1 /* 2 * net/sunrpc/cache.c 3 * 4 * Generic code for various authentication-related caches 5 * used by sunrpc clients and servers. 6 * 7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 8 * 9 * Released under terms in GPL version 2. See COPYING. 10 * 11 */ 12 13 #include <linux/types.h> 14 #include <linux/fs.h> 15 #include <linux/file.h> 16 #include <linux/slab.h> 17 #include <linux/signal.h> 18 #include <linux/sched.h> 19 #include <linux/kmod.h> 20 #include <linux/list.h> 21 #include <linux/module.h> 22 #include <linux/ctype.h> 23 #include <asm/uaccess.h> 24 #include <linux/poll.h> 25 #include <linux/seq_file.h> 26 #include <linux/proc_fs.h> 27 #include <linux/net.h> 28 #include <linux/workqueue.h> 29 #include <linux/mutex.h> 30 #include <asm/ioctls.h> 31 #include <linux/sunrpc/types.h> 32 #include <linux/sunrpc/cache.h> 33 #include <linux/sunrpc/stats.h> 34 35 #define RPCDBG_FACILITY RPCDBG_CACHE 36 37 static void cache_defer_req(struct cache_req *req, struct cache_head *item); 38 static void cache_revisit_request(struct cache_head *item); 39 40 static void cache_init(struct cache_head *h) 41 { 42 time_t now = get_seconds(); 43 h->next = NULL; 44 h->flags = 0; 45 kref_init(&h->ref); 46 h->expiry_time = now + CACHE_NEW_EXPIRY; 47 h->last_refresh = now; 48 } 49 50 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail, 51 struct cache_head *key, int hash) 52 { 53 struct cache_head **head, **hp; 54 struct cache_head *new = NULL; 55 56 head = &detail->hash_table[hash]; 57 58 read_lock(&detail->hash_lock); 59 60 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 61 struct cache_head *tmp = *hp; 62 if (detail->match(tmp, key)) { 63 cache_get(tmp); 64 read_unlock(&detail->hash_lock); 65 return tmp; 66 } 67 } 68 read_unlock(&detail->hash_lock); 69 /* Didn't find anything, insert an empty entry */ 70 71 new = detail->alloc(); 72 if (!new) 73 return NULL; 74 cache_init(new); 75 76 write_lock(&detail->hash_lock); 77 78 /* check if entry appeared while we slept */ 79 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 80 struct cache_head *tmp = *hp; 81 if (detail->match(tmp, key)) { 82 cache_get(tmp); 83 write_unlock(&detail->hash_lock); 84 cache_put(new, detail); 85 return tmp; 86 } 87 } 88 detail->init(new, key); 89 new->next = *head; 90 *head = new; 91 detail->entries++; 92 cache_get(new); 93 write_unlock(&detail->hash_lock); 94 95 return new; 96 } 97 EXPORT_SYMBOL(sunrpc_cache_lookup); 98 99 100 static void queue_loose(struct cache_detail *detail, struct cache_head *ch); 101 102 static int cache_fresh_locked(struct cache_head *head, time_t expiry) 103 { 104 head->expiry_time = expiry; 105 head->last_refresh = get_seconds(); 106 return !test_and_set_bit(CACHE_VALID, &head->flags); 107 } 108 109 static void cache_fresh_unlocked(struct cache_head *head, 110 struct cache_detail *detail, int new) 111 { 112 if (new) 113 cache_revisit_request(head); 114 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 115 cache_revisit_request(head); 116 queue_loose(detail, head); 117 } 118 } 119 120 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 121 struct cache_head *new, struct cache_head *old, int hash) 122 { 123 /* The 'old' entry is to be replaced by 'new'. 124 * If 'old' is not VALID, we update it directly, 125 * otherwise we need to replace it 126 */ 127 struct cache_head **head; 128 struct cache_head *tmp; 129 int is_new; 130 131 if (!test_bit(CACHE_VALID, &old->flags)) { 132 write_lock(&detail->hash_lock); 133 if (!test_bit(CACHE_VALID, &old->flags)) { 134 if (test_bit(CACHE_NEGATIVE, &new->flags)) 135 set_bit(CACHE_NEGATIVE, &old->flags); 136 else 137 detail->update(old, new); 138 is_new = cache_fresh_locked(old, new->expiry_time); 139 write_unlock(&detail->hash_lock); 140 cache_fresh_unlocked(old, detail, is_new); 141 return old; 142 } 143 write_unlock(&detail->hash_lock); 144 } 145 /* We need to insert a new entry */ 146 tmp = detail->alloc(); 147 if (!tmp) { 148 cache_put(old, detail); 149 return NULL; 150 } 151 cache_init(tmp); 152 detail->init(tmp, old); 153 head = &detail->hash_table[hash]; 154 155 write_lock(&detail->hash_lock); 156 if (test_bit(CACHE_NEGATIVE, &new->flags)) 157 set_bit(CACHE_NEGATIVE, &tmp->flags); 158 else 159 detail->update(tmp, new); 160 tmp->next = *head; 161 *head = tmp; 162 cache_get(tmp); 163 is_new = cache_fresh_locked(tmp, new->expiry_time); 164 cache_fresh_locked(old, 0); 165 write_unlock(&detail->hash_lock); 166 cache_fresh_unlocked(tmp, detail, is_new); 167 cache_fresh_unlocked(old, detail, 0); 168 cache_put(old, detail); 169 return tmp; 170 } 171 EXPORT_SYMBOL(sunrpc_cache_update); 172 173 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h); 174 /* 175 * This is the generic cache management routine for all 176 * the authentication caches. 177 * It checks the currency of a cache item and will (later) 178 * initiate an upcall to fill it if needed. 179 * 180 * 181 * Returns 0 if the cache_head can be used, or cache_puts it and returns 182 * -EAGAIN if upcall is pending, 183 * -ENOENT if cache entry was negative 184 */ 185 int cache_check(struct cache_detail *detail, 186 struct cache_head *h, struct cache_req *rqstp) 187 { 188 int rv; 189 long refresh_age, age; 190 191 /* First decide return status as best we can */ 192 if (!test_bit(CACHE_VALID, &h->flags) || 193 h->expiry_time < get_seconds()) 194 rv = -EAGAIN; 195 else if (detail->flush_time > h->last_refresh) 196 rv = -EAGAIN; 197 else { 198 /* entry is valid */ 199 if (test_bit(CACHE_NEGATIVE, &h->flags)) 200 rv = -ENOENT; 201 else rv = 0; 202 } 203 204 /* now see if we want to start an upcall */ 205 refresh_age = (h->expiry_time - h->last_refresh); 206 age = get_seconds() - h->last_refresh; 207 208 if (rqstp == NULL) { 209 if (rv == -EAGAIN) 210 rv = -ENOENT; 211 } else if (rv == -EAGAIN || age > refresh_age/2) { 212 dprintk("Want update, refage=%ld, age=%ld\n", refresh_age, age); 213 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) { 214 switch (cache_make_upcall(detail, h)) { 215 case -EINVAL: 216 clear_bit(CACHE_PENDING, &h->flags); 217 if (rv == -EAGAIN) { 218 set_bit(CACHE_NEGATIVE, &h->flags); 219 cache_fresh_unlocked(h, detail, 220 cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY)); 221 rv = -ENOENT; 222 } 223 break; 224 225 case -EAGAIN: 226 clear_bit(CACHE_PENDING, &h->flags); 227 cache_revisit_request(h); 228 break; 229 } 230 } 231 } 232 233 if (rv == -EAGAIN) 234 cache_defer_req(rqstp, h); 235 236 if (rv) 237 cache_put(h, detail); 238 return rv; 239 } 240 241 /* 242 * caches need to be periodically cleaned. 243 * For this we maintain a list of cache_detail and 244 * a current pointer into that list and into the table 245 * for that entry. 246 * 247 * Each time clean_cache is called it finds the next non-empty entry 248 * in the current table and walks the list in that entry 249 * looking for entries that can be removed. 250 * 251 * An entry gets removed if: 252 * - The expiry is before current time 253 * - The last_refresh time is before the flush_time for that cache 254 * 255 * later we might drop old entries with non-NEVER expiry if that table 256 * is getting 'full' for some definition of 'full' 257 * 258 * The question of "how often to scan a table" is an interesting one 259 * and is answered in part by the use of the "nextcheck" field in the 260 * cache_detail. 261 * When a scan of a table begins, the nextcheck field is set to a time 262 * that is well into the future. 263 * While scanning, if an expiry time is found that is earlier than the 264 * current nextcheck time, nextcheck is set to that expiry time. 265 * If the flush_time is ever set to a time earlier than the nextcheck 266 * time, the nextcheck time is then set to that flush_time. 267 * 268 * A table is then only scanned if the current time is at least 269 * the nextcheck time. 270 * 271 */ 272 273 static LIST_HEAD(cache_list); 274 static DEFINE_SPINLOCK(cache_list_lock); 275 static struct cache_detail *current_detail; 276 static int current_index; 277 278 static struct file_operations cache_file_operations; 279 static struct file_operations content_file_operations; 280 static struct file_operations cache_flush_operations; 281 282 static void do_cache_clean(void *data); 283 static DECLARE_WORK(cache_cleaner, do_cache_clean, NULL); 284 285 void cache_register(struct cache_detail *cd) 286 { 287 cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc); 288 if (cd->proc_ent) { 289 struct proc_dir_entry *p; 290 cd->proc_ent->owner = cd->owner; 291 cd->channel_ent = cd->content_ent = NULL; 292 293 p = create_proc_entry("flush", S_IFREG|S_IRUSR|S_IWUSR, 294 cd->proc_ent); 295 cd->flush_ent = p; 296 if (p) { 297 p->proc_fops = &cache_flush_operations; 298 p->owner = cd->owner; 299 p->data = cd; 300 } 301 302 if (cd->cache_request || cd->cache_parse) { 303 p = create_proc_entry("channel", S_IFREG|S_IRUSR|S_IWUSR, 304 cd->proc_ent); 305 cd->channel_ent = p; 306 if (p) { 307 p->proc_fops = &cache_file_operations; 308 p->owner = cd->owner; 309 p->data = cd; 310 } 311 } 312 if (cd->cache_show) { 313 p = create_proc_entry("content", S_IFREG|S_IRUSR|S_IWUSR, 314 cd->proc_ent); 315 cd->content_ent = p; 316 if (p) { 317 p->proc_fops = &content_file_operations; 318 p->owner = cd->owner; 319 p->data = cd; 320 } 321 } 322 } 323 rwlock_init(&cd->hash_lock); 324 INIT_LIST_HEAD(&cd->queue); 325 spin_lock(&cache_list_lock); 326 cd->nextcheck = 0; 327 cd->entries = 0; 328 atomic_set(&cd->readers, 0); 329 cd->last_close = 0; 330 cd->last_warn = -1; 331 list_add(&cd->others, &cache_list); 332 spin_unlock(&cache_list_lock); 333 334 /* start the cleaning process */ 335 schedule_work(&cache_cleaner); 336 } 337 338 int cache_unregister(struct cache_detail *cd) 339 { 340 cache_purge(cd); 341 spin_lock(&cache_list_lock); 342 write_lock(&cd->hash_lock); 343 if (cd->entries || atomic_read(&cd->inuse)) { 344 write_unlock(&cd->hash_lock); 345 spin_unlock(&cache_list_lock); 346 return -EBUSY; 347 } 348 if (current_detail == cd) 349 current_detail = NULL; 350 list_del_init(&cd->others); 351 write_unlock(&cd->hash_lock); 352 spin_unlock(&cache_list_lock); 353 if (cd->proc_ent) { 354 if (cd->flush_ent) 355 remove_proc_entry("flush", cd->proc_ent); 356 if (cd->channel_ent) 357 remove_proc_entry("channel", cd->proc_ent); 358 if (cd->content_ent) 359 remove_proc_entry("content", cd->proc_ent); 360 361 cd->proc_ent = NULL; 362 remove_proc_entry(cd->name, proc_net_rpc); 363 } 364 if (list_empty(&cache_list)) { 365 /* module must be being unloaded so its safe to kill the worker */ 366 cancel_delayed_work(&cache_cleaner); 367 flush_scheduled_work(); 368 } 369 return 0; 370 } 371 372 /* clean cache tries to find something to clean 373 * and cleans it. 374 * It returns 1 if it cleaned something, 375 * 0 if it didn't find anything this time 376 * -1 if it fell off the end of the list. 377 */ 378 static int cache_clean(void) 379 { 380 int rv = 0; 381 struct list_head *next; 382 383 spin_lock(&cache_list_lock); 384 385 /* find a suitable table if we don't already have one */ 386 while (current_detail == NULL || 387 current_index >= current_detail->hash_size) { 388 if (current_detail) 389 next = current_detail->others.next; 390 else 391 next = cache_list.next; 392 if (next == &cache_list) { 393 current_detail = NULL; 394 spin_unlock(&cache_list_lock); 395 return -1; 396 } 397 current_detail = list_entry(next, struct cache_detail, others); 398 if (current_detail->nextcheck > get_seconds()) 399 current_index = current_detail->hash_size; 400 else { 401 current_index = 0; 402 current_detail->nextcheck = get_seconds()+30*60; 403 } 404 } 405 406 /* find a non-empty bucket in the table */ 407 while (current_detail && 408 current_index < current_detail->hash_size && 409 current_detail->hash_table[current_index] == NULL) 410 current_index++; 411 412 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 413 414 if (current_detail && current_index < current_detail->hash_size) { 415 struct cache_head *ch, **cp; 416 struct cache_detail *d; 417 418 write_lock(¤t_detail->hash_lock); 419 420 /* Ok, now to clean this strand */ 421 422 cp = & current_detail->hash_table[current_index]; 423 ch = *cp; 424 for (; ch; cp= & ch->next, ch= *cp) { 425 if (current_detail->nextcheck > ch->expiry_time) 426 current_detail->nextcheck = ch->expiry_time+1; 427 if (ch->expiry_time >= get_seconds() 428 && ch->last_refresh >= current_detail->flush_time 429 ) 430 continue; 431 if (test_and_clear_bit(CACHE_PENDING, &ch->flags)) 432 queue_loose(current_detail, ch); 433 434 if (atomic_read(&ch->ref.refcount) == 1) 435 break; 436 } 437 if (ch) { 438 *cp = ch->next; 439 ch->next = NULL; 440 current_detail->entries--; 441 rv = 1; 442 } 443 write_unlock(¤t_detail->hash_lock); 444 d = current_detail; 445 if (!ch) 446 current_index ++; 447 spin_unlock(&cache_list_lock); 448 if (ch) 449 cache_put(ch, d); 450 } else 451 spin_unlock(&cache_list_lock); 452 453 return rv; 454 } 455 456 /* 457 * We want to regularly clean the cache, so we need to schedule some work ... 458 */ 459 static void do_cache_clean(void *data) 460 { 461 int delay = 5; 462 if (cache_clean() == -1) 463 delay = 30*HZ; 464 465 if (list_empty(&cache_list)) 466 delay = 0; 467 468 if (delay) 469 schedule_delayed_work(&cache_cleaner, delay); 470 } 471 472 473 /* 474 * Clean all caches promptly. This just calls cache_clean 475 * repeatedly until we are sure that every cache has had a chance to 476 * be fully cleaned 477 */ 478 void cache_flush(void) 479 { 480 while (cache_clean() != -1) 481 cond_resched(); 482 while (cache_clean() != -1) 483 cond_resched(); 484 } 485 486 void cache_purge(struct cache_detail *detail) 487 { 488 detail->flush_time = LONG_MAX; 489 detail->nextcheck = get_seconds(); 490 cache_flush(); 491 detail->flush_time = 1; 492 } 493 494 495 496 /* 497 * Deferral and Revisiting of Requests. 498 * 499 * If a cache lookup finds a pending entry, we 500 * need to defer the request and revisit it later. 501 * All deferred requests are stored in a hash table, 502 * indexed by "struct cache_head *". 503 * As it may be wasteful to store a whole request 504 * structure, we allow the request to provide a 505 * deferred form, which must contain a 506 * 'struct cache_deferred_req' 507 * This cache_deferred_req contains a method to allow 508 * it to be revisited when cache info is available 509 */ 510 511 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 512 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 513 514 #define DFR_MAX 300 /* ??? */ 515 516 static DEFINE_SPINLOCK(cache_defer_lock); 517 static LIST_HEAD(cache_defer_list); 518 static struct list_head cache_defer_hash[DFR_HASHSIZE]; 519 static int cache_defer_cnt; 520 521 static void cache_defer_req(struct cache_req *req, struct cache_head *item) 522 { 523 struct cache_deferred_req *dreq; 524 int hash = DFR_HASH(item); 525 526 dreq = req->defer(req); 527 if (dreq == NULL) 528 return; 529 530 dreq->item = item; 531 dreq->recv_time = get_seconds(); 532 533 spin_lock(&cache_defer_lock); 534 535 list_add(&dreq->recent, &cache_defer_list); 536 537 if (cache_defer_hash[hash].next == NULL) 538 INIT_LIST_HEAD(&cache_defer_hash[hash]); 539 list_add(&dreq->hash, &cache_defer_hash[hash]); 540 541 /* it is in, now maybe clean up */ 542 dreq = NULL; 543 if (++cache_defer_cnt > DFR_MAX) { 544 /* too much in the cache, randomly drop 545 * first or last 546 */ 547 if (net_random()&1) 548 dreq = list_entry(cache_defer_list.next, 549 struct cache_deferred_req, 550 recent); 551 else 552 dreq = list_entry(cache_defer_list.prev, 553 struct cache_deferred_req, 554 recent); 555 list_del(&dreq->recent); 556 list_del(&dreq->hash); 557 cache_defer_cnt--; 558 } 559 spin_unlock(&cache_defer_lock); 560 561 if (dreq) { 562 /* there was one too many */ 563 dreq->revisit(dreq, 1); 564 } 565 if (!test_bit(CACHE_PENDING, &item->flags)) { 566 /* must have just been validated... */ 567 cache_revisit_request(item); 568 } 569 } 570 571 static void cache_revisit_request(struct cache_head *item) 572 { 573 struct cache_deferred_req *dreq; 574 struct list_head pending; 575 576 struct list_head *lp; 577 int hash = DFR_HASH(item); 578 579 INIT_LIST_HEAD(&pending); 580 spin_lock(&cache_defer_lock); 581 582 lp = cache_defer_hash[hash].next; 583 if (lp) { 584 while (lp != &cache_defer_hash[hash]) { 585 dreq = list_entry(lp, struct cache_deferred_req, hash); 586 lp = lp->next; 587 if (dreq->item == item) { 588 list_del(&dreq->hash); 589 list_move(&dreq->recent, &pending); 590 cache_defer_cnt--; 591 } 592 } 593 } 594 spin_unlock(&cache_defer_lock); 595 596 while (!list_empty(&pending)) { 597 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 598 list_del_init(&dreq->recent); 599 dreq->revisit(dreq, 0); 600 } 601 } 602 603 void cache_clean_deferred(void *owner) 604 { 605 struct cache_deferred_req *dreq, *tmp; 606 struct list_head pending; 607 608 609 INIT_LIST_HEAD(&pending); 610 spin_lock(&cache_defer_lock); 611 612 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 613 if (dreq->owner == owner) { 614 list_del(&dreq->hash); 615 list_move(&dreq->recent, &pending); 616 cache_defer_cnt--; 617 } 618 } 619 spin_unlock(&cache_defer_lock); 620 621 while (!list_empty(&pending)) { 622 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 623 list_del_init(&dreq->recent); 624 dreq->revisit(dreq, 1); 625 } 626 } 627 628 /* 629 * communicate with user-space 630 * 631 * We have a magic /proc file - /proc/sunrpc/cache 632 * On read, you get a full request, or block 633 * On write, an update request is processed 634 * Poll works if anything to read, and always allows write 635 * 636 * Implemented by linked list of requests. Each open file has 637 * a ->private that also exists in this list. New request are added 638 * to the end and may wakeup and preceding readers. 639 * New readers are added to the head. If, on read, an item is found with 640 * CACHE_UPCALLING clear, we free it from the list. 641 * 642 */ 643 644 static DEFINE_SPINLOCK(queue_lock); 645 static DEFINE_MUTEX(queue_io_mutex); 646 647 struct cache_queue { 648 struct list_head list; 649 int reader; /* if 0, then request */ 650 }; 651 struct cache_request { 652 struct cache_queue q; 653 struct cache_head *item; 654 char * buf; 655 int len; 656 int readers; 657 }; 658 struct cache_reader { 659 struct cache_queue q; 660 int offset; /* if non-0, we have a refcnt on next request */ 661 }; 662 663 static ssize_t 664 cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos) 665 { 666 struct cache_reader *rp = filp->private_data; 667 struct cache_request *rq; 668 struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data; 669 int err; 670 671 if (count == 0) 672 return 0; 673 674 mutex_lock(&queue_io_mutex); /* protect against multiple concurrent 675 * readers on this file */ 676 again: 677 spin_lock(&queue_lock); 678 /* need to find next request */ 679 while (rp->q.list.next != &cd->queue && 680 list_entry(rp->q.list.next, struct cache_queue, list) 681 ->reader) { 682 struct list_head *next = rp->q.list.next; 683 list_move(&rp->q.list, next); 684 } 685 if (rp->q.list.next == &cd->queue) { 686 spin_unlock(&queue_lock); 687 mutex_unlock(&queue_io_mutex); 688 BUG_ON(rp->offset); 689 return 0; 690 } 691 rq = container_of(rp->q.list.next, struct cache_request, q.list); 692 BUG_ON(rq->q.reader); 693 if (rp->offset == 0) 694 rq->readers++; 695 spin_unlock(&queue_lock); 696 697 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 698 err = -EAGAIN; 699 spin_lock(&queue_lock); 700 list_move(&rp->q.list, &rq->q.list); 701 spin_unlock(&queue_lock); 702 } else { 703 if (rp->offset + count > rq->len) 704 count = rq->len - rp->offset; 705 err = -EFAULT; 706 if (copy_to_user(buf, rq->buf + rp->offset, count)) 707 goto out; 708 rp->offset += count; 709 if (rp->offset >= rq->len) { 710 rp->offset = 0; 711 spin_lock(&queue_lock); 712 list_move(&rp->q.list, &rq->q.list); 713 spin_unlock(&queue_lock); 714 } 715 err = 0; 716 } 717 out: 718 if (rp->offset == 0) { 719 /* need to release rq */ 720 spin_lock(&queue_lock); 721 rq->readers--; 722 if (rq->readers == 0 && 723 !test_bit(CACHE_PENDING, &rq->item->flags)) { 724 list_del(&rq->q.list); 725 spin_unlock(&queue_lock); 726 cache_put(rq->item, cd); 727 kfree(rq->buf); 728 kfree(rq); 729 } else 730 spin_unlock(&queue_lock); 731 } 732 if (err == -EAGAIN) 733 goto again; 734 mutex_unlock(&queue_io_mutex); 735 return err ? err : count; 736 } 737 738 static char write_buf[8192]; /* protected by queue_io_mutex */ 739 740 static ssize_t 741 cache_write(struct file *filp, const char __user *buf, size_t count, 742 loff_t *ppos) 743 { 744 int err; 745 struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data; 746 747 if (count == 0) 748 return 0; 749 if (count >= sizeof(write_buf)) 750 return -EINVAL; 751 752 mutex_lock(&queue_io_mutex); 753 754 if (copy_from_user(write_buf, buf, count)) { 755 mutex_unlock(&queue_io_mutex); 756 return -EFAULT; 757 } 758 write_buf[count] = '\0'; 759 if (cd->cache_parse) 760 err = cd->cache_parse(cd, write_buf, count); 761 else 762 err = -EINVAL; 763 764 mutex_unlock(&queue_io_mutex); 765 return err ? err : count; 766 } 767 768 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 769 770 static unsigned int 771 cache_poll(struct file *filp, poll_table *wait) 772 { 773 unsigned int mask; 774 struct cache_reader *rp = filp->private_data; 775 struct cache_queue *cq; 776 struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data; 777 778 poll_wait(filp, &queue_wait, wait); 779 780 /* alway allow write */ 781 mask = POLL_OUT | POLLWRNORM; 782 783 if (!rp) 784 return mask; 785 786 spin_lock(&queue_lock); 787 788 for (cq= &rp->q; &cq->list != &cd->queue; 789 cq = list_entry(cq->list.next, struct cache_queue, list)) 790 if (!cq->reader) { 791 mask |= POLLIN | POLLRDNORM; 792 break; 793 } 794 spin_unlock(&queue_lock); 795 return mask; 796 } 797 798 static int 799 cache_ioctl(struct inode *ino, struct file *filp, 800 unsigned int cmd, unsigned long arg) 801 { 802 int len = 0; 803 struct cache_reader *rp = filp->private_data; 804 struct cache_queue *cq; 805 struct cache_detail *cd = PDE(ino)->data; 806 807 if (cmd != FIONREAD || !rp) 808 return -EINVAL; 809 810 spin_lock(&queue_lock); 811 812 /* only find the length remaining in current request, 813 * or the length of the next request 814 */ 815 for (cq= &rp->q; &cq->list != &cd->queue; 816 cq = list_entry(cq->list.next, struct cache_queue, list)) 817 if (!cq->reader) { 818 struct cache_request *cr = 819 container_of(cq, struct cache_request, q); 820 len = cr->len - rp->offset; 821 break; 822 } 823 spin_unlock(&queue_lock); 824 825 return put_user(len, (int __user *)arg); 826 } 827 828 static int 829 cache_open(struct inode *inode, struct file *filp) 830 { 831 struct cache_reader *rp = NULL; 832 833 nonseekable_open(inode, filp); 834 if (filp->f_mode & FMODE_READ) { 835 struct cache_detail *cd = PDE(inode)->data; 836 837 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 838 if (!rp) 839 return -ENOMEM; 840 rp->offset = 0; 841 rp->q.reader = 1; 842 atomic_inc(&cd->readers); 843 spin_lock(&queue_lock); 844 list_add(&rp->q.list, &cd->queue); 845 spin_unlock(&queue_lock); 846 } 847 filp->private_data = rp; 848 return 0; 849 } 850 851 static int 852 cache_release(struct inode *inode, struct file *filp) 853 { 854 struct cache_reader *rp = filp->private_data; 855 struct cache_detail *cd = PDE(inode)->data; 856 857 if (rp) { 858 spin_lock(&queue_lock); 859 if (rp->offset) { 860 struct cache_queue *cq; 861 for (cq= &rp->q; &cq->list != &cd->queue; 862 cq = list_entry(cq->list.next, struct cache_queue, list)) 863 if (!cq->reader) { 864 container_of(cq, struct cache_request, q) 865 ->readers--; 866 break; 867 } 868 rp->offset = 0; 869 } 870 list_del(&rp->q.list); 871 spin_unlock(&queue_lock); 872 873 filp->private_data = NULL; 874 kfree(rp); 875 876 cd->last_close = get_seconds(); 877 atomic_dec(&cd->readers); 878 } 879 return 0; 880 } 881 882 883 884 static struct file_operations cache_file_operations = { 885 .owner = THIS_MODULE, 886 .llseek = no_llseek, 887 .read = cache_read, 888 .write = cache_write, 889 .poll = cache_poll, 890 .ioctl = cache_ioctl, /* for FIONREAD */ 891 .open = cache_open, 892 .release = cache_release, 893 }; 894 895 896 static void queue_loose(struct cache_detail *detail, struct cache_head *ch) 897 { 898 struct cache_queue *cq; 899 spin_lock(&queue_lock); 900 list_for_each_entry(cq, &detail->queue, list) 901 if (!cq->reader) { 902 struct cache_request *cr = container_of(cq, struct cache_request, q); 903 if (cr->item != ch) 904 continue; 905 if (cr->readers != 0) 906 continue; 907 list_del(&cr->q.list); 908 spin_unlock(&queue_lock); 909 cache_put(cr->item, detail); 910 kfree(cr->buf); 911 kfree(cr); 912 return; 913 } 914 spin_unlock(&queue_lock); 915 } 916 917 /* 918 * Support routines for text-based upcalls. 919 * Fields are separated by spaces. 920 * Fields are either mangled to quote space tab newline slosh with slosh 921 * or a hexified with a leading \x 922 * Record is terminated with newline. 923 * 924 */ 925 926 void qword_add(char **bpp, int *lp, char *str) 927 { 928 char *bp = *bpp; 929 int len = *lp; 930 char c; 931 932 if (len < 0) return; 933 934 while ((c=*str++) && len) 935 switch(c) { 936 case ' ': 937 case '\t': 938 case '\n': 939 case '\\': 940 if (len >= 4) { 941 *bp++ = '\\'; 942 *bp++ = '0' + ((c & 0300)>>6); 943 *bp++ = '0' + ((c & 0070)>>3); 944 *bp++ = '0' + ((c & 0007)>>0); 945 } 946 len -= 4; 947 break; 948 default: 949 *bp++ = c; 950 len--; 951 } 952 if (c || len <1) len = -1; 953 else { 954 *bp++ = ' '; 955 len--; 956 } 957 *bpp = bp; 958 *lp = len; 959 } 960 961 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 962 { 963 char *bp = *bpp; 964 int len = *lp; 965 966 if (len < 0) return; 967 968 if (len > 2) { 969 *bp++ = '\\'; 970 *bp++ = 'x'; 971 len -= 2; 972 while (blen && len >= 2) { 973 unsigned char c = *buf++; 974 *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1); 975 *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1); 976 len -= 2; 977 blen--; 978 } 979 } 980 if (blen || len<1) len = -1; 981 else { 982 *bp++ = ' '; 983 len--; 984 } 985 *bpp = bp; 986 *lp = len; 987 } 988 989 static void warn_no_listener(struct cache_detail *detail) 990 { 991 if (detail->last_warn != detail->last_close) { 992 detail->last_warn = detail->last_close; 993 if (detail->warn_no_listener) 994 detail->warn_no_listener(detail); 995 } 996 } 997 998 /* 999 * register an upcall request to user-space. 1000 * Each request is at most one page long. 1001 */ 1002 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h) 1003 { 1004 1005 char *buf; 1006 struct cache_request *crq; 1007 char *bp; 1008 int len; 1009 1010 if (detail->cache_request == NULL) 1011 return -EINVAL; 1012 1013 if (atomic_read(&detail->readers) == 0 && 1014 detail->last_close < get_seconds() - 30) { 1015 warn_no_listener(detail); 1016 return -EINVAL; 1017 } 1018 1019 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1020 if (!buf) 1021 return -EAGAIN; 1022 1023 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1024 if (!crq) { 1025 kfree(buf); 1026 return -EAGAIN; 1027 } 1028 1029 bp = buf; len = PAGE_SIZE; 1030 1031 detail->cache_request(detail, h, &bp, &len); 1032 1033 if (len < 0) { 1034 kfree(buf); 1035 kfree(crq); 1036 return -EAGAIN; 1037 } 1038 crq->q.reader = 0; 1039 crq->item = cache_get(h); 1040 crq->buf = buf; 1041 crq->len = PAGE_SIZE - len; 1042 crq->readers = 0; 1043 spin_lock(&queue_lock); 1044 list_add_tail(&crq->q.list, &detail->queue); 1045 spin_unlock(&queue_lock); 1046 wake_up(&queue_wait); 1047 return 0; 1048 } 1049 1050 /* 1051 * parse a message from user-space and pass it 1052 * to an appropriate cache 1053 * Messages are, like requests, separated into fields by 1054 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1055 * 1056 * Message is 1057 * reply cachename expiry key ... content.... 1058 * 1059 * key and content are both parsed by cache 1060 */ 1061 1062 #define isodigit(c) (isdigit(c) && c <= '7') 1063 int qword_get(char **bpp, char *dest, int bufsize) 1064 { 1065 /* return bytes copied, or -1 on error */ 1066 char *bp = *bpp; 1067 int len = 0; 1068 1069 while (*bp == ' ') bp++; 1070 1071 if (bp[0] == '\\' && bp[1] == 'x') { 1072 /* HEX STRING */ 1073 bp += 2; 1074 while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) { 1075 int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10; 1076 bp++; 1077 byte <<= 4; 1078 byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10; 1079 *dest++ = byte; 1080 bp++; 1081 len++; 1082 } 1083 } else { 1084 /* text with \nnn octal quoting */ 1085 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1086 if (*bp == '\\' && 1087 isodigit(bp[1]) && (bp[1] <= '3') && 1088 isodigit(bp[2]) && 1089 isodigit(bp[3])) { 1090 int byte = (*++bp -'0'); 1091 bp++; 1092 byte = (byte << 3) | (*bp++ - '0'); 1093 byte = (byte << 3) | (*bp++ - '0'); 1094 *dest++ = byte; 1095 len++; 1096 } else { 1097 *dest++ = *bp++; 1098 len++; 1099 } 1100 } 1101 } 1102 1103 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1104 return -1; 1105 while (*bp == ' ') bp++; 1106 *bpp = bp; 1107 *dest = '\0'; 1108 return len; 1109 } 1110 1111 1112 /* 1113 * support /proc/sunrpc/cache/$CACHENAME/content 1114 * as a seqfile. 1115 * We call ->cache_show passing NULL for the item to 1116 * get a header, then pass each real item in the cache 1117 */ 1118 1119 struct handle { 1120 struct cache_detail *cd; 1121 }; 1122 1123 static void *c_start(struct seq_file *m, loff_t *pos) 1124 { 1125 loff_t n = *pos; 1126 unsigned hash, entry; 1127 struct cache_head *ch; 1128 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1129 1130 1131 read_lock(&cd->hash_lock); 1132 if (!n--) 1133 return SEQ_START_TOKEN; 1134 hash = n >> 32; 1135 entry = n & ((1LL<<32) - 1); 1136 1137 for (ch=cd->hash_table[hash]; ch; ch=ch->next) 1138 if (!entry--) 1139 return ch; 1140 n &= ~((1LL<<32) - 1); 1141 do { 1142 hash++; 1143 n += 1LL<<32; 1144 } while(hash < cd->hash_size && 1145 cd->hash_table[hash]==NULL); 1146 if (hash >= cd->hash_size) 1147 return NULL; 1148 *pos = n+1; 1149 return cd->hash_table[hash]; 1150 } 1151 1152 static void *c_next(struct seq_file *m, void *p, loff_t *pos) 1153 { 1154 struct cache_head *ch = p; 1155 int hash = (*pos >> 32); 1156 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1157 1158 if (p == SEQ_START_TOKEN) 1159 hash = 0; 1160 else if (ch->next == NULL) { 1161 hash++; 1162 *pos += 1LL<<32; 1163 } else { 1164 ++*pos; 1165 return ch->next; 1166 } 1167 *pos &= ~((1LL<<32) - 1); 1168 while (hash < cd->hash_size && 1169 cd->hash_table[hash] == NULL) { 1170 hash++; 1171 *pos += 1LL<<32; 1172 } 1173 if (hash >= cd->hash_size) 1174 return NULL; 1175 ++*pos; 1176 return cd->hash_table[hash]; 1177 } 1178 1179 static void c_stop(struct seq_file *m, void *p) 1180 { 1181 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1182 read_unlock(&cd->hash_lock); 1183 } 1184 1185 static int c_show(struct seq_file *m, void *p) 1186 { 1187 struct cache_head *cp = p; 1188 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1189 1190 if (p == SEQ_START_TOKEN) 1191 return cd->cache_show(m, cd, NULL); 1192 1193 ifdebug(CACHE) 1194 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n", 1195 cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags); 1196 cache_get(cp); 1197 if (cache_check(cd, cp, NULL)) 1198 /* cache_check does a cache_put on failure */ 1199 seq_printf(m, "# "); 1200 else 1201 cache_put(cp, cd); 1202 1203 return cd->cache_show(m, cd, cp); 1204 } 1205 1206 static struct seq_operations cache_content_op = { 1207 .start = c_start, 1208 .next = c_next, 1209 .stop = c_stop, 1210 .show = c_show, 1211 }; 1212 1213 static int content_open(struct inode *inode, struct file *file) 1214 { 1215 int res; 1216 struct handle *han; 1217 struct cache_detail *cd = PDE(inode)->data; 1218 1219 han = kmalloc(sizeof(*han), GFP_KERNEL); 1220 if (han == NULL) 1221 return -ENOMEM; 1222 1223 han->cd = cd; 1224 1225 res = seq_open(file, &cache_content_op); 1226 if (res) 1227 kfree(han); 1228 else 1229 ((struct seq_file *)file->private_data)->private = han; 1230 1231 return res; 1232 } 1233 static int content_release(struct inode *inode, struct file *file) 1234 { 1235 struct seq_file *m = (struct seq_file *)file->private_data; 1236 struct handle *han = m->private; 1237 kfree(han); 1238 m->private = NULL; 1239 return seq_release(inode, file); 1240 } 1241 1242 static struct file_operations content_file_operations = { 1243 .open = content_open, 1244 .read = seq_read, 1245 .llseek = seq_lseek, 1246 .release = content_release, 1247 }; 1248 1249 static ssize_t read_flush(struct file *file, char __user *buf, 1250 size_t count, loff_t *ppos) 1251 { 1252 struct cache_detail *cd = PDE(file->f_dentry->d_inode)->data; 1253 char tbuf[20]; 1254 unsigned long p = *ppos; 1255 int len; 1256 1257 sprintf(tbuf, "%lu\n", cd->flush_time); 1258 len = strlen(tbuf); 1259 if (p >= len) 1260 return 0; 1261 len -= p; 1262 if (len > count) len = count; 1263 if (copy_to_user(buf, (void*)(tbuf+p), len)) 1264 len = -EFAULT; 1265 else 1266 *ppos += len; 1267 return len; 1268 } 1269 1270 static ssize_t write_flush(struct file * file, const char __user * buf, 1271 size_t count, loff_t *ppos) 1272 { 1273 struct cache_detail *cd = PDE(file->f_dentry->d_inode)->data; 1274 char tbuf[20]; 1275 char *ep; 1276 long flushtime; 1277 if (*ppos || count > sizeof(tbuf)-1) 1278 return -EINVAL; 1279 if (copy_from_user(tbuf, buf, count)) 1280 return -EFAULT; 1281 tbuf[count] = 0; 1282 flushtime = simple_strtoul(tbuf, &ep, 0); 1283 if (*ep && *ep != '\n') 1284 return -EINVAL; 1285 1286 cd->flush_time = flushtime; 1287 cd->nextcheck = get_seconds(); 1288 cache_flush(); 1289 1290 *ppos += count; 1291 return count; 1292 } 1293 1294 static struct file_operations cache_flush_operations = { 1295 .open = nonseekable_open, 1296 .read = read_flush, 1297 .write = write_flush, 1298 }; 1299