1 /* 2 * net/sunrpc/cache.c 3 * 4 * Generic code for various authentication-related caches 5 * used by sunrpc clients and servers. 6 * 7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 8 * 9 * Released under terms in GPL version 2. See COPYING. 10 * 11 */ 12 13 #include <linux/types.h> 14 #include <linux/fs.h> 15 #include <linux/file.h> 16 #include <linux/slab.h> 17 #include <linux/signal.h> 18 #include <linux/sched.h> 19 #include <linux/kmod.h> 20 #include <linux/list.h> 21 #include <linux/module.h> 22 #include <linux/ctype.h> 23 #include <asm/uaccess.h> 24 #include <linux/poll.h> 25 #include <linux/seq_file.h> 26 #include <linux/proc_fs.h> 27 #include <linux/net.h> 28 #include <linux/workqueue.h> 29 #include <linux/mutex.h> 30 #include <linux/pagemap.h> 31 #include <asm/ioctls.h> 32 #include <linux/sunrpc/types.h> 33 #include <linux/sunrpc/cache.h> 34 #include <linux/sunrpc/stats.h> 35 #include <linux/sunrpc/rpc_pipe_fs.h> 36 37 #define RPCDBG_FACILITY RPCDBG_CACHE 38 39 static int cache_defer_req(struct cache_req *req, struct cache_head *item); 40 static void cache_revisit_request(struct cache_head *item); 41 42 static void cache_init(struct cache_head *h) 43 { 44 time_t now = get_seconds(); 45 h->next = NULL; 46 h->flags = 0; 47 kref_init(&h->ref); 48 h->expiry_time = now + CACHE_NEW_EXPIRY; 49 h->last_refresh = now; 50 } 51 52 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail, 53 struct cache_head *key, int hash) 54 { 55 struct cache_head **head, **hp; 56 struct cache_head *new = NULL; 57 58 head = &detail->hash_table[hash]; 59 60 read_lock(&detail->hash_lock); 61 62 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 63 struct cache_head *tmp = *hp; 64 if (detail->match(tmp, key)) { 65 cache_get(tmp); 66 read_unlock(&detail->hash_lock); 67 return tmp; 68 } 69 } 70 read_unlock(&detail->hash_lock); 71 /* Didn't find anything, insert an empty entry */ 72 73 new = detail->alloc(); 74 if (!new) 75 return NULL; 76 /* must fully initialise 'new', else 77 * we might get lose if we need to 78 * cache_put it soon. 79 */ 80 cache_init(new); 81 detail->init(new, key); 82 83 write_lock(&detail->hash_lock); 84 85 /* check if entry appeared while we slept */ 86 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 87 struct cache_head *tmp = *hp; 88 if (detail->match(tmp, key)) { 89 cache_get(tmp); 90 write_unlock(&detail->hash_lock); 91 cache_put(new, detail); 92 return tmp; 93 } 94 } 95 new->next = *head; 96 *head = new; 97 detail->entries++; 98 cache_get(new); 99 write_unlock(&detail->hash_lock); 100 101 return new; 102 } 103 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup); 104 105 106 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch); 107 108 static void cache_fresh_locked(struct cache_head *head, time_t expiry) 109 { 110 head->expiry_time = expiry; 111 head->last_refresh = get_seconds(); 112 set_bit(CACHE_VALID, &head->flags); 113 } 114 115 static void cache_fresh_unlocked(struct cache_head *head, 116 struct cache_detail *detail) 117 { 118 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 119 cache_revisit_request(head); 120 cache_dequeue(detail, head); 121 } 122 } 123 124 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 125 struct cache_head *new, struct cache_head *old, int hash) 126 { 127 /* The 'old' entry is to be replaced by 'new'. 128 * If 'old' is not VALID, we update it directly, 129 * otherwise we need to replace it 130 */ 131 struct cache_head **head; 132 struct cache_head *tmp; 133 134 if (!test_bit(CACHE_VALID, &old->flags)) { 135 write_lock(&detail->hash_lock); 136 if (!test_bit(CACHE_VALID, &old->flags)) { 137 if (test_bit(CACHE_NEGATIVE, &new->flags)) 138 set_bit(CACHE_NEGATIVE, &old->flags); 139 else 140 detail->update(old, new); 141 cache_fresh_locked(old, new->expiry_time); 142 write_unlock(&detail->hash_lock); 143 cache_fresh_unlocked(old, detail); 144 return old; 145 } 146 write_unlock(&detail->hash_lock); 147 } 148 /* We need to insert a new entry */ 149 tmp = detail->alloc(); 150 if (!tmp) { 151 cache_put(old, detail); 152 return NULL; 153 } 154 cache_init(tmp); 155 detail->init(tmp, old); 156 head = &detail->hash_table[hash]; 157 158 write_lock(&detail->hash_lock); 159 if (test_bit(CACHE_NEGATIVE, &new->flags)) 160 set_bit(CACHE_NEGATIVE, &tmp->flags); 161 else 162 detail->update(tmp, new); 163 tmp->next = *head; 164 *head = tmp; 165 detail->entries++; 166 cache_get(tmp); 167 cache_fresh_locked(tmp, new->expiry_time); 168 cache_fresh_locked(old, 0); 169 write_unlock(&detail->hash_lock); 170 cache_fresh_unlocked(tmp, detail); 171 cache_fresh_unlocked(old, detail); 172 cache_put(old, detail); 173 return tmp; 174 } 175 EXPORT_SYMBOL_GPL(sunrpc_cache_update); 176 177 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h) 178 { 179 if (!cd->cache_upcall) 180 return -EINVAL; 181 return cd->cache_upcall(cd, h); 182 } 183 184 static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h) 185 { 186 if (!test_bit(CACHE_VALID, &h->flags) || 187 h->expiry_time < get_seconds()) 188 return -EAGAIN; 189 else if (detail->flush_time > h->last_refresh) 190 return -EAGAIN; 191 else { 192 /* entry is valid */ 193 if (test_bit(CACHE_NEGATIVE, &h->flags)) 194 return -ENOENT; 195 else 196 return 0; 197 } 198 } 199 200 /* 201 * This is the generic cache management routine for all 202 * the authentication caches. 203 * It checks the currency of a cache item and will (later) 204 * initiate an upcall to fill it if needed. 205 * 206 * 207 * Returns 0 if the cache_head can be used, or cache_puts it and returns 208 * -EAGAIN if upcall is pending and request has been queued 209 * -ETIMEDOUT if upcall failed or request could not be queue or 210 * upcall completed but item is still invalid (implying that 211 * the cache item has been replaced with a newer one). 212 * -ENOENT if cache entry was negative 213 */ 214 int cache_check(struct cache_detail *detail, 215 struct cache_head *h, struct cache_req *rqstp) 216 { 217 int rv; 218 long refresh_age, age; 219 220 /* First decide return status as best we can */ 221 rv = cache_is_valid(detail, h); 222 223 /* now see if we want to start an upcall */ 224 refresh_age = (h->expiry_time - h->last_refresh); 225 age = get_seconds() - h->last_refresh; 226 227 if (rqstp == NULL) { 228 if (rv == -EAGAIN) 229 rv = -ENOENT; 230 } else if (rv == -EAGAIN || age > refresh_age/2) { 231 dprintk("RPC: Want update, refage=%ld, age=%ld\n", 232 refresh_age, age); 233 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) { 234 switch (cache_make_upcall(detail, h)) { 235 case -EINVAL: 236 clear_bit(CACHE_PENDING, &h->flags); 237 cache_revisit_request(h); 238 if (rv == -EAGAIN) { 239 set_bit(CACHE_NEGATIVE, &h->flags); 240 cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY); 241 cache_fresh_unlocked(h, detail); 242 rv = -ENOENT; 243 } 244 break; 245 246 case -EAGAIN: 247 clear_bit(CACHE_PENDING, &h->flags); 248 cache_revisit_request(h); 249 break; 250 } 251 } 252 } 253 254 if (rv == -EAGAIN) { 255 if (cache_defer_req(rqstp, h) < 0) { 256 /* Request is not deferred */ 257 rv = cache_is_valid(detail, h); 258 if (rv == -EAGAIN) 259 rv = -ETIMEDOUT; 260 } 261 } 262 if (rv) 263 cache_put(h, detail); 264 return rv; 265 } 266 EXPORT_SYMBOL_GPL(cache_check); 267 268 /* 269 * caches need to be periodically cleaned. 270 * For this we maintain a list of cache_detail and 271 * a current pointer into that list and into the table 272 * for that entry. 273 * 274 * Each time clean_cache is called it finds the next non-empty entry 275 * in the current table and walks the list in that entry 276 * looking for entries that can be removed. 277 * 278 * An entry gets removed if: 279 * - The expiry is before current time 280 * - The last_refresh time is before the flush_time for that cache 281 * 282 * later we might drop old entries with non-NEVER expiry if that table 283 * is getting 'full' for some definition of 'full' 284 * 285 * The question of "how often to scan a table" is an interesting one 286 * and is answered in part by the use of the "nextcheck" field in the 287 * cache_detail. 288 * When a scan of a table begins, the nextcheck field is set to a time 289 * that is well into the future. 290 * While scanning, if an expiry time is found that is earlier than the 291 * current nextcheck time, nextcheck is set to that expiry time. 292 * If the flush_time is ever set to a time earlier than the nextcheck 293 * time, the nextcheck time is then set to that flush_time. 294 * 295 * A table is then only scanned if the current time is at least 296 * the nextcheck time. 297 * 298 */ 299 300 static LIST_HEAD(cache_list); 301 static DEFINE_SPINLOCK(cache_list_lock); 302 static struct cache_detail *current_detail; 303 static int current_index; 304 305 static void do_cache_clean(struct work_struct *work); 306 static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean); 307 308 static void sunrpc_init_cache_detail(struct cache_detail *cd) 309 { 310 rwlock_init(&cd->hash_lock); 311 INIT_LIST_HEAD(&cd->queue); 312 spin_lock(&cache_list_lock); 313 cd->nextcheck = 0; 314 cd->entries = 0; 315 atomic_set(&cd->readers, 0); 316 cd->last_close = 0; 317 cd->last_warn = -1; 318 list_add(&cd->others, &cache_list); 319 spin_unlock(&cache_list_lock); 320 321 /* start the cleaning process */ 322 schedule_delayed_work(&cache_cleaner, 0); 323 } 324 325 static void sunrpc_destroy_cache_detail(struct cache_detail *cd) 326 { 327 cache_purge(cd); 328 spin_lock(&cache_list_lock); 329 write_lock(&cd->hash_lock); 330 if (cd->entries || atomic_read(&cd->inuse)) { 331 write_unlock(&cd->hash_lock); 332 spin_unlock(&cache_list_lock); 333 goto out; 334 } 335 if (current_detail == cd) 336 current_detail = NULL; 337 list_del_init(&cd->others); 338 write_unlock(&cd->hash_lock); 339 spin_unlock(&cache_list_lock); 340 if (list_empty(&cache_list)) { 341 /* module must be being unloaded so its safe to kill the worker */ 342 cancel_delayed_work_sync(&cache_cleaner); 343 } 344 return; 345 out: 346 printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name); 347 } 348 349 /* clean cache tries to find something to clean 350 * and cleans it. 351 * It returns 1 if it cleaned something, 352 * 0 if it didn't find anything this time 353 * -1 if it fell off the end of the list. 354 */ 355 static int cache_clean(void) 356 { 357 int rv = 0; 358 struct list_head *next; 359 360 spin_lock(&cache_list_lock); 361 362 /* find a suitable table if we don't already have one */ 363 while (current_detail == NULL || 364 current_index >= current_detail->hash_size) { 365 if (current_detail) 366 next = current_detail->others.next; 367 else 368 next = cache_list.next; 369 if (next == &cache_list) { 370 current_detail = NULL; 371 spin_unlock(&cache_list_lock); 372 return -1; 373 } 374 current_detail = list_entry(next, struct cache_detail, others); 375 if (current_detail->nextcheck > get_seconds()) 376 current_index = current_detail->hash_size; 377 else { 378 current_index = 0; 379 current_detail->nextcheck = get_seconds()+30*60; 380 } 381 } 382 383 /* find a non-empty bucket in the table */ 384 while (current_detail && 385 current_index < current_detail->hash_size && 386 current_detail->hash_table[current_index] == NULL) 387 current_index++; 388 389 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 390 391 if (current_detail && current_index < current_detail->hash_size) { 392 struct cache_head *ch, **cp; 393 struct cache_detail *d; 394 395 write_lock(¤t_detail->hash_lock); 396 397 /* Ok, now to clean this strand */ 398 399 cp = & current_detail->hash_table[current_index]; 400 ch = *cp; 401 for (; ch; cp= & ch->next, ch= *cp) { 402 if (current_detail->nextcheck > ch->expiry_time) 403 current_detail->nextcheck = ch->expiry_time+1; 404 if (ch->expiry_time >= get_seconds() && 405 ch->last_refresh >= current_detail->flush_time) 406 continue; 407 if (test_and_clear_bit(CACHE_PENDING, &ch->flags)) 408 cache_dequeue(current_detail, ch); 409 410 if (atomic_read(&ch->ref.refcount) == 1) 411 break; 412 } 413 if (ch) { 414 *cp = ch->next; 415 ch->next = NULL; 416 current_detail->entries--; 417 rv = 1; 418 } 419 write_unlock(¤t_detail->hash_lock); 420 d = current_detail; 421 if (!ch) 422 current_index ++; 423 spin_unlock(&cache_list_lock); 424 if (ch) { 425 cache_revisit_request(ch); 426 cache_put(ch, d); 427 } 428 } else 429 spin_unlock(&cache_list_lock); 430 431 return rv; 432 } 433 434 /* 435 * We want to regularly clean the cache, so we need to schedule some work ... 436 */ 437 static void do_cache_clean(struct work_struct *work) 438 { 439 int delay = 5; 440 if (cache_clean() == -1) 441 delay = round_jiffies_relative(30*HZ); 442 443 if (list_empty(&cache_list)) 444 delay = 0; 445 446 if (delay) 447 schedule_delayed_work(&cache_cleaner, delay); 448 } 449 450 451 /* 452 * Clean all caches promptly. This just calls cache_clean 453 * repeatedly until we are sure that every cache has had a chance to 454 * be fully cleaned 455 */ 456 void cache_flush(void) 457 { 458 while (cache_clean() != -1) 459 cond_resched(); 460 while (cache_clean() != -1) 461 cond_resched(); 462 } 463 EXPORT_SYMBOL_GPL(cache_flush); 464 465 void cache_purge(struct cache_detail *detail) 466 { 467 detail->flush_time = LONG_MAX; 468 detail->nextcheck = get_seconds(); 469 cache_flush(); 470 detail->flush_time = 1; 471 } 472 EXPORT_SYMBOL_GPL(cache_purge); 473 474 475 /* 476 * Deferral and Revisiting of Requests. 477 * 478 * If a cache lookup finds a pending entry, we 479 * need to defer the request and revisit it later. 480 * All deferred requests are stored in a hash table, 481 * indexed by "struct cache_head *". 482 * As it may be wasteful to store a whole request 483 * structure, we allow the request to provide a 484 * deferred form, which must contain a 485 * 'struct cache_deferred_req' 486 * This cache_deferred_req contains a method to allow 487 * it to be revisited when cache info is available 488 */ 489 490 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 491 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 492 493 #define DFR_MAX 300 /* ??? */ 494 495 static DEFINE_SPINLOCK(cache_defer_lock); 496 static LIST_HEAD(cache_defer_list); 497 static struct list_head cache_defer_hash[DFR_HASHSIZE]; 498 static int cache_defer_cnt; 499 500 static int cache_defer_req(struct cache_req *req, struct cache_head *item) 501 { 502 struct cache_deferred_req *dreq, *discard; 503 int hash = DFR_HASH(item); 504 505 if (cache_defer_cnt >= DFR_MAX) { 506 /* too much in the cache, randomly drop this one, 507 * or continue and drop the oldest below 508 */ 509 if (net_random()&1) 510 return -ENOMEM; 511 } 512 dreq = req->defer(req); 513 if (dreq == NULL) 514 return -ENOMEM; 515 516 dreq->item = item; 517 518 spin_lock(&cache_defer_lock); 519 520 list_add(&dreq->recent, &cache_defer_list); 521 522 if (cache_defer_hash[hash].next == NULL) 523 INIT_LIST_HEAD(&cache_defer_hash[hash]); 524 list_add(&dreq->hash, &cache_defer_hash[hash]); 525 526 /* it is in, now maybe clean up */ 527 discard = NULL; 528 if (++cache_defer_cnt > DFR_MAX) { 529 discard = list_entry(cache_defer_list.prev, 530 struct cache_deferred_req, recent); 531 list_del_init(&discard->recent); 532 list_del_init(&discard->hash); 533 cache_defer_cnt--; 534 } 535 spin_unlock(&cache_defer_lock); 536 537 if (discard) 538 /* there was one too many */ 539 discard->revisit(discard, 1); 540 541 if (!test_bit(CACHE_PENDING, &item->flags)) { 542 /* must have just been validated... */ 543 cache_revisit_request(item); 544 return -EAGAIN; 545 } 546 return 0; 547 } 548 549 static void cache_revisit_request(struct cache_head *item) 550 { 551 struct cache_deferred_req *dreq; 552 struct list_head pending; 553 554 struct list_head *lp; 555 int hash = DFR_HASH(item); 556 557 INIT_LIST_HEAD(&pending); 558 spin_lock(&cache_defer_lock); 559 560 lp = cache_defer_hash[hash].next; 561 if (lp) { 562 while (lp != &cache_defer_hash[hash]) { 563 dreq = list_entry(lp, struct cache_deferred_req, hash); 564 lp = lp->next; 565 if (dreq->item == item) { 566 list_del_init(&dreq->hash); 567 list_move(&dreq->recent, &pending); 568 cache_defer_cnt--; 569 } 570 } 571 } 572 spin_unlock(&cache_defer_lock); 573 574 while (!list_empty(&pending)) { 575 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 576 list_del_init(&dreq->recent); 577 dreq->revisit(dreq, 0); 578 } 579 } 580 581 void cache_clean_deferred(void *owner) 582 { 583 struct cache_deferred_req *dreq, *tmp; 584 struct list_head pending; 585 586 587 INIT_LIST_HEAD(&pending); 588 spin_lock(&cache_defer_lock); 589 590 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 591 if (dreq->owner == owner) { 592 list_del_init(&dreq->hash); 593 list_move(&dreq->recent, &pending); 594 cache_defer_cnt--; 595 } 596 } 597 spin_unlock(&cache_defer_lock); 598 599 while (!list_empty(&pending)) { 600 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 601 list_del_init(&dreq->recent); 602 dreq->revisit(dreq, 1); 603 } 604 } 605 606 /* 607 * communicate with user-space 608 * 609 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel. 610 * On read, you get a full request, or block. 611 * On write, an update request is processed. 612 * Poll works if anything to read, and always allows write. 613 * 614 * Implemented by linked list of requests. Each open file has 615 * a ->private that also exists in this list. New requests are added 616 * to the end and may wakeup and preceding readers. 617 * New readers are added to the head. If, on read, an item is found with 618 * CACHE_UPCALLING clear, we free it from the list. 619 * 620 */ 621 622 static DEFINE_SPINLOCK(queue_lock); 623 static DEFINE_MUTEX(queue_io_mutex); 624 625 struct cache_queue { 626 struct list_head list; 627 int reader; /* if 0, then request */ 628 }; 629 struct cache_request { 630 struct cache_queue q; 631 struct cache_head *item; 632 char * buf; 633 int len; 634 int readers; 635 }; 636 struct cache_reader { 637 struct cache_queue q; 638 int offset; /* if non-0, we have a refcnt on next request */ 639 }; 640 641 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count, 642 loff_t *ppos, struct cache_detail *cd) 643 { 644 struct cache_reader *rp = filp->private_data; 645 struct cache_request *rq; 646 struct inode *inode = filp->f_path.dentry->d_inode; 647 int err; 648 649 if (count == 0) 650 return 0; 651 652 mutex_lock(&inode->i_mutex); /* protect against multiple concurrent 653 * readers on this file */ 654 again: 655 spin_lock(&queue_lock); 656 /* need to find next request */ 657 while (rp->q.list.next != &cd->queue && 658 list_entry(rp->q.list.next, struct cache_queue, list) 659 ->reader) { 660 struct list_head *next = rp->q.list.next; 661 list_move(&rp->q.list, next); 662 } 663 if (rp->q.list.next == &cd->queue) { 664 spin_unlock(&queue_lock); 665 mutex_unlock(&inode->i_mutex); 666 BUG_ON(rp->offset); 667 return 0; 668 } 669 rq = container_of(rp->q.list.next, struct cache_request, q.list); 670 BUG_ON(rq->q.reader); 671 if (rp->offset == 0) 672 rq->readers++; 673 spin_unlock(&queue_lock); 674 675 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 676 err = -EAGAIN; 677 spin_lock(&queue_lock); 678 list_move(&rp->q.list, &rq->q.list); 679 spin_unlock(&queue_lock); 680 } else { 681 if (rp->offset + count > rq->len) 682 count = rq->len - rp->offset; 683 err = -EFAULT; 684 if (copy_to_user(buf, rq->buf + rp->offset, count)) 685 goto out; 686 rp->offset += count; 687 if (rp->offset >= rq->len) { 688 rp->offset = 0; 689 spin_lock(&queue_lock); 690 list_move(&rp->q.list, &rq->q.list); 691 spin_unlock(&queue_lock); 692 } 693 err = 0; 694 } 695 out: 696 if (rp->offset == 0) { 697 /* need to release rq */ 698 spin_lock(&queue_lock); 699 rq->readers--; 700 if (rq->readers == 0 && 701 !test_bit(CACHE_PENDING, &rq->item->flags)) { 702 list_del(&rq->q.list); 703 spin_unlock(&queue_lock); 704 cache_put(rq->item, cd); 705 kfree(rq->buf); 706 kfree(rq); 707 } else 708 spin_unlock(&queue_lock); 709 } 710 if (err == -EAGAIN) 711 goto again; 712 mutex_unlock(&inode->i_mutex); 713 return err ? err : count; 714 } 715 716 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf, 717 size_t count, struct cache_detail *cd) 718 { 719 ssize_t ret; 720 721 if (copy_from_user(kaddr, buf, count)) 722 return -EFAULT; 723 kaddr[count] = '\0'; 724 ret = cd->cache_parse(cd, kaddr, count); 725 if (!ret) 726 ret = count; 727 return ret; 728 } 729 730 static ssize_t cache_slow_downcall(const char __user *buf, 731 size_t count, struct cache_detail *cd) 732 { 733 static char write_buf[8192]; /* protected by queue_io_mutex */ 734 ssize_t ret = -EINVAL; 735 736 if (count >= sizeof(write_buf)) 737 goto out; 738 mutex_lock(&queue_io_mutex); 739 ret = cache_do_downcall(write_buf, buf, count, cd); 740 mutex_unlock(&queue_io_mutex); 741 out: 742 return ret; 743 } 744 745 static ssize_t cache_downcall(struct address_space *mapping, 746 const char __user *buf, 747 size_t count, struct cache_detail *cd) 748 { 749 struct page *page; 750 char *kaddr; 751 ssize_t ret = -ENOMEM; 752 753 if (count >= PAGE_CACHE_SIZE) 754 goto out_slow; 755 756 page = find_or_create_page(mapping, 0, GFP_KERNEL); 757 if (!page) 758 goto out_slow; 759 760 kaddr = kmap(page); 761 ret = cache_do_downcall(kaddr, buf, count, cd); 762 kunmap(page); 763 unlock_page(page); 764 page_cache_release(page); 765 return ret; 766 out_slow: 767 return cache_slow_downcall(buf, count, cd); 768 } 769 770 static ssize_t cache_write(struct file *filp, const char __user *buf, 771 size_t count, loff_t *ppos, 772 struct cache_detail *cd) 773 { 774 struct address_space *mapping = filp->f_mapping; 775 struct inode *inode = filp->f_path.dentry->d_inode; 776 ssize_t ret = -EINVAL; 777 778 if (!cd->cache_parse) 779 goto out; 780 781 mutex_lock(&inode->i_mutex); 782 ret = cache_downcall(mapping, buf, count, cd); 783 mutex_unlock(&inode->i_mutex); 784 out: 785 return ret; 786 } 787 788 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 789 790 static unsigned int cache_poll(struct file *filp, poll_table *wait, 791 struct cache_detail *cd) 792 { 793 unsigned int mask; 794 struct cache_reader *rp = filp->private_data; 795 struct cache_queue *cq; 796 797 poll_wait(filp, &queue_wait, wait); 798 799 /* alway allow write */ 800 mask = POLL_OUT | POLLWRNORM; 801 802 if (!rp) 803 return mask; 804 805 spin_lock(&queue_lock); 806 807 for (cq= &rp->q; &cq->list != &cd->queue; 808 cq = list_entry(cq->list.next, struct cache_queue, list)) 809 if (!cq->reader) { 810 mask |= POLLIN | POLLRDNORM; 811 break; 812 } 813 spin_unlock(&queue_lock); 814 return mask; 815 } 816 817 static int cache_ioctl(struct inode *ino, struct file *filp, 818 unsigned int cmd, unsigned long arg, 819 struct cache_detail *cd) 820 { 821 int len = 0; 822 struct cache_reader *rp = filp->private_data; 823 struct cache_queue *cq; 824 825 if (cmd != FIONREAD || !rp) 826 return -EINVAL; 827 828 spin_lock(&queue_lock); 829 830 /* only find the length remaining in current request, 831 * or the length of the next request 832 */ 833 for (cq= &rp->q; &cq->list != &cd->queue; 834 cq = list_entry(cq->list.next, struct cache_queue, list)) 835 if (!cq->reader) { 836 struct cache_request *cr = 837 container_of(cq, struct cache_request, q); 838 len = cr->len - rp->offset; 839 break; 840 } 841 spin_unlock(&queue_lock); 842 843 return put_user(len, (int __user *)arg); 844 } 845 846 static int cache_open(struct inode *inode, struct file *filp, 847 struct cache_detail *cd) 848 { 849 struct cache_reader *rp = NULL; 850 851 if (!cd || !try_module_get(cd->owner)) 852 return -EACCES; 853 nonseekable_open(inode, filp); 854 if (filp->f_mode & FMODE_READ) { 855 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 856 if (!rp) 857 return -ENOMEM; 858 rp->offset = 0; 859 rp->q.reader = 1; 860 atomic_inc(&cd->readers); 861 spin_lock(&queue_lock); 862 list_add(&rp->q.list, &cd->queue); 863 spin_unlock(&queue_lock); 864 } 865 filp->private_data = rp; 866 return 0; 867 } 868 869 static int cache_release(struct inode *inode, struct file *filp, 870 struct cache_detail *cd) 871 { 872 struct cache_reader *rp = filp->private_data; 873 874 if (rp) { 875 spin_lock(&queue_lock); 876 if (rp->offset) { 877 struct cache_queue *cq; 878 for (cq= &rp->q; &cq->list != &cd->queue; 879 cq = list_entry(cq->list.next, struct cache_queue, list)) 880 if (!cq->reader) { 881 container_of(cq, struct cache_request, q) 882 ->readers--; 883 break; 884 } 885 rp->offset = 0; 886 } 887 list_del(&rp->q.list); 888 spin_unlock(&queue_lock); 889 890 filp->private_data = NULL; 891 kfree(rp); 892 893 cd->last_close = get_seconds(); 894 atomic_dec(&cd->readers); 895 } 896 module_put(cd->owner); 897 return 0; 898 } 899 900 901 902 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch) 903 { 904 struct cache_queue *cq; 905 spin_lock(&queue_lock); 906 list_for_each_entry(cq, &detail->queue, list) 907 if (!cq->reader) { 908 struct cache_request *cr = container_of(cq, struct cache_request, q); 909 if (cr->item != ch) 910 continue; 911 if (cr->readers != 0) 912 continue; 913 list_del(&cr->q.list); 914 spin_unlock(&queue_lock); 915 cache_put(cr->item, detail); 916 kfree(cr->buf); 917 kfree(cr); 918 return; 919 } 920 spin_unlock(&queue_lock); 921 } 922 923 /* 924 * Support routines for text-based upcalls. 925 * Fields are separated by spaces. 926 * Fields are either mangled to quote space tab newline slosh with slosh 927 * or a hexified with a leading \x 928 * Record is terminated with newline. 929 * 930 */ 931 932 void qword_add(char **bpp, int *lp, char *str) 933 { 934 char *bp = *bpp; 935 int len = *lp; 936 char c; 937 938 if (len < 0) return; 939 940 while ((c=*str++) && len) 941 switch(c) { 942 case ' ': 943 case '\t': 944 case '\n': 945 case '\\': 946 if (len >= 4) { 947 *bp++ = '\\'; 948 *bp++ = '0' + ((c & 0300)>>6); 949 *bp++ = '0' + ((c & 0070)>>3); 950 *bp++ = '0' + ((c & 0007)>>0); 951 } 952 len -= 4; 953 break; 954 default: 955 *bp++ = c; 956 len--; 957 } 958 if (c || len <1) len = -1; 959 else { 960 *bp++ = ' '; 961 len--; 962 } 963 *bpp = bp; 964 *lp = len; 965 } 966 EXPORT_SYMBOL_GPL(qword_add); 967 968 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 969 { 970 char *bp = *bpp; 971 int len = *lp; 972 973 if (len < 0) return; 974 975 if (len > 2) { 976 *bp++ = '\\'; 977 *bp++ = 'x'; 978 len -= 2; 979 while (blen && len >= 2) { 980 unsigned char c = *buf++; 981 *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1); 982 *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1); 983 len -= 2; 984 blen--; 985 } 986 } 987 if (blen || len<1) len = -1; 988 else { 989 *bp++ = ' '; 990 len--; 991 } 992 *bpp = bp; 993 *lp = len; 994 } 995 EXPORT_SYMBOL_GPL(qword_addhex); 996 997 static void warn_no_listener(struct cache_detail *detail) 998 { 999 if (detail->last_warn != detail->last_close) { 1000 detail->last_warn = detail->last_close; 1001 if (detail->warn_no_listener) 1002 detail->warn_no_listener(detail, detail->last_close != 0); 1003 } 1004 } 1005 1006 /* 1007 * register an upcall request to user-space and queue it up for read() by the 1008 * upcall daemon. 1009 * 1010 * Each request is at most one page long. 1011 */ 1012 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h, 1013 void (*cache_request)(struct cache_detail *, 1014 struct cache_head *, 1015 char **, 1016 int *)) 1017 { 1018 1019 char *buf; 1020 struct cache_request *crq; 1021 char *bp; 1022 int len; 1023 1024 if (atomic_read(&detail->readers) == 0 && 1025 detail->last_close < get_seconds() - 30) { 1026 warn_no_listener(detail); 1027 return -EINVAL; 1028 } 1029 1030 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1031 if (!buf) 1032 return -EAGAIN; 1033 1034 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1035 if (!crq) { 1036 kfree(buf); 1037 return -EAGAIN; 1038 } 1039 1040 bp = buf; len = PAGE_SIZE; 1041 1042 cache_request(detail, h, &bp, &len); 1043 1044 if (len < 0) { 1045 kfree(buf); 1046 kfree(crq); 1047 return -EAGAIN; 1048 } 1049 crq->q.reader = 0; 1050 crq->item = cache_get(h); 1051 crq->buf = buf; 1052 crq->len = PAGE_SIZE - len; 1053 crq->readers = 0; 1054 spin_lock(&queue_lock); 1055 list_add_tail(&crq->q.list, &detail->queue); 1056 spin_unlock(&queue_lock); 1057 wake_up(&queue_wait); 1058 return 0; 1059 } 1060 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall); 1061 1062 /* 1063 * parse a message from user-space and pass it 1064 * to an appropriate cache 1065 * Messages are, like requests, separated into fields by 1066 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1067 * 1068 * Message is 1069 * reply cachename expiry key ... content.... 1070 * 1071 * key and content are both parsed by cache 1072 */ 1073 1074 #define isodigit(c) (isdigit(c) && c <= '7') 1075 int qword_get(char **bpp, char *dest, int bufsize) 1076 { 1077 /* return bytes copied, or -1 on error */ 1078 char *bp = *bpp; 1079 int len = 0; 1080 1081 while (*bp == ' ') bp++; 1082 1083 if (bp[0] == '\\' && bp[1] == 'x') { 1084 /* HEX STRING */ 1085 bp += 2; 1086 while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) { 1087 int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10; 1088 bp++; 1089 byte <<= 4; 1090 byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10; 1091 *dest++ = byte; 1092 bp++; 1093 len++; 1094 } 1095 } else { 1096 /* text with \nnn octal quoting */ 1097 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1098 if (*bp == '\\' && 1099 isodigit(bp[1]) && (bp[1] <= '3') && 1100 isodigit(bp[2]) && 1101 isodigit(bp[3])) { 1102 int byte = (*++bp -'0'); 1103 bp++; 1104 byte = (byte << 3) | (*bp++ - '0'); 1105 byte = (byte << 3) | (*bp++ - '0'); 1106 *dest++ = byte; 1107 len++; 1108 } else { 1109 *dest++ = *bp++; 1110 len++; 1111 } 1112 } 1113 } 1114 1115 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1116 return -1; 1117 while (*bp == ' ') bp++; 1118 *bpp = bp; 1119 *dest = '\0'; 1120 return len; 1121 } 1122 EXPORT_SYMBOL_GPL(qword_get); 1123 1124 1125 /* 1126 * support /proc/sunrpc/cache/$CACHENAME/content 1127 * as a seqfile. 1128 * We call ->cache_show passing NULL for the item to 1129 * get a header, then pass each real item in the cache 1130 */ 1131 1132 struct handle { 1133 struct cache_detail *cd; 1134 }; 1135 1136 static void *c_start(struct seq_file *m, loff_t *pos) 1137 __acquires(cd->hash_lock) 1138 { 1139 loff_t n = *pos; 1140 unsigned hash, entry; 1141 struct cache_head *ch; 1142 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1143 1144 1145 read_lock(&cd->hash_lock); 1146 if (!n--) 1147 return SEQ_START_TOKEN; 1148 hash = n >> 32; 1149 entry = n & ((1LL<<32) - 1); 1150 1151 for (ch=cd->hash_table[hash]; ch; ch=ch->next) 1152 if (!entry--) 1153 return ch; 1154 n &= ~((1LL<<32) - 1); 1155 do { 1156 hash++; 1157 n += 1LL<<32; 1158 } while(hash < cd->hash_size && 1159 cd->hash_table[hash]==NULL); 1160 if (hash >= cd->hash_size) 1161 return NULL; 1162 *pos = n+1; 1163 return cd->hash_table[hash]; 1164 } 1165 1166 static void *c_next(struct seq_file *m, void *p, loff_t *pos) 1167 { 1168 struct cache_head *ch = p; 1169 int hash = (*pos >> 32); 1170 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1171 1172 if (p == SEQ_START_TOKEN) 1173 hash = 0; 1174 else if (ch->next == NULL) { 1175 hash++; 1176 *pos += 1LL<<32; 1177 } else { 1178 ++*pos; 1179 return ch->next; 1180 } 1181 *pos &= ~((1LL<<32) - 1); 1182 while (hash < cd->hash_size && 1183 cd->hash_table[hash] == NULL) { 1184 hash++; 1185 *pos += 1LL<<32; 1186 } 1187 if (hash >= cd->hash_size) 1188 return NULL; 1189 ++*pos; 1190 return cd->hash_table[hash]; 1191 } 1192 1193 static void c_stop(struct seq_file *m, void *p) 1194 __releases(cd->hash_lock) 1195 { 1196 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1197 read_unlock(&cd->hash_lock); 1198 } 1199 1200 static int c_show(struct seq_file *m, void *p) 1201 { 1202 struct cache_head *cp = p; 1203 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1204 1205 if (p == SEQ_START_TOKEN) 1206 return cd->cache_show(m, cd, NULL); 1207 1208 ifdebug(CACHE) 1209 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n", 1210 cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags); 1211 cache_get(cp); 1212 if (cache_check(cd, cp, NULL)) 1213 /* cache_check does a cache_put on failure */ 1214 seq_printf(m, "# "); 1215 else 1216 cache_put(cp, cd); 1217 1218 return cd->cache_show(m, cd, cp); 1219 } 1220 1221 static const struct seq_operations cache_content_op = { 1222 .start = c_start, 1223 .next = c_next, 1224 .stop = c_stop, 1225 .show = c_show, 1226 }; 1227 1228 static int content_open(struct inode *inode, struct file *file, 1229 struct cache_detail *cd) 1230 { 1231 struct handle *han; 1232 1233 if (!cd || !try_module_get(cd->owner)) 1234 return -EACCES; 1235 han = __seq_open_private(file, &cache_content_op, sizeof(*han)); 1236 if (han == NULL) 1237 return -ENOMEM; 1238 1239 han->cd = cd; 1240 return 0; 1241 } 1242 1243 static int content_release(struct inode *inode, struct file *file, 1244 struct cache_detail *cd) 1245 { 1246 int ret = seq_release_private(inode, file); 1247 module_put(cd->owner); 1248 return ret; 1249 } 1250 1251 static int open_flush(struct inode *inode, struct file *file, 1252 struct cache_detail *cd) 1253 { 1254 if (!cd || !try_module_get(cd->owner)) 1255 return -EACCES; 1256 return nonseekable_open(inode, file); 1257 } 1258 1259 static int release_flush(struct inode *inode, struct file *file, 1260 struct cache_detail *cd) 1261 { 1262 module_put(cd->owner); 1263 return 0; 1264 } 1265 1266 static ssize_t read_flush(struct file *file, char __user *buf, 1267 size_t count, loff_t *ppos, 1268 struct cache_detail *cd) 1269 { 1270 char tbuf[20]; 1271 unsigned long p = *ppos; 1272 size_t len; 1273 1274 sprintf(tbuf, "%lu\n", cd->flush_time); 1275 len = strlen(tbuf); 1276 if (p >= len) 1277 return 0; 1278 len -= p; 1279 if (len > count) 1280 len = count; 1281 if (copy_to_user(buf, (void*)(tbuf+p), len)) 1282 return -EFAULT; 1283 *ppos += len; 1284 return len; 1285 } 1286 1287 static ssize_t write_flush(struct file *file, const char __user *buf, 1288 size_t count, loff_t *ppos, 1289 struct cache_detail *cd) 1290 { 1291 char tbuf[20]; 1292 char *ep; 1293 long flushtime; 1294 if (*ppos || count > sizeof(tbuf)-1) 1295 return -EINVAL; 1296 if (copy_from_user(tbuf, buf, count)) 1297 return -EFAULT; 1298 tbuf[count] = 0; 1299 flushtime = simple_strtoul(tbuf, &ep, 0); 1300 if (*ep && *ep != '\n') 1301 return -EINVAL; 1302 1303 cd->flush_time = flushtime; 1304 cd->nextcheck = get_seconds(); 1305 cache_flush(); 1306 1307 *ppos += count; 1308 return count; 1309 } 1310 1311 static ssize_t cache_read_procfs(struct file *filp, char __user *buf, 1312 size_t count, loff_t *ppos) 1313 { 1314 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1315 1316 return cache_read(filp, buf, count, ppos, cd); 1317 } 1318 1319 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf, 1320 size_t count, loff_t *ppos) 1321 { 1322 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1323 1324 return cache_write(filp, buf, count, ppos, cd); 1325 } 1326 1327 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait) 1328 { 1329 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1330 1331 return cache_poll(filp, wait, cd); 1332 } 1333 1334 static int cache_ioctl_procfs(struct inode *inode, struct file *filp, 1335 unsigned int cmd, unsigned long arg) 1336 { 1337 struct cache_detail *cd = PDE(inode)->data; 1338 1339 return cache_ioctl(inode, filp, cmd, arg, cd); 1340 } 1341 1342 static int cache_open_procfs(struct inode *inode, struct file *filp) 1343 { 1344 struct cache_detail *cd = PDE(inode)->data; 1345 1346 return cache_open(inode, filp, cd); 1347 } 1348 1349 static int cache_release_procfs(struct inode *inode, struct file *filp) 1350 { 1351 struct cache_detail *cd = PDE(inode)->data; 1352 1353 return cache_release(inode, filp, cd); 1354 } 1355 1356 static const struct file_operations cache_file_operations_procfs = { 1357 .owner = THIS_MODULE, 1358 .llseek = no_llseek, 1359 .read = cache_read_procfs, 1360 .write = cache_write_procfs, 1361 .poll = cache_poll_procfs, 1362 .ioctl = cache_ioctl_procfs, /* for FIONREAD */ 1363 .open = cache_open_procfs, 1364 .release = cache_release_procfs, 1365 }; 1366 1367 static int content_open_procfs(struct inode *inode, struct file *filp) 1368 { 1369 struct cache_detail *cd = PDE(inode)->data; 1370 1371 return content_open(inode, filp, cd); 1372 } 1373 1374 static int content_release_procfs(struct inode *inode, struct file *filp) 1375 { 1376 struct cache_detail *cd = PDE(inode)->data; 1377 1378 return content_release(inode, filp, cd); 1379 } 1380 1381 static const struct file_operations content_file_operations_procfs = { 1382 .open = content_open_procfs, 1383 .read = seq_read, 1384 .llseek = seq_lseek, 1385 .release = content_release_procfs, 1386 }; 1387 1388 static int open_flush_procfs(struct inode *inode, struct file *filp) 1389 { 1390 struct cache_detail *cd = PDE(inode)->data; 1391 1392 return open_flush(inode, filp, cd); 1393 } 1394 1395 static int release_flush_procfs(struct inode *inode, struct file *filp) 1396 { 1397 struct cache_detail *cd = PDE(inode)->data; 1398 1399 return release_flush(inode, filp, cd); 1400 } 1401 1402 static ssize_t read_flush_procfs(struct file *filp, char __user *buf, 1403 size_t count, loff_t *ppos) 1404 { 1405 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1406 1407 return read_flush(filp, buf, count, ppos, cd); 1408 } 1409 1410 static ssize_t write_flush_procfs(struct file *filp, 1411 const char __user *buf, 1412 size_t count, loff_t *ppos) 1413 { 1414 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1415 1416 return write_flush(filp, buf, count, ppos, cd); 1417 } 1418 1419 static const struct file_operations cache_flush_operations_procfs = { 1420 .open = open_flush_procfs, 1421 .read = read_flush_procfs, 1422 .write = write_flush_procfs, 1423 .release = release_flush_procfs, 1424 }; 1425 1426 static void remove_cache_proc_entries(struct cache_detail *cd) 1427 { 1428 if (cd->u.procfs.proc_ent == NULL) 1429 return; 1430 if (cd->u.procfs.flush_ent) 1431 remove_proc_entry("flush", cd->u.procfs.proc_ent); 1432 if (cd->u.procfs.channel_ent) 1433 remove_proc_entry("channel", cd->u.procfs.proc_ent); 1434 if (cd->u.procfs.content_ent) 1435 remove_proc_entry("content", cd->u.procfs.proc_ent); 1436 cd->u.procfs.proc_ent = NULL; 1437 remove_proc_entry(cd->name, proc_net_rpc); 1438 } 1439 1440 #ifdef CONFIG_PROC_FS 1441 static int create_cache_proc_entries(struct cache_detail *cd) 1442 { 1443 struct proc_dir_entry *p; 1444 1445 cd->u.procfs.proc_ent = proc_mkdir(cd->name, proc_net_rpc); 1446 if (cd->u.procfs.proc_ent == NULL) 1447 goto out_nomem; 1448 cd->u.procfs.channel_ent = NULL; 1449 cd->u.procfs.content_ent = NULL; 1450 1451 p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR, 1452 cd->u.procfs.proc_ent, 1453 &cache_flush_operations_procfs, cd); 1454 cd->u.procfs.flush_ent = p; 1455 if (p == NULL) 1456 goto out_nomem; 1457 1458 if (cd->cache_upcall || cd->cache_parse) { 1459 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR, 1460 cd->u.procfs.proc_ent, 1461 &cache_file_operations_procfs, cd); 1462 cd->u.procfs.channel_ent = p; 1463 if (p == NULL) 1464 goto out_nomem; 1465 } 1466 if (cd->cache_show) { 1467 p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR, 1468 cd->u.procfs.proc_ent, 1469 &content_file_operations_procfs, cd); 1470 cd->u.procfs.content_ent = p; 1471 if (p == NULL) 1472 goto out_nomem; 1473 } 1474 return 0; 1475 out_nomem: 1476 remove_cache_proc_entries(cd); 1477 return -ENOMEM; 1478 } 1479 #else /* CONFIG_PROC_FS */ 1480 static int create_cache_proc_entries(struct cache_detail *cd) 1481 { 1482 return 0; 1483 } 1484 #endif 1485 1486 int cache_register(struct cache_detail *cd) 1487 { 1488 int ret; 1489 1490 sunrpc_init_cache_detail(cd); 1491 ret = create_cache_proc_entries(cd); 1492 if (ret) 1493 sunrpc_destroy_cache_detail(cd); 1494 return ret; 1495 } 1496 EXPORT_SYMBOL_GPL(cache_register); 1497 1498 void cache_unregister(struct cache_detail *cd) 1499 { 1500 remove_cache_proc_entries(cd); 1501 sunrpc_destroy_cache_detail(cd); 1502 } 1503 EXPORT_SYMBOL_GPL(cache_unregister); 1504 1505 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf, 1506 size_t count, loff_t *ppos) 1507 { 1508 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1509 1510 return cache_read(filp, buf, count, ppos, cd); 1511 } 1512 1513 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf, 1514 size_t count, loff_t *ppos) 1515 { 1516 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1517 1518 return cache_write(filp, buf, count, ppos, cd); 1519 } 1520 1521 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait) 1522 { 1523 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1524 1525 return cache_poll(filp, wait, cd); 1526 } 1527 1528 static int cache_ioctl_pipefs(struct inode *inode, struct file *filp, 1529 unsigned int cmd, unsigned long arg) 1530 { 1531 struct cache_detail *cd = RPC_I(inode)->private; 1532 1533 return cache_ioctl(inode, filp, cmd, arg, cd); 1534 } 1535 1536 static int cache_open_pipefs(struct inode *inode, struct file *filp) 1537 { 1538 struct cache_detail *cd = RPC_I(inode)->private; 1539 1540 return cache_open(inode, filp, cd); 1541 } 1542 1543 static int cache_release_pipefs(struct inode *inode, struct file *filp) 1544 { 1545 struct cache_detail *cd = RPC_I(inode)->private; 1546 1547 return cache_release(inode, filp, cd); 1548 } 1549 1550 const struct file_operations cache_file_operations_pipefs = { 1551 .owner = THIS_MODULE, 1552 .llseek = no_llseek, 1553 .read = cache_read_pipefs, 1554 .write = cache_write_pipefs, 1555 .poll = cache_poll_pipefs, 1556 .ioctl = cache_ioctl_pipefs, /* for FIONREAD */ 1557 .open = cache_open_pipefs, 1558 .release = cache_release_pipefs, 1559 }; 1560 1561 static int content_open_pipefs(struct inode *inode, struct file *filp) 1562 { 1563 struct cache_detail *cd = RPC_I(inode)->private; 1564 1565 return content_open(inode, filp, cd); 1566 } 1567 1568 static int content_release_pipefs(struct inode *inode, struct file *filp) 1569 { 1570 struct cache_detail *cd = RPC_I(inode)->private; 1571 1572 return content_release(inode, filp, cd); 1573 } 1574 1575 const struct file_operations content_file_operations_pipefs = { 1576 .open = content_open_pipefs, 1577 .read = seq_read, 1578 .llseek = seq_lseek, 1579 .release = content_release_pipefs, 1580 }; 1581 1582 static int open_flush_pipefs(struct inode *inode, struct file *filp) 1583 { 1584 struct cache_detail *cd = RPC_I(inode)->private; 1585 1586 return open_flush(inode, filp, cd); 1587 } 1588 1589 static int release_flush_pipefs(struct inode *inode, struct file *filp) 1590 { 1591 struct cache_detail *cd = RPC_I(inode)->private; 1592 1593 return release_flush(inode, filp, cd); 1594 } 1595 1596 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf, 1597 size_t count, loff_t *ppos) 1598 { 1599 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1600 1601 return read_flush(filp, buf, count, ppos, cd); 1602 } 1603 1604 static ssize_t write_flush_pipefs(struct file *filp, 1605 const char __user *buf, 1606 size_t count, loff_t *ppos) 1607 { 1608 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1609 1610 return write_flush(filp, buf, count, ppos, cd); 1611 } 1612 1613 const struct file_operations cache_flush_operations_pipefs = { 1614 .open = open_flush_pipefs, 1615 .read = read_flush_pipefs, 1616 .write = write_flush_pipefs, 1617 .release = release_flush_pipefs, 1618 }; 1619 1620 int sunrpc_cache_register_pipefs(struct dentry *parent, 1621 const char *name, mode_t umode, 1622 struct cache_detail *cd) 1623 { 1624 struct qstr q; 1625 struct dentry *dir; 1626 int ret = 0; 1627 1628 sunrpc_init_cache_detail(cd); 1629 q.name = name; 1630 q.len = strlen(name); 1631 q.hash = full_name_hash(q.name, q.len); 1632 dir = rpc_create_cache_dir(parent, &q, umode, cd); 1633 if (!IS_ERR(dir)) 1634 cd->u.pipefs.dir = dir; 1635 else { 1636 sunrpc_destroy_cache_detail(cd); 1637 ret = PTR_ERR(dir); 1638 } 1639 return ret; 1640 } 1641 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs); 1642 1643 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd) 1644 { 1645 rpc_remove_cache_dir(cd->u.pipefs.dir); 1646 cd->u.pipefs.dir = NULL; 1647 sunrpc_destroy_cache_detail(cd); 1648 } 1649 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs); 1650 1651