINVAL;
768 
769 	mutex_unlock(&queue_io_mutex);
770 	return err ? err : count;
771 }
772 
773 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
774 
775 static unsigned int
776 cache_poll(struct file *filp, poll_table *wait)
777 {
778 	unsigned int mask;
779 	struct cache_reader *rp = filp->private_data;
780 	struct cache_queue *cq;
781 	struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
782 
783 	poll_wait(filp, &queue_wait, wait);
784 
785 	/* alway allow write */
786 	mask = POLL_OUT | POLLWRNORM;
787 
788 	if (!rp)
789 		return mask;
790 
791 	spin_lock(&queue_lock);
792 
793 	for (cq= &rp->q; &cq->list != &cd->queue;
794 	     cq = list_entry(cq->list.next, struct cache_queue, list))
795 		if (!cq->reader) {
796 			mask |= POLLIN | POLLRDNORM;
797 			break;
798 		}
799 	spin_unlock(&queue_lock);
800 	return mask;
801 }
802 
803 static int
804 cache_ioctl(struct inode *ino, struct file *filp,
805 	    unsigned int cmd, unsigned long arg)
806 {
807 	int len = 0;
808 	struct cache_reader *rp = filp->private_data;
809 	struct cache_queue *cq;
810 	struct cache_detail *cd = PDE(ino)->data;
811 
812 	if (cmd != FIONREAD || !rp)
813 		return -EINVAL;
814 
815 	spin_lock(&queue_lock);
816 
817 	/* only find the length remaining in current request,
818 	 * or the length of the next request
819 	 */
820 	for (cq= &rp->q; &cq->list != &cd->queue;
821 	     cq = list_entry(cq->list.next, struct cache_queue, list))
822 		if (!cq->reader) {
823 			struct cache_request *cr =
824 				container_of(cq, struct cache_request, q);
825 			len = cr->len - rp->offset;
826 			break;
827 		}
828 	spin_unlock(&queue_lock);
829 
830 	return put_user(len, (int __user *)arg);
831 }
832 
833 static int
834 cache_open(struct inode *inode, struct file *filp)
835 {
836 	struct cache_reader *rp = NULL;
837 
838 	nonseekable_open(inode, filp);
839 	if (filp->f_mode & FMODE_READ) {
840 		struct cache_detail *cd = PDE(inode)->data;
841 
842 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
843 		if (!rp)
844 			return -ENOMEM;
845 		rp->offset = 0;
846 		rp->q.reader = 1;
847 		atomic_inc(&cd->readers);
848 		spin_lock(&queue_lock);
849 		list_add(&rp->q.list, &cd->queue);
850 		spin_unlock(&queue_lock);
851 	}
852 	filp->private_data = rp;
853 	return 0;
854 }
855 
856 static int
857 cache_release(struct inode *inode, struct file *filp)
858 {
859 	struct cache_reader *rp = filp->private_data;
860 	struct cache_detail *cd = PDE(inode)->data;
861 
862 	if (rp) {
863 		spin_lock(&queue_lock);
864 		if (rp->offset) {
865 			struct cache_queue *cq;
866 			for (cq= &rp->q; &cq->list != &cd->queue;
867 			     cq = list_entry(cq->list.next, struct cache_queue, list))
868 				if (!cq->reader) {
869 					container_of(cq, struct cache_request, q)
870 						->readers--;
871 					break;
872 				}
873 			rp->offset = 0;
874 		}
875 		list_del(&rp->q.list);
876 		spin_unlock(&queue_lock);
877 
878 		filp->private_data = NULL;
879 		kfree(rp);
880 
881 		cd->last_close = get_seconds();
882 		atomic_dec(&cd->readers);
883 	}
884 	return 0;
885 }
886 
887 
888 
889 static struct file_operations cache_file_operations = {
890 	.owner		= THIS_MODULE,
891 	.llseek		= no_llseek,
892 	.read		= cache_read,
893 	.write		= cache_write,
894 	.poll		= cache_poll,
895 	.ioctl		= cache_ioctl, /* for FIONREAD */
896 	.open		= cache_open,
897 	.release	= cache_release,
898 };
899 
900 
901 static void queue_loose(struct cache_detail *detail, struct cache_head *ch)
902 {
903 	struct cache_queue *cq;
904 	spin_lock(&queue_lock);
905 	list_for_each_entry(cq, &detail->queue, list)
906 		if (!cq->reader) {
907 			struct cache_request *cr = container_of(cq, struct cache_request, q);
908 			if (cr->item != ch)
909 				continue;
910 			if (cr->readers != 0)
911 				continue;
912 			list_del(&cr->q.list);
913 			spin_unlock(&queue_lock);
914 			cache_put(cr->item, detail);
915 			kfree(cr->buf);
916 			kfree(cr);
917 			return;
918 		}
919 	spin_unlock(&queue_lock);
920 }
921 
922 /*
923  * Support routines for text-based upcalls.
924  * Fields are separated by spaces.
925  * Fields are either mangled to quote space tab newline slosh with slosh
926  * or a hexified with a leading \x
927  * Record is terminated with newline.
928  *
929  */
930 
931 void qword_add(char **bpp, int *lp, char *str)
932 {
933 	char *bp = *bpp;
934 	int len = *lp;
935 	char c;
936 
937 	if (len < 0) return;
938 
939 	while ((c=*str++) && len)
940 		switch(c) {
941 		case ' ':
942 		case '\t':
943 		case '\n':
944 		case '\\':
945 			if (len >= 4) {
946 				*bp++ = '\\';
947 				*bp++ = '0' + ((c & 0300)>>6);
948 				*bp++ = '0' + ((c & 0070)>>3);
949 				*bp++ = '0' + ((c & 0007)>>0);
950 			}
951 			len -= 4;
952 			break;
953 		default:
954 			*bp++ = c;
955 			len--;
956 		}
957 	if (c || len <1) len = -1;
958 	else {
959 		*bp++ = ' ';
960 		len--;
961 	}
962 	*bpp = bp;
963 	*lp = len;
964 }
965 
966 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
967 {
968 	char *bp = *bpp;
969 	int len = *lp;
970 
971 	if (len < 0) return;
972 
973 	if (len > 2) {
974 		*bp++ = '\\';
975 		*bp++ = 'x';
976 		len -= 2;
977 		while (blen && len >= 2) {
978 			unsigned char c = *buf++;
979 			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
980 			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
981 			len -= 2;
982 			blen--;
983 		}
984 	}
985 	if (blen || len<1) len = -1;
986 	else {
987 		*bp++ = ' ';
988 		len--;
989 	}
990 	*bpp = bp;
991 	*lp = len;
992 }
993 
994 static void warn_no_listener(struct cache_detail *detail)
995 {
996 	if (detail->last_warn != detail->last_close) {
997 		detail->last_warn = detail->last_close;
998 		if (detail->warn_no_listener)
999 			detail->warn_no_listener(detail);
1000 	}
1001 }
1002 
1003 /*
1004  * register an upcall request to user-space.
1005  * Each request is at most one page long.
1006  */
1007 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h)
1008 {
1009 
1010 	char *buf;
1011 	struct cache_request *crq;
1012 	char *bp;
1013 	int len;
1014 
1015 	if (detail->cache_request == NULL)
1016 		return -EINVAL;
1017 
1018 	if (atomic_read(&detail->readers) == 0 &&
1019 	    detail->last_close < get_seconds() - 30) {
1020 			warn_no_listener(detail);
1021 			return -EINVAL;
1022 	}
1023 
1024 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1025 	if (!buf)
1026 		return -EAGAIN;
1027 
1028 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1029 	if (!crq) {
1030 		kfree(buf);
1031 		return -EAGAIN;
1032 	}
1033 
1034 	bp = buf; len = PAGE_SIZE;
1035 
1036 	detail->cache_request(detail, h, &bp, &len);
1037 
1038 	if (len < 0) {
1039 		kfree(buf);
1040 		kfree(crq);
1041 		return -EAGAIN;
1042 	}
1043 	crq->q.reader = 0;
1044 	crq->item = cache_get(h);
1045 	crq->buf = buf;
1046 	crq->len = PAGE_SIZE - len;
1047 	crq->readers = 0;
1048 	spin_lock(&queue_lock);
1049 	list_add_tail(&crq->q.list, &detail->queue);
1050 	spin_unlock(&queue_lock);
1051 	wake_up(&queue_wait);
1052 	return 0;
1053 }
1054 
1055 /*
1056  * parse a message from user-space and pass it
1057  * to an appropriate cache
1058  * Messages are, like requests, separated into fields by
1059  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1060  *
1061  * Message is
1062  *   reply cachename expiry key ... content....
1063  *
1064  * key and content are both parsed by cache
1065  */
1066 
1067 #define isodigit(c) (isdigit(c) && c <= '7')
1068 int qword_get(char **bpp, char *dest, int bufsize)
1069 {
1070 	/* return bytes copied, or -1 on error */
1071 	char *bp = *bpp;
1072 	int len = 0;
1073 
1074 	while (*bp == ' ') bp++;
1075 
1076 	if (bp[0] == '\\' && bp[1] == 'x') {
1077 		/* HEX STRING */
1078 		bp += 2;
1079 		while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1080 			int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1081 			bp++;
1082 			byte <<= 4;
1083 			byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1084 			*dest++ = byte;
1085 			bp++;
1086 			len++;
1087 		}
1088 	} else {
1089 		/* text with \nnn octal quoting */
1090 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1091 			if (*bp == '\\' &&
1092 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1093 			    isodigit(bp[2]) &&
1094 			    isodigit(bp[3])) {
1095 				int byte = (*++bp -'0');
1096 				bp++;
1097 				byte = (byte << 3) | (*bp++ - '0');
1098 				byte = (byte << 3) | (*bp++ - '0');
1099 				*dest++ = byte;
1100 				len++;
1101 			} else {
1102 				*dest++ = *bp++;
1103 				len++;
1104 			}
1105 		}
1106 	}
1107 
1108 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1109 		return -1;
1110 	while (*bp == ' ') bp++;
1111 	*bpp = bp;
1112 	*dest = '\0';
1113 	return len;
1114 }
1115 
1116 
1117 /*
1118  * support /proc/sunrpc/cache/$CACHENAME/content
1119  * as a seqfile.
1120  * We call ->cache_show passing NULL for the item to
1121  * get a header, then pass each real item in the cache
1122  */
1123 
1124 struct handle {
1125 	struct cache_detail *cd;
1126 };
1127 
1128 static void *c_start(struct seq_file *m, loff_t *pos)
1129 {
1130 	loff_t n = *pos;
1131 	unsigned hash, entry;
1132 	struct cache_head *ch;
1133 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1134 
1135 
1136 	read_lock(&cd->hash_lock);
1137 	if (!n--)
1138 		return SEQ_START_TOKEN;
1139 	hash = n >> 32;
1140 	entry = n & ((1LL<<32) - 1);
1141 
1142 	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1143 		if (!entry--)
1144 			return ch;
1145 	n &= ~((1LL<<32) - 1);
1146 	do {
1147 		hash++;
1148 		n += 1LL<<32;
1149 	} while(hash < cd->hash_size &&
1150 		cd->hash_table[hash]==NULL);
1151 	if (hash >= cd->hash_size)
1152 		return NULL;
1153 	*pos = n+1;
1154 	return cd->hash_table[hash];
1155 }
1156 
1157 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1158 {
1159 	struct cache_head *ch = p;
1160 	int hash = (*pos >> 32);
1161 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1162 
1163 	if (p == SEQ_START_TOKEN)
1164 		hash = 0;
1165 	else if (ch->next == NULL) {
1166 		hash++;
1167 		*pos += 1LL<<32;
1168 	} else {
1169 		++*pos;
1170 		return ch->next;
1171 	}
1172 	*pos &= ~((1LL<<32) - 1);
1173 	while (hash < cd->hash_size &&
1174 	       cd->hash_table[hash] == NULL) {
1175 		hash++;
1176 		*pos += 1LL<<32;
1177 	}
1178 	if (hash >= cd->hash_size)
1179 		return NULL;
1180 	++*pos;
1181 	return cd->hash_table[hash];
1182 }
1183 
1184 static void c_stop(struct seq_file *m, void *p)
1185 {
1186 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1187 	read_unlock(&cd->hash_lock);
1188 }
1189 
1190 static int c_show(struct seq_file *m, void *p)
1191 {
1192 	struct cache_head *cp = p;
1193 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1194 
1195 	if (p == SEQ_START_TOKEN)
1196 		return cd->cache_show(m, cd, NULL);
1197 
1198 	ifdebug(CACHE)
1199 		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1200 			   cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1201 	cache_get(cp);
1202 	if (cache_check(cd, cp, NULL))
1203 		/* cache_check does a cache_put on failure */
1204 		seq_printf(m, "# ");
1205 	else
1206 		cache_put(cp, cd);
1207 
1208 	return cd->cache_show(m, cd, cp);
1209 }
1210 
1211 static struct seq_operations cache_content_op = {
1212 	.start	= c_start,
1213 	.next	= c_next,
1214 	.stop	= c_stop,
1215 	.show	= c_show,
1216 };
1217 
1218 static int content_open(struct inode *inode, struct file *file)
1219 {
1220 	int res;
1221 	struct handle *han;
1222 	struct cache_detail *cd = PDE(inode)->data;
1223 
1224 	han = kmalloc(sizeof(*han), GFP_KERNEL);
1225 	if (han == NULL)
1226 		return -ENOMEM;
1227 
1228 	han->cd = cd;
1229 
1230 	res = seq_open(file, &cache_content_op);
1231 	if (res)
1232 		kfree(han);
1233 	else
1234 		((struct seq_file *)file->private_data)->private = han;
1235 
1236 	return res;
1237 }
1238 static int content_release(struct inode *inode, struct file *file)
1239 {
1240 	struct seq_file *m = (struct seq_file *)file->private_data;
1241 	struct handle *han = m->private;
1242 	kfree(han);
1243 	m->private = NULL;
1244 	return seq_release(inode, file);
1245 }
1246 
1247 static struct file_operations content_file_operations = {
1248 	.open		= content_open,
1249 	.read		= seq_read,
1250 	.llseek		= seq_lseek,
1251 	.release	= content_release,
1252 };
1253 
1254 static ssize_t read_flush(struct file *file, char __user *buf,
1255 			    size_t count, loff_t *ppos)
1256 {
1257 	struct cache_detail *cd = PDE(file->f_dentry->d_inode)->data;
1258 	char tbuf[20];
1259 	unsigned long p = *ppos;
1260 	int len;
1261 
1262 	sprintf(tbuf, "%lu\n", cd->flush_time);
1263 	len = strlen(tbuf);
1264 	if (p >= len)
1265 		return 0;
1266 	len -= p;
1267 	if (len > count) len = count;
1268 	if (copy_to_user(buf, (void*)(tbuf+p), len))
1269 		len = -EFAULT;
1270 	else
1271 		*ppos += len;
1272 	return len;
1273 }
1274 
1275 static ssize_t write_flush(struct file * file, const char __user * buf,
1276 			     size_t count, loff_t *ppos)
1277 {
1278 	struct cache_detail *cd = PDE(file->f_dentry->d_inode)->data;
1279 	char tbuf[20];
1280 	char *ep;
1281 	long flushtime;
1282 	if (*ppos || count > sizeof(tbuf)-1)
1283 		return -EINVAL;
1284 	if (copy_from_user(tbuf, buf, count))
1285 		return -EFAULT;
1286 	tbuf[count] = 0;
1287 	flushtime = simple_strtoul(tbuf, &ep, 0);
1288 	if (*ep && *ep != '\n')
1289 		return -EINVAL;
1290 
1291 	cd->flush_time = flushtime;
1292 	cd->nextcheck = get_seconds();
1293 	cache_flush();
1294 
1295 	*ppos += count;
1296 	return count;
1297 }
1298 
1299 static struct file_operations cache_flush_operations = {
1300 	.open		= nonseekable_open,
1301 	.read		= read_flush,
1302 	.write		= write_flush,
1303 };
1304